PLC的分布式锅炉微机控制系统

合集下载

PLC在锅炉控制系统中的作用

PLC在锅炉控制系统中的作用

PLC在锅炉控制系统中的作用锅炉是工业生产中常用的热力设备,它负责将水或其他流体加热到所需温度,以满足生产过程中的热能需求。

为了保证锅炉能够高效、稳定地运行,控制系统的作用至关重要。

其中,可编程逻辑控制器(PLC)在锅炉控制系统中扮演着重要的角色。

一、PLC简介PLC是一种专门用于工业控制的计算机设备,它能够根据预先编写好的程序,对锅炉的各个部分进行自动控制。

PLC通常由CPU、输入输出模块和通信模块等组成,具备可编程、可扩展、可靠性高等特点。

二、PLC在锅炉控制系统中的应用1. 温度控制在锅炉中,温度控制是至关重要的,它直接影响锅炉的稳定性和效率。

PLC可以通过外部温度传感器获取实时温度数据,并对锅炉的加热器、循环泵等设备进行控制,以确保锅炉水温始终保持在设定范围内。

2. 压力控制锅炉的压力也是需要进行精确控制的参数之一。

过低的压力可能导致供热不足,过高的压力则可能引发爆炸等安全隐患。

PLC可以通过传感器实时监测锅炉的压力,并根据设定值自动调节燃烧器的工作状态,以保证锅炉的压力在安全范围内。

3. 水位控制锅炉的水位是影响锅炉正常运行的重要因素。

若水位过低,锅炉的加热管壁可能过热而损坏;若水位过高,又可能导致锅炉溢水。

PLC可以通过水位传感器监测锅炉的实时水位,并控制进水和排水设备的开关,以保持水位在安全范围内。

4. 烟气排放控制锅炉燃烧过程中会产生大量烟尘和有害气体,对环境造成污染。

PLC可以通过烟气传感器监测烟气的成分和排放浓度,并根据环保要求调整燃烧器的工作状态,以减少污染物的排放。

5. 故障诊断与报警锅炉系统中可能会出现各种故障,如传感器失效、设备故障等。

PLC可以通过自动检测和诊断系统中的故障,并根据设定的规则进行报警。

这样可以帮助运维人员及时发现和解决问题,保证锅炉的正常运行。

三、PLC在锅炉控制系统中的优势1. 稳定性高:PLC具备高性能的计算能力和稳定的特性,可以保证对锅炉各个参数的精确控制,提高系统的稳定性。

PLC在锅炉控制系统中的应用

PLC在锅炉控制系统中的应用
制 系统控制的主要还是开关量设备 ,如风机 、炉排 和
23锅炉汽包水位控制 系统 . 汽包水位是影响锅炉 安全运 行的重要参数 ,水位
过高 ,会破坏汽水分离装 置的正 常工作 ,严重时会导
水泵的开关或者阀门 。不能对它们精确连续调节 ,使
控制手段单调 ,控制精度低 。
2 控制方案原理
2 1燃烧过程控制 .
致蒸汽带水增 多,增加在管壁上 的结垢 和影响蒸汽质 量 。水位过低 ,则会破坏水 循环 ,引起水冷壁管的破
裂 ,严重时会造成千锅 ,损坏 汽包。所以其值过高过 低都可能造成重大事故 。在负荷急剧增加时 ,导致汽 包压 力下降 ,使汽包 内水 的沸点温度下降 ,水的沸腾
P C构成的锅炉控制系统, L 给出系统硬件的构成, 通过 P C实现锅炉的各种控制调节功能。 L
【 关键 词】 锅炉控制 可编程控制器 变频器 节能
Ab ta t Ont a i o ay igteo iia o to y tm o lrtep p r u owadt erfr igpa a sr c: b ss fa lzn rgn l nr l se i b i ,h a e t r r eom n lnt t he n h c s n e p f h h c nr l db LC,n rd c dteb i r o t l y tm a o ss f o t o ue n LC, n rsne e o tol yP e it u e o l sc nr se t t n it h s c mp tr daP o h e os h c o a a a dp ee tdt h
维普资讯

。 。“ 崖 穰 。
P C在锅炉控制系统中的应用 L

基于PLC的锅炉温度控制系统毕业设计

基于PLC的锅炉温度控制系统毕业设计

目录1 绪论 (1)1.1课题背景及研究目的和意义 (1)1.2国内外研究现状 (1)1.3项目研究内容 (2)2 PLC和组态软件基础 (3)2.1可编程控制器基础 (3)2.2组态软件的基础 (5)3 PLC控制系统的硬件设计 (7)3.1PLC控制系统设计的基本原则和步骤 (7)3.3系统整体设计方案和电气连接图 (9)3.4PLC控制器的设计 (10)4 PLC控制系统的软件设计 (13)4.1PLC程序设计的方法 (13)4.2编程软件STEP7--M ICRO/WIN概述 (13)4.3程序设计 (15)5组态画面的设计 (25)5.1组态变量的建立及设备连接 (25)5.2创建组态画面 (28)6系统测试 (32)6.1启动组态王 (32)6.2实时曲线观察 (32)6.3分析历史趋势曲线 (33)6.4查看数据报表 (35)6.5系统稳定性测试 (36)总结 (38)致谢 (39)参考文献 (40)摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。

PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。

PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。

本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。

电热锅炉的应用领域相当广泛,在相当多的领域里,电热锅炉的性能优劣决定了产品的质量好坏。

目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。

基于PLC的锅炉供暖监控系统设计

基于PLC的锅炉供暖监控系统设计

4、监控界面设计技术
4、监控界面设计技术
在上位机监控界面方面,我们采用了组态软件来设计监控界面。组态软件是 一种广泛使用的工业自动化监控软件开发工具,它支持多种图形元素和控件,可 以方便地实现实时数据展示、报警提示、历史数据查询等功能。我们根据锅炉的 实际运行情况,设计了相应的监控界面,并编写了相关的脚本代码,以实现对锅 炉运行数据的实时展示和报警提示等功能。
2、控制技术
2、控制技术
在控制方面,我们采用了PID(比例-积分-微分)控制算法来实现对锅炉的燃 烧和给水控制。PID控制是一种经典的连续控制系统,它通过比较设定值与实际 值之间的误差来计算控制量,实现对被控对象的精确控制。我们根据锅炉的实际 情况,对PID控制算法进行了相应的调整和优化,以实现对锅炉的燃烧和给水系 统的有效控制。
二、关键技术
1、数据采集技术
1、数据采集技术
在数据采集方面,我们采用了高精度传感器和PLC模拟量输入模块,实现了对 锅炉运行参数的实时监测。传感器包括温度传感器、压力传感器和水位传感器等, 它们将采集到的信号通过变送器转换为标准的电信号,再通过PLC模拟量输入模 块输入到PLC中进行数据处理。
一、系统需求与设计
一、系统需求与设计
锅炉供暖系统的主要任务是维持锅炉中水的温度在设定的范围内,同时也要 确保供暖设备的正常运行。因此,系统的需求主要包括:
一、系统需求与设计
1、实时监测锅炉的水温、压力等参数; 2、通过调节锅炉的燃烧器输出,控制水温; 3、保障供暖设备的稳定运行;
一、系统需求与设计
三、应用效果
3、提高了管理效率。通过远程监控锅炉的运行状态,可以在上位机上实现锅 炉的集中管理和监控,从而提高了管理效率。
谢谢观看

锅炉控制及PLC应用

锅炉控制及PLC应用

锅炉控制及PLC应用引言锅炉是一种广泛应用于工业和供暖领域的设备,其控制系统的优化对于提高能源利用效率、确保运行安全具有重要意义。

可编程逻辑控制器(PLC)作为一种自动化控制设备,具有高可靠性、灵活性等特点,在锅炉控制系统中发挥着重要作用。

本文将介绍锅炉控制的基本原理和实现方式,以及PLC在锅炉控制中的应用和优势。

锅炉控制锅炉控制的主要目标是保证蒸汽或热水供应的稳定,同时最大化能源利用效率。

为实现这一目标,锅炉控制系统应包括传感器、执行器和控制器。

1、传感器:用于监测锅炉的关键参数,如压力、温度、液位等。

这些传感器将实时数据传输到控制系统,以便进行相应的调整。

2、执行器:接受控制器的指令,并调节锅炉的各个部件,如燃烧器、泵等。

执行器的类型和数量取决于锅炉的类型和规模。

3、控制器:根据传感器的输入数据进行计算和决策,向执行器发出调节指令,以保证锅炉运行在最佳状态。

控制器可以是简单的继电器逻辑控制,也可以是较复杂的计算机控制系统。

PLC应用PLC作为一种专门为工业控制设计的计算机,具有高可靠性、灵活性和易于维护等特点。

在锅炉控制中应用PLC,可以提高控制系统的可靠性和自动化水平。

1、PLC选型:根据锅炉控制系统的需求,选择适当型号和品牌的PLC。

选型时应考虑PLC的处理能力、输入输出接口数量和类型、编程功能等因素。

2、程序设计:利用PLC编程语言编写控制程序,实现锅炉控制系统的各种功能。

程序应包括数据采集、数据处理、控制算法、输出调节等环节。

3、系统集成:将PLC与锅炉控制系统中的其他设备(如传感器、执行器等)进行连接和调试,确保整个系统能够协调工作。

注意事项使用PLC进行锅炉控制时,应注意以下问题:1、可靠性:PLC是工业控制领域的高可靠性设备,但仍然需要其可靠性。

选择高质量的PLC和可靠的硬件设备,以及进行合理的程序设计,可以确保控制系统的可靠性。

2、安全性:锅炉是一种具有较高风险的设备,因此PLC控制系统的安全性非常重要。

基于plc的锅炉控制系统的设计方案

基于plc的锅炉控制系统的设计方案

设计基于PLC 的锅炉控制系统需要考虑到控制逻辑、传感器选择、执行器配置、人机界面以及安全性等多个方面。

以下是一个基本的PLC 锅炉控制系统设计方案:1. 控制逻辑设计:-设定温度和压力设定值,根据实际情况设定控制策略。

-设计启动、停止、调节锅炉火焰和水位控制等具体操作逻辑。

2. 传感器选择:-温度传感器:用于监测锅炉管道和水箱的温度。

-压力传感器:监测锅炉的压力情况。

-液位传感器:监测水箱水位,确保水位在安全范围内。

-其他传感器:根据需要选择氧含量传感器、烟气排放传感器等。

3. 执行器配置:-配置控制阀门、泵等执行器,用于控制水流、燃料供应、风扇转速等。

-确保执行器与PLC 的通讯稳定可靠,实现远程控制和监控。

4. 人机界面设计:-设计人机界面,包括触摸屏或按钮控制板,显示关键参数和状态信息。

-提供操作界面,方便操作员设定参数、监控运行状态和进行故障诊断。

5. 安全性设计:-设计安全保护系统,包括过压保护、过温保护、水位保护等,确保锅炉运行安全。

-设置报警系统,当参数超出设定范围时及时警示操作员。

6. 通讯接口:-考虑与其他系统的通讯接口,如SCADA 系统、远程监控系统等,实现数据传输和远程控制。

7. 程序设计:-使用PLC 编程软件编写程序,包括控制逻辑、报警逻辑、自诊断等功能。

-测试程序逻辑,确保系统稳定可靠,符合设计要求。

以上是基于PLC 的锅炉控制系统设计方案的基本步骤,具体设计还需根据实际情况和需求进行调整和优化。

在设计过程中,还需遵循相关标准和规范,确保系统安全可靠、运行稳定。

PLC在锅炉控制中的应用

PLC在锅炉控制中的应用

PLC在锅炉控制中的应用鞍山市热力设计研究院郭轶1 引言可编程序控制器(Programmable logic contoroller)简称PLC,是以微处理器为核心,用于工业控制的计算机,由于PLC广泛采用微机技术,使得PLC不仅具有逻辑控制功能,而且还具有了运算、数据处理和数据传送等功能。

目前城市供暖的锅炉在启停和运行的过程中都需要精确的实时控制,大多数锅炉系统的控制还采用继电器逻辑控制。

这类系统自动化程序很低,大部分操作还是由手动来完成,只能处理一些开关量问题,无法处理系统的模拟量,即使控制一些开关量,其电气线路复杂,可靠性不高,不便维护,实际锅炉系统控制中每台炉就需要一套继电器控制系统,而采用西门子S7-300系列可编程控制器设计的控制系统实现了在某集中供热锅炉房的系统自动控制,并且实现了整个系统的优化控制。

2 系统硬件构成上位计算机系统硬件部分采用siemens台式工控机,上位监控组态软件采用siemens公司wincc进行组态。

热源部分的控制系统采用siemens公司的PLC可编程控制器S7-315-2DP,通过PLC自带的MPI 通讯接口与上位工控机相连。

利用TCP/IP 网络通过组件实现数据共享和分布式数据库,锅炉房各模块及水处理间控制模块间通过ProfiBus现场总线相连。

热力站的数据采集系统采用siemens公司的S7-200系列PLC,通过MODEM市话拨号的方式以9600BPS的速率与控制中心相连,热力站数据通过siemens触摸屏,可在热力站当前显示,系统硬件图如图1。

3系统的功能3.1监控功能系统在运行过程中,上位机将下位机采集上来的锅炉运行数据和热力站传送上来的运行参数进行实时处理,通过上位机的分析,判断,实现对现场温度、压力、液位、流量、烟气含氧量等工艺过程参数的模拟动态显示,通过下位机的反馈至上位机的信号实现对现场仪表、风机、水泵及上煤系统运行状态的监控。

现场通过上位机手动和自动切换,实现风机,水泵的启、停控制。

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。

作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。

本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。

文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。

然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。

在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。

通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。

也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。

二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。

该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。

锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。

其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。

锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。

燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。

燃烧器的性能直接影响到锅炉的热效率和污染物排放。

燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。

热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。

热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。

基于PLC控制的电锅炉控制系统

基于PLC控制的电锅炉控制系统

基于PLC控制的电锅炉控制系统电锅炉控制系统是现代工业制造中常见的一种设备,它通过PLC(可编程逻辑控制器)来实现对电锅炉的精确控制。

PLC控制技术具有灵活、方便、可靠等优点,能够实现复杂的逻辑控制和自动化控制功能。

本文将从PLC控制系统的原理、功能及特点入手,结合电锅炉的工作原理,详细介绍基于PLC控制的电锅炉控制系统的设计与实现。

1. PLC控制系统原理PLC控制系统是一种专门设计用于工业自动化控制的设备,其核心是一个可编程的CPU,通过不同的输入/输出模块和通信模块,与外部传感器、执行器等设备连接,实现对生产过程的控制。

PLC控制系统通过预先编写好的程序,根据不同的输入信号执行相应的逻辑控制,以达到自动化控制的目的。

2. 电锅炉工作原理电锅炉是一种利用电能进行加热的设备,通常由加热元件、控制系统、水泵等部件组成。

在工作过程中,电能被加热元件转换为热能,将水加热至设定的温度,为生产或生活提供热水或蒸汽。

电锅炉的控制系统通常包括温度传感器、压力传感器、水位传感器等,用于监测和控制锅炉的工作状态。

3. 基于PLC控制的电锅炉控制系统设计基于PLC控制的电锅炉控制系统主要由PLC控制器、传感器、执行器、人机界面等部件组成。

在设计过程中,首先需要根据电锅炉的工作原理和需求确定系统的功能要求和控制策略,然后编写PLC程序实现相应的逻辑控制。

通过合理的硬件布局和接线连接,将各部件连接到PLC控制器上,实现信号的采集和输出。

4. 控制系统功能与特点基于PLC控制的电锅炉控制系统具有如下功能与特点:1)灵活性:PLC控制系统可根据需要进行程序修改,实现不同的控制策略;2)可靠性:PLC控制器具有较高的稳定性和可靠性,可以长时间稳定运行;3)精确性:通过PLC控制系统可以实现对电锅炉的精确控制,提高生产效率和产品质量;4)扩展性:PLC控制系统可根据需要扩展输入/输出模块和功能模块,实现系统的功能扩展。

5. 控制系统优化与应用为了进一步优化电锅炉控制系统的性能,可以采用PID控制算法、模糊控制算法等先进的控制技术,提高系统的响应速度和稳定性。

基于PLC的锅炉控制系统

基于PLC的锅炉控制系统

摘要本文设计了一套基于PLC和变频调速技术的供暖锅炉控制系统。

该控制系统由可编程控制器、变频器、鼓风机和水泵电机、传感器等构成。

系统通过变频器控制电动机的启动、运行和调速。

该设计以西门子S7-200系列可编程控制器为核心,一方面通过操作台与PLC 通讯,接收管理者的控制命令。

另一方面与各变频器进行通信,分别对鼓风机、循环泵和补水泵等进行启停控制和电机的转速设定,操作人员也随时可以通过操作台,了解现场每台锅炉的运行状况,对风机、水泵等电机进行启停控制。

控制系统的设计采用比例积分的PID控制。

关键词:锅炉控制,变频器,PLC ,PIDThe design of heating boiler auto control reformation system basedon PLC technologyAbstractIn this Paper,a heating boiler control system based on PLC and variable frequency Speed-regulating technology is designed. The control system is made up of PLC,transducers,electromotor units of Pumps and fans, sensors, etc. It can control electromotor starting,running and timing by means of transducers.The design is based on Siemens S7-200 series programmable controller as the core; on the one hand through the console it can communicate with the PLC, to receive control commands from managers. On the other hand it communicate with the variable frequency Speed-regulating, to fulfilled such as starting and stopping pump motor control and speed settings, the operator at console can find out at the scene of the operation of each boiler to fans, pumps and other motor control to start and stop. at any time.Key words:boiler control, variable frequency Speed-regulating, PLC technology目录1 绪论 (2)2 供暖锅炉改造设计思路 (2)2.1 供暖锅炉改造设计要求 (2)2.2 锅炉系统的结构 (3)2.3 整体方案选择 (3)3 变频调速在供暖锅炉控制中的应用 (4)3.1 变频调速基本原理 (4)3.2 变频调速在供暖锅炉系统中的应用 (5)4 锅炉控制系统总体设计 (5)4.1系统功能分析 (5)4.2 总体设计思路 (6)4.3 系统结构 (6)5 系统硬件设计 (7)5.1 可编程控制器PLC的选型 (7)5.2 PLC配置 (8)5.3 I/O接线 (9)5.4 变频器配置 (9)5.5 传感器与变送器 (11)5.5.1 压力变送器工作原理 (11)5.5.2 压力变送器选型 (11)5.5.3 温度传感器选型 (11)6 系统构成 (13)6.1 补水泵控制系统 (13)6.2 循环泵控制系统 (15)6.3 燃烧控制系统 (16)7 PID控制原理 (17)8 程序设计 (20)8.1 主程序设计 (16)8.2 子程序设计 (16)9 结束语 (26)致谢 (28)参考文献 (28)1 绪论锅炉是供热设备中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。

基于plc的锅炉供热控制系统的设计

基于plc的锅炉供热控制系统的设计

基于plc的锅炉供热控制系统的设计工业控制系统中,PLC(可编程逻辑控制器)被广泛应用于各种设备的控制和监控。

本文将重点讨论基于PLC的锅炉供热控制系统的设计。

一、系统概述锅炉供热控制系统是指通过对锅炉进行温度、压力等参数的监测和控制,实现对供热系统的稳定运行和效率优化。

基于PLC的控制系统能够实现自动化控制,节约人力资源,提高系统运行效率。

二、系统组成1. PLC控制器:作为控制系统的核心,PLC负责接收各种传感器采集的数据,并根据预先设定的控制策略执行相应的控制动作。

2. 传感器:用于监测锅炉的各项参数,如温度传感器、压力传感器等。

3. 执行元件:包括电磁阀、泵等执行元件,通过PLC控制输出信号来实现对锅炉操作的控制。

三、系统设计1. 硬件设计:选择适合的PLC型号和合适的IO模块,根据实际需要设计合理的接线和布置。

2. 软件设计:编写PLC程序,包括主控程序和各个子程序,实现对供热系统的全面控制和监控。

四、系统功能1. 温度控制:根据设定的温度范围,实现对锅炉加热的自动控制,确保供热系统温度稳定。

2. 压力保护:设定压力上下限,一旦超过范围即刻停止加热,确保系统安全运行。

3. 水位控制:通过水位传感器监测水位,保持恰当的水位以确保供热效果。

4. 故障诊断:PLC系统能够实时监测各个元件的运行状态,一旦有异常即可及时报警并进行故障诊断。

五、系统优势1. 自动化程度高:基于PLC的供热控制系统可以实现全自动化控制,减少人为干预,节约人力成本。

2. 稳定可靠:系统通过对各项参数的实时监测和控制,确保供热系统的稳定性和可靠性。

3. 灵活性强:PLC程序可以根据实际需要进行定制化设计,满足不同应用场景的需求。

六、总结基于PLC的锅炉供热控制系统的设计,能够实现对供热系统的智能化控制和监测,提高系统的稳定性和效率,减少运行成本,是目前工业控制领域的主流趋势。

希望本文的介绍能够对您有所帮助。

感谢阅读!。

基于PLC的锅炉加热温度控制系统设计

基于PLC的锅炉加热温度控制系统设计

基于PLC的锅炉加热温度控制系统设计锅炉加热温度控制系统设计是一个非常重要的工程项目,特别是在工业生产中。

PLC(可编程逻辑控制器)是一种高级自动化控制设备,可以实现对锅炉加热温度的精确控制。

本文将介绍一个基于PLC的锅炉加热温度控制系统的设计。

【系统概述】该系统的基本目标是稳定地控制锅炉的加热温度,保证锅炉在正常工作范围内运行,并尽可能地提高热效率。

具体来说,系统需要实现以下功能:1.实时监测锅炉温度。

2.控制锅炉加热功率。

3.响应温度变化,并自动调整加热功率。

4.报警和故障保护功能。

【系统设计】1.硬件设计:硬件部分包括传感器、执行机构和PLC。

传感器用于实时监测锅炉温度,常用的温度传感器有热电偶和敏感电阻。

执行机构用于控制加热功率,可采用电磁阀或电加热器。

PLC负责处理数据和控制信号,可以选择常用的西门子、施耐德等PLC。

2.软件设计:软件部分主要包括PLC编程和人机界面设计。

PLC编程可以使用基于LD(梯形图)或SFC(时序功能图)的编程语言,根据具体控制要求,设计合适的控制算法和逻辑。

人机界面设计可以使用HMI(人机界面)或SCADA(监控与数据采集系统),实时显示锅炉温度、加热功率和系统状态,并提供控制和设定温度的功能。

3.控制策略设计:控制策略需要根据具体情况进行设计,一般分为开环控制和闭环控制两种。

开环控制是根据经验或数学模型预先设定温度和加热功率曲线,直接输出控制信号。

闭环控制则根据实时监测的温度反馈信息,通过控制算法动态调整加热功率,使实际温度尽可能接近设定温度。

4.报警和故障保护设计:系统需要具备报警和故障保护功能,当温度超出设定范围或系统出现故障时,及时发出警报并采取相应的措施,以保护锅炉和工艺安全。

【实施与测试】在实施前,需要进行系统调试,确保PLC编程和硬件连接正常。

在实际运行中,需要对系统进行定期检测和维护,以保证系统的稳定性和可靠性。

总结起来,基于PLC的锅炉加热温度控制系统的设计是一个复杂的工程,需要综合考虑硬件和软件的因素。

基于PLC的锅炉控制系统的设计

基于PLC的锅炉控制系统的设计

基于PLC的锅炉控制系统设计是一种常见的工业自动化应用,用于实现对锅炉的自动化控制和监测。

下面是一个简要的锅炉控制系统设计的示例:
系统组成:
PLC(可编程逻辑控制器):作为控制系统的核心,负责接收输入信号、进行逻辑处理和输出控制信号。

传感器:用于测量锅炉的各种参数,如温度、压力、流量等。

执行器:用于执行控制信号,如阀门、泵等。

人机界面(HMI):提供人机交互界面,用于显示锅炉状态、操作控制等。

控制策略:
温度控制:根据锅炉的温度设定值和实际测量值,通过控制执行器来调节燃料供应、水流量等,以维持锅炉温度在设定范围内。

压力控制:根据锅炉的压力设定值和实际测量值,通过控制执行器来调节燃料供应、风量等,以维持锅炉压力在设定范围内。

安全保护:设置各种安全保护措施,如过热保护、低水位保护等,通过监测传感器信号,及时采取相应的控制措施,确保锅炉的安全运行。

编程实现:
使用PLC编程软件,根据控制策略进行逻辑编程,设置输入输出信号的连接关系,编写控制程序。

在编程中考虑异常处理、报警和故障诊断等功能,确保系统的可靠性和稳定性。

人机界面设计:
设计直观友好的人机界面,显示锅炉状态、参数、报警信息等。

提供操作界面,允许操作人员设定参数、监控状态、执行操作等。

在设计过程中,应充分考虑锅炉的特性、运行环境和要求,并遵循相关的安全标准和规范。

此外,进行实施前应进行充分的测试和验证,确保系统的功能和性能符合设计要求。

需要指出的是,以上仅是一个基本的锅炉控制系统设计示例,实际的设计可能会因具体的应用要求而有所差异。

基于PLC锅炉水温控制系统设计

基于PLC锅炉水温控制系统设计

基于PLC锅炉水温控制系统设计1. 引言1.1 背景锅炉是工业生产中常用的热能设备,用于产生蒸汽或热水,供应能量给生产过程中的各个环节。

在锅炉的运行过程中,水温是一个重要的参数,对于保证锅炉运行稳定、安全、高效具有重要意义。

传统的锅炉水温控制方法主要依靠人工操作,存在操作不准确、响应速度慢等问题。

因此,设计基于PLC(可编程逻辑控制器)的锅炉水温控制系统可以提高控制精度和响应速度。

1.2 目的本文旨在设计一个基于PLC锅炉水温控制系统,通过对传感器信号进行采集和处理,并通过PLC进行逻辑判断和控制输出信号,实现对锅炉水温进行精确可靠地控制。

2. 锅炉工作原理及参数2.1 锅炉工作原理锅炉是通过将液体(通常是水)加热至蒸发状态以产生蒸汽或提供加热能量。

其主要部件包括:进水系统、燃烧系统、排烟系统、水循环系统等。

2.2 锅炉水温参数锅炉水温是指锅炉内部循环水的温度,它是锅炉运行稳定性和效率的重要指标。

在正常运行中,锅炉水温应在一定的范围内保持稳定。

过高或过低的水温都会对锅炉运行造成不利影响。

3. PLC控制系统设计3.1 PLC控制原理PLC是一种用于工业自动化控制的电子设备,它能够根据预设的程序和逻辑进行自动化控制。

PLC主要由处理器、输入/输出模块和编程设备等组成。

3.2 PLC应用于锅炉控制系统设计将PLC应用于锅炉控制可以实现自动化程度高、响应速度快等优点。

通过对传感器信号进行采集和处理,PLC可以实时监测并判断锅炉内部参数,并根据预设逻辑进行相应的输出信号,实现对锅炉水温的精确控制。

4. 系统硬件设计4.1 传感器选择选择适合的传感器对于准确获取锅炉水温至关重要。

常用的传感器包括热电偶、热电阻等。

在选择传感器时需要考虑其测量范围、精度和适应环境等因素。

4.2 PLC选型根据锅炉控制系统的需求,选择合适的PLC型号和规格。

需要考虑PLC的输入/输出点数、通信接口、运算速度等因素。

4.3 控制执行机构选型控制执行机构用于实现对锅炉水温的控制,常用的包括电动阀门、变频器等。

基于PLC的锅炉燃烧控制系统的设计-毕业论文

基于PLC的锅炉燃烧控制系统的设计-毕业论文

摘要随着社会经济的飞速发展,城市建设规模的不断扩大,以及人们生活水平的不断提高,对城市生活供暖的用户数量和供暖质量提出了原来越高的要求。

结合现状,本论文供暖锅炉监控系统,设计了一套基于PLC和变频调速技术的供暖锅炉控制系统。

该控制系统以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行和调速。

上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。

下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制和其余电动机的控制。

本文设计的变频控制系统实现了锅炉燃烧过程的自动控制,系统运行稳定可靠。

采用锅炉的计算机控制和变频控制不仅可大大节约能源,促进环保,而且可以提高生产自动化水平,具有显著的经济效益和社会效益。

关键字:锅炉控制;变频调速;组态软件;PLCAbstractAlong with social economy’s swift development, the urban construction scale’s unceasing expansion , as well as the peple living standard’s unceasing enhancement , set more and more high request to the city life heating’s user quantity and the heating quality. The union present situation, the present paper heating boiler supervisory sysem, has designed a set based on PLC and the frequency conversion velocity modulation technology heating boiler control system.This control system takes the superior machine by one Industry cybertrons , west of family household S7-300 programmable controller for lower position machine ,system through frequency changer control motor’s start , movement and vclocity modulation .the superior machine monitoring software uses the three dimensional strength to control the WinCC design , mainly completes the system operation contract surface design ,realizes the system to open/stops functions and so on control ,parameter hypothesis ,warning linkage,historical data inquiry. The lower position machine control procedure uses Siemen’s STEP7 programming software design , mainly completes the simulation quantity signal processing , temperature and pressure signal functions and so on PID control , and receives the superior machine control command to complete the air blower to open/stops the control , the parameter hypothesis, the circulating pump control and other electric motor’s control.This article designs the frequency conversion processs automatic control, the systems operation is stable, is reliable. Uses boiler’s computer control and the frequency converseon control noe only may save the energy greatly, the promotion environmental protection moreover may raise the production automation level, has the remarkable economic efficiency and the social efficiency.Key Words:Boiler control;Frequency conversion velocity modulation ;Configuration Software;PLC目录摘要 0Abstract (1)第1章概述 (4)1.1 项目背景及课题的研究意义 (4)1.2 供暖锅炉控制的国内外研究现状 (5)1.3锅炉控制系统的发展趋势 (6)1.4本文所做工作 (7)第2章系统方案设计 (9)2.1锅炉控制研究简介 (9)2.2 总体设计思路 (9)2.3方案比较 (10)2.3.1方案1 (10)2.3.2 方案2 (10)2.4方案论证与方案确定 (11)第3章硬件设计 (12)3.1 用户系统框图 (12)3.2 锅炉系统的理论分析 (13)3.2.1变频调速基本原理 (13)3.2.2变频调速在供暖锅炉中的应用 (13)3.2.3变频调速节能分析 (14)3.3燃烧过程控制 (19)3.4锅炉控制系统设计 (20)3.5控制系统构成介绍 (21)第4章软件设计 (25)4.1 S7-300系列PLC简介 (26)4.2 PLC编程语言简介 (28)4.2.1 PLC编程语言的国际标准 (28)4.2.2复合数据类型与参数类型 (29)4.2.3系统存储器 (29)4.2.4 S7-300 CPU中的寄存器 (30)4.3 STEP7 的原理 (31)4.3.1 STEP7概述 (31)4.3.2 硬件组态与参数设置 (32)4.3.3 符号表 (36)4.3.4 逻辑块 (37)4.3程序设计 (38)4.4通信系统 (41)4.5人机界面 (43)4.5.1监控软件WinCC介绍 (43)4.5.2监控系统设计 (45)4.5.3锅炉监控界面设计 (49)第5章结论 (53)5.1 成果的创造性和先进性 (53)5.2作用意义(经济效益和社会意义) (53)5.3 推广应用范围和前景 (53)5.4 需要进一步改进之处 (54)参考文献 (55)外文资料翻译 (56)外文翻译原文 (56)外文翻译译文 (68)致谢 (75)附录 (76)附录1 程序清单 (76)附录2 I/O点数分配表 (96)附录3 物理参数比较表 (97)第1章概述1.1 项目背景及课题的研究意义工业锅炉是工业生产和集中供热过程中重要的动力设备。

燃煤锅炉PLC控制系统设计

燃煤锅炉PLC控制系统设计

燃煤锅炉PLC控制系统设计摘要:本文设计了一种基于PLC的燃煤锅炉控制系统。

该系统采用了微型PLC来进行燃煤锅炉控制,能够实现数字化、自动化、智能化的控制方式,提高了燃煤锅炉的运行效率和安全性。

该系统还具有故障自动检测和报警处理功能,可以及时发现并排除系统中的故障,确保了系统的可靠性。

关键词:PLC,燃煤锅炉,控制系统,数字化,自动化,智能化正文:燃煤锅炉是工业生产中常见的一种设备,对于实现工业生产的高效、低成本运行具有重要作用。

传统的燃煤锅炉控制方式主要是采用模拟控制方式,但由于模拟控制存在误差大、灵敏度不高、抗干扰能力差等问题,近年来越来越多的燃煤锅炉采用数字化控制方式进行控制。

数字化控制方式采用先进的PLC控制器来控制燃煤锅炉,能够实现数字化、自动化、智能化的控制方式。

本文设计的基于PLC的燃煤锅炉控制系统主要由微型PLC、人机界面、执行器、传感器等组成。

系统的控制算法采用PID 控制方法,能够实现对燃煤锅炉的加热温度、空燃比等参数进行精确控制,提高了燃煤锅炉的运行效率和安全性。

同时,该系统还具有故障自动检测和报警处理功能,当系统出现异常情况时能够及时发现并排除故障,确保了系统的可靠性。

系统的人机界面采用触摸屏和键盘进行交互,能够实时显示燃煤锅炉的运行状态,并支持远程监控和控制功能。

为了验证该系统的性能,本文进行了模拟实验和现场应用测试。

模拟实验结果表明,系统的控制精度高、稳定性好;现场应用测试结果表明,系统可靠性高、使用方便,运行效率明显提高。

总之,本文设计的基于PLC的燃煤锅炉控制系统具有数字化、自动化、智能化的控制方式,能够确保燃煤锅炉的高效、安全运行。

同时,该系统具有故障自动检测和报警处理功能,能够及时发现并排除故障。

本文的设计思路和实验结果可以为相关领域的工程技术人员和研究人员提供借鉴和参考。

本文设计的燃煤锅炉PLC控制系统具有以下几个特点:1.数字化控制:传统的燃煤锅炉控制方式主要是采用模拟控制方式,但由于模拟控制存在误差大、灵敏度不高、抗干扰能力差等问题,近年来越来越多的燃煤锅炉采用数字化控制方式进行控制。

基于PLC的锅炉控制系统的设计

基于PLC的锅炉控制系统的设计

基于PLC的锅炉控制系统的设计本文介绍基于PLC的锅炉控制系统的设计的背景和目的。

锅炉控制系统是基于PLC(可编程逻辑控制器)的设计,采用了分布式控制策略。

整体架构包括以下几个组成部分:1.控制器控制器是锅炉控制系统的核心部分,由PLC实现。

PLC具备高速计算能力和强大的输入输出功能,可以对各个设备进行监控和控制。

它接收来自传感器的输入信号,并根据预设的逻辑和算法进行实时处理,向执行器发送输出信号以控制设备运行。

2.传感器传感器负责将锅炉系统的各个参数转化为电信号,并传输给PLC进行处理。

常见的传感器包括温度传感器、压力传感器、流量传感器等。

3.执行器执行器根据PLC的控制信号来执行相应的操作,如调节燃料供给、控制排放阀等。

它们与PLC之间通过信号线或总线进行连接。

4.人机界面人机界面提供给操作员与锅炉控制系统进行交互的界面。

它可以是触摸屏、计算机软件等形式,用于监视系统运行状态、设定参数以及显示报警信息等。

5.通信模块通信模块用于实现锅炉控制系统与外部设备的数据传输和通信。

它可以连接到局域网或远程服务器,实现与其他系统或监控中心的数据交互。

6.电源供应为了保证锅炉控制系统的稳定运行,需要提供可靠的电源供应。

这可以通过备用电源或UPS(不间断电源)来实现。

综上所述,基于PLC的锅炉控制系统采用分布式控制策略,通过控制器、传感器、执行器、人机界面、通信模块和电源供应等组成部分协同工作,实现对锅炉设备的监控和控制。

本文介绍基于PLC的锅炉控制系统所采用的控制策略和算法。

控制策略是指通过采取不同的控制方法和算法,在锅炉运行中实现温度、压力、流量等参数的稳定控制。

基于PLC的锅炉控制系统采用了以下主要的控制策略:PID控制:PID(比例、积分、微分)控制是一种常用的控制方法。

它通过根据控制对象的偏差来调节控制器的输出,使得偏差逐渐趋向于零,从而实现控制目标。

在锅炉控制系统中,PID控制常用于调节温度、压力和流量等参数。

浅谈分散控制系统(DCS)与可编程控制系统(PLC)在火力发电厂中的应用与区别

浅谈分散控制系统(DCS)与可编程控制系统(PLC)在火力发电厂中的应用与区别

浅谈分散控制系统(DCS)与可编程控制系统(PLC)在火力发电厂中的应用与区别【摘要】本文主要讨论了分散控制系统(DCS)与可编程控制系统(PLC)在火力发电厂中的应用与区别。

在DCS的应用方面,它主要用于对整个电厂的生产过程进行集中监控与控制;而PLC则更适用于对局部设备的单独控制。

两者在火力发电厂中的区别主要体现在控制范围、控制方式以及系统扩展性上。

本文分析了DCS和PLC的优缺点,提出了它们结合应用的必要性。

总结了两种系统在火力发电厂中的应用优势,并展望了未来它们在控制系统领域的发展方向。

【关键词】浅谈、分散控制系统、DCS、可编程控制系统、PLC、火力发电厂、应用、区别、优缺点、结合应用、总结分析、展望未来1. 引言1.1 背景介绍火力发电厂是我国能源领域中一个重要的组成部分,其在能源生产中扮演着至关重要的角色。

随着科技的不断发展和进步,火力发电厂的控制系统也在不断更新和完善。

分散控制系统(DCS)和可编程控制系统(PLC)作为现代控制系统中的两种主要形式,在火力发电厂中得到了广泛的应用。

DCS是一种以分布式控制器为核心的控制系统,其在火力发电厂中主要用于实时监测和控制各个子系统,如锅炉系统、汽轮机系统、发电系统等。

通过集中管理和监控各个子系统,DCS可以实现火力发电厂的高效运行和优化控制。

相比之下,PLC是一种基于可编程逻辑控制器的控制系统,其主要用于对火力发电厂的各种设备和机器进行逻辑控制。

PLC可以根据预先设定的逻辑程序,实现对设备的自动控制和运行。

在火力发电厂中,DCS和PLC各有其应用优势和特点。

DCS在全局控制和监控方面具有优势,而PLC在局部设备控制和逻辑控制方面表现更为突出。

DCS和PLC的结合应用也可以进一步提高火力发电厂的运行效率和安全性。

DCS和PLC在火力发电厂中的应用是相辅相成的,它们的不同特点和优势可以为火力发电厂的控制系统提供更加全面和完善的解决方案。

随着技术的不断发展和更新,我们可以期待DCS和PLC在火力发电厂中的应用会更加普及和深入,为我国能源生产作出更大的贡献。

基于PLC的锅炉实时监控控制系统设计

基于PLC的锅炉实时监控控制系统设计

摘要在工业迅速发展的推动下,我国的经济水平得到了大幅的提升。

锅炉作为最重要的动力机械设备起着不可替代的作用,因此锅炉有着巨大的发展前景,但是我国锅炉的燃烧效率较低,也就使得锅炉的供能不够高效。

本设计结合PLC控制技术对这一问题进行了重点的研究。

采用现代计算机技术对锅炉进行优化控制,从而大大提高其燃烧效率,节约一次能源,减少所产生的环境污染,对社会经济和环境质量的提高有很大的意义。

通过对锅炉各个部分控制要求的研究,结合参考文献和实际情况设计锅炉的自动控制系统。

所研究设计的控制系统可以对锅炉进行集中监测、控制、管理。

集中体现在对锅炉燃烧控制、水位汽包控制、过热蒸汽温度控制以及安全系统的控制设计。

本设计采用S7-300 PLC为核心控制器,同时结合变频器技术、传感器与检测技术以及以太网技术将所有设备构成一个整体,并与其他操作设备建立起良好的通信,对锅炉进行集散控制。

通过STEP7编程软件对PLC进行软件编程,构成对锅炉的实时监控系统。

关键词:锅炉;PLC;控制;STEP7AbstractWith the rapid development of industry, the level of economy has been greatly improved in China. Boilers as the most important power machinery equipment play an irreplaceable role. Therefore, boilers have great prospects. However, in China it is not enough to supply energy because of the low combustion efficiency of boilers.This design focuses on the issue with the PLC control technology. To raise its combustion efficiency, save primary energy sources and reduce the environment pollution, this paper uses modern computer technology to optimize the control of boilers, which has great impact on the socio-economic and environment quality. Through the study on the each part of control requirements combined with the references and lots of documentation, it designs an automatic control system of boilers that can be implemented on boiler for centralized monitoring, control and management. It intensively reflects on the control of boiler burning, the control of water level and bubbles, the control of superheated steam temperature and the design of safety inspection system.The design uses S7-300 PLC as the core controller. At the same time, it applies distributed control of boilers, combined with the inverter technology, sensors and measurement technique and Ethernet technique to all the devices as a whole. And set up a good communication with other operating equipment. Through STEP 7 programming software for upper computer software programming . It constitutes a true time monitoring and control system of boilers.Key words: boilers; Programmable Logic Controller; control; STEP 7III目录摘要........................................................................................................................................... I II Abstract ......................................................................................................................................... I V 目录.. (V)1 绪论 (1)1.1 本课题的内容和意义 (1)1.2 锅炉技术的现状及其未来的发展前景 (1)1.2.1 锅炉技术的现状 (1)1.2.2 锅炉的发展趋势 (2)1.3 本课题的目的及要求 (2)2 锅炉系统控制方案设计 (3)2.1 锅炉运行过程简介 (3)2.1.1 锅炉结构及其工艺介绍 (3)2.1.2 锅炉的工作过程 (4)2.2 锅炉水位控制方案设计 (4)2.2.1 锅炉汽包水位控制要求 (4)2.2.2 锅炉汽包水位控制方案设计 (5)2.3 锅炉燃烧控制方案设计 (5)2.3.1 锅炉燃烧控制要求 (5)2.3.2 主蒸汽压力控制方案设计 (6)2.3.3 送风控制方案设计 (7)2.3.4 引风控制方案设计 (8)2.4 锅炉过热蒸汽温度控制方案设计 (8)2.4.1 过热蒸汽温度控制方案要求 (8)2.4.2 过热蒸汽减温器的安装设计 (8)2.5 小结 (9)3 锅炉控制系统设计 (10)3.1 锅炉控制系统硬件设计 (10)3.1.1 硬件型号选定 (10)3.1.2 锅炉控制系统硬件设计 (12)3.2 锅炉系统软件设计 (13)3.3 I/O地址分配表 (16)3.4 软件编程 (18)4 锅炉控制系统仿真 (24)4.1 汽包水位控制系统整定与仿真 (24)4.2 锅炉燃烧控制系统整定与仿真 (25)4.2.1 主蒸汽压力控制回路整定与仿真 (25)4.2.2 送风控制系统整定与仿真 (27)4.2.3 引风控制系统整定与仿真 (28)5 结论与展望 (30)5.1 结论 (30)5.2 不足之处及未来展望 (30)致谢 (31)参考文献 (32)III基于PLC的锅炉实时监控控制系统设计1 绪论锅炉作为社会工业生产的重要设备,对经济的推动有着巨大的影响,因此对锅炉的不断优化也是现代科技发展的一个重要方向。

基于软PLC的分布式锅炉微机控制基础系统

基于软PLC的分布式锅炉微机控制基础系统

基于软PLC 旳分布式锅炉微机控制系统Design on distributed boiler control system based on soft PLC赵永生 汪思源 朱吉苓 张伟 宫成摘要:本文简介了基于研华Adam5511软PLC 旳集散型锅炉微机控制系统,该系统已用于某高校供热锅炉系统旳控制中。

系统实现了供热锅炉旳自动控制和燃烧优化控制,可明显提高锅炉热效率,减少污染。

系统还通过公司内部网连接到了Internet上,实现了远程监控。

核心词:软PLC,集散控制系统,锅炉控制,Internet.Abstract: A distributed boiler control systembased on soft-PLC is designed in this paper. Itis already used in the boiler control systembelongs to a university. The system canmonitoring and control boilers in real-timeand optimize the combustion process of theboilers. It can increase the efficiency anddecrease pollution of boilers significantly. The system is connected to Internet and can be monitored remotely.Keywords: Soft-PLC, DCS, Boiler Control, Internet一、 概述锅炉是目前都市旳重要空气污染源,特别是在北方都市,烟筒林立旳现象仍然存在。

改善这种状况旳方案之一是拆除那些设备陈旧、效率低、污染大旳小锅炉房,合并成大锅炉房实行集中供热,并采用计算机控制、变频器等先进技术,从而有效地减少污染,提高效率,节省能源,同步也可以提高供暖质量,目前诸多都市在实行这一方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PLC的分布式锅炉微机控制系统
一、概述
锅炉是目前城市的主要空气污染源,尤其是在北方城市,烟筒林立的现象仍然存在。

改善这种情况的方案之一是拆除那些设备陈旧、效率低、污染大的小锅炉房,合并成大锅炉房实行集中供热,并采用计算机控制、变频器等先进技术,从而有效地减少污染,提高效率,节约能源,同时也可以提高供暖质量,目前很多城市在实施这一方案。

某高校原有四台个小锅炉房,现改造合并成一座大锅炉房,新建四台锅炉,其中一台15吨蒸汽锅炉,三台20吨热水炉,负责全校教学区,宿舍区,家属区的供暖任务,以及食堂,浴池等的供汽任务。

我们结合多年设计锅炉控制系统的经验,为新锅炉系统设计了热工控制部分,锅炉的鼓风,引风,炉排,以及供暖循环泵等都采用变频调速控制,锅炉系统则采用自行设计的计算机集散控制系统,实现了供暖锅炉的现代化控制与管理。

本文介绍此集散控制系统的设计与实现。

二、系统总体结构
锅炉系统工作在高温高压条件,有一定的危险性,对控制系统的可靠性要求高,因此在系统结构上,我们采用了集散型控制系统的方案。

系统主要由现场控制层、车间监控层和企业管理层三个层次构成。

选择研华Adam5511软PLC做现场控制单元,每台5511完成一台锅炉的控制任务;监控层采用奔腾III工业控制机做上位机操作站,显示实时数据以及操作画面;系统设置有数据库服务器及WEB服
务器,管理人员可以通过internet浏览锅炉的实时和历史数据,并据此进行系统的运行优化等工作,构成了系统的管理层。

现场控制站与操作站之间采用RS48 5总线,MODBUS协议通讯;操作站、工程师站及服务器之间采用以太网连接。

整个系统可靠性高,同时又具有先进的控制与管理功能,而其成本较采用进口D CS低一倍以上,因此是类似系统的首选方案。

三、系统功能设计
1、车间监控层及管理层
监控层设置两台(或多台)操作员站、一台工程师站,一台服务器。

操作员站采用研华奔腾III工业控制微机,主要用于锅炉系统的数据显示及进行控制操作,工程师站采用高档奔腾IV微机,用于进行系统参数设定及系统维护。

操作员站的主要功能是提供给锅炉系统操作人员一个直观方便的人机界面。

系统可具有两个或两个以上的操作员站,他们具有同样的功能并互为备用。

操作员站设置有如下显示画面。

流程画面:将现场控制站采集的现场数据及工艺参数显示在流程图的相应位置上,通过动画直观的显示锅炉运行状态及各种实时数据。

操作人员可根据此画面了解整个锅炉系统的运行情况
工艺参数画面:以数据表格的形式实时显示各工艺参数与对应的名称,单位,同时可显示对锅炉耗煤量,产汽(供热)量,用水量等的计算和累积结果。

调节画面:将系统各控制回路的运行状态和有关参数以调节棒图的形式显示出来。

可以显示回路的手自动状态。

操作人员利用键盘或鼠标方便的对各控制回路,的控制参数进行再线修正。

报警画面:用于记录何时何地有何报警,以便有关人员查询,同时实现安全连锁控制
历史趋势画面:用于记录系统主要工艺参数的长期历史趋势数据,以曲线的形式显示出来,可为分析系统运行情况及效率,查找故障等提供依据。

工程师站除具有操作站的全部功能外,还具有参数设定与修改,系统维护等功能。

可设定系统的各模拟量测量点的标度变换系数、热电阻、热电偶的线性化参数、孔板流量计算参数、给煤量计算参数、锅炉及供热热效率参数、各控制回路组态参数、及PID参数等。

工程师站负责系统的打印任务,可打印即时报警,历史报警记录以及锅炉运行日志和历史数据表格等。

系统通过Web服务器将锅炉系统数据及工艺参数送至校园网或企业内部网,使有关领导可从内部网上看到锅炉系统的运行状况,并可实现系统的远程诊断和维护。

管理层实现更高级的管理功能,位于企业厂长经理室,可通过internet 浏览系统的运行数据,监视系统的运行状态,对系统的运行进行计算统计和优化等。

工程技术人员或企业领导无论出差何地,都可查看系统数据,甚至进行系统维护。

2、现场控制层
现场控制层采用研华公司的产品,称为软PLC的Adam5511. 这是一种模块化的工业控制机,固化有dos操作系统,支持C语言编程,支持Modbus通讯协议,每台锅炉由一台Adam5511负责对其进行数据采集及控制,另有一台Ada m5511负责系统公共部分的数据采集及控制。

每台Adam5511配置16点模拟量输入,4点模拟量输出,16点开关量输入输出。

可采集16点锅炉运行现场数据,组成4个闭环控制回路。

分别控制蒸汽锅炉的水位、汽压、炉膛负压,鼓风四个回路或热水锅炉的出水温度、炉膛负压及鼓风三个回路。

四、系统软件
系统的操作站软件采用了中文工控组态软件MCGS设计,MCGS是全中文工业自动化控制组态软件,可稳定运行于Windows95/98/NT操作系统,集动画显示、流程控制、数据采集、设备控制与输出、网络数据传输、双机热备、工程报表、数据与曲线等诸多强大功能于一身,使生成的系统图文并貌,运行稳定可靠。

系统的现场控制站的软件采用Turbo C 3.0设计,软件采用模块化的设计方法,它以实时数据库为核心,各种数据采集、处理、运算以及控制功能都设计成功能块的形式,系统的实时数据以及各功能块参数都存于实时数据库中,各功能块通过实时数据库交换数据。

可通过在上位机进行组态然后下载组态参数至5511中构成新系统。

控制站与操作站之间采用modbus协议交换数据。

五、锅炉系统控制回路
锅炉是一个复杂的控制对象,其控制回路非线性严重,同时控制回路之间有耦合,因此系统采用智能变形PID算法,配和前馈等高级控制方法实现对锅炉个回路的控制。

小型蒸汽锅炉的控制回路主要包括蒸汽压力、汽包水位、炉膛负压和鼓风控制回路;热水锅炉则包括出水温度、炉膛负压和鼓风控制回路。

锅炉的蒸汽压力(或出水温度)以及炉膛负压、鼓风控制回路构成锅炉的燃烧控制系统其控制方案是采用蒸汽压力或出水温度为主调量,通过调整炉排转速使蒸汽压力或出水温度尽快达到给定值,同时配合风-煤配比控制鼓风量达到经济燃烧,炉膛负压回路则将炉膛内的压力保持在微负压。

热水炉的出水温度设定值跟随室外温度的变化自动修正,使用户室内的温度保持恒定,同时实现经济供热。

温度设定曲线可根据不同供热时期有所变化改变。

锅炉水位控制回路使锅炉水位保持恒定,由于锅炉水位受蒸汽负荷的影响较大,容易产生假水位,因此给水控制回路引入蒸汽流量及给水流量前馈控制的三冲量控制方案,以消除假水位的影响。

除常规控制回路外,对锅炉燃烧控制系统,我们还设计了自动寻优算法。

锅炉运行过程中,寻优程序将根据计算出的锅炉热效率以及燃烧情况,自动调整锅炉的风煤配比,使燃烧达到最佳,从而实现节煤和减少污染的目标。

相关文档
最新文档