材料力学期末复习
材料力学期末-复习课件
max
mL 24 EI
A
B
七、超静定问题
拉压和扭转超静定问题 平衡方程 物理方程
q B
L
vq
协调方程
vR
弯曲超静定 静定基和多余约束力 协调方程
q
R
B
八、应力和应变理论
斜截面上的应力
1 1 ( x y ) ( x y ) cos2 xysin2 2 2 1 ( x y ) sin2 xycos2 2
ζy ηα ζα α ηxy
n
ζx
主方向、主应力的概念及计算
2 xy tan2 x y
i , j ( x y )
1 2
x y 2
2
2 xy
最大切应力
max 1 3
1 2
应变理论与应力理论的相似性
TL GI p
A
梁的挠度 转角 挠度微分方程
M 1 EI
M ( x) v( x ) EI
A’
积分法求梁的变形
P a
1 v EI
M ( x) dx dx Cx D
1
集中力 均布荷载
力偶矩
q( x ) P x a
q0
0
L
x a dx x a
xa x a dx n 1
n
1
0
a
q( x ) q0 x a
0
a
m
0
L
n 1
M ( x) m x a
0
简支端处位移为零。
q ( x ) Q ( x ) M ( x ) ( x ) v( x )
材料力学期末复习题
材料力学一、填空题(15′)1.内力与应力的关系式(应力是分布力的集度).2.轴向拉、压中的平面假设使用于(距杆件加力端稍远的各处).3.影响杆件工作应力的因素有(载荷)、(截面尺寸);影响极限应力的因素有(材料性质)、(工作条件).4.低碳钢在曲阜阶段将会发生(弹塑性)变形5.强度条件σmax≤[σ]中,σmax是(最大工作应力),[σ]是材料的许用应力,而[σ]=σu/n,式中,σu是(极限应力),它由(材料的破坏试验)确定,n是规定的安全系数,必须有(n>1),通常情况下,对于塑性材料σu=(σs)或σu=(σ0.2);对于脆性材料,σu=(σb+)和σu=(σb-).6.低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
7.构件由于截面的(形状尺寸的突变)会发生应力集中现象。
8.根据圆轴扭转的平面假设,可以认为圆轴扭转时横截面(形状尺寸不变,直线仍为直线).9.在同一减速箱中,设高速转轴的直径为d1,低速转轴的直径为d2,两轴所用材料相同,两传动轴直径之间的关系应当是(d1<d2).10.实心圆轴,若其直径增加1倍,其抗扭截面系数Wp增大(8倍).11.铸铁圆轴受扭转破坏时,其断口形状为(45°螺旋面).12.等截面直梁在弯曲变形时,挠曲线曲率最大发生在(弯矩最大)处.13.将桥式起重机的主钢梁设计成两端外伸的外伸梁较简支梁有利,其理由是(减小了梁的最大弯矩值、减小了梁的最大挠度值).14.为提高梁的弯曲刚度,可通过(合理安置梁的支座,减小量的跨长;选择合理截面形状).15.过受力构件内任一点,去截面的不同方位,各个面上的(正应力不同,切应力不同).16.在单元体的主平面上切应力(一定为零).17.当三向应力圆称为一个圆时,主应力一定满足(σ1=σ2或σ2=σ3).18.三向等压的地层岩块(只产生体积改变比能)、纯扭转的圆轴(只产生形状改变比能).19.研究构件内某一点处应力状态的目的是(找出该点沿不同截面方向的应力变化规律).20.设单向拉伸等直杆横截面上的正应力为σ,则杆内任一点处的最大正应力和最大切应力分别为—(σmax=σ)、(τmax=σ/2).二、作图题(25′)(略)三、计算大题(6个,60′)1.【拉压超静定】图示结构AB为刚性杆、杆1和杆2为长度相等的钢杆,E=200GPa,两杆横截面面积均为A=10cm²。
材料力学期末考试复习
基本变形小结
由以上可看出:四种基本变形有许多相似之 处,如:
刚度=材料的物理常数x截面的几何性质 应力=内力/截面的几何性质 相对变形=(内力x长度)/刚度
3.平面图形的几何性质
1)静矩 2)惯性矩 3)平行移轴公式 4)极
Iz=IZC+b2A JP=∫ρ2dA Ixy=∫xydA
2)拉弯组合变形
当轴向载荷与横向载荷同时作用构件上,则 产生拉弯组合变形。若构件的抗弯刚度较 大,弯曲变形所产生的挠度远小于截面尺寸, 则可采用叠加法求解,截面上任一点的正应 力为:
σ=FS/A+My*Z/Iy+Mz*Y/Iz 上式中:A横截面面积,Iy,Iz横截面对y,z轴的惯 性矩。
3).弯扭组合变形
第一强度理论(最大拉应力理论) σ1≤σb/nb=[σ]
第二强度理论(最大应变理论) σ1-μ(σ2+σ3) ≤σb/nb=[σ]
b)塑性材料的断裂理论 第三强度理论(最大剪应力理论) σ1-σ3 ≤σs/ns=[σ]
第四强度理论(形状改变比能理论)
1/√2[(σ1-σ2)2+ (σ2-σ3)2+(σ3σ1)2]1/2 ≤σs/ns=[σ]
2.承受冲击载荷时构件的动应力 忽略冲击中的能量损失,依据能量守恒,刚
体冲击物在冲击过程中减少的动能T和势能V 应等于被冲击物的弹性变形能Ud,即:
T+V=Ud
3.自由落体冲击时的动荷系数
如果ΔS表示重物Q以静荷作用于被冲击 物体上的变形,而h表示重物与被冲击之间 的距离,即重物的下落高度,那么动荷系数 为: kd=1+(1+2h/ΔS)1/2
最复杂的是介于上述两种情况之间的中
等柔度杆,它既有强度破坏的性质又有较 明显的失稳现象。通常是根据实验数据来 处理这类问题,有各种不同的经验公式, 直线经验公式是最简单实用的一种。必须 注意,上述三种不同柔度杆的划分,其分 界点的λ值对不同材料是不同的,直线公式 的系数也因材料不同而异,详见相关教材。
材料力学期末复习要点
期末复习要点一、填空题1、构件正常工作满足的要求;2、对可变形固体所做的三点基本假设;3、杆件变形的四种基本形式;4、材料力学涉及到的四种内力形式;5、轴向拉压杆最大工作应力的计算;6、扭转的最大切应力的计算;7、表征材料塑性和强度的指标;8、极惯性矩、弯矩截面系数和扭转截面系数的计算;9、低碳钢材料在拉伸和压缩时的力学性能问题;10、工程中常见的静定梁的三种基本形式;11、梁的挠曲线近似微分方程及初边界条件的确定。
12、电测原理及应变仪输出读数的计算。
13、工程中常用的四个强度理论。
14、连接件的名义切应力和名义挤压应力的计算。
15、计算交变应力的应力比和应力幅。
二、计算题【1】轴向拉伸与压缩例题2-5;例题2-8,例题2-10;习题2-11,习题2-13, 习题2-16【2】扭转例题3-1;例题3-4;例题3-5;例题3-6;习题3-5,习题3-10,习题3-14;习题3-19 【3】弯曲应力和弯曲内力例题4-9;习题4-1(b);习题4-2(b);习题4-2(d);习题4-3(h);习题4-4(a);【4】应力状态,强度理论与广义胡克定律例题7-3;例题7-5;习题7-7(b);习题7-7(d);习题7-14;习题7-20;习题7-23;【5】组合变形例题8-1;习题8-1;习题8-2;习题8-13;习题8-20;习题8-22【6】压杆稳定部分例题9-4;例题9-6;习题9-4;习题9-8;习题9-9;习题9-10;;习题9-13;习题9-15;【7】能量法例题3-3;例题3-5;例题3-8;例题3-10;例题3-11;例题3-12;例题3-16;习题3-4(a);习题3-8(b);习题3-9(b);习题3-14(a);习题3-14(c)。
材料力学期末复习重点
材料力学期末复习重点第一章绪论及基本概念P1构件正常工作的要求。
P5可变形固体的三个基本假设。
第二章轴向拉伸与压缩P10截面法、轴力及轴力图例题:2-1P15最大正应力公式(2-3)例题:2-2P20 拉压杆伸长公式(2-5b)例题2-5P39强度条件(2-13)*例题2-8-2-10第三章扭转P62 扭矩及扭矩图例题3-1P67扭转最大切应力公式(3-7)P68 切应力互等定理式(3-12)P72 强度条件式(3-14)例题3-4第四章弯曲应力P100 梁的剪力和弯矩例题4-1P102剪力方程与弯矩方程4-2-4-6P109弯矩、剪力与分布荷载集度间的微分关系及其应用例题4-9P116按叠加原理作弯矩图例题4-10P123任意点处的正应力(4-5)P125最大正应力(4-7b)例题4-13P126梁的正应力强度条件式(4-9)例题4-14-4-16P132 任意点的切应力式(4-10)P133 矩形截面最大切应力式(4-11)P134 工字形截面最大切应力式(4-13)例题4-17P138切应力强度条件式(4-17)例题4-18第五章梁弯曲时的位移P159梁的挠曲性近似微分方程式(5-2b)例题5-1-5-2P162积分常数的几何意义P165按叠加原理计算梁的挠度和转角例题5-5P173梁的刚度校核式(5-11)第六章简单的超静定问题P184 超静定问题及其解法6-1节,能识别超静的次数第七章应力状态和强度理论P214任意斜截面的应力(7-1)-(7-2)式P214 应力圆P216主应力与主平面(7-3)-(7-5)式例题7-2P223 空间应力状态的最大正应力(7-6)式,最大切应力(7-7)例题7-3P226广义胡克定律(7-8)式例题7-5P234 强度理论及其相当应力第一-第四强度理论及适用条件例题7-7附录I 截面的几何性质P334组合截面的静矩(I-3)式和形心(I-4)式例题I-2P336 极惯性矩、惯性矩、惯性积和惯性半径计算例题I-3P339 移轴公式(I-10)熟练利用移轴公式计算组合截面的惯性矩例题I-5-I-6。
材料力学期末考试总复习
(d)若e = 600 ´10-6 ,则 s = Ee = 600 ´10-6 ´ 200 ´109 = 120 ´106 Pa
。
3 (A)
4、 图示结构中,AC、BD、BC、CD四杆的截面面积
皆为A,材料的弹性模量皆为E,其长度如图所示,各
ea
=
1 E
(s a
- m s ) a ± 9 0 °
强度理论
ì
ï
s ri
=
ïï í
ï
ï
ïî
s1 s 1 - m (s 2 + s 3 )
s1 -s3
1 2
[(s 1
-s
2 )2
+
(s
2
-s
3 )2
+
(s 1
-
s 3 )2 ]
s
t
s r 3 = s 2 + 4t 2
s r 4 = s2 + 3t2
第八章 组合变形 第一类组合变形 斜弯曲 轴弯共同作用 偏心拉(压) 第二类组合变形 弯扭组合
3、 (A)
4. 设图所示静不定刚架的四个相当系统分别如图A、B、C 、D所示。则其中错误的是 (B) 。
应力状态与强度理论
1、冬天自来水管冻裂而管内冰并未破裂,其原因是冰处 于 三向压 应力状态,而水管处于 二向拉 应力状态。
2、一球体在外表面受均布压力p = 1 MPa作用,则在球心处的 主应力 s 1 = -1 MPa,s 2 = -1 MPa,s 3 = -1 MPa。
材料力学
土木工程学院工程力学系
07级工程力学专业
材料力学总复习
材料力学重点及公式(期末复习)
1、材料力学得任务:强度、刚度与稳定性;应力单位面积上得内力。
平均应力(1、1)全应力(1、2)正应力垂直于截面得应力分量,用符号表示。
切应力相切于截面得应力分量,用符号表示。
应力得量纲:线应变单位长度上得变形量,无量纲,其物理意义就是构件上一点沿某一方向变形量得大小。
外力偶矩传动轴所受得外力偶矩通常不就是直接给出,而就是根据轴得转速n与传递得功率P来计算。
当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为拉(压)杆横截面上得正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3 -1)式中为该横截面得轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)得适用条件:(1)杆端外力得合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处得横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化得直杆,杆件两侧棱边得夹角时拉压杆件任意斜截面(a图)上得应力为平均分布,其计算公式为全应力 (3-2)正应力(3-3)切应力(3-4)式中为横截面上得应力。
正负号规定:由横截面外法线转至斜截面得外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩得为正,反之为负。
两点结论:(1)当时,即横截面上,达到最大值,即。
当=时,即纵截面上,==0。
(2)当时,即与杆轴成得斜截面上,达到最大值,即1.2 拉(压)杆得应变与胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形轴向线应变横向变形横向线应变正负号规定伸长为正,缩短为负。
(2)胡克定律当应力不超过材料得比例极限时,应力与应变成正比。
即(3-5)或用轴力及杆件得变形量表示为 (3-6)式中EA称为杆件得抗拉(压)刚度,就是表征杆件抵抗拉压弹性变形能力得量。
材料力学期末复习总结
材料力学期末复习总结材料力学是研究材料在外力作用下的变形与破坏行为的学科。
它是工程力学的一个重要分支,是工程技术领域中不可或缺的一门专业课程。
期末考试作为对学生掌握教材知识的一次综合性评估,理解材料力学的基本原理和方法是非常重要的。
以下是材料力学期末复习的总结,希望对大家复习备考有所帮助。
第一部分:弹性力学1.弹性力学基本概念弹性力学是研究物体在外力作用下发生弹性变形的学问。
弹性变形是指物体在受力作用下会发生形变,但在去除外力后又能恢复到原来的形状和大小。
(比如弹簧的拉伸和恢复、弹性材料的压缩和回弹等)2.基本假设弹性力学的基本假设有两个:胡克定律和平面应力假设。
胡克定律:弹性变形与应力成正比,即应力应变具有直线关系。
胡克定律可以用Hooke's Law表示:σ=Eε,其中σ为应力,E为弹性模量,ε为应变。
平面应力假设:在材料中,只发生一个平面上的应力。
3.弹性常数弹性常数是用来描述材料对外力作用下的响应情况的参数。
弹性常数有三个:弹性模量(Young's modulus),剪切模量(Shear modulus)和泊松比(Poisson's ratio)。
弹性模量描述材料受拉伸或压缩力作用下的应力应变关系,即E=σ/ε。
剪切模量描述材料受剪切力作用下的应力应变关系,即G=τ/γ。
泊松比描述材料在拉伸或压缩时沿垂直方向的应变与沿拉伸或压缩方向的应变之比,即ν=-ε_z/ε_x。
4.弹性体力学方程弹性体力学方程包括平衡方程、应力-应变关系和互斥条件。
平衡方程:ΣFx=0,ΣFy=0,ΣFz=0,ΣMx=0,ΣMy=0,ΣMz=0。
应力-应变关系:σ_xx=E(ε_xx - νε_yy - νε_zz),σ_yy=E(ε_yy - νε_xx - νε_zz),σ_zz=E(ε_zz - νε_xx -νε_yy)。
互斥条件:γ_xy=Gγ_xy,γ_yx=Gγ_yx,γ_xz=Gγ_xz,γ_zx=Gγ_zx,γ_yz=Gγ_yz,γ_zy=Gγ_zy。
材料力学 复习资料及答案
材料力学I 期末复习资料一、判断题1. 弹性体静力学的任务是尽可能的保证构件的安全工作。
(Y )2. 作用在刚体上的力偶可以任意平移,但作用在弹性体上的力偶一般不能平移。
(Y )3. 若构件上的某一点的任何方向都无应变,则该点无位移。
(N )4. 切应变是变形后构件后构件内任意两条微线段之间夹角的变化量。
(N )5. 胡克定律适用于弹性变形范围内。
(Y )6. 材料的延伸率与试件的尺寸有关。
(Y )7. 一般情况下,脆性材料的安全系数要比塑性材料的大些。
(Y )8. 受扭圆轴的最大切应力出现在横截面上。
(Y )9. 受扭圆轴的最大拉应力的值和最大剪应力的值相等。
(N )10.受扭杆件的扭矩,仅与杆件受到的外力偶矩有关,而与杆件的材料及横截面积的大小、形状无关。
(N )11.平面图形对某轴的静矩等于零,则该轴比为此图形的对称轴。
. (N )12.在一组平行轴中,平面图形对心轴的惯性矩最小。
(Y )13.两梁的跨度、承受的载荷以及支撑都相同,但材料和横截面积不同,则它们的剪力图和弯矩图不一定相同。
(N )14.最大弯矩必然发生在剪力为零的横截面上。
(N )15.若在结构对称的梁上,作用有反对称载荷,则该梁具有对称的剪力图和反对称的弯矩图。
(Y )16.控制梁弯曲强度的主要因素是最大弯矩值。
(N )17.在等截面梁中,正应力绝对值的最大值︱σ︱max比出现在弯矩值︱M︱max最大截面上。
(N )18.梁上弯矩最大的截面,挠度也最大;弯矩为零的截面,转角也为零。
(N )19.平面弯矩梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线。
(Y )20.有正应力作用的方向上,必有线应变;没有正应力作用的方向上,必无线应变。
(N )21.脆性材料不会发生塑性屈服破坏,塑性材料不会发生脆性断裂破坏。
(N )22.纯剪切单元体属于单向应力状态。
(N )23.脆性材料的破坏形式一定是脆性断裂。
(N )24.材料的破坏形式由材料的种类和所处的应力状态而定。
材料力学期末复习
材料力学期末复习材料力学是材料科学与工程中的一门重要课程,是研究物质的内在性质和外部力作用下的力学行为的一门学科。
本篇文章将围绕材料力学的基本概念、应力应变关系、弹性力学、塑性力学等内容进行复习和总结。
一、基本概念与应力应变关系1.应力与应变:应力是指物体内部单位面积上的力,通常用σ表示,应变是物体在受力作用下产生的形变,通常用ε表示。
2.线弹性与面弹性:线弹性是指材料在受力下产生的形变与受力成正比,面弹性是指材料在受力下产生的形变与受力成正比,但仅限于弹性区域。
3.胡克定律:弹性力学中,材料的应力与应变之间存在线性关系,即胡克定律,可以用数学表达为σ=Eε,其中E为弹性模量。
4.拉伸与压缩:拉伸是指物体在外力作用下呈现线向延长的形变,压缩是指物体在外力作用下呈现线向缩短的形变。
二、弹性力学1.杨氏模量:杨氏模量是一个衡量材料抗拉强度和刚性的物理量,可以表示为E=σ/ε。
2.泊松比:泊松比是描述材料在拉伸或压缩过程中横向收缩或伸长程度的物理量,可以用v表示,其计算公式为v=ε横向/ε纵向。
3.弹性极限:材料的弹性极限是指在一定温度下,材料仍然可以恢复原状的最大应力值。
4.弹性延伸量和弹性压缩量:弹性延伸量和弹性压缩量是指材料受到拉伸或压缩时,在弹性变形阶段产生的形变量。
三、塑性力学1.破坏应变:在材料的塑性变形中,当应力超过一定临界值时,材料将发生不可逆的塑性形变,这一临界值称为破坏应变。
2.屈服点和屈服应力:屈服点是指材料开始发生塑性变形的那个点,屈服应力是指达到屈服点时的应力值。
3.塑性延伸量和塑性压缩量:塑性延伸量和塑性压缩量是指材料在塑性变形过程中产生的不可逆形变量。
4.强度和刚度:强度是指材料抵抗变形和破坏的能力,刚度是指材料抵抗变形的能力。
综上所述,材料力学是材料科学与工程中的一门重要课程,涉及到材料的基本概念、应力应变关系、弹性力学和塑性力学等内容。
在复习过程中,我们应该重点掌握材料的应力应变关系、弹性力学与塑性力学的基本原理和应用,以及材料的强度和刚度等知识点。
材料力学期末复习题库(你值得看看)
第一章一、选择题1、均匀性假设认为,材料内部各点的是相同的。
A:应力B:应变 C :位移 D :力学性质2、各向同性认为,材料沿各个方向具有相同的。
A:力学性质B:外力 C :变形 D :位移3、在下列四种材料中,不可以应用各向同性假设。
A:铸钢B:玻璃 C :松木D:铸铁4、根据小变形条件,可以认为:A:构件不变形 B :构件不破坏C:构件仅发生弹性变形 D :构件的变形远小于原始尺寸5、外力包括:A:集中力和均布力B: 静载荷和动载荷C:所有作用在物体外部的力D: 载荷与支反力6、在下列说法中,正确的是。
A:内力随外力的增大而增大;B:内力与外力无关;C:内力的单位是N或KN;D:内力沿杆轴是不变的;7、静定杆件的内力与其所在的截面的有关。
A:形状;B:大小;C:材料;D:位置8、在任意截面的任意点处,正应力σ与切应力τ的夹角α=。
A:α=90O;B:α=45O;C:α=0O;D:α为任意角。
9、图示中的杆件在力偶M的作用下,BC段上。
A:有变形、无位移; B :有位移、无变形;C:既有位移、又有变形;D:既无变形、也无位移;10、用截面法求内力时,是对建立平衡方程而求解的。
A:截面左段B:截面右段C:左段或右段D:整个杆件11、构件的强度是指,刚度是指,稳定性是指。
A:在外力作用下抵抗变形的能力;B:在外力作用下保持其原有平衡态的能力;C:在外力的作用下构件抵抗破坏的能力;答案:1、D2、A3、C4、D5、D6、A7、D8、A9、B10、C11、C、B、A二、填空1、在材料力学中,对变形固体作了,,三个基本假设,并且是在,范围内研究的。
答案:均匀、连续、各向同性;线弹性、小变形2、材料力学课程主要研究内容是:。
答案:构件的强度、刚度、稳定性;3、为保证构件正常工作,构件应具有足够的承载力,固必须满足方面的要求。
答案:构件有足够的强度、足够的刚度、足够的稳定性。
4、下列图示中实线代表变形前,虚线代表变形后,角应变为。
材料力学期末复习题
《材料力学》期末复习题一、单选题1 .工程构件要正常安全的工作,必须满足一定的条件。
下列除( D )项,其他 各项是必须满足的条件。
A.强度条件;B.刚度条件;C.稳定性条件; 口.硬度条件。
2 .当低碳钢材料拉伸到强化阶段末期时,试件( B )3 .建立平面弯曲正应力公式。
=My-,需要考虑的关系有(B )。
I z A.平衡关系,物理关系,变形几何关系;B.变形几何关系,物理关系,静力关系;C.变形几何关系,平衡关系,静力关系;D.平衡关系,物理关系,静力关系。
4.图2-1所示承受内压的两端封闭薄壁圆筒破坏时,图示破坏裂缝形式中( A ) 是正确的。
杆内各截面上的轴力必须相等;D.杆件的截面为圆形截面。
C. O r 3A.发生断裂; C.有很大的弹性变形; B.出现局部颈缩现象;D.完全失去承载力。
5.在单元体的主平面上( DA.正应力一定最大; C.切应力一定最大;B.正应力一定为零;D.切应力一定为零。
6.应力公式。
=F N 应用范围是 A A.应力在比例及限内;( B )B.外力合力的作用线沿杆轴线;7.图2-2所示应力状态 A.O =工; 3 用第三强度理论校核时,其相当应力为( D )B. Or 3图2-1图2-28 .单向应力状态下单元体( D )A.只有体积改变;B.只有形状改变;C.两者均不改变;D.两者均发生改变。
9 .长度因数的物理意义是( C ) A.压杆绝对长度的大小;B.对压杆材料弹性模数的修正;C.压杆两端约束对其临界力的影响折算;D.对压杆截面面积的修正。
10 .内力和应力的关系是( D )A.内力大于应力;B.内力等于应力的代数和;C.内力是矢量,应力是标量;D.应力是分布内力的集度。
11 .矩形截面细长压杆,b/h = 1/2。
如果将b 改为h 后仍为细长压杆,临界压 力是原来的多少倍?( D )A.2 倍;B.4 倍;C.8 倍;D.16 倍。
12 .根据圆轴扭转时的平面假设,可以认为圆轴扭转时横截面( A )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
400斜截面的应力 h/4 解:1)在400斜截面的应力 h P L
L/2
L/4 L/4
C τ
τC
P QC = = 50KN 2 3 MC ⋅ y 25×10 ⋅150×10−3 ×12 σC σ = = C IZ 200× 6003 ×10−12
= 1.04MPa(压应力)
b
MC = × = 25KN ⋅ m 2 4
q=6KN/m P=30KN
1.查22a表得 表得: 解: 1.查22a表得:3 −
WZ = 0.309 ×10 IZ
* S z max
m3
= 0.189m
L/3 Q 17
L/2 +
L/2
2.求支反力 2.求支反力
13 + 39
d = 7.5mm
M 12 -
RA = 29kN , RB = 13kN
2 ± (
σ x −σ y
2
2 )2 + τ x = (
− 1.04 − 0 2 ) + 0.469 2 = 0.18(−1.22) MPa 2
τ max =
σ1 − σ 3
2 = 0.7 PMa
0.18 − (−1.22) − 2τ x − 2 × 0.469 = tan 2α 0 = = 0.902 = 2 − 1.04 σ x −σ y
+
σ x −σ y
cos(80o ) −τ x sin( 80o )
τ 40 =
o
σ x −σ y
2 = −0.431MPa
sin( 80 ) +τ x cos(80 )
o o
C τ
C
σC
2)求主应力、主平面和最大切应力 几何法 σx=-1.04PMa,τx=0.469PMa; σy=0, τx=0.469PMa 1.04PMa,τ =0.469PMa
4)支架的临界荷载
Fcr = 3FNcr cos α = 2 3 × 9.37 × kN = 22.5kN 2.5
5)支架的许可荷载
[ F ] = Fcr / nst = 22.5 / 3 = ql RBl 2 − = 8EI 3EI EA
B B/ q RB
3Aql RB = 2 4(2Al + 3I )
3
图示一矩形截面简支梁,在跨中有集中力作用。 图示一矩形截面简支梁,在跨中有集中力作用。已 例6: :P=100KN,L=2m,b=200mm,h=600mm,α 离左支座L/4 L/4处 知:P=100KN,L=2m,b=200mm,h=600mm,α=400。求:离左支座L/4处 截面上C点在40 斜截面的应力。求主应力,主平面和最大切应力。 截面上C点在400斜截面的应力。求主应力,主平面和最大切应力。
d1 ≥ 4 × 20 ×103
20KN
(+)
π [σ t ]
= 20.6mm
(-)
30KN
d1 ≥ 20.6mm d2 ≥17.8mm
d2 ≥
4 × 30 × 103
π [σ c ]
= 17.8mm
d = 21mm
例2
图示直杆,其抗拉刚度为EA,试求杆件的 轴向变形△L,B点的位移δB和C点的位移 δC;如果在C点轴线方向作用一F力,又如 何?
50×103 ⋅150× 200× 225×10−9 ×12 = = IZ ⋅ b 200× 6003 ×10−9 × 200×10−3
C QC ⋅ SZ
= 0.469M Pa
σ 40 =
o
σ x +σ y
2 2 −1.04 −1.04 o o = + cos(80 ) − 0.469sin( 80 ) = −1.07MPa 2 2
BC段最大切应力为:
τ max 2 =
τ max 1
和τ 均大于许用切应力 [τ ],说明杆的扭 转强度不符合要求。
max 2
例4 一外伸工字梁,工字钢型号为22a,梁上荷载如图 一外伸工字梁,工字钢型号为22a 22a, 所示,已知: m,材料的许用应力[ 所示,已知:L=6 m,材料的许用应力[σ]=170MPa MPa,试验算该梁是否安全。 [τ]=100 MPa,试验算该梁是否安全。
C q A
L L/2
解: 1)选取静定基 (
(2)将相当系统变形与 原系统比较,得变形协调方程: 原系统比较,得变形协调方程:
B B/ q RB
y B = ∆LBC
y B = yq − y RB
∆LBC l RB ⋅ 2 = EA
ql 4 RB l 3 = − 8 EI Z 3EI Z
C q A
L L/2
圆心坐标:(σx+σy) τ
C(-1.04,0.469)
/2=-1.04/2=-0.52 应力圆半径R或τmax
R = τ max = (
2α2
O(-0.52,0)
σ x −σ y
2
2 )2 + τ x
σ2
σ1
σ
− 1.0 − 0 = ( ) + 0,469 2 = 0.70MPa 2
D(0,-0.469)
AB段最大切应力为:
τ max1 =
16T1 d 4 πD13 1 − 1 D1 16T2 d 3 πD2 1 − 2 D2
4
16 × 300 ×103 = = 161.7(MPa) > [τ ] 4 18 3 π × 24 1 − 24 16 × 200 × 10 3 = = 173 .3( MP a ) > [τ ] 4 18 3 π × 22 1 − 22
α 2 = 21.0250 , α1 = 21.0250 + 900 = 111.0250
例7,有三根钢管构成的支架如兔所示。钢管的外径 D=30mm,内径d=22mm,钢管的长度l=2。5, E=210GPa σP=200MPa,在支架的顶端三杆铰接。如果 稳定安全系数nst=3,试求许可荷载。 解:1)分析稳定。结构产生 失稳破坏一定的三根杆同时达 到临界荷载时发生的,因此, 结构的临界荷载等于三杆的临 界压力荷载之和。 2)计算杆的柔度
d = 7.5mm
q=6KN/m
L/3 Q 17
L/2 +
L/2
τ max
13 + 39
M 12 -
12
= 12 MPa ≤ [τ ] = 100MPa
* Qmax S z max 17 ×103 = = I zb 0.189 × 7.5 ×10 −3
全梁安全
例5:已知:荷载q,梁AB的抗弯刚度为EI、 已知:荷载q AB的抗弯刚度为 、 的抗弯刚度为EI BC的抗拉压刚度为 。试求: 的抗拉压刚度为EA 杆BC的抗拉压刚度为EA。试求:BC 杆内力
λ= µl
i = 1× 2.5 = 269
1 × ( 0.032 + 0.022 2 ) 4
π 2E π 2 × 210 ×109 λp = = = 102 210 × 10 6 σP λ > λP , 可用欧拉公式计算
3)杆的临界压力
FNcr
π 2 EI π 2 × 210 ×109 × π × (0.034 − 0.0224 ) = = N = 9.37kN 2 2 ( µl ) (1× 2.5) × 64
12
3.画出剪力、 3.画出剪力、弯矩图 画出剪力
M max = 39kn.m
Qmax = 17kn
4.计算最大工作应力,并校核强度
WZ = 0.309 ×10 −3 m 3 IZ S
* z max
= 0.189m
P=30KN
M max = 39kN Qmax = 17kN
3 M max 39 × 10 σ max = = Wz 0.309 × 10 −3 = 126MPa ≤ [σ ] = 170MPa
材料力学期末复习
2011.12.30
例1
圆截面等直杆沿轴向受力如图示,材料为 铸铁,抗拉许用应力[σt ] =60Mpa,抗压许用 应力 [σ c ] =120MPa,设计横截面直径。
20KN 30KN
30 ×103 ≤ [σ c ] 2 πd 2 4
20KN
30KN
20 ×103 ≤ [σ t ] 2 πd1 4
σ 1, 2 = 半径 ± 圆心坐标 σ 1 , 2 = ±0.70 − 0.52 = 0.18(−1.22) PMa
0.469 tan 2α = = 0.902 0.52 2α 2 = 42.050 , α 2 = 21.0250 , α1 = α 2 + 900 = 111.0250
解析法:
σ 1,3 = σ x +σ y
F
FL δ B = ∆LAB = EA
C L
A L
F
B
FL δC = δ B = EA
例3 图4-16a为一空心圆杆,已知MA =300N·m, MB =500N·m,MC=200N·m,[τ ] =60MPa 试校 核该杆的强度。
解(1)作杆的扭矩图。 AB段扭矩大小为300 N·m,符号为负; BC段扭矩大小为200 N·m,符号为正; 扭矩图所示。 (2)强度校核。单从最大扭矩不能确定最危 险由扭矩图可知Mmax截面的位置,应该分 别计算各段的最大切应力进行强度校核。