新人教版七年级数学下册第各章测试题(全册 共96页 附答案)
人教版七年级数学下册全册单元测试试卷及答案
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.如图,点在延长线上,下列条件中不能判定的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第3题图第4题图第5题图4.如图,,∠3=108°,则∠1的度数是()A.72°B.80°C.82°D.108°5.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第6题图第8题图7.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是()A.①B.①②C.①②③D.①②③④8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个9. 点P是直线l外一点,A、B、C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线l的距离()A.小于2 cm B.等于2 cmC.不大于2 cm D.等于4 cm10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.如图,当剪子口∠AOB增大15°时,∠COD增大.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= .第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1= .三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED//FB.第22题图23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.第24题图第五章检测题答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),所以点P到直线l的距离等于4 cm,故选C.3. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.4. A 解析:∵a∥b,∠3=108°,∴∠1=∠2=180°∠3=72°.故选A.5. C 解析:∵DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.又∵BE平分∠ABC,∴∠ABE=∠EBC.即∠ABE=∠DEB.所以图中相等的角共有5对.故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. C 解析:①用打气筒打气时,气筒里活塞沿直线运动,符合平移的性质,故属平移;②传送带上,瓶装饮料的移动沿直线运动,符合平移的性质,故属平移;③在笔直的公路上行驶的汽车沿直线运动,符合平移的性质,故属平移;④随风摆动的旗帜,在运动的过程中改变图形的形状,不符合平移的性质;⑤钟摆的摆动,在运动的过程中改变图形的方向,不符合平移的性质.故选C.8. D 解析:如题图,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),又2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选C.10. B 解析:∵两平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.二、填空题11. 144°解析:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 15°解析:因为∠AOB与∠COD是对顶角,∠AOB与∠COD始终相等,所以随∠AOB变化,∠COD也发生同样变化.故当剪子口∠AOB增大15°时,∠COD也增大15°.13. 垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 52°解析:∵EA⊥BA,∴∠EAD=90°.∵CB∥ED,∠ABC=38°,∴∠EDA=∠ABC=38°,∴∠AED=180°∠EAD∠EDA=52°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与a相交于D,∵a∥b,∴∠ADC=∠50°.∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 65°解析:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65°.三、解答题19.解:(1)(2)如图所示.(3)∠PQC =60°. ∵ PQ ∥CD ,∴ ∠DCB +∠PQC =180°. ∵ ∠DCB =120°,∴ ∠PQC =180°120°=60°. 20. 解:(1)小鱼的面积为7×6121 ×5×6121 ×2×5121 ×4×2121 ×1.5×121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD . ∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2. 即∠EAP =∠APF . ∴ AEF ∥P . ∴ ∠E =∠F . 22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1, ∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°, ∴ ∠ACB =∠AED =80°. ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°, ∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行同旁内角互补). ∵ ∠B =65°,∴ ∠BCE =115°. ∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°, ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.第六章《实数》水平测试题班级 学号 姓名 成绩一、选择题 (每题3分,共30分。
(完整)人教版七年级数学下册各单元测试题及答案(3),推荐文档
A、第一象限 B、第二象限 C、第三象限 D、第四象限
3、若点 P 在 x 轴的下方,y 轴的左方,到每条坐标轴的距离都是 3,则点 P 的坐标为(
)
A、(3,3) B、(-3,3) C、(-3,-3)D、(3,-3)
4、点 P(x,y),且 xy<0,则点 P 在( )
y
y
A、第一象限或第二象限 B、第一象限或第三象限
) ) )
D
E
F
1
34
∴∠C=∠ABD( ∵∠C=∠D( ∴∠D=∠ABD(
)
2
)
A
B
C
第19题)
)
∴DF∥AC(
)
24、如图,DO 平分∠AOC,OE 平分∠BOC,若 OA⊥OB,
A
(1)当∠BOC=30°,∠DOE=_______________ 当∠BOC=60°,∠DOE=_______________
E
H
11、直线 AB、CD 相交于点 O,若∠AOC=100°,则
∠AOD=___________。 12、若 AB∥CD,AB∥EF,则 CD_______EF,其理由 是_______________________。
A
D
F
G
13、如图,在正方体中,与线段 AB 平行的线段有______
B
C
第13题
三、(每题 5 分,共 15 分)
17、如图,正方形 ABCD 的边长为 3,以顶点 A 为原点,且有一组邻边与坐标轴重合,求
出正方形 ABCD 各个顶点的坐标。
D
C
A (第17题) B
18、若点 P(x,y)的坐标 x,y 满足 xy=0,试判定点 P 在坐标平面上的位置。
人教版七年级数学下册全册单元测试试卷及答案
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等•其中错误的有()A . 1个B . 2个C . 3个D . 4个2 .点P 是直线I 外一点,,且PA=4 Cm 则点P 到直线I 的距离( )A .小于4 CmB .等于4 Cm C.大于4 CmD .不确定3 .如图,点在延长线上,下列条件中不能判定的是( )A .∠ 1 = ∠ 2B .∠ 3= ∠ 4 C.∠ 5=∠D .∠ +∠ BDC=180°7 .在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是( )AV B.①② C.①②③ D.①②③④8.如图,DH // EG// BG DC// EF,那么与∠ DCB 相等的角(不包括∠ EFB 的个数为( ) A . 2个 B . 3个 C . 4个 D . 5个9•点P 是直线I 外一点,A 、B 、C 为直线I 上的三点,PA=4 Cm , PB=5 cm , PC=2 cm ,则点P 到直线I 的距离( )第3题图 第4题图4. 如图,,/ 3=108°,则∠ 1的度数是( )A . 72°B . 80°C. 82°D . 108°5.如图,BE 平分∠ ABC, DE// BC,图中相等的角共有( )A . 3对B . 4对 C. 5对 D . 6对C. 3个 D . 4个 第5题图第6题图 第8题图A .小于2 Cm B.等于2 CmC.不大于2 Cm D .等于4 Cm 10.两平行直线被第三条直线所截,同位角的平分线( A .互相重合 B .互相平行C.互相垂直D .相交二、填空题(共8小题,每小题3分,满分24分)∠ 1 =,则∠ 2= _____ .16. 如图,AB // CD,直线 EF 分别交 AB 、CD 于 E 、F,EG 平分∠ BEF,若∠ 1=72° ,则∠ 2= 17. 如图,直线 a // b ,第17题图18. 如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠三、解答题(共6小题,满分46分)第11题图12.如图,当剪子口∠ AoB 增大15°时,∠ CoD 增大C3DIlIri IB第13题图第14题图A 中,先作AB ⊥ CD,垂足为B,然后沿AB 开渠,能使所开第12题图13. 如图,计划把河水引到水池的渠道最短,这样设计的依据是14. 如图,直线 AB ,CD, EF相交于点O,且AB ⊥ CD,∠ 1与∠ 2的关系是 — 15. 如图,D 是 AB 上一点,CE// BD, CB// ED, EA ⊥ BA 于点 A ,若∠ ABC=38°,19.( 7分)读句画图:如图,直线CD与直线AB相交于C, 根据下列语句画图:(1)过点P作PQ// CD,交AB于点Q;(2)过点P作PF⊥ CD,垂足为R;3 )若∠ DCB=120 °,猜想∠ PQC是多少度?并说明理由. 第19题图20.( 7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1 ,则小鱼的面积为;21 . ( 8 分)已知:如图,∠ BAf+ Z APD= , Z 1 = Z 2.求证:∠ E = Z F.C P D第21题图1 = ∠2 , ∠3 = ∠ 4,∠ 5 = ∠ 6.求证:ED / FB.23 . ( 8 分)如图,CD 平分∠ ACB, DE// BC ,∠ AED=80°,求∠ EDC 的度数.E第23题图24. (8 分)如图,已知 AB / CD, / B=65°, CM 平分∠ BCE ∠ MCN=90°,求∠ DCN 的度若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
最新人教版七年级数学下册单元测试题及答案全套
1、D2、A3、C4、D5、A6、B7、D8、B 9、A10、D
11、
(-4,3)或(4,3)
12、一2
13、三14、
(3,—5)
15、
2 16、(-5,-3)
17、
A(0,0),B(3,0),
C(3,3),
D(-3,3)
18、
点P在x轴上或y轴上或原点
19、
A(0,4),B(-4,0),
C(8,0)
2 2 2
A.-2B...(T) C.(-2)D.2|
2 2
A.—2与<(—2)B—2与V-8C.2与(—迈、D.
4.数8.032032032是( )
A.有限小数
B.有理数
C.无理数
D.不能确定
49
1
131
5.在下列各数:
0.51525354
一100,0.2,
7,
11,
A.2 B.3
C.4
D.5
6.立方根等于3的数是(
)
A.9 B.±9
C.27
D.±27
7.在数轴上表示
■■:.?5和一.3
的两点间的距离是
( )
327,中,无理数的个数是(
A.■- 5 +■■■.3B. .5—■•、3
8.满足—-3vxv.5的整数是
二、填空题(每小题3分,共30分)
11.算术平方根等于本身的实数是
12.化简:J(3—兀2=
4
13.—的平方根是 ;125的立方根是.
各个顶点的坐标。
18、若点P(x,y)的坐标x,y满足xy=0,试判定点P在坐标平面上的位
19、已知,如图在平面直角坐标系中,&abc=24,OA=OB,BC=12,求△ABC三个顶点的坐标。
最新最全,人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)
人教版初中七年级数学下册全册单元综合测试卷汇总一、第五章《相交线与平行线》单元综合测试卷(附详细参考答案)二、第六章《实数》单元综合测试卷(附详细参考答案)三、第七章《平面直角坐标系》单元综合测试卷(附详细参考答案)四、七年级下学期期中数学综合测试卷(附详细参考答案)五、第八章《二元一次方程组》单元综合测试卷(附详细参考答案)六、第九章《不等式与不等式组》单元综合测卷(附详细参考答案)七、第十章《数据的收集、整理与描述》单元综合测试卷(附详细参考答案)八、七年级下学期期末数学综合测试卷(附详细参考答案)七年级数学下册第五章《相交线与平行线》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )(A)75° (B)115° (C)65° (D)105°2.如图,a∥b,∠1=65°,∠2=140°,则∠3=( )(A)100° (B) 105° (C) 110° (D) 115°3.下列图形中,只要用其中一部分平移一次就可以得到的有 ( )4.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为( )(A)20° (B)25° (C)30° (D)35°5.如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是( )(A)2 (B)4 (C)5 (D)66.某人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,则∠ABC 等于( )(A)75° (B)105° (C)45° (D)135°7.如图,已知AB∥CD,∠1 =∠2,∠E=n°,则∠F=( )(A)n° (B)2n° (C)90°-n° (D)40°二、填空题(每小题5分,共25分)8.“如果n是整数,那么2n是偶数”其中题设是_______,结论是_______,这是_______命题(填“真”或“假”).9.如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=_______度.10.有一条直的等宽纸带,按图折叠时,纸带重叠部分中的∠α=_______度.11.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=_______.12.如图,在宽为30 m,长为40 m的矩形地面上修建两条宽都是1 m的道路,余下部分种植花草.那么,种植花草的面积为_______m2.三、解答题(共47分)13.(11分)如图,∠1=30°,AB⊥CD,垂足为O, EF经过点O.求∠2,∠3的度数.14.(12分)如图,a∥b,c∥d,∠1=113°,求∠2,∠3的度数.15.(12分)已知,如图,∠AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.16.(12分)已知:如图,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.七年级数学下册第五章《相交线与平行线》单元综合测试卷详细参考答案1.【解析】选D.如图,根据上下的两边平行可知∠1=∠3=75°,根据左右的平行可知∠2+∠3=180°,进而求得∠2=105°.2.【解析】选B.把图中的线适当延长,如下图因为∠1=65°,∠2=140°,所以∠4=75°.又因为a∥b,所以∠3=180°-∠4=180°-75°=105°.3.【解析】选B.判断一个图形是否由平移得到,要从两方面入手:①找到“基本图形”;②分析平移的方向和距离.其中第2个图形和第4个图形平移一次均能得到.4.【解析】选A.由图形可得,∠B=∠1+∠2=45°,∵∠1=25°,∴∠2=45°-25°=20°.5.【解析】选C.由AD∥EF∥BC,且EG∥AC可得:∠1=∠DAH=∠FHC=∠HCG=∠EGB=∠GEH,除∠1共5个.6.【解析】选C.按要求画出图形再计算.∵NA∥BS,∴∠NAB=∠SBA=60°.∵∠SBC=15°,∴∠ABC=∠SBA-∠SBC=60°-15°=45°.7.【解析】选A.因为AB∥CD,知∠ABC =∠DCB,再由∠1=∠2,得∠EBC=∠FCB,由此得到EB∥FC,所以∠F=∠E=n°.8.【解析】“如果”开始的部分是题设,“那么”后面的部分是结论.答案:n是整数 2n是偶数真9.【解析】∵AB∥CD,∴∠B=∠2=40°,∵∠BED=∠1+∠B,∴∠BED=70°,∵EF平分∠BED,∴∠BEF=35°.答案:3510.【解析】裁一张等宽纸带按图示折叠,体会一下题目的含义.将等宽纸带展平,便得展开图.由此图可知∠DAC=30°.AB是∠C′AC的平分线.∴∠α=75°.答案:7511.【解析】由AB∥EF∥CD,可知∠BED=∠B+∠D.∵∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∵∠B-∠D=24°,所以∠D=∠B-24°.即∠B+∠B-24°=96°,解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.答案:30°12.【解析】利用平移,将两道路向上、向右平移(如图). 因此,种植花草的面积为:39×29=1 131(m2).答案:1 13113.【解析】由对顶角相等得∠3=∠1=30°,由AB⊥CD得∠BOD=90°,所以∠2=90°-∠3=90°-30°=60°. 所以∠2=60°,∠3=30°.14.【解析】∵a∥b(已知),∴∠2=∠1=113°(两直线平行,内错角相等).∵c∥d(已知),∴∠4=∠2=113°(两直线平行,同位角相等).∵∠3+∠4=180°(邻补角定义),∴∠3=67°(等式性质).15.【解析】平行.由折叠可知,∠1=∠2,∠3=∠4,因为O′C∥BD,所以∠2=∠3,即∠1=∠4,所以O′D∥ AC.16.【证明】∵AC∥DE(已知),∴∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.∴∠1=∠3(等量代换).∵DC∥EF(已知),∴∠2=∠4(两直线平行,同位角相等).∵CD平分∠BCA,∴∠1=∠2(角平分线定义),∴∠3=∠4(等量代换),∴EF平分∠BED(角平分线定义).七年级数学下册第六章《实数》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.(-0.7)2的平方根是( )(A)-0.7 (B)±0.7 (C)0.7 (D)0.49 2.下列判断中,你认为正确的是( ) (A)0的倒数是0 (B)2π是分数2 3.下列说法正确的是( ) (A)a 一定是正数 (B)2 0113是有理数(C)(D)平方等于自身的数只有14.如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有( )(A)a+b >0 (B)a-b >0 (C)ab >0 (D)ab>0 5.下列说法正确的有:①一个数的立方根的相反数等于这个数的相反数的立方根;②64的平方根是±8,立方根是±4;③a a 的立方根;④.( ) (A)①③ (B)①③④ (C)②④ (D)①④6.如图,下列各数中,数轴上点A表示的可能是( )(A)4的算术平方根(B)4的立方根(C)8的算术平方根(D)8的立方根7.如果m是2 012的算术平方根,那么2 012100的平方根为( )(A)m100± (B)m10(C)m10-(D)m±10二、填空题(每小题5分,共25分)8..9.3m-,则m的取值范围为___________.10.比较大小:用“<”或“>”号填空).11.若x,y y20-=,则x+y=_______.12.对于两个不相等的实数a、b,定义一种新的运算如下,>0),如:6*(5*4)=________.三、解答题(共47分)13.(10分)如图所示,数轴上表示1A,B,点B到点A的距离与点C到点O 的距离相等,设点C所表示的数为x,(1)请你写出数x的值;(2)求2(x的立方根.14.(12分)计算. (1)2121(2)-+--||;(2)15.(12分)“欲穷千里目,更上一层楼”说的是登得高看得远,若观测点的高度为h ,观测者能看到的最远距离为d,则d ≈r 为地球半径(通常取6 400 km),小明站在海边一块岩石上,眼睛离地面的高度为20m ,他观测到远处一艘轮船刚露出海平线,此时该船离小明约有多远?16.(13分)若a,b 为实数,且b 7=,求a+b 的平方根.七年级数学下册第六章《实数》 单元综合测试卷详细参考答案1.【解析】选B.∵(-0.7)2=0.49, 又∵(±0.7)2=0.49, ∴0.49的平方根是±0.7.2.【解析】选C.0没有倒数,故A 错误;2π是一个无理数,故B 错误4的算术平方根,结果为2,故D 错误.3.【解析】选B.a 有可能是小于等于0的数,即不一定是正数;2 0113是分数,即也是有理数;显然是无理数;平方等于自身的有0和1,不单单只有1,所以只有2 0113是有理数正确.4.【解析】选A.∵由数轴上a 、b 两点的位置可知,a <0,b >0,|a|<b , ∴ a+b >0,a-b <0,ab <0,ab<0, 故选项A 正确;选项B ,C ,D 错误.5.【解析】选A.①因为一对相反数的立方根仍是一对相反数,故说法①正确; ②因为64的立方根是4,故说法②错误;③本题符合非负数平方根的表示方法,实数立方根的表示方法,故说法③正确;④因为,故说法④错误.故选A .6.【解析】选C.由数轴知,点A 表示的数是2与3之间的数,而4的算术平方根和8的立方根都是2,4的立方根小于2,8的算术平方根大于2小于3.7.【解析】选D.把2 012缩小100倍,根据被开方数小数点的移动规律,其算术平方根为原来的十分之一,易得2 012100的平方根.故选D.8.【解析】8==. 答案:89.【解析】3m -,∴3-m ≥0,∴m ≤3. 答案:m ≤310.【解析】将2.答案:>11.【解析】由题意得,x=-3,y=2,所以x+y=-1. 答案:-112.【解析】5*43==,所以6*31==. 答案:113.【解析】(1)因为OA=1,所以,所以所以点C 所表示的数x(2)由(1)得22(x 11==,即2(x =1,1的立方根为1.14.【解析】(1)原式=1121144-+-=; (2)原式=3243655--+=-.15.【解析】根据题意得,h=20 m=0.02 km ,r=6 400 km ,所以小明离船的距离d ≈16.【解析】由题意得a 2-4=0,且a+2≠0, 所以a=2,所以b=7, 所以a+b 的平方根为±3.七年级数学下册第七章《平面直角坐标系》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.点P在第二象限内,点P到x轴的距离为4,到y轴的距离为3,那么P点的坐标为( )(A)(4,3) (B)(3,4)(C)(-3,4) (D)(-4,3)2.若点P(x,y)的坐标满足xy=0,则点P 的位置是( )(A)在x轴上(B)在y轴上(C)是坐标原点(D)在x轴上或在y轴上或在原点3.点M(2,-1)向上平移2个单位长度得到的点的坐标是( )(A)(2,0) (B)(2,1) (C)(2,2) (D)(2,-3)4.正方形网格中的每个小正方形边长都为1,每个小方格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.如图所示,B,C两点的位置分别记为(2,0),(4,0),若格点三角形ABC是锐角三角形且面积为4,则满足条件的A点的位置是( )(A)(0,4) (B)(1,4)(C)(2,4) (D)(3,4)5.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为( )(A)(-5,4) (B)(4,3)(C)(-1,-2) (D)(-2,-1)6.已知点M(3,-2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是( )(A)(4,2)或(-4,2) (B)(4,-2)或(-4,-2)(C)(4,-2)或(-5,-2) (D)(4,-2)或(-1,-2)7.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2 012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,则细线另一端所在的位置的点的坐标是( )(A)(1,1) (B)(-1,1) (C)(-1,-2) (D)(1,-2)二、填空题(每小题5分,共25分)8.如果点P(a,a-b)在第二象限,则点P′(-a,b-a)在第_______象限.9.如图所示,人头图形左边的嘴角的坐标是_________.10.在平面直角坐标系中,将点P(-1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为___________.11.若点P(x,y)的坐标满足x+y=xy,则称点P为和谐点,请写出一个和谐点的坐标.答:_________________________.12.如果规定北偏东30°的方向记作30°,沿这个方向行走50米记作50,该点A记作(30°,50),北偏西45°记作-45°,沿着此方向的反方向走20米记作-20,该点B记作(-45°,-20). 则(-75°,-15)表示的意义是____________,南偏西10°,沿着此方向走25米处的点C可记作___________.三、解答题(共47分)13.(10分)如图是具有2 000多年历史的古城扬州市区内的几个旅游景点分布示意图.(图中每个小正方形的边长均为1个单位长度)(1)请以国家AAAA级(最高级)旅游景点瘦西湖为坐标原点,以水平向右为x轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置:荷花池_________、平山堂__________、汪氏小苑_________;(2)如果建立适当的直角坐标系(不以瘦西湖为坐标原点),例如:以______为原点,以水平向右为x 轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置:平山堂___________、竹西公园__________.14.(12分)如图,用点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2 个胡萝卜、3棵青菜.(1)请你写出其他各点C,D,E,F所表示的意义;(2)若一只兔子从A到达B(顺着方格线走),有以下几条路可以选择:①A→C→D→B;②A→F→D→B;③A→F→E→B,问走哪条路吃到的胡萝卜最多? 走哪条路吃到的青菜最多?15.(12分)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.16.(13分)类比学习:一动点沿着数轴向右平移3个单位长度,再向左平移2个单位长度,相当于向右平移1个单位长度.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.七年级数学下册第七章《平面直角坐标系》单元综合测试卷详细参考答案1.【解析】选C.点P在第二象限内,横坐标为负数,纵坐标为正数,又“点P到x轴的距离为4,到y轴的距离为3”,所以点P的坐标为(-3,4).2.【解析】选D.由xy=0得,x=0或y=0或x=y=0,则点P在x轴上或在y轴上或在原点.3.【解析】选B.因为点M向上平移2个单位长度,横坐标不变,纵坐标加2,所以平移后得到的点的坐标是(2,1).4.【解析】选D.B,C两点与点(0,4)或(1,4)构成的格点三角形的面积为4,但不是锐角三角形;B,C两点与点(2,4)构成的格点三角形的面积为4,它是直角三角形.5.【解析】选A.A点平移到A′,是将A点向左平移6个单位,向上平移3个单位;B点按照同样的方法平移得到的点为(-5,4).6.【解析】选B.点M(3,-2)与点M′在同一条平行于x轴的直线上,所以y=-2,M′到y轴的距离等于4,所以|x|=4,所以x=±4.7.【解析】选B.长方形ABCD的周长为10,2 012÷10=201……2,说明细线绕了201圈,回到A点后又继续绕了2个单位,故到达B点,故选B.8.【解析】由题意知a<0,a-b>0,所以-a>0,b-a<0,所以点P′(-a,b-a)在第四象限.答案:四9.【解析】由图中所建立的坐标系可知,人头图形左边的嘴角的坐标是(-3,-1).答案:(-3,-1)10.【解析】点P(-1,4)向右平移2个单位长度后坐标为(1,4),再向下平移3个单位长度,则点P1的坐标为(1,1).答案:(1,1)11.【解析】答案不唯一,如(2,2),(0,0).答案:(2,2)(答案不唯一)12.【解析】由题意知,(-75°,-15)表示沿南偏东75°方向走15米;南偏西10°,沿着此方向走25米处的点C可记作(10°,-25).答案:南偏东75°,15米处 (10°,-25)13.【解析】(1)以瘦西湖为坐标原点,以水平向右为x轴的正方向,以竖直向上为y轴的正方向.用坐标表示下列景点的位置分别是:荷花池(-2,-3);平山堂(-1,3);汪氏小苑(2,-2);(2)以竹西公园为原点,以水平向右为x 轴的正方向,以竖直向上为y 轴的正方向.用坐标表示下列景点的位置分别是:平山堂(-4,0);竹西公园(0,0).(本题答案不唯一)14.【解析】(1)因为点A(3,1)表示放置3个胡萝卜、1棵青菜,点B(2,3)表示放置2 个胡萝卜、3棵青菜,所以可以类比点C 的坐标是(2,1),它表示的意义是放置2个胡萝卜、1棵青菜;点D 的坐标是(2,2),它表示的意义是放置2个胡萝卜、2棵青菜;点E 的坐标是(3,3),它表示的意义是放置3个胡萝卜、3棵青菜;点F 的坐标是(3,2),它表示的意义是放置3个胡萝卜、2棵青菜. (2)若兔子走①A →C →D →B ,则可以吃到的胡萝卜数量是:3+2+2+2=9(个),吃到的青菜数量是:1+1+2+3=7(棵);走②A →F →D →B ,则可以吃到的胡萝卜数量是:3+3+2+2=10(个),吃到的青菜数量是:1+2+2+3=8(棵);走③A →F →E →B ,则可以吃到的胡萝卜数量是:3+3+3+2=11(个),吃到的青菜数量是:1+2+3+3=9(棵);由此可知,走第③条路吃到的胡萝卜、青菜都最多. 15.【解析】(1)图中格点△A ′B ′C ′是由格点△ABC 向右平移7个单位长度得到的;(2)如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),则格点△DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),S △DEF =S △DGF +S △GEF =115151522⨯⨯+⨯⨯=, 或S △DEF =11172427131222⨯-⨯⨯-⨯⨯-⨯⨯=73144522---=.16.【解析】(1){3,1}+{1,2}={4,3}, {1,2}+{3,1}={4,3}.(2)如图所示:最后的位置仍是点B.(3){2,3}+{3,2}+{-5,-5}={0,0}.七年级下学期期中数学综合测试卷班级:___________ 姓名:_____________ 成绩:___________(120分钟120分)一、选择题(每小题3分,共30分)1.下面四个图形中,∠1=∠2一定成立的是( )2. 4的算术平方根是( )(A)2 (B)-2 (C)±3.如图,∠ADE和∠CED是( )(A)同位角 (B)内错角(C)同旁内角 (D)互为补角4.课间操时,小华、小军、小刚的位置如图,小华对小刚说:如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )(A)(5,4) (B)(4,5) (C)(3,4) (D)(4,3) 5.下列实数中,无理数是( )(A)52-(B)π6.在平面直角坐标系中,点(-1,m 2+1)一定在( ) (A)第一象限 (B)第二象限(C)第三象限 (D)第四象限7.如图,把图①中的△ABC 经过一定的变换得到图②中的△A ′B ′C ′,如果图①中△ABC 上点P 的坐标为(a ,b ),那么这个点在图②中的对应点P ′的坐标为( )(A)(a-2,b-3) (B)(a-3,b-2) (C)(a+3,b+2)(D)(a+2,b+3)8.计算( )(A)9.如图所示,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB 等于( )(A)40° (B)75° (C)85° (D)140°10.有个数值转换器,原理如下:当输入x为64时,输出y的值是( )(A) 4 (B)二、填空题(每小题3分,共24分)11.在伦敦奥运会主体育场“伦敦碗”一侧的座位席上,5排2号记为(5,2),则3排5号记为__________.12.计算: =__________.13.12_______12.(填“>”“<”或“=”)14.已知点A(-3+a,2a+9)在第二象限的角平分线上,则a的值是______.15.如图,已知∠1=70°,∠2=70°,∠3=60°,则∠4=________°.5的相反数是________,绝对值是________.17.如图所示,直线l1∥l2,且l1,l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=________.18.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来:_________.三、解答题(共66分)19.(8分) 求下列各式中的x 的值. (1)(3x+2)2=16;(2)12(2x-1)3=-4. 20.(6分)如图为一辆公交车的行驶路线,“○”表示该公交车的中途停车点,现在请你帮助小明完成对该公交车行驶路线的描述:起点站→(1,1)→…→终点站.21.(8分)已知:如图,AB ∥CD ,EF 交AB 于点G ,交CD 于点F ,FH 平分∠EFD ,交AB 于点H ,∠AGE=50°. 求∠BHF 的度数.=+,求a+b的平方根.22.(8分)已知a,b b423.(8分)如图是某体育场看台台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出C,D,E,F的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标相比较有什么变化?(3)如果台阶有10级,你能求出该台阶的长度和高度吗?24.(8分)证明:两条平行线的同旁内角的角平分线互相垂直.25.(10分)中国象棋棋盘中隐藏着直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图中“马”所在的位置可以直接走到B,A等处.(1)若“马”的位置在C点,为了到达D点,请按“马”走的规则,在图上用虚线画出一种你认为合理的行走路线;(2)如果图中“马”位于(1,-2)上,试写出A,B,C,D四点的坐标.26.(10分)平面内的两条直线有相交和平行两种位置关系.(1)AB平行于CD.如图a,点P在AB,CD外部时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD 的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.如图b,将点P移到AB,CD内部,以上结论是否成立?若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.七年级下学期期中数学综合测试卷详细参考答案1.【解析】选B.选项A中,∠1与∠2是邻补角,∠1+∠2=180°;选项B中,∠1与∠2是对顶角,∠1=∠2;选项C中,根据平行线的性质及邻补角的定义可知∠1+∠2=180°;选项D中,根据三角形的内、外角之间的关系可知∠2>∠1.2.【解析】选A.因为22=4故选A.3.【解析】选B.∠ADE和∠CED在被截直线内部,在截线的两侧,是内错角.4.【解析】选D.以小华的位置为坐标原点建立平面直角坐标系,可知小刚的位置为(4,3).5.【解析】选B.选项A,C,D都是有理数;选项B是无理数.6.【解析】选B.由于一个数的平方具有非负性,所以(-1,m2+1)的纵坐标一定大于0,所以点在第二象限.7.【解析】选C.观察图形可知,△ABC经过向右平移3个单位长度,再向上平移2个单位长度得到△A′B′C′,所以点P′的坐标为(a+3,b+2).8.【解析】选D.=9.【解析】选C.∵AE,DB是正南正北方向,∴BD∥AE,∵∠EAB=45°,∴∠DBA=∠EAB=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-35°-60°=85°.10.【解析】选B.由题意知,64的立方根是4,4为有理数,需再取立方根,则输出的是11.【解析】由题意知,3排5号记为(3,5).答案:(3,5)12.【解析】-8的立方根是-2.答案:-213.【解析】2=,>1,所以11 22>.答案:>14.【解析】第二象限内点的横坐标为负,纵坐标为正;由角平分线的性质可知:角平分线上的一点到角的两边距离相等,故第二象限的角平分线上的点的横、纵坐标互为相反数,且横坐标为负,纵坐标为正.由此可得:(-3+a)+(2a+9)=0,即a=-2.答案:-215.【解析】因为∠1=∠2=70°,所以a∥b,因为∠3=60°,所以∠4=∠3=60°.答案:6016.的相反数是答案:5517.【解析】如图所示,∠4=90°-∠2=90°-35°=55°.由l1∥l2得∠3=180°-∠1-∠2-∠4=180°-35°-35°-55°=55°.答案:55°18.【解析】由题意可知(5,3),(6,3),(7,3)(4,1),(4,4)对应的字母分别是S,T,U,D,Y,这个英文单词是STUDY.答案:STUDY19.【解析】(1)由平方根的意义得,3x+2=±4,解得x=-2或x=23.(2)原方程变为:(2x-1)3=-8,由立方根的意义得,2x-1=-2,解得x=12 .20.【解析】起点站→(1,1)→(2,2)→(4,2)→(5,1)→(6,2)→(6,4)→(5,5)→(3,5)→(1,5)→(1,7)→终点站.21.【解析】因为AB∥CD,∠AGE=50°.所以∠EFC=50°,所以∠EFD=130°,因为FH平分∠EFD,所以∠HFD=12∠EFD=65°,所以∠BHF=180°-65°=115°.22.【解析】由于a-5≥0,∴a≥5,同理10-2a≥0,∴a≤5,∴a=5.当a=5时,b+4=0,∴b=-4,∴a+b=5-4=1.∴a+b的平方根为±1.23.【解析】(1)以A点为原点,水平向右为x轴正方向,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);(2)B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;(3)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.24.【解析】如图所示,直线a,b被直线c所截,且a∥b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:因为a∥b,所以∠CAE+∠ACF=180°.因为直线AB平分∠CAE,直线CD平分∠ACF,所以∠1=12∠CAE,∠2=12∠ACF.∠1+∠2=12∠CAE+12∠ACF=90°,所以AB⊥CD.25.【解析】(1)如图(2)A(3,-1),B(2,0),C(6,2),D(7,-1)26.【解析】(1)不成立,结论是∠BPD=∠B+∠D. 延长BP交CD于点E,因为AB∥CD,所以∠B=∠BED.又∠BPD=∠BED+∠D,所以∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.又因为∠AGB=∠CGF.∠CGF+∠C+∠D+∠F=360°. 所以∠A+∠B+∠C+∠D+∠E+∠F=360°.七年级数学下册第八章《二元一次方程组》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.二元一次方程组x y 4x y 2,-=⎧⎨+=⎩的解是( ) x 3(A)y 7=⎧⎨=-⎩ x 1(B)y 1=⎧⎨=⎩ x 7(C)y 3=⎧⎨=⎩ x 3(D)y 1=⎧⎨=-⎩2.方程ax-y=3的解是x 1y 2,,=⎧⎨=⎩则a 的取值是( ) (A)5 (B)-5 (C)2 (D)13.解方程组3x y z 42x 3y z 12x y 2z 3,①,②③-+=⎧⎪+-=⎨⎪+-=⎩以下解法中不正确的是( )(A)由①、②消去z,再由①、③消去z(B)由①、②消去z,再由②、③消去z(C)由①、③消去y,再由①、②消去y(D)由①、②消去z,再由①、③消去y4.由方程组2x m 1y 3m,+=⎧⎨-=⎩可得出x 与y 的关系是( )(A)2x+y=4(B)2x-y=4 (C)2x+y=-4 (D)2x-y=-4 5.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )x y 50(A)6(x y)320,+=⎧⎨+=⎩ x y 50(B)6x 10y 320,+=⎧⎨+=⎩ x y 50(C)6x y 320,+=⎧⎨+=⎩ x y 50(D)10x 6y 320,+=⎧⎨+=⎩6.我国古代数学巨著《孙子算经》中的“鸡兔同笼”题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何”.正确答案是( )(A)鸡24只,兔11只(B)鸡23只,兔12只 (C)鸡11只,兔24只 (D)鸡12只,兔23只7.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8个,6个,5个店铺,且每组至少有两人,则学生分组方案有( )(A)6种 (B)5种 (C)4种 (D)3种二、填空题(每小题5分,共25分)8.方程组3x y 3,2x y 2+=⎧⎨-=⎩的解为_____________.9.已知x 1y 2,=⎧⎨=⎩是关于x,y 的二元一次方程组2ax by 3ax by 6,-=⎧⎨+=⎩的解,则a+b=_________. 10.已知-2x m-1y 3和12x n y m+n 是同类项,则(n-m)2 012=________. 11.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需________元.12.三轮摩托车的轮胎安装在前轮上行驶12 000千米后报废,安装在左后轮和右后轮则分别只能行驶7 500千米和5 000千米.为使该车行驶尽可能多的路程,采用行驶一定路程后将2个轮胎对换的方法,但最多可对换2次,那么安装在三轮摩托车上的3个轮胎最多可行驶_________千米.三、解答题(共47分)13.(12分)(1)解方程组:3x2y5,x3y9;-=⎧⎨+=⎩(2)解方程组x y8,3x y12.-=⎧⎨+=⎩14.(10分)若方程组ax y b,x by a+=⎧⎨-=⎩的解是x1,y1,=⎧⎨=⎩求(a+b)2-(a-b)(a+b).15.(12分)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳:75分小明:?分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少?16.(13分)某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A ,B 两种长方体形状的无盖纸盒.现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A 型盒子?多少个B 型盒子?(1)根据题意,甲和乙两同学分别列出的方程组如下:甲:x 2y 140,4x 3y 360;+=⎧⎨+=⎩乙x y 140,34x y 3602+=⎧⎪⎨+=⎪⎩:, 根据两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义:甲:x 表示_________,y 表示;__________乙:x 表示_________,y 表示____________;(2)求出做成的A 型盒子和B 型盒子分别有多少个(写出完整的解答过程)?七年级数学下册第八章《二元一次方程组》单元综合测试卷详细参考答案1.【解析】选D.x y 4,(1)x y 2,(2)-=⎧⎨+=⎩ (1)+(2)得,2x=6, 解得,x=3,代入(1)得,3-y=4,y=-1,故原方程组的解是x 3,y 1.=⎧⎨=-⎩2.【解析】选A.把x 1,y 2=⎧⎨=⎩代入方程ax-y=3,得a-2=3,解得a=5.3.【解析】选D.因为每个方程中均含有三个未知数,所以两次所消去的未知数必须相同,才能得到二元一次方程组,而选项D 中两次所消去的未知数不同,不能得到二元一次方程组,是错误的.4.【解析】选A.由2x+m=1,得m=1-2x ;由y-3=m ,得m=y-3,∴1-2x=y-3,即2x+y=4.5.【解析】选B.由题意得,x y 50,6x 10y 320.+=⎧⎨+=⎩6.【解析】选B.设鸡有x 只,兔有y 只,根据题意得x y 35,2x 4y 94,+=⎧⎨+=⎩解得x 23,y 12,=⎧⎨=⎩即有鸡23只,兔12只. 7.【解析】选B.设第一小组有x 人,第二小组有y 人,则第三小组有(20-x-y)人, 则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=11,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意.故学生分组方案有5种.故选B.8.【解析】两方程相加得5x=5,解得x=1,把x=1代入3x+y=3得3×1+y=3,解得y=0,所以方程组3x y 3,2x y 2+=⎧⎨-=⎩的解为x 1,y 0.=⎧⎨=⎩答案:x 1y 0=⎧⎨=⎩9.【解析】把x 1y 2,=⎧⎨=⎩代入方程组2ax by 3ax by 6,-=⎧⎨+=⎩得2a 2b 3a 2b 6,,-=⎧⎨+=⎩解方程组得a 33b ,2,=⎧⎪⎨=⎪⎩代入a+b=92. 答案:9210.【解析】由同类项的概念得m 1n,m n 3.-=⎧⎨+=⎩解得m 2,n 1.=⎧⎨=⎩把m 2,n 1=⎧⎨=⎩代入(n-m)2 012得(1-2)2 012=1.答案:111.【解析】设一个单人间需要x 元,一个双人间需要y 元.根据题意得3x 6y 1 020,x 5y 700,①②+=⎧⎨+=⎩化简①得:x+2y=340③,②-③得:3y=360,y=120,把y=120代入③得:x=100,所以5(x+y)=1 100.答案:1 10012.【解析】三轮摩托车每行驶1千米,前胎、左后胎和右后胎分别损耗112 000,17 500和15 000,所以3个轮胎最多行驶3÷111()12 0007 500 5 000++=7 200千米. 设行驶x 千米时,把前胎和右后胎对换,再走y 千米,把左右后胎对换,再走z 千米,报废.x y z 1,12 000 5 0007 500x y z 1,7 5007 500 5 000x y z 1.5 00012 00012 000⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩解得4x 3 428,73y 3 171,7z 600.⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩x+y+z=7 200. ∴行驶43 4287千米时,把前胎和右后胎对换,再走33 1717千米,把左右后胎对换,再走600千米,报废.答案:7 20013.【解析】(1)3x2y5, x3y9,①②-=⎧⎨+=⎩②×3-①,得11y=22,y=2;将y=2代入②,得x+6=9,x=3.∴方程组的解为x3, y 2.=⎧⎨=⎩(2)x y8, 3x y12,①②-=⎧⎨+=⎩①+②得,4x=20,解得x=5,把x=5代入①得,5-y=8, 解得y=-3,所以方程组的解是x5, y 3.=⎧⎨=-⎩14.【解析】∵方程组ax y b,x by a+=⎧⎨-=⎩的解是x1,y1,=⎧⎨=⎩∴a1b,1b a,+=⎧⎨-=⎩解得a0,b1,=⎧⎨=⎩所以(a+b)2-(a-b)(a+b)=(0+1)2-(0-1)(0+1)=1+1=2.15.【解析】(1)设掷到A区和B区的得分分别为x分,y分.根据题意,得5x3y77,3x5y75.+=⎧⎨+=⎩解得x10,y9.=⎧⎨=⎩答:掷中A区一次得10分,掷中B区一次得9分.(2)由(1)可知,4x+4y=76(分).答:小明的得分是76分.16.【解析】(1)甲:x表示能做成A型盒子的个数,y表示能做成B型盒子的个数.乙:x表示做一个A型盒子用正方形纸板的张数,y表示做一个B型盒子用正方形纸板的张数.(2)解方程组x2y140,4x3y360+=⎧⎨+=⎩得x60,y40.=⎧⎨=⎩答:做成的A型盒子有60个,做成的B型盒子有40个.七年级数学下册第九章《不等式与不等式组》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.下列各数中,是不等式2x-3>0的解是( )(A)-1 (B)0 (C)-2 (D)22.如果a >b ,那么下列不等式不成立的是( )(A)a-5>b-5 (B)-5a >-5b (C)a b55> (D)-5a <-5b3.不等式-2x <4的解集是( )(A)x >-2 (B)x <-2(C)x >2 (D)x <24.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )x 2(A)x 1>⎧⎨≤-⎩x 2(B)x 1<>⎧⎨-⎩x 2(C)x 1<⎧⎨≥-⎩x 2(D)x 1<⎧⎨≤-⎩5.不等式组2x 4x, x 24x 1 ≤+⎧⎨+-⎩①<②的正整数解有( )(A)1个 (B)2个 (C)3个 (D)4个6.下列说法中,错误的是( )(A)不等式x <2的正整数解有一个(B)-2是不等式2x-1<0的一个解(C)不等式-3x >9的解集是x >-3。
人教版七年级数学下册各单元测试题及答案----
123(第三题)AB CD1234(第2题)12345678(第4题)ab cABCD(第7题)第五章《相交线与平行线》测试卷一、选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠43、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A BCDE(第10题)(第14题)A B M1A BCD EFGH第13题A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
人教版七年级数学下册 各单元测试题含答案
人教版七年级数学下册第5章相交线与平行线单元检测1.已知∠α和∠β的对顶角,若∠α=60°,则∠β的度数为( ) A.30° B.50° C.60° D.150°2. 下列说法正确的是( )A.在同一平面内,过直线外一点向该直线画垂线,垂足一定在该直线上B.在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足一定在该线段或射线上C.过线段或射线外一点不一定能画出该线段或射线的垂线D.过直线外一点与直线上一点画的一条直线与该直线垂直3. 如图,从位置P到直线公路MN共有四条小道,若用相同的速度行走,能最快到达公路MN的小道是( )A.PA B.PB C.PC D.PD4. 如图,已知直线a,b被直线c所截,则∠1和∠2是一对( )A.对顶角 B.同位角 C.内错角 D.同旁内角5. 下列说法正确的是( )A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线6. 下列选项中,不能判定两直线平行的是( )A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角相等,两直线平行D.同一平面内,垂直于同一条直线的两条直线平行7. 如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么下列结论错误的是( )A.∠BAO与∠CAO相等 B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余 D.∠ABO与∠DBO不等8. 下列语言是命题的是( )A.画两条相等的线段 B.等于同一个角的两个角相等吗C.延长线段AO到C,使OC=OA D.两直线平行,内错角相等9. 下列现象中属于平移的是( )A.升降电梯从一楼升到五楼 B.闹钟的钟摆运动C.树叶从树上随风飘落 D.方向盘的转动10. 如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是( )A.同角的余角相等 B.对顶角相等C.同角的补角相等 D.等角的补角相等11. 如图,已知AB,CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=________度.12. 如图所示,当剪刀口∠AOB增大20°时,∠COD增大_____度,其根据是_________________.13. 如图,BC⊥AC,CB=8 cm,AC=6 cm,点C到AB的距离是4.8 cm,那么点B到AC的距离是____ cm,点A到BC的距离是____ cm,A,B两点间的距离是____ cm.14. 如图所示,∠B与____________是直线_________和直线_______被直线________所截得的同位角.15. 如图是一个平行四边形,请用符号表示图中的平行线:_____________________________________.16. 如图,已知A,B,C三点及直线EF,过B点作AB∥EF,过B点作BC∥EF,那么A,B,C三点一定在同一条直线上,依据是:过直线外一点,______________________________与已知直线.17. 如图,已知∠B=40°,要使AB∥CD,需要添加一个条件,这个条件可以是__________________.18. 如图,已知l1∥l2,直线l与l1,l2相交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=130°,则∠2=___________度.19. 如图,三角形ABC经过平移得到三角形DEF,若∠BAC=65°,则∠EDF=____________.20. 完成下面推理过程:如图,∠1+∠2=230°,b∥c,则∠1,∠2,∠3,∠4各是多少度?解:∵∠1=∠2(__________________),∠1+∠2=230°,∴∠1=∠2=___________(填度数).∵b∥c,∴∠4=∠2=_______(填度数)(_______________________________),∠2+∠3=180°(________________________________),∴∠3=180°-∠2=____________(填度数).21. 如图,直线AB,CD,EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60°,∠BO F=90°,求∠AOF和∠FOC的度数.22. 如图,点A表示小雨家,点B表示小樱家,点C表示小丽家,她们三家恰好组成一个直角三角形,其中AC⊥BC,AC=900米,BC=1 200米,AB=1 500米.(1)试说出小雨家到街道BC的距离以及小樱家到街道AC的距离.(2)画出表示小丽家到街道AB距离的线段.23. 在书写艺术字时,常常运用画“平行线段”这种基本作图方法,如图是书写的字母“M”.(1)请从正面,上面,右侧三个不同方向上各找出一组平行线段,并用字母表示出来;(2)EF与A′B′有何位置关系?CC′与DH有何位置关系?24. 如图,已知BE∥DF,∠B=∠D,那么AD与BC有何位置关系?请说明理由.25. 如图,AB∥CD,AE平分∠MAB交CD于点F,NF⊥CD,垂足为点F.(1)求证:∠CAF=∠EFD;(2)若∠MCD=80°,求∠N FE的度数.参考答案:1---10 CABDD CDDAC11. 6212. 20 对顶角相等13. 8 6 1014. ∠FAC AC BC FB15. AB∥CD,AD∥BC16. 有且只有一条直线平行17. ∠BED=40°18. 2019. 65°20. 对顶角相等115°115° 两直线平行,内错角相等两直线平行,同旁内角互补65°21. 解:(1)∠CO E的邻补角为∠COF和∠EOD.(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF.(3)因为∠BOF=90°,所以∠AOF=180°-90°=90°.又因为∠AOC=∠BOD=60°,所以∠FOC=∠AOF+∠AOC=90°+60°=150°.22. 解:(1)小雨家到街道BC的距离为900米,小樱家到街道AC的距离为1 200米.(2)过点C作CD⊥AB于点D.线段CD的长表示小丽家到街道AB的距离,图略.23. 解:(1)正面:AB∥EF;上面:A′B′∥AB;右侧:DD′∥HH′. (2)EF∥A′B′,CC′⊥DH.24. 解:AD∥BC.理由:∵BE∥DF,∴∠E=∠F.又∵∠B=∠D,∴180°-∠B -∠E=180°-∠D-∠F,即∠EHB=∠FGD,∴AD∥BC.25. 解:(1)证明:∵AB∥CD,∴∠FAB =∠EFD .∵AE 平分∠MAB,∴∠CAF =∠FAB,∴∠CAF =∠EFD.(2)∵AB∥CD,∠MCD =80° ,∴∠CAB =∠MCD=80°.∵AE 平分∠MAB,∴∠CAF =12∠CAB=40°,∴∠EFD =∠CAF=40°.∵NF ⊥CD ,∴∠NFE =90°-∠EFD=90°-40°=50°.人教版七年级数学下册 第六章 实数 单元练习1.下列实数是无理数的是( )A.23 B. 3 C .0 D .-1.010 101 2. 下列计算正确的是( )A.9=±3 B .|-3|=-3 C.9=3 D .-32=9 3. 下列说法中错误的是( ) A.12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C.916的平方根是34D .当x ≠0时,-x 2没有平方根4. 若m<0,则m的立方根是( )A.3m B.-3m C.±3m D.3-m5. 关于“10”,下面说法不正确的是( )A.它是数轴上离原点10个单位长度的点表示的数B.它是一个无理数C.若a<10<a+1,则整数a为3D.它表示面积为10的正方形的边长6. 实数a,b在数轴上的对应点的位置如图,且a=-2,b=3,则化简a2-b2-|a-b|的结果为( )A.-2 2 B.-2 3 C.0 D.2 37. 若x-3有意义,则x的取值范围是___________8. 如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__________.9. 观察分析下列数据:0,-3,6,-3,12,-15,18,…,根据以上数据排列的规律,第n个数据应是_______________________.(n为正整数)10. 下列四个数:-3,-3,-π,-1,其中最小的数是11. 将实数5,π,0,-6由小到大用“<”连起来,可表示为________________.12. 己知a,b为两个连续整数,且a<28<b,则ab=____.13. 在实数22,38,0,-π,16,13,0.101 001 000 1…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =____. 14. 已知5=2.236,50=7.071,则0.5=_____________,500=___________ 15. 已知310=2.154,3100=4.642,则310 000=_______,-30.1=________. 16. 计算: (1)|2-4|+2;(2)(0.01+30.001)×144; (3)(78)2-4964-4717. 一个非负数的两个平方根分别是2a -1和a -5,则这个非负数是多少?18. 已知x -2的平方根是±1,2x +y +17的立方根是3,求x 2+y 2的平方根和立方根.19. 已知(x -12)2=169,(y -1)3=-0.125,求x -2xy -34y +x 的值.20. 如果5+13的小数部分为a,5-13的小数部分为b,求a+b的值.21. 如图,数轴上表示1,3的对应点分别为A,B,点C为点B关于点A的对称点,设点C所表示的数为x.(1)求实数x的值;(2)求(x+3)2的值.22. 在做浮力实验时,小华用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,溢出水的体积为40 cm3;小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.6 cm.请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器计算,结果精确到0.01 cm)参考答案:1---6 BCCAA B7. x≥38. 69. (-1)n+13(n-1)10. -π11. -6<0<5<π12. 3013. -114. 0.7071 22.3615. 21.54 -0.464216. (1) 解:原式=4-2+2=2.(2) 解:原式=(0.1+0.1)×12=0.2×12=2.4. (3) 解:原式=78-78-47=-47.17. 解:根据题意,有(2a -1)+(a -5)=0,解得a =2.∴这个非负数为(2a -1)2=(2×2-1)2=9.18. 解:∵x -2的平方根是±1,∴x -2=1,则x =3.∵2x +y +17的立方根是3,∴2x +y +17=27.把x =3代入2x +y +17=27中,得y =4.∴x 2+y 2=32+42=25,∴x 2+y 2的平方根是±5,立方根是325. 19. 解:依题意,得x -12=±13,∴x =25或x =-1. ∵x ≥0,∴x =25.∵y -1=-0.5,∴y =0.5,∴x -2xy -34y +x =25-2×25×0.5-34×0.5+25=-3. 20. 解:根据题意,得a =5+13-8,b =5-13-1, 则a +b =5+13-8+5-13-1=1.21. 解:(1)由数轴上表示1,3的对应点分别为A ,B , 点C 为点B 关于点A 的对称点,得x +32=1,解得x =2- 3. (2)当x =2-3时,(x +3)2=4.22. 解:设铁块的棱长为a cm ,根据题意,得a 3=40,解得a≈3.42.设烧杯内部的底面半径为r cm ,根据题意,得πr 2×0.6=40,解得r≈4.61(舍去负值),则烧杯内部的底面半径约是4.61 cm ,铁块的棱长约是3.42 cm.第七章 平面直角坐标系章末检测一、选择题1.在直角坐标系中,点P(2,-3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限答案 D ∵在直角坐标系中,点P(2,-3)的横坐标为正,纵坐标为负,∴点P在第四象限,故选D.2.如果将电影院的8排3号简记为(8,3),那么3排8号可以简记为( )A.(8,3)B.(3,8)C.(83,38)D.(38,83)答案 B 因为8排3号简记为(8,3),所以括号内的前一个数表示这个座位所在的排数,后一个数表示这个座位所在的列数,由此可知3排8号可以简记为(3,8).3.点P(m+3,m+1)在x轴上,则P点坐标为( )A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)答案 B ∵点P(m+3,m+1)在x轴上,∴m+1=0,解得m=-1.∴m+3=2,则P点坐标为(2,0).4.点P(m,1)在第二象限内,则点Q(-m,0)在( )A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上答案 A 由点P(m,1)在第二象限内可判断m是负数,所以-m是正数,所以点Q(-m,0)在x轴的正半轴上. 5.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A'的坐标是( )A.(0,1)B.(6,1)C.(0,-3)D.(6,-3)答案 A 根据平移的性质,点A(3,-1)先向左平移3个单位,再向上平移2个单位,得到A'(0,1),故选A. 6.图案设计的手工课上,李明在平面直角坐标系中,把一朵花的图案向左平移了3个单位长度,而花的形状、大小都不变,则图案上各点的坐标的变化情况为( )A.横坐标加3,纵坐标不变B.纵坐标加3,横坐标不变C.横坐标减小3,纵坐标不变D.纵坐标减小3,横坐标不变答案 C 将直角坐标系中的一个图案向左或向右平移a(a>0)个单位长度,而图案的形状、大小都不变,相当于将图案中各点的横坐标都减去或加上a,纵坐标不变.7.已知(a-2)2+=0,则P(-a,-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限答案 B ∵(a-2)2+=0,∴a-2=0,b+3=0,∴a=2,b=-3.则-a=-2,-b=3,∴点P在第二象限.8.在直角坐标系内,下列各结论成立的是( )A.点(4,3)与点(3,4)表示同一个点B.平面内的任一点到两坐标轴的距离相等C.若点P(x,y)的坐标满足xy=0,则点P在坐标轴上D.点P(m,n)到x轴的距离为m,到y轴的距离为n答案 C 对于C,由xy=0得x=0或y=0.当x=0时,点P在y轴上;当y=0时,点P在x轴上.所以当xy=0时,点P在坐标轴上.二、填空题9.七年级(2)班座位有5排8列,陈晨的座位在2排4列,简记为(2,4),班级座次表上写着刘畅(1,2),那么刘畅的座位是.答案1排2列10.点A(3,-4)到y轴的距离为,到x轴的距离为.答案3;4解析点到x轴的距离是该点纵坐标的绝对值,到y轴的距离是该点横坐标的绝对值.11.在平面直角坐标系中,已知点A(3,2),AC⊥x轴,垂足为C,则C点的坐标为.答案(3,0)解析AC⊥x轴,则AC∥y轴,故点A与点C的横坐标相同.又C点在x轴上,所以点C的坐标为(3,0).12.若x轴上的点Q到y轴的距离为6,则点Q的坐标为.答案(6,0)或(-6,0)解析x轴上的点的纵坐标为0,x轴上到y轴距离为6的点有两个,分别是(6,0)、(-6,0),所以点Q的坐标为(6,0)或(-6,0).13.若点A(-3,m+1)在第二象限的角平分线上,则m= .答案2解析第二象限的角平分线上的点的横、纵坐标互为相反数,∴-3+m+1=0,解得m=2(经检验满足题意). 14.将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab= .答案-15解析向右平移2个单位就是横坐标加2,即a=1+2=3;向下平移2个单位就是纵坐标减2,即b=-3-2=-5,∴ab=3×(-5)=-15.15.四边形ABCD在平面直角坐标系中的位置如图所示,若AB⊥AD,AB∥CD,且AB=5,A点坐标为(-2,7),则B 点坐标为.答案(3,7)解析由AB∥CD可知点B的纵坐标与点A的纵坐标相同,设AB与y轴交于点E,则BE=AB-AE=AB-OD=5-2=3,即点B的横坐标为3.16.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),……,则点A2015的坐标为.答案(-504,504)解析由图形以及叙述可知除A1点和第四象限内点外的各个点都位于象限的角平分线上,第一象限内的点对应的字母的下标是2,6,10,14,…,即4n-2(n是正整数,n是对应点的横坐标的绝对值);同理,第二象限内的点对应的字母的下标是4n-1(n是正整数,n是对应点的横坐标的绝对值);第三象限内的点对应的字母的下标是4n(n是正整数,n是对应点的横坐标的绝对值);第四象限内的点对应的字母的下标是1+4n(n是正整数,n是对应点的纵坐标的绝对值).令2015=4n-1,则n=504,当2015等于4n+1或4n或4n-2时,不存在这样的正整数n.故点A2015在第二象限的角平分线上,且其坐标为(-504,504).三、解答题17.如图,将一小船先向左平移6个单位长度,再向下平移5个单位长度.试确定A、B、C、D、E、F、G平移后对应点的坐标,并画出平移后的图形.答案要想把小船先向左平移6个单位长度,再向下平移5个单位长度,首先要确定关键点A、B、C、D、E、F、G,并把关键点分别向左平移6个单位长度,再向下平移5个单位长度.根据点的坐标变化规律,由A(1,2)、B(3,1)、C(4,1)、D(5,2)、E(3,2)、F(3,4)、G(2,3),可确定平移后对应点的坐标分别为A'(-5,-3)、B'(-3,-4)、C'(-2,-4)、D'(-1,-3)、E'(-3,-3)、F'(-3,-1)、G'(-4,-2),根据原图的连接方式连接即可得到平移后的图形(如图).18.如图,标明了李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标;(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1)→(-1,-2)→(1,-2)→(2,-1)→(1,-1)→(1,3)→(-1,0)→(0,-1)→(-2,-1)的路线转了一圈,写出他路上经过的地方;(3)连接(2)中各点所形成的路线构成了什么图形?解析(1)学校(1,3),邮局(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)一只小船.19.“若点P、Q的坐标分别是(x1,y1)、(x2,y2),则线段PQ中点的坐标为”.如图7-3-6,已知点A、B、C的坐标分别为(-5,0)、(3,0)、(1,4),利用上述结论求线段AC、BC的中点D、E的坐标,并判断DE与AB的位置关系.答案由点A、B、C的坐标分别为(-5,0)、(3,0)、(1,4),得D(-2,2),E(2,2),∵点D、E的纵坐标相等,且不为0,∴DE∥x轴,又∵AB在x轴上,∴DE∥AB.20.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察对应点的坐标之间的关系,解答下列问题:(1)写出点A,点D,点B,点E,点C,点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是上述变换下的一对对应点,求a,b的值.答案(1)A(2,3),D(-2,-3);B(1,2),E(-1,-2);C(3,1),F(-3,-1).对应点的坐标特征:横坐标互为相反数,纵坐标互为相反数.(2)由(1)可得a+3=-2a,4-b=-(2b-3),解得a=-1,b=-1.21.如图,有一块不规则四边形地皮ABCD,各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0)(图上1个单位长度表示100m).现在想对这块地皮进行规划,需要确定它的面积.(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来的四边形ABCD的各个顶点的纵坐标保持不变,横坐标增加2,所得四边形的面积又是多少?答案 (1)将四边形分割成如图所示的长方形、直角三角形,可求出各自的面积,各面积之和即为该四边形的面积.因图上1个单位长度代表100 m, 则S 长方形①=900×600=540 000(m 2), S 直角三角形②=×200×800=80 000(m 2), S 直角三角形③=×200×900=90 000(m 2), S 直角三角形④=×300×600=90 000(m 2). 所以四边形ABCD 的实际面积为800 000 m 2.(2)把原来的四边形ABCD 的各个顶点的纵坐标保持不变,横坐标增加2,就是将原来的四边形向右平移2个单位长度,所以其面积不变,还是800 000 m 2.七年级数学第八章《二元一次方程组》单元检测题考试时间:100分钟; 满分:120分班级: 姓名: 学号: 分数:一、选择题(本题共10个小题,每小题3分,共30分)1.下列各式是二元一次方程的是( )A .21=+b aB .532=-n mC .2x+3=5D .3=xy2.若⎩⎨⎧==72y x 是方程ax -3y=2的一个解,则a 为 ( )A .8B .223 C .-223 D .-2193.解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是 ( )A .代入法B .加减法C .试值法D .无法确定⎩⎨⎧=+=+32y x y x第16题图4.方程组 的解为⎩⎨⎧=y x 2,则被遮盖的两个数分别为( )A .1,2B .1,3C .5,1 (D)2,45.下列方程组,解为⎩⎨⎧-=-=21y x 是( )A .⎩⎨⎧=+=-531y x y xB .⎩⎨⎧-=+=-531y x y xC .⎩⎨⎧=-=-133y x y xD .⎩⎨⎧=+-=-533y x y x6.买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢 笔x 支,铅笔y 支,根据题意,可得方程组( )A .⎩⎨⎧+==+3230x y y xB .⎩⎨⎧-==+3230x y y xC .⎩⎨⎧+==+3230y x y xD . ⎩⎨⎧-==+3230y x y x7.已知x 、y 满足方程组⎩⎨⎧=+=+7282y x y x ,则x +y 的值是( )A .3B .5C .7D .98.已知n m n m y x -+53与-9x 7-m y 1+n 的和是单项式,则m ,n 的值分别是( )A .m=-1,n=-7B .m=3,n=1C .m=1029,n=56D .m=45,n=-29.根据图中提供的信息,可知一个杯子的价格是( )A .51元B .35元C .8元D .7.5元10.已知二元一次方程3x +y =0的一个解是⎩⎨⎧==b y ax ,其中a ≠0,那么( )A. a b >0B. a b =0C. a b<0 D. 以上都不对二、填空题(本题共6个小题,每小题4分,共24分) 11.请你写出一个有一解为的二元一次方程: .12.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________. 13.若x a-b-2-2y a +b =3是二元一次方程,则a=________ , b=________. 14.方程4x +3y =20的所有非负整数解为: . 15.某商品成本价为t 元,商品上架前定价为s 元,按定价的8折销售后获利45元。
人教版七年级数学下册各单元测试卷及答案
人教版七年级数学下册单元测试卷第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
最新人教版七年级数学下册全册单元测试(附答案)
人教版数学七年级下册 第五章 平行线与相交线 单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线l 1沿AB 的方向得到直线l 2,若∠1=50°,则∠2的度数是( )A .40°B .50°C .90°D .130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含︒30角的直角三角板的斜边与纸条一边重合,含︒45角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .︒30B .︒20C .︒15D .︒143.如图,∠1+∠2=180°,∠3=100°则∠4等于( )A .70°B .80°C .90°D .100° 4.如图,l ∥m ,等边△ABC 的顶点B 在直线m 上,∠1= 20°,则∠2的度数为( )A .60°B .45°C .40°D .30° 5.如图,已知直线a ∥b ,∠1=131°,则∠2等于( )A.39°B.41°C.49°D.59°6.如图,直线a ∥b ,∠1=72°,则∠2的度数是( )A.118°B.108°C.98°D.72°7.如图,AB ∥CD,EF 交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G. 若∠1=40°,则∠EGF=( )A .20°B .40°C .70°D .110°8.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30°,则∠C 为( )A .30°B .60°C .80°D .120°9.下列命题的逆命题不正确的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等11.如图。
人教版七年级数学下册各单元测试题及答案汇总
123(第三题)A B C D E (第10题)ABCD 1234(第2题)12345678(第4题)ab cA B CD(第7题)七年级数学第五章《相交线与平行线》测试卷一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:28、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
人教版七年级数学下册各单元测试题及答案汇总新编完整版
⼈教版七年级数学下册各单元测试题及答案汇总新编完整版⼈教版七年级数学下册各单元测试题及答案汇总新编HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】123(第三题)A B C D E(第10题)(第14题)A BC D E F G H 第13题12345678(第4题)ab c 七年级数学第五章《相交线与平⾏线》测试卷1、如图所⽰,∠1和∠2是对顶⾓的是()2、如图AB ∥CD 可以得到()A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠43、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=()A 、90°B 、120°C 、180°D 、140° 4、如图所⽰,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断是a ∥b 的条件的序号是()A 、①② B、①③ C、①④ D、③④5、某⼈在⼴场上练习驾驶汽车,两次拐弯后,⾏驶⽅向与原来相同,这两次拐弯的⾓度可能是()A 、第⼀次左拐30°,第⼆次右拐30°B 、第⼀次右拐50°,第⼆次左拐130°C 、第⼀次右拐50°,第⼆次右拐130°D 、第⼀次向左拐50°,第⼆次向左拐130°6、下列哪个图形是由左图平移得到的()7、如图,在⼀个有4×4个⼩正⽅形组成的正⽅形⽹格中,阴影部分⾯积与正⽅形ABCD ⾯积的⽐是()A 、3:4B 、5:8C 、9:16D 、1:28、下列现象属于平移的是()①打⽓筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在⼀条笔直的马路上⾏⾛A 、③ B、②③ C 、①②④ D、①②⑤9、下列说法正确的是() A 、有且只有⼀条直线与已知直线平⾏B 、垂直于同⼀条直线的两条直线互相垂直C 、从直线外⼀点到这条直线的垂线段,叫做这点到这条直线的距离。
新人教版七年级数学下册单元测验卷及答案全册
新人教版七年级数学下册单元测验卷及答案全册第一单元测验卷题目一1. 计算:$48 \div 6 = $ __________。
2. 如果一个电影票售价为30元,你用100元买了几张电影票?3. 一桶水有15升,倒出3升后,还剩多少升水?4. 用一个相同的正方形卡片贴满一个边长为6cm的正方形区域,需要多少个卡片?5. 将1200秒换算成分钟,是__________分钟。
答案一1. 82. 3张3. 12升4. 36个5. 20分钟第二单元测验卷题目二1. 1000克等于__________千克。
2. 一个木棍长4米1分米,换算成厘米是多少?3. 一个长方形花坛的长是8米, 宽是5米,面积是多少平方米?4. 一辆汽车每小时行驶75千米,行驶9个小时能够行驶多远?5. 半斤是__________克。
答案二1. 12. 401厘米3. 40平方米4. 675千米5. 250克第三单元测验卷题目三1. 计算:$ \frac{4}{9} \times 27 = $ __________。
2. 如果一包牛奶有200毫升,而你喝了一半,你喝了多少毫升?3. 一个圆形蛋糕的直径为8厘米,它的周长约为多少厘米?(取$\pi$近似值为3.14)4. 如果一个正方形图案重复排列,每个正方形边长为3厘米,排成2行5列,需要多少个正方形?5. 张三按每分钟4道题的速度做数学题,他做一个20道题的试卷需要多少分钟?答案三1. 122. 100毫升3. 约25厘米4. 10个5. 5分钟第四单元测验卷题目四1. 两个数的和是35,较大的数是15,求较小的数。
2. 一个单价为2元的零食袋子里有14个零食,你用10元可以买几袋零食?3. 已知一个长方形的面积是36平方米,长比宽大2倍,长是多少米?4. 一辆自行车每小时骑行8千米,骑行6个小时后,计算骑行的总路程。
5. 达标考试需要得分90分,已知小明得了80分,还差多少分才能达标?答案四1. 较小的数是202. 5袋零食3. 长是6米4. 总路程为48千米5. 还差10分。
(完整)人教版七年级数学下册各单元测试题及答案汇总[1],推荐文档
123(第三题)A B C D E (第10题)ABCDE F G H第13题ABCD 1234(第2题)12345678(第4题)ab cA B CD(第7题)七年级数学第五章《相交线与平行线》测试卷1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:28、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
人教版初一七年级数学下册《全册六套单元试卷》(详尽答案版)
人教版初一数学下册全册六单元试卷合集(精编答案版)第五章相交线与平行线试题汇总测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD 互补的角有________________________;(2)与∠BOD 互余的角有________________________;(3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF(C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为().(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. () 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. () 12.有一条公共边的两个角是邻补角. () 13.如果两个角是邻补角,那么它们一定互为补角. () 14.对顶角的角平分线在同一直线上. () 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. () 综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α (C)α2190+︒ (D)2α-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE ∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______.(3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义)又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质)即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( )∴∠2=∠______.(等量代换)∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D +∠A =______.(_____________,_____________)即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( )∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行)∴∠3=∠______.(两直线平行,内错角相等)∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( ) ∴∠APC =∠2+∠3=∠1+∠4=90°.( )总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( ) 二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b .2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a ∥c .5.略.6.(1)EF ∥DC ,内错角相等,两直线平行.(2)AB ∥EF ,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB 最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个(B)2个(C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C ′EF =32°(2)∠AEC =148° (3)∠BGE =64°(4)∠BFD =116° (A)1个(B)2个 (C)3个(D)4个二、填空题 11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD=(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°.16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA . 14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.人教版初一数学下册 第六章《实数》试题汇总测试1 平方根学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2 B .0 C .81D .-638.下列说法正确的是( )。
人教版数学七年级下册各章节测试卷含答案相交线与平行线实数平面直角坐标系
人教版数学七年级下册各章节测试卷含答案相交线与平行线实数平面直角坐标系The document was prepared on January 2, 20212017学年度第二学期新课程素质能力测试七年级(下)数学试题第五章相交线与平行线时限:100分钟满分:120分命题人:班级____姓名_____得分_____一、填空题:(本大题共6个小题,每小题4分,共24分。
请把答案填在题中的横线上)1、如图1,计划把河水引到水池A中,可以先引AB⊥CD,垂足为B,然后沿AB开渠,则能使所开的渠最短,这样设计的依据是________________。
2、如图2,AB∥CD,∠1=39°,∠C和∠D互余,则∠D=________,∠B=________。
3、如图3,直线ba,与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a∥b的是_______________(填序号)。
4、把命题“等角的余角相等”改写成“如果……,那么……”的形式是_________________。
5、定点P在直线AB外,动点O在直线AB上移动,当PO最短时,∠POA=_______,这时线段PO所在的直线是AB的___________,线段PO叫做直线AB的______________。
6、已知OA⊥OC,∠AOB:∠AOC=2:3,则∠BOC的度数为_____________。
二、选择题(本大题共9个小题,每小题3分,共27分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
7、如图所示,下列判断正确的是( )A、图⑴中∠1和∠2是一组对顶角B、图⑵中∠1和∠2是一组对顶角C、图⑶中∠1和∠2是一对邻补角D、图⑷中∠1和∠2互为邻补角8、P为直线l上的一点,Q为l外一点,下列说法不正确的是( )A、过P可画直线垂直于lB、过Q可画直线l的垂线C、连结PQ使PQ⊥lD、过Q可画直线与l垂直9、如图,图中∠1与∠2是同位角的是( )A、⑵⑶B、⑵⑶⑷C、⑴⑵⑷D、⑶⑷10、设c,是三条不同的直线,则在下面四个命题中,正确的有( ) a,b①如果a与b相交,b与c相交,那么a与c相交;②如果a与b平行,b与c平行,那么a与c平行;③如果a与b垂直,b与c垂直,那么a与c垂直;④如果a与b平行,b与c相交,那么a与c相交。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版七年级数学下册第各章测试题(全册 共96页 附答案) 第五章相交线、平行线(共4套试卷)A1 卷 · 基础知识点点通班级________姓各_______成绩______一、填空:(2′×9+4′=22′)1.如图,a ∥b 直线相交,∠1=360,则∠3=________,∠2=__________2.如图,直线AB 、CD 、EF 相交于点O ,则∠AOC 的对顶角是_____________, ∠AOD 的对顶角是_____________3.在同一平面内,两条直线的位置关系只有两种_________4.命题“两直线平行,内错角相等”的题设_________,结论____________5.如图,要从小河a 引水到村庄A ,请设计并作出一最佳路线,理由是:__________6.如图,∠1=700,a ∥b 则∠2=_____________,7.如图,若∠1=∠2,则互相平行的线段是________________8如图,若AB ⊥CD ,则∠ADC=____________,9.如图,a ∥b,∠1=1180,则∠2=___________10.如图∠B 与∠_____是直线______和直线_______被直线_________所截的同 位角。
二、选择题。
(3′×10=30′)11.如图,∠ADE 和∠CED 是( ) A 、 同位角 B 、内错角 C 、同旁内角 D 、互为补角12.在下图中,∠1,∠2是对顶角的图形是( )321第(1)题ba O 第(2)题F E D C B A 第(5)题A 21第(6)题b a 21第(7)题D C B A 第(8)题D C B A 21第(9)题cba 第(10)题F C A 第(11)题E DCB A13.若a ⊥b ,c ⊥d 则a 与c 的关系是( )A 、 平行B 、垂直C 、 相交D 、以上都不对 14.下列语句中,正确的是( )A 、相等的角一定是对顶角B 、互为补角的两个角不相等C 、两边互为反向处长线的两个角是对顶角D 、交于一点的三条直线形成3对对顶角 15.下列语句不是命题的是( )A 、 明天有可能下雨B 、同位角相等C 、∠A 是锐角D 、 中国是世界上人口最多的国家16.下列语句中,错误的是( )A 、一条直线有且只有一条垂线B 、不相等的两个角不一定是对顶角,C 、直角的补角必是直角D 、两直线平行,同旁内角互补 17.如图,不能推出a ∥b 的条件是( )A 、∠1=∠3B 、∠2=∠4C 、∠2=∠3D 、∠2+∠3=18018.如图a ∥b,∠1与∠2互余,∠3=1150,则∠4等于( )A 、 1150B 、 1550C 、 1350D 、125019.如图,∠1=150, ∠AOC=900,点B 、O 、D 在同一直线上,则∠2的度数为( )A 、750B 、150C 、1050D 、 165020、如图,能表示点到直线(或线段)距离的线段有( )A 、 2条B 、3条 C 、4条 D 、5条 三、解答题21.读句画图(13′)如图,直线CD 与直线AB 相交于C ,根据下列语句画图 (1)过点P 作PQ ∥CD ,交AB 于点Q(2)过点P 作PR ⊥CD ,垂足为R(3)若∠DCB=1200,猜想∠PQC 是多少度?并说明理由第(17)题4321c b ad 第(18)题4321c b a 第(20)题D C BA O 第(19)题D CB A 21B22.填写推理理由(1′×15)(1) 已知:如图,D 、E 、F 分别是BC 、CA 、AB 上的点,D ∥AB ,DF ∥AC 试说明∠FDE=∠A解:∵DE ∥AB ()∴∠A+∠AED=1800( ) ∵DF ∥AC ()∴∠AED+∠FED=1800() ∴∠A=∠FDE ()(2) 如图AB ∥CD ∠1=∠2,∠3=∠4,试说明AD ∥BE 解:∵AB ∥CD (已知)∴∠4=∠_____( ) ∵∠3=∠4(已知)∴∠3=∠_____( ) ∵∠1=∠2(已知)∴∠ 1+∠CAF=∠2+∠CAF ( ) 即∠_____ =∠_____( ) ∴∠3=∠_____∴AD∥BE( )23.已知:如图,AB ⊥CD ,垂足为O ,EF 经过点O ,∠2=4∠1,求∠2,∠3,∠BOE的度数(10′)F E D CB AE C BF E OD C B A 32124。
如图:已知;AB∥CD,AD∥BC,∠B与∠D相等吗?试说明理由。
(10′)25.附加题:(10′)如图:在三角形ABC中,∠BCA=900,CD⊥AB于点D ,线段AB、BC、CD的大小顺序如何?并说明理由。
第五章 相交线与平行线D CB A D CB AA2卷•基础知识点点通班级 姓名得分一、选择题(3分×7=21分)1、 如图 点E 在AC 延长线上,下列条件中能判断AB ∥CD 的是 ( )A 、 ∠3=∠4B 、 ∠1=∠2C 、 ∠D=∠DCED 、 ∠D+∠ACD=1802、 如图a ∥b ,∠3=1080,则∠1的度数是 ( )A 、 720B 、 800C 、 820D 、 1083、 下列说法正确的是 ( )A 、 a 、b 、c 是直线,且a ∥b, b ∥c,则a ∥cB 、 a 、b 、c 是直线,且a ⊥b, b ⊥c ,则a ⊥cC 、 a 、b 、c 是直线,且a ∥b, b ⊥c 则a ∥cD 、 a 、b 、c 是直线,且a ∥b, b ∥c ,则a ⊥c4、如图由AB ∥CD ,可以得到 ( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠45、如图B ∥CD ∥EF ,那么∠BAC+∠ACE+∠CEF= ( )A 、1800B 、2700C 、3600D 、5406、下列命题中,错误的是 ( ) A 、邻补角是互补的角B 、互补的角若相等,则此两角是直角 C 、两个锐角的和是锐角D 、一个角的两个邻补角是对顶角7、图中,与∠1成同位角的个数是 ( )A 、 2个 B、3个 C、 4个 D、 5个二、填空题(8、11、12、13、14每题3分共25分)8、如图一个弯形管道ABCD的拐角∠ABC=1200,∠BCD=600,这时说管道AB∥CD,是根据9、如图直线AB、CD、EF相交于点O,是∠AOC的邻补角是 ,∠DOA的对顶角是,若∠AOC=500,则∠BOD=0,∠COB=0第(1)题4321E D CB A 第(2)题b a 31第(4)题4321D C B A 第(5)题F E DC B A L2L 1c 第(7)题b a110、如图所示的长方体,用符号表示下列棱的位置关系: A 1B 1AB AA 1AB 1,A 1D 1C 1D 1 ADBC11、如图直线,a ∥b,∠1=540,则∠2=0,∠3=0,∠4=0。
12 、命题“同角的余角相等”的题设是,结论是。
13、如图 OC ⊥AB ,DO ⊥OE ,图中与∠1与 互余的角是,若∠COD=600,则∠AOE=0。
14、如图直线AB 分别交直线EF ,CD 于点M ,N 只需添一个条件就可得到EF ∥CD 。
三、解答题15、读句画图(12分)如图:⑴过点P 画直线MN ∥AB ; ⑵ 连结PA ,PB ;⑶ 过点画AP ,AB ,MN 的垂线,垂足为C 、D 、E ;⑷ 过B 画AB 的垂线,垂足为F⑸量出P 到AB 的距离≈㎝ (精确到0.1㎝) 量出B 到MN 的距离≈㎝ (精确到0.1㎝)⑹ 由⑸知P 到AB 的距离B 到MN 的距离(填“<”“=”或“>”) 16、推理填空:(12分)如图 ① 若∠1=∠2则∥( ) 若∠DAB+∠ABC=1800 则∥( ) ② 当∥时∠ C+∠ABC=1800( ) 当∥时∠3=∠C ( )17、已知:如图AB∥CD,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500(10分)第(8)题DCB A O 第(9)题F E DC B A O 第(13)题E DC B A N M 第(14)题F ED C B A PB A 321D C B A E求:∠BHF的度数。
18、如图,∠1=300,∠B=600,AB⊥AC(10 分)①∠DAB+∠B=0② AD与BC平行吗?AB与CD平行吗?试说明理由。
19、(10分)已知:如图AE⊥BC于点E,∠DCA=∠CAE,试说明CD⊥BC 1DCBADA附加题:(10分)20、已知:如图∠1=∠2,∠C=∠D ,∠A=∠F 相等吗?试说明理由第五章 相交线与平行线B1卷 ·能力训练级级高班级_________姓名_______得分________一、选择题:(3分×8=24分)HG 21F E DC B A1.命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。
其中错误的有()A、1个 B、2个 C、3个 D、 4个2.如图 直线AB、CD相交于点O,OE⊥AB于O,∠DOE=55°, 则∠AOC的度数为()A、40° B、45° C、30° D、35°3. 如图两条非平行的直线AB ,CD 被第三条直线EF 所截,交点为PQ ,那么这条直线将所在平面分成( )A 、 5个部分B 、 6个部分C 、7个部分D 、 8个部分4.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有( )A、1个 B、2个 C、3个 D、4个 5.图下列条件中,不能判断直线的是( ) A、∠1=∠3 B、∠2=∠3C、∠4=∠5 D、∠4+∠2=180°6.如图已知∠1=∠2,∠BAD=∠BCD,则下列结论⑴AB∥CD ⑵AD∥BC⑶∠B=∠D⑷∠D=∠ACB正确的有( ) A、1个 B、2个 C、3个 D、4个7. 如果两条直线被第三条直线所截,那么一组内错角的平分线()A、互相垂直 B、互相平行 C、互相重合D、 以上均不正确 8. 如图已知∠1+∠3=180°,则图中与∠1互补的角还有( )A、1个 B、2个 C、3个 D、4个 二、填空题(2分×18=36分) 9. 如图点O是直线AB上的一点,OC⊥OD,∠AOC-∠BOD=20°,则∠AOC=10.如图,∠1=42°,则∠1=0O第(2)题E D CB A P 第(3)题Q F E DC B A 第(4)题D C B A 5第(5)题L 2L 14321第(6)题21DC BA 8765第(8)题4321D Cc a 1b a111.如图∠1=70°,∠2=35°,则∠3=∠4=12.两个角的两边互相平行,其中一个角是另一个角的3倍,则这两个角的度数分别是和13.现有一张长40,宽20的长方形纸片,要从中剪出长为18,宽为12的长方形纸片,最多能剪出张14.填写推理的理由已知,AB⊥MN,CD⊥MN,垂足为B、D,BE、DF分别平分∠ABN,∠CDN。