2020年九年级中考数学专题复习练习题:相似(无答案)
2020年九年级中考数学复习专题训练:《相似综合 》(含答案)
2020年九年级中考数学复习专题训练:《相似综合》1.如图1,点P从菱形ABCD的顶点B出发,沿B→D→A匀速运动到点A,BD的长是;图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数图象.(1)点P的运动速度是cm/s;(2)求a的值;(3)如图3,在矩形EFGH中,EF=2a,FG﹣EF=1,若点P、M、N分别从点E、F、G三点同时出发,沿矩形的边按逆时针方向匀速运动,当点M到达点G(即点M与点G重合)时,三个点随之停止运动;若点P不改变运动速度,且点P、M、N的运动速度的比为2:6:3,在运动过程中,△PFM关于直线PM的对称图形是△PF'M,设点P、M、N的运动时间为t(单位:s).①当t=s时,四边形PFMF'为正方形;②是否存在t,使△PFM与△MGN相似,若存在,求t的值;若不存在,请说明理由.2.如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=3,AB=4,BC=6,动点P从点A出发以1个单位/秒的速度沿AB运动,动点Q同时从点C出发以2个单位/秒的速度沿CB 运动,过点P作EP⊥AB,交BD于E,连接EQ.当点Q与点B重合时,两动点均停止运动,设运动的时间为t秒.(1)当t=1时,求线段EP的长;(2)运动过程中是否存在某一时刻,使△BEQ与△ABD相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由;(3)如图2,连接CE,求运动过程中△CEQ的面积S的最大值.3.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C 重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.4.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMNP旋转至C,N,M三点共线时,请直接写出线段CN的长.5.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C 出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.6.如图,在平行四边形ABCD中,AC为对角线,过点D作DE⊥DC交直线AB于点E,过点E 作EH⊥AD于点H,过点B作BF⊥AD于点F.(1)如图1,若∠BAD=60°,AF=3,AH=2,求AC的长;(2)如图2,若BF=DH,在AC上取一点G,连接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求证:DG=CG.7.(1)问题引入:如图1所示,正方形ABCD和正方形AEFG,则BE与DG的数量关系是,=;(2)类比探究:如图2所示,O为AD、HG的中点,正方形EFGH和正方形ABCD中,判断BE和CF的数量关系,并求出的值;(3)解决问题:①若把(1)中的正方形都改成矩形,且==,则(1)中的结论还成立吗?若不能成立,请写出BE与GD的关系,并求出值;②若把(2)中的正方形也都改成矩形,且==2n,请直接写出BE和CF的关系以及的8.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC 所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.9.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.10.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP 翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.11.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?12.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.13.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N 在直线AD上,MN交CD于点E.(1)求证:△AMN是等腰三角形;(2)求证:AM2=2BM•AN;(3)当M为BC中点时,求ME的长.14.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.15.如图,在矩形OABC中,点A,B的坐标分别为A(4,0),B(4,3),动点N,P分别从点B,A同时出发,点N以1单位/秒的速度向终点C运动,点P以5/4单位/秒的速度向终点C运动,连结NP,设运动时间为t秒(0<t<4)(1)直接写出OA,AB,AC的长度;(2)求证:△CPN∽△CAB;(3)在两点的运动过程中,若点M同时以1单位/秒的速度从点O向终点A运动,求△MPN的面积S与运动的时间t的函数关系式(三角形的面积不能为0),并直接写出当S =时,运动时间t的值.16.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连结AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若tan∠AFB=2,求的值.,(3)若点G在线段BF上,且GF=2BG,连结AG,CG,=x,四边形AGCE的面积为S1,求的最大值.△ABG的面积为S217.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.18.如图,△ABC中,AB=AC,点P为BC边上一动点(不与B,C重合),以AP为边作∠APD=∠ABC,与BC的平行线AD交于点D,与AC交于点E,连结CD.(1)求证:△ABP∽△DAE.(2)已知AB=AC=5,BC=6.设BP=x,CE=y.①求y关于x的函数表达式及自变量x的取值范围;=时,求CE的值.②当S△ACD19.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF•FG=HF•EF;(3)连接DE,求证:∠CDE=∠CGH.20.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在4×4的正方形网格中,有一个网格Rt△ABC和两个网格四边形ABCD与ABCE,其中是被AC分割成的“友好四边形”的是;(2)如图2,将△ABC绕点C逆时针旋转得到△A'B'C,点B'落在边AC,过点A作AD∥A'B'交CA'的延长线于点D,求证:四边形ABCD是“友好四边形”;(3)如图3,在△ABC中,AB≠BC,∠ABC=60°,△ABC的面积为6,点D是∠ABC 的平分线上一点,连接AD,CD.若四边形ABCD是被BD分割成的“友好四边形”,求BD 的长.参考答案1.解:(1)由图2可知,s点P从点B运动到点D,∵BD=,∴点P的运动速度=÷=1(cm/s),故答案为:1;(2)如图1,作DQ⊥BC于点Q,当点P在BD上时,a=×BC×DP,∵四边形ABCD为菱形,点P的运动速度为1,∴AD=BC=1×a=a,∴a=×a×DP,解得,DQ=2,在Rt△BDQ中,BQ==1,∴CQ=a﹣1,在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a﹣1)2+22,解得,a=;(3)①∵点P的运动速度1cm/s,点P、M的运动速度的比为2:6 ∴点M的运动速度3cm/s,由题意得,EF=2a=5,∵FG﹣EF=1,∴FG=6,∴PF=5﹣t,FM=3t,由翻转变换的性质可知,PF=PF′,FM=FM′,当PF=FM时,PF=PF′=FM=FM′,∴四边形PFMF'为菱形,又∠F=90°,∴四边形PFMF'为正方形,∴5﹣t=3t,即t=1.25时,四边形PFMF'为正方形,故答案为:1.25;②存在,∵点P的运动速度1cm/s,点P、M、N的运动速度的比为2:6:3,∴点M的运动速度3cm/s,点N的运动速度1.5cm/s,∴PF=5﹣t,FM=3t,GN=1.5t,∵点M的运动速度3cm/s,FG=6,∴0≤t≤2,当△PFM∽△MGN时,=,即=,解得,t=,当△PFM∽△NGM时,=,即=,解得,t1=﹣7﹣(舍去),t2=﹣7+,综上所述,当t=或﹣7+时,△PFM与△MGN相似.2.解:(1)当t=1时,则AP=1,∴BP=AB﹣AP=3,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴EP=;(2)∵∠A=90°,AD=3,AB=4,∴BD===5,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴BE=5﹣t,∵AD∥BC,∴∠ADB=∠EBQ,若∠BEQ=∠A=90°,∴△BAD∽△QEB,∴,∴=,∴t=28(不合题意舍去),若∠BQE=∠A=90°,∴△BAD∽△EQB,∴,∴t=,(3)∵S=×CQ×PB=×2t×(4﹣t)=﹣(t﹣2)2+4,∴当t=2时,S最大值为4,∴△CEQ的面积S的最大值为4.3.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.4.解:(1)BM=PD,,理由如下:当n=1,则AD=AB,AP=AM,∴AD﹣AP=AB﹣AM,∴DP=BM,∵四边形ABCD是矩形,四边形AMNP是矩形,∴AD=CD=AB,AP=AM=NP,∠ADC=∠APN=90°,∴AC=AD,AN=AP,∴AC﹣AN=(AD﹣AP),∴CN=PD,故答案为:BM=PD,;(2)CN与PD之间的数量关系发生变化,,理由如下:如图(1)在矩形ABCD和矩形AMNP中,∵当n=2.AD=2AB,AP=2AM,∴,,∴.,如图(3)连接AC,∵矩形AMNP绕点A顺时针旋转,∴∠NAC=∠PAD,∴△ANC∽△APD,∴,∴;(3)如图,当点N在线段CM上时,∵AD=4,AD=2AB,∴AB=CD=2,∴AC===,∵AP=2,AP=2AM,∴AM=1,∴CM===,∴CN=CM﹣MN=﹣2;如图,当点M在线段CN上时,同理可求CM=,∴CN=CM+MN=+2;综上所述:线段CN的长为或.5.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵BF⊥AD于F,∴∠AFB=90°,∵∠BAD=60°,∴AB=2AF=6,BF=AF=3,∵EH⊥AD于H,∴AE=2AH=4,EH=AH=2,∵DE⊥DC交AB于E,∴∠DEA=90°,∴AD=2AE=8,∴CB=AD=8,如图1,作AM⊥CB于M,则∠ABM=∠BAD=60°,∴BM=(1/2)AB=3,AM=BM=3,∴CM=CB+BM=11,在Rt△ACM中:AC===2.(2)如图2,作EN⊥AC于N,连接DN、CE,则∠CNE=90°.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵DE⊥DC交AB于E,∴∠CDE=∠DEA=90°,∵EH⊥AD于H,∴∠DHD=∠EHA=90°,∵BF⊥AD于F,∴∠DFB=∠AFB=90°,∴∠DHE=∠BFA,∵∠DEH+∠HEA=∠HEA+∠BAF=90°,∴∠DEH=∠BAF,∵DH=BF,∴△DEH≌△BAF(AAS),∴DE=BA=CD,∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,∵∠CDE=∠CNE=90°,∴C、D、N、E四点共圆,∴∠DNC=∠DEC=45°,∵∠CDG=45°﹣∠CAB,∴∠CDG+∠CAB=45°,∵CD∥AB,∴∠CAB=∠DCG,∴∠DGN=∠DCG+∠CDG=45°=∠DNC,∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,∵∠CDG+∠GDE=∠GDE+∠EDN=90°,∴∠CDG=∠EDN,∴△CDG≌△EDN(SAS),∴EN=CG,∵∠CGD=75°,∴∠CGN=∠CGD﹣∠DGN=30°,∴GN=EN=CG,∴DG=GN=CG7.解:(1)如图1中,连接AC,AF.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,AC=AB,AF=AE,∠BAC=45°,∠EAF=45°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∵AC=AB,AF=AE,∴=,∵∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∵DG=BE,∴=.故答案为:BE=DG,.(2)如图2中,连接OB,OE,OF,OC.∵四边形ABCD是正方形,OA=OD,∴∠A=∠CDO=90°,AB=CD,∴△AOB≌△DOC(SAS),∴OB=OC,同法可证OE=OF,∴∠OBC=∠OCB,∠OEF=∠OFE,∵BC∥AD,∴∠CBO=∠AOB,∴tan∠CBO=tan∠AOB=2,同法可证:tan∠FEO=2,∴tan∠CBO=tan∠FEO,∴∠CBO=∠FEO,∴∠OBC=∠OCB=∠OEF=∠OFE,∴∠BOC=∠EOF,∴∠EOB=∠FOC,∵OE=OF,OB=OC,∴△OEB≌△OFC(SAS),∴BE=FC,∵tan∠COD=tan∠COD=2,∴∠FOG=∠COD,∴∠FOC=∠GOD,∵==,∴△FOG∽△GOD,∴==.(3)①如图3中,结论不成立,BE=3DG.连接BE,AC,AF,CF.∵四边形ABCD,四边形AEFG都是矩形,∴∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∵AB=3AD,AE=3AG,∴△BAE∽△DAG,∴==3,∴BE=3DG,由题意:=,=,∴=,∴=,∵tan∠BAC=tan∠EAF=,∴∠BAC=∠EAF,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∴=.②如图4中,连接OE,OB,OF,OC.由(2)可知,∠BOC=∠EOF,OE=OF,OB=OC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴BE=CF.同法可证△FOC∽△GOD,∴=,设EH=k,则GH=2nk,∴OG=nk,∴OF==•k,∵BE=CF,∴==.8.证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===9.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB10.(1)证明:过点P作PG⊥AB于点G,如图1所示:则四边形DPGA和四边形PCBG是矩形,∴AD=PG,DP=AG,BG=PC,∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴=,∴PG2=AG•BG,即AD2=DP•PC;(2)解:四边形PMBN是菱形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,∵BM∥PN,BN∥MP,∴四边形PMBN是平行四边形,∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴四边形PMBN是菱形;(3)解:∵AD=3DP,∴设DP=1,则AD=3,由(1)可知:AG=DP=1,PG=AD=3,∵PG2=AG•BG,∴32=1•BG,∴BG=PC=9,AB=AG+BG=10,∵CP∥AB,∴△PCF∽△BAF,∴==,∴=,∵PM=MB,∴∠MPB=∠MBP,∵∠APB=90°,∴∠MPB+∠APM=∠MBP+∠MAP=90°,∴∠APM=∠MAP,∴PM=MA=MB,∴AM=AB=5,∵AB∥CD,∴△PCE∽△MAE,∴==,∴=,∴EF=AF﹣AE=AC﹣AC=AC,∴==.11.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2 .∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.12.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,∵∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,AB=CD=3,∴∠NAM=∠BMA,作NH⊥AM于H,如图所示:∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠NAM=∠BMA,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∴AM2=2BM•AN;(3)解:∵M为BC中点,∴BM=CM=BC=×2=1,由(2)得:AM2=2BM•AN,即:AM2=2AN,∵AM2=AB2+BM2=32+12=10,∴10=2AN,∴AN=5,∴DN=AN﹣AD=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴△DNE∽△CME∴=,即=,解得:x=,即DE=,∴CE=DC﹣DE=3﹣=,∴ME===.14.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠PAB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴PA=2AM=7.2,∴PC=AC﹣PA=10﹣7.2=2.8;故答案为:2.8.15.(1)证明:∵四边形OABC是矩形,A(4,0),B(4,3),∴OA=BC=4,AB=OC=3,∠AOC=90°,∴AC===5;(2)解:由题意得:BN=t,AP=t,∵=,==,∴=,∴PN∥AB,∴△CPN∽△CAB;(3)解:分两种情况:①当0<t<2时,延长NP交OA于D,如图1所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=4﹣t﹣t=4﹣2t,∴△MPN的面积S=PN×DM=×(3﹣t)×(4﹣2t)=t2﹣t+6,即S=t2﹣t+6(0<t<2);②当2<t<4时,延长NP交OA于D,如图2所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=t+﹣4t=2t﹣4,∴△MPN的面积S=PN×DM=×(3﹣t)×(2t﹣4)=﹣t2+t﹣6,即S=﹣t2+t﹣6(2<t<4);当S=,0<t<2时,则t2﹣t+6=,整理得:t2﹣6t+6=0,解得:t=3﹣,或t=3+(不合题意舍去),∴t=3﹣;当S=,2<t<4时,则﹣t2+t﹣6=,整理得:t2﹣6t+10=0,∵△=36﹣40<0,∴此方程无解;综上所述,当S=时,运动时间t的值为(3﹣)秒.16.解:(1)∵点E为CD中点,AB=AD=CD=2,∴DE=,∴AE===5,∵AB∥CD,∴△ABF∽△EDF,∴,∴AF=2EF,且AF+EF=5,∴AF=;(2)如图1,连接AC,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BD=AB,AO⊥BD,AO=BO=CO=DO,∴AO=DO=BO=AB,∵tan∠AFB==2,∴OF=AO=AB,∴DF=OD﹣OF=AB,BF=OB+OF=AB,∴;(3)如图2,设AB=CD=AD=a,则BD=a,∵=x,∴DE=xa,∴S△ADE=×AD×DE=xa2,∵△ABF∽△EDF,∴=x,∴DF=x•BF,∴S△ABF=a2,∵GF=2BG,∴S2=S△ABG=S△ABF=,∵AB=CB,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴S△ABG =S△CBG,∴S1=四边形AGCE的面积=a2﹣xa2﹣2×∴=﹣3x2+3x+4=﹣3(x﹣)2+∴当x=时,的最大值为.17.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∠APC=∠APD+∠EPC,∠APD=∠ABC,∴∠BAP=∠EPC,∴△ABP∽△PCE,∵BC∥AD,∴△PCE∽△DAE,∴△ABP∽△DAE;(2)解:①∵△ABP∽△PCE,∴=,即=,∴y=﹣x2+x(0<x<6);②∵△ABP∽△DAE,∴=,即=,∴AD=,∵AD∥BC,∴,∵,∴,∴,即13x2+24x﹣100=0,∴x=2,(舍去)1∴.19.(1)解:在Rt△BCE中,当tan∠BEC=2,∴=2,即=2,解得,BE=2,由勾股定理得,CE===2,∵四边形ABCD为矩形,∴AB∥CD,∴∠ECH=∠BEC,∴tan∠ECH==2,即=2,∴EH=4,∴CH==10;(2)证明:∵∠FEG=∠FDH=90°,∠EFG=∠DFH,∴△EFG∽△DFH,∴=,∴DF•FG=HF•EF;(3)证明:∵△EFG∽△DFH,∴∠CGD=∠CHE,又∠GCD=∠HCE,∴△GCD∽△HCE,∴=,又∠GCD=∠HCE,∴△CDE∽△CGH,∴∠CDE=∠CGH.20.解:(1)AB=2,BC=1,AD=4,由勾股定理得,AC==,CD==,AE==2,CE==5,===,∴△ABC∽△EAC,∴四边形ABCE是“友好四边形”,≠,∴△ABC与△ACD不相似,∴四边形ABCD不是“友好四边形”,故答案为:四边形ABCE;(2)证明:根据旋转的性质得,∠A'CB'=∠ACB,∠CA'B'=∠CAB,∵AD∥A'B',∴∠CA'B'=∠D,∴∠CAB=∠D,又∠A'CB'=∠ACB,∴△ABC∽△DAC,∴四边形ABCD是“友好四边形”;(3)如图3,过点A作AM⊥BC于M,在Rt△ABM中,AM=AB•sin∠ABC=AB,∵△ABC的面积为6,∴BC×AB=6,∴BC×AB=24,∵四边形ABCD是被BD分割成的“友好四边形”,且AB≠BC,∴△ABD∽△DBC∴,∴BD2=AB×BC=24,∴BD==2.。
初三图形的相似练习题
初三图形的相似练习题在初三的数学学习中,相似形是一个非常基础且重要的概念。
了解并掌握相似形的性质和运用方法,对于解决各种几何问题起到至关重要的作用。
为了帮助同学们更好地理解和掌握相似形的知识,下面将提供一些相似形的练习题供大家练习。
练习题1:已知图形ABCD与图形EFGH是相似形,已知AB=4cm,EF=6cm,BC=5cm,FG=10cm。
求图形EFGH的其他边长。
解答:由相似形的性质可知,相似形的对应边长之间的比例相等。
设ED为图形ABCD与图形EFGH对应的边长。
根据比例关系可以得到:AB/EF = BC/FG = CD/GH = AD/EH代入已知条件,得到:4/6 = 5/10 = CD/10解方程可得:CD = 20/3 cm由此可知,图形EFGH的其他边长为:EF = 6cm,FG = 10cm,GH = 2*(20/3) = 40/3 cm,EH = 2*4 = 8cm。
练习题2:已知图形PQRS与图形IJKL是相似形,已知PQ=8cm,IJ=12cm,PR=10cm,KL=15cm。
求图形PQRS的其他边长。
解答:同样地,根据相似形的性质可得到:PQ/IJ = PR/KL = PS/JL = QS/KI代入已知条件,得到:8/12 = 10/15 = PS/15解方程可得:PS = 20/3 cm由此可知,图形PQRS的其他边长为:PQ = 8cm,PR = 10cm,RS = 2*(20/3) = 40/3 cm,QS = 2*8 = 16cm。
练习题3:已知图形WXYZ与图形ABCD是相似形,已知WX=12cm,AB=8cm,YZ=16cm。
求图形WXYZ的其他边长。
解答:同样地,根据相似形的性质可得到:WX/AB = WY/AD =XZ/BC = YZ/CD代入已知条件,得到:12/8 = WY/AD = XZ/BC = 16/CD解方程可得:CD = 32/3 cm由此可知,图形WXYZ的其他边长为:WX = 12cm,XY = 2*(32/3) = 64/3 cm,YZ = 16cm,ZW = 2*12 = 24cm。
2020-2021九年级数学相似的专项培优易错试卷练习题及答案解析
2020-2021九年级数学相似的专项培优易错试卷练习题及答案解析一、相似1.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D 是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F.求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.【答案】(1)解:(1)①当MN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BM= = = ,②当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN= = =5,综上,BN= 或5;(2)解:作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;点D即为所求;如图2所示.(3)解:①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AF,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,∵BH=DF,EF=HE,∵EF2=BE2+DF2,∴E、F是线段BD的勾股分割点.②证明:如图4中,连接FM,EN.∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∵∠AFE=∠FDN,∴△AFE∽△DFN,∴∠AEF=∠DNF,,∴,∵∠AFD=∠EFN,∴△AFD∽△EFN,∴∠DAF=∠FEN,∵∠DAF+∠DNF=90°,∴∠AEF+∠FEN=90°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM= AF,AN= AE,∵S△AMN= AM•AN•sin45°,S△AEF= AE•AF•sin45°,∴ =2,∴S△AMN=2S△AEF.【解析】【分析】(1)此题分两种情况:①当MN为最大线段时,②当BN为最大线段时,根据线段的勾股分割点的定义,利用勾股定理分别得出BM的长;(2)利用尺规作图,将线段AC,CD,DB转化到同一个直角三角形中,①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;这样的作图可以保证直角的出现,及AC 是一条直角边,③连接BF,并作BF的垂直平分线,交AB于D;这样的作图意图利用垂直平分线上的点到线段两个端点的距离相等,即BD=DF,从而实现将三条线段转化到同一直角三角形的目的;(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.根据正方形的性质及旋转的性质得出∠EAH=∠EAF=45°,AH=AF,利用SAS判断出△EAH≌△EAF,根据全等三角形对应边相等得出EF=HE,根据正方形的每条对角线平分一组对角,及旋转的性质得出∠ABH=∠ADF=45°=∠ABD,故∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,根据等量代换得出结论;②证明:如图4中,连接FM,EN.根据正方形的性质及对顶角相等判断出△AFE∽△DFN,根据相似三角形对应角相等,对应边成比例得出∠AEF=∠DNF, AF∶DF =EF∶FN ,根据比例的性质进而得出AF∶EF =DF∶FN,再判断出△AFD∽△EFN,根据相似三角形对应角相等得出∠DAF=∠FEN,根据直角三角形两锐角互余,及等量代换由∠DAF+∠DNF=90°,得出∠AEF+∠FEN=90°,即∠AEN=90°,从而判断出△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;根据等腰直角三角形的边之间的关系AM= AF,AN= AE,从而分别表示出S△AMN与S△AEF,求出它们的比值即可得出答案。
2020-2021九年级数学相似的专项培优易错试卷练习题及详细答案
2020-2021九年级数学相似的专项培优易错试卷练习题及详细答案一、相似1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。
2020年中考数学 相似专题(含答案)
中考专题复习相似1.在的交通旅游图上,南京玄武湖隧道长,则它的实际长度是()A. B. C. D.2.在中,,,是的角平分线,下列结论:①,都是等腰三角形;②;③;④是的黄金分割点其中正确的是()A.个B.个C.个D.个3.有一个多边形的边长分别是 4 cm、5 cm、6 cm、4 cm、5 cm,和它相似的一个多边形最长边为8 cm,那么这个多边形的周长是( )A. 12 cm B. 18 cm C. 32 cm D. 48 cm4.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为( )A.4∶9 B.2∶5 C.2∶3 D.∶5.如图,把△ABC绕点A旋转得到△ADE,当点D刚好落在BC上时,连接CE,设AC、DE相交于点F,则图中相似三角形的对数是( )A. 3 B. 4 C. 5 D. 66.若△ABC∽△A′B′C′,相似比为1∶3,则△ABC与△A′B′C′周长的比为( )A.1∶3B.3∶1C.1∶9D.9∶17.已知△ABC∽△A′B′C′,且=,则S△ABC∶S△A′B′C′为( )A.1∶2B.2∶1C.1∶4D.4∶18.如图,在△ABC中,点D,E分别是AB,AC的中点,则下列结论不正确的是( )A.BC=2DEB.△ADE∽△ABCC.=D.S△ABC=3S△ADE9.如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD等于( )A. 2 B. 2.4 C. 2.5 D. 310.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有( )A. 2对 B. 3对 C. 4对 D. 5对11.如图,矩形OABC与矩形ODEF是位似图形,点O为位似中心,相似比为1∶1.2,点B的坐标为(-3,2),则点E的坐标是( )A. (3.6,2.4) B. (-3,2.4) C. (-3.6,2) D. (-3.6,2.4) 12.如图,中,,,,,则等于()A. B. C. D.13.如图,,交,,于,,,交,,于,,,以下结论的错误的为()A. B.C. D.14.如图,在中,,,,,则的长为()A. B. C. D.15.如图,在中,是斜边上的高,若,,则的长为()A. B. C. D.16.如图,点是的边的上一点,且;如果,那么________.17.如图,已知,,写出对应边的比例式________.18.如图,中,厘米,厘米,点从出发,以每秒厘米的速度向运动,点从同时出发,以每秒厘米的速度向运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以、、为顶点的三角形与相似时,运动时间为________.19.在阳光下,身高的小林在地面上的影长为,在同一时刻,测得学校的旗杆在地面上的影长为,则旗杆的高度为________.20.如图,,分别在的边,的延长线上,且,若,则的值为________.21.如图,中,,,的垂直平分线交于点,交于点,设的面积为,四边形的面积为,则的值等于________.22.如图,小强和小华共同站在路灯下,小强的身高EF=1.8 m,小华的身高MN=1.5 m,他们的影子恰巧等于自己的身高,即BF=1.8 m,CN=1.5 m,且两人相距4.7 m,则路灯AD 的高度是____________.23.如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是____________.24.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值________.25.如图,△ABC与△DOE是位似图形,A(0,3),B(-2,0),C(1,0),E(6,0),△ABC与△DOE 的位似中心为M.(1)写出D点的坐标;(2)在图中画出M点,并求M点的坐标.26.如图:矩形ABCD的长AB=30,宽BC=20.(1)如图(1)若沿矩形ABCD四周有宽为1的环形区域,图中所形成的两个矩形ABCD与A′B′C′D′相似吗?请说明理由;(2)如图(2),x为多少时,图中的两个矩形ABCD与A′B′C′D′相似?27.如图,已知和是位似图形,,垂直平分,且.求的度数;求的长度.28.如图,已知中于,于,求证:;若时,求与面积之比.29.如图,,,与相交于点,,试说明:;26.如图若,请直接回答中结论是否成立;在中找出、和之间的数量关系,并说明理由.参考答案1-5 BDCAB 6-10 ACDAC 11-15 DCCBB16.或17.,18.或秒19.20.21.22.4 m23.①③24.-425.解(1)过点D作DH⊥OE于点H,∵△ABC与△DOE是位似图形,A(0,3),B(-2,0),C(1,0),E(6,0),∴BC=3,OE=6,△AOB∽△DHO,∴位似比为3∶6=1∶2,∴OH=2OB=4,DH=2OA=6,∴D点的坐标为(4,6);(2)连接DA并延长,交x轴于点M,则点M即为△ABC与△DOE的位似中心;则MO∶MH=1∶2,设MO=x,则MH=x+4,∴x∶(x+4)=1∶2,解得x=4,∴M点的坐标为(-4,0 ).26.解(1)不相似,AB=30,A′B′=28,BC=20,B′C′=18,而≠;(2)矩形ABCD与A′B′C′D′相似,则=,则=,解得x=1.5,或=.解得x=9.27.解:∵垂直平分,∴,∵和是位似图形,∴,∴;证明:∵,∴,∴.或用锐角三角函数求解:(简解如下)由,得到,∴.28.证明:∵,∴∴∴∴解:∵∴29.证明:∵,,∴,∴,∴,同理,∴,即,∴;成立.证明:∵,∴,∵∴,∴,∴;关系式为:.证明如下:分别过作于,过作于,过作交的延长线于由题设可得:,∴,即,又∵,,∴,∴.。
2020-2021中考数学相似综合题含答案
2020-2021中考数学相似综合题含答案一、相似1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。
2020-2021中考数学相似综合练习题及详细答案
2020-2021中考数学相似综合练习题及详细答案一、相似1.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.【答案】(1)解:设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣ x+2;把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,∴抛物线解析式为y=﹣ x2+ x+2(2)解:∵M(m,0),MN⊥x轴,∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),∴NP=﹣ m2+4m,PM=﹣ m+2,而NP=PM,∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,∴N点坐标为(,)(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),∴AB= = ,BP= = m,而NP=﹣ m2+4m,∵MN∥OB,∴∠BPN=∠ABO,当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);综上所述,点M的坐标为(,0)或(,0)【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。
2020年中考数学专题 相似三角形综合练习(含答案)
2020年中考数学专题 相似三角形综合(含答案)一、单选题(共有10道小题)1.如图,在△ABC 中,∠ACB= 90,CD ⊥AB ,垂足为D ,点E 是AB 的中点,CD=DE=a ,则AB 的长为( )A .2aB .a 22C .3aD . 2.根据下列条件,△ABC 和△111C B A 不相似的是()A.∠A=68°,∠B=40°,∠A 1=68°,∠B 1=72°B.∠B=∠B 1,BC=2,BC:A 1 B 1= A B: B 1C 1C.AB=1,BC=2, CA=1.5,A 1 B 1=4, B 1 C 1 =8,D.AB=12,BC=15,CA=24,A 1 B 1=24,A 1 B 1=20,B 1 C 1 =25,A 1 C 1=32 3.用作位似图形的方法,可以将一个图形放大或缩小,位似中心( ) A.只能选在原图形的外部B.只能选在原图形的内部C.只能选在原形的边上D.可以选择任意位置4.如图,AB ,CD 都是BD 的垂线,AB=4,CD=6,BD=14。
P 是BD 上一点,连接AP ,CP ,所得两个三角形相似,则BP 的长是( )A.2B.5.6C.12D.上述都有可能5.如图,是一束平行的光线从教室窗户射入教室的示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=32m ,窗户的下沿到教室地面的距离BC=1m (点M ,N ,CC 在同一直线上),则窗户的高CAA B CD a 3346.如图,在□ABCD 中,EF ∥AB 交AD 于点E ,交BD 于点F ,DE:EA=3:4,EF=3,则CD 的长为( )A.4B.7C.3D.127.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD:DB = 3:5,那么CF ∶CB 等于( ) A. 5:8 B. 3:8 C. 3:5 D.8.如图,如果点C 是线段AB 的黄金分割点(AC>BC ),则下列比例式正确的是( )A.AB ACAC BC= B.AB BC BC AC = C. AC BC BC AB = D. AC ABAB BC=9.如图,P 为平行四边形ABCD 的边AD 上的一点,E 、F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为12,,S S S ,若3S =,则12S S +的值为()A.24B.12C.6D.3 10.如图,在□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( ) A.3:2 B.3:1 C.1:1 D.1:2 二、填空题(共有8道小题)11.如图,梯形ABCD 的对角线相交于O ,G 是BD 的中点.若AD = 3,BC = 9,则GOBG=A B C DE F A B C P A BCDE F E F A B CD12.如图,平行四边形中,是边上的点,交于点,如果, 那么 .13.如图,正五边形ABCDE 与五边形A ’B ’C ’D ’E ’是位似图形,且相似比为21。
2020年九年级数学中考专题复习训练-相似三角形的应用(解析版 ).pdf
处通过平面镜看到树的顶端 .如图,然后他量得 B、P 间的距离是 56 米,C、P 间距离是 12 米,他的身高是 1.7 米. 1 他这种测量的方法应用了物理学科的什么知识?请 简要说明; 2 请你帮他计算出树 AB 的高度.
2020 年九年级数学中考专题复习训练-相似三角形的应用
班级:___________姓名:___________ 得分:___________
一、选择题
1. 某小区门口的栏杆如图所示,栏杆从水平位置 BD 绕 O 点旋转到 AC 位置,已知 t, t t,垂足分别为 B、D, t h , h 1.晦 , t h 1 ,则栏
14. 10
解:如图所示:
第 1 页,共 20页
由题意得:㌳E上上 ,
㌳E∽
,
㌳E h E,
即0.ሴ h
,
.2 ͷ10ͷ20
解得 h 10.
所以 x 的最小值为 10.
15. h.1
解:利用 ㌳∽ t㌳,对应线段成比例解题, 因为 AB,CD 均垂直于地面,所以 上上 t, 则有 ㌳∽ t㌳,
㌳∽ t㌳,
2 当 x 为何值时,矩形 PQMN 的面积最大?最大值是多少?
23. 如图,小明家窗外有一堵围墙 AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最
高点 C 射进房间的地板 F 处,中午太阳光恰好能从窗户的最低点 D 射进房间的地 板 E 处,小明测得窗子距地面的高度 tt h 0.ሴ ,窗高 t h 1.2 ,并测得 t㌳ h 0.ሴ ,tE h ,且 O,D,C 三点在同一条直线上,求围墙 AB 的高度.
t
h
2020年九年级中考数学第二轮复习 旋转、相似三角形 无答案
★(旋转)1.如图1,Rt △ABC ≌Rt △EDF ,∠ACB=∠F=90°,∠A=∠E=30°.△EDF 绕着边AB 的中点D 旋转, DE ,DF 分别交线段..AC 于点M ,K .(1)观察:①如图2、图3,当∠CDF=0° 或60°时,AM+CK_______MK(填“>”,“<”或“=”). ②如图4,当∠CDF=30° 时,AM+CK___MK(只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM+CK_______MK ,证明你所得到的结论. (3)如果222AM CK MK =+,请直接写出∠CDF 的度数和AMMK 的值.2.已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G 。
∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4。
(1)求证:△EGB 是等腰三角形;(2)若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小_____度时,四边形ACDE 成为以ED为底的梯形(如图(2)),求此梯形的高。
图1图2图3EEE图4A图(1)AB CE FFB (D )GG A E D图(2)FEC BAB'C'3.如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F . (1)证明:△ACE ∽△FBE ;(2)设∠ABC=α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.4.在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A /B /C.(1)如图(1),当AB ∥CB /时,设AB 与CB /相交于D.证明:△A /CD 是等边三角形; 【解】(2)如图(2),连接A /A 、B /B ,设△ACA /和△BCB /的面积分别为S △ACA /和S △BCB /. 求证:S △ACA /∶S △BCB /=1∶3;【证】(3)如图(3),设AC 中点为E ,A / B /中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. 【解】图(1)图(2)图(3)图2 AD OB C 2 1 MN 图1AD BM N1 2图3 A D OBC 2 1 M N O 5.在图1至图3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°.(1)如图1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图1中的MN 绕点O 顺时针旋转得到 图2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ;(3)将图2中的OB 拉长为AO 的k 倍得到图3,求ACBD的值.★(相似三角形)6.如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2m ,CD =6m ,点P 到CD 的距离是2.7m ,则AB 与CD 间的距离是__________m .7.如图,小明在A 时测得某树的影长为2m ,B 时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度为_____m.8.如图,梯形ABCD 的对角线AC 、BD 相交于O ,G 是BD 的中点.若AD = 3,BC = 9,则GO : BG =( )A .1 : 2B .1 : 3C .2 : 3D .11 : 209.如图,P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( )A. 1条B.2条C. 3条D.4条7题图A 时B 时10.如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,(1)求证:△ADF∽△CAF;⑵当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积11.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.12.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,BD并延长与CE交于点E.(1)求证:△ABD∽△CED.(2)若AB=6,AD=2CD,求BE的长.13.如图在Rt △ABC 中,∠A =90°,AB =10,AC =5,若动点P 从点B 出发,沿线段BA 运动到A 点为止,运动速度为每秒2个单位长度.过点P 作PM ∥BC ,交AC 于点M ,设动点P 运动时间为x 秒,AM 的长为y . (1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)当x 为何值时,△BPM 的面积S 有最大值,最大值是多少?14.(2008安徽) 如图四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC 、CD 于点P 、Q 。
2020-2021九年级数学 相似的专项 培优易错试卷练习题附详细答案
2020-2021九年级数学相似的专项培优易错试卷练习题附详细答案一、相似1.如图,在四边形ABCD中,AD//BC,,BC=4,DC=3,AD=6.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围).(2)当B,P,Q三点为顶点的三角形是等腰三角形时,求出此时的值.(3)当线段PQ与线段AB相交于点O,且2OA=OB时,直接写出 =________. (4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由.【答案】(1)(2)解:如图1,过点P作PH⊥BC于点H,∴∠PHB=∠PHQ=90°,∵∠C=90°,AD∥BC,∴∠CDP=90°,∴四边形PHCD是矩形,∴PH=CD=3,HC=PD=2t,∵CQ=t,BC=4,∴HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,∴BQ2= ,BP2= ,PQ2= ,由BQ2=BP2可得:,解得:无解;由BQ2=PQ2可得:,解得:;由BP2= PQ2可得:,解得:或,∵当时,BQ=4-4=0,不符合题意,∴综上所述,或;(3)(4)解:如图3,过点D作DM∥PQ交BC的延长线于点M,则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,∵AD∥BC,DM∥PQ,∴四边形PQMD是平行四边形,∴QM=PD=2t,∵QC=t,∴CM=QM-QC=t,∵∠BCD=∠MCD=90°,∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2,∵BM2=(BC+CM)2=(4+t)2,∴由BM2=BD2+DM2可得:,解得:,∴当时,∠BDM=90°,即当时,PQ⊥BD.【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-t,点P到BC的距离=CD=3,∴S△PBQ= BQ×3= ;( 3 )解:如图2,过点P作PM⊥BC交CB的延长线于点M,∴∠PMC=∠C=90°,∵AD∥BC,∴∠D=90°,△OAP∽△OBQ,∴四边形PMCD是矩形,,∴PM=CD=3,CM=PD=2t,∵AD=6,BC=4,CQ=t,∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,∴,解得:,∴MQ= ,又∵PM=3,∠PMQ=90°,∴tan∠BPQ= ;【分析】(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到s与t之间的函数关系式。
2020-2021九年级数学 相似的专项 培优易错试卷练习题附答案
2020-2021九年级数学相似的专项培优易错试卷练习题附答案一、相似1.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=________,PD=________.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.【答案】(1)8-2t;(2)解:不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD= ,∴BD=AB-AD=10- ,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8-2t= ,解得:t= .当t= 时,PD= ,BD=10- ,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD= ,BD=10- ,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即 =10- ,解得:t=当PD=BQ,t= 时,即,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)解:如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=-2x+6.∵点Q(0,2t),P(6-t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x= 代入y=-2x+6得y=-2× +6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2 单位长度.【解析】【解答】(1)根据题意得:CQ=2t,PA=t,∴QB=8-2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA= ,∴PD= .【分析】CQ=2t,PA=t,可得QB=8﹣2t,根据tanA=,可以表示PD;易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ是平行四边形;求得此时DP与BD的长,由DP≠BD,可判定▱PDBQ不能为菱形;然后设点Q 的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD PD=BQ,列方程即可求得答案.以C为原点,以AC所在的直线为x轴,建立平面直角坐标系,求出直线M1M2解析式,证明M3在直线M1M2上,利用勾股定理求出M1M2.2.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,如图;当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设,当t为何值时,s有最小值,并求出最小值.(3)在的条件下,是否存在t的值,使以P、B、D为顶点的三角形与相似;若存在,求t的值;若不存在,请说明理由.【答案】(1)解:由直线:知:、;∵,∴,即.设抛物线的解析式为:,代入,得:,解得∴抛物线的解析式:(2)解:在中,,,则;∵,∴;而;∴,∴当时,s有最小值,且最小值为1(3)解:在中,,,则;在中,,,则;∴;以P、B、D为顶点的三角形与相似,已知,则有两种情况:,解得;,解得;综上,当或时,以P、B、D为顶点的三角形与相似【解析】【分析】(1)由直线与坐标轴相交易求得点A、C的坐标,用待定系数法即可求得抛物线的解析式;(2)由题意可将ED、OP用含t的代数式表示出来,并代入题目中的s与OP、DE的关系式整理可得s=(0<t<2),因为分子是定值1,所以分母越大,则分式的值越小,则当分母最大时,分式的值越小,即t=1时,s有最小值,且最小值为1;(3)解直角三角形可得BC和CD、BD的值,根据题意以P、B、D为顶点的三角形与△ABC相似所得的比例式有两种情况:,,将这些线段代入比例式即可求解。
2020—2021年人教版初中数学九年级下册相似专项练习检测及答案(精品试题).docx
第27章相似专项训练专训1 巧用位似解三角形中的内接多边形问题名师点金:位似图形是特殊位置的相似图形,它具有相似图形的所有性质.位似图形必须具备三个条件:(1)两个图形相似;(2)对应点的连线相交于一点;(3)对应边互相平行或在同一直线上.三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.求证:△C′D′E′是等边三角形.(第1题)三角形的内接矩形问题2.如图,求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DE EF=1 2.(第2题)三角形的内接正方形问题(方程思想)3.如图,△ABC是一块锐角三角形余料,边BC=120 mm,高AD=80 mm,要把它加工成正方形零件,使正方形的一边QM在BC上,其余两个顶点P,N 分别在AB,AC上,则这个正方形零件的边长是多少?(第3题)4.(1)如图①,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:DPBQ=PEQC.(2)在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF,分别交DE于M,N两点.①如图②,若AB=AC=1,直接写出MN的长;②如图③,求证:MN2=DM·EN.(第4题)专训2 图形的相似中五种热门考点名师点金:相似是初中数学的重要内容,也是中考重点考查内容之一,而针对成比例线段、相似三角形的判定与性质、位似图形等都是命题的热点.成比例线段及性质1.下列各组长度的线段,成比例线段的是( ) A .2 cm ,4 cm ,4 cm ,8 cmB .2 cm ,4 cm ,6 cm ,8 cmC .1 cm ,2 cm ,3 cm ,4 cmD .2.1 cm ,3.1 cm ,4.3 cm ,5.2 cm2.若a 2=b 3=c 4=d 7≠0,则a +b +c +d c=________. 3.如图,乐器上的一根弦AB =80 cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,则支撑点C 到端点A 的距离约为________(5≈2.236,结果精确到0.01).(第3题)平行线分线段成比例4.如图,若AB ∥CD ∥EF ,则下列结论中,与AD AF相等的是( ) A .AB EF B .CD EF C .BO OE D .BC BE(第4题)(第5题) 5.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,以AC 为边向三角形外作正方形ACDE ,连接BE 交AC 于F ,若BF = 3 cm ,则EF =________.6.如图,在△ABC 中,AM MD =4,BD DC =23,求AE EC的值.(第6题)相似三角形的性质与判定7.如图,在平行四边形ABCD中,点E在AD上,且AE ED=31,CE 的延长线与BA的延长线交于点F,则S△AEF S四边形ABCE为( )A.3 4 B.4 3 C.79 D.97(第7题)(第9题)8.若两个相似多边形的面积之比为14,周长之差为6,则这两个相似多边形的周长分别是________.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是________.10.如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:FD2=FB·FC;(2)若FB=5,BC=4,求FD的长.(第10题)11.如图,四边形ABCD是正方形,BD是对角线,BE平分∠DBC交DC于点E,点F是BC的延长线上一点,且CE=CF,BE的延长线交DF于点M.(1)求证:BM⊥DF;(2)若正方形ABCD的边长为2,求ME·MB.(第11题)相似三角形的应用12.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立(BN)时的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高度CD(结果精确到0.1 m).(第12题)13.某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA =CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm、8 cm.为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF的长应为多少?(材质及其厚度等忽略不计)(第13题)位似(第14题)14.如图,已知正方形ABCD,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得正方形AB′C′D′,则点C′的坐标为________.15.如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC 的顶点均是小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且相似比为1 2;(2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).(第15题)答案专训11.证明:∵E′C′∥EC,∴∠C′E′O=∠CEO,CEC′E′=OEOE′.又∵E′D′∥ED,∴∠D′E′O=∠DEO,DED′E′=OEOE′.∴∠CED=∠C′E′D′,CEC′E′=DED′E′.∴△CED∽△C′E′D′.又∵△CDE是等边三角形,∴△C′D′E′是等边三角形.(第2题)2.解:如图,在AB边上任取一点D′,过点D′作D′E′⊥BC于点E′,在BC 上截取E′F′,使E′F′=2D′E′,过点F′作F′G′⊥BC,过点D′作D′G′∥BC交F′G′于点G′,作射线BG′交AC于点G,过点G作GF∥G′F′,DG∥D′G′,GF交BC于点F,DG交AB于点D,过点D作DE∥D′E′交BC于点E,则四边形DEFG为△ABC的内接矩形,且DE EF =1 2.3.解:设符合要求的正方形PQMN 的边PN 与△ABC 的高AD 相交于点E. 设正方形PQMN 的边长为x mm ,∵PN ∥BC ,∴△APN ∽△ABC.∵△APN 与△ABC 的对应点都经过点A ,∴△APN 与△ABC 是以点A 为位似中心的位似图形.∴AE AD =PN BC .∴80-x 80=x 120.解得x =48. 即这个正方形零件的边长是48 mm .点拨:利用位似图形的性质“位似图形上任意一对对应点到位似中心的距离之比等于相似比”,构造方程,利用方程思想解决问题.4.(1)证明:在△ABQ 和△ADP 中,∵DP ∥BQ ,∴△ADP ∽△ABQ ,∴DP BQ =AP AQ. 同理△ACQ ∽△AEP ,∴PE QC =AP AQ .∴DP BQ =PE QC. (2)①解:MN =29. ②证明:∵∠B +∠C =90°,∠CEF +∠C =90°.∴∠B =∠CEF.又∵∠BGD =∠EFC =90°,∴△BGD ∽△EFC.∴DG CF =BG EF. ∴DG ·EF =CF ·BG.又∵DG =GF =EF ,∴GF 2=CF ·BG.由(1)得DM BG =MN GF =EN CF .∴⎝ ⎛⎭⎪⎫MN GF 2= DM BG ·EN CF ,即MN 2FG 2=DM ·EN BG ·CF ,∴MN 2=DM ·EN.专训21.A 2.4 3.49.44 cm 4.D 5.3 cm(第6题)6.解:过D 点作DN ∥AC ,交BE 于N ,如图.易知△DMN ∽△AME ,△BDN ∽△BCE.∵BD DC =23,∴BD BC =25. ∴DN CE =BD BC =25. ∵AM MD =4,∴AE DN =AM MD=4. ∴AE EC =DN EC ·AE DN =25×4=85. 7.D 8.6,129.4或247点拨:∵△ABC 沿EF 折叠,B 和B ′重合,∴BF =B ′F.设BF =x ,则CF =8-x ,当△B ′FC ∽△ABC 时,B ′F AB =CF BC .∵AB =6,BC =8,∴x 6=8-x 8,解得:x =247,即BF =247;当△FB ′C ∽△ABC 时,FB ′AB =FC AC ,则x 6=8-x 6,解得:x =4.故BF =4或247. 10.(1)证明:∵E 是Rt △ACD 的斜边的中点,∴DE =EA.∴∠A =∠1.∵∠1=∠2,∴∠2=∠A.∵∠FDC =∠CDB +∠2=90°+∠2,∠FBD =∠ACB +∠A=90°+∠A ,∴∠FDC =∠FBD.又∵∠F 是公共角,∴△FBD ∽△FDC.∴FB FD =FD FC.∴FD 2=FB ·FC.(2)解:∵FB =5,BC =4,∴FC =9.∵FD 2=FB ·FC ,∴FD 2=45.∴FD =3 5.11.(1)证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCE =∠DCF =90°.又∵CE =CF ,∴△BCE ≌△DCF.∴∠CBE =∠CDF.∴∠CBE +∠BEC =∠CDF +∠DEM =90°.∴BM ⊥DF.(2)解:易知∠CBD =45°.∵BE 平分∠DBC ,∴∠DBM =∠FBM =22.5°.由(1)知∠BMD =∠BMF =90°,∴∠BDM =∠F =67.5°.∴BD =BF.∴DM =FM =12DF. ∵正方形ABCD 的边长为2,∴BD =BF =22,∴CF =22-2.在Rt △DCF 中,DF 2=DC 2+CF 2=4+(22-2)2=16-8 2.∴DM 2=⎝ ⎛⎭⎪⎫DF 22=4-2 2. ∵∠CDF =∠DBM ,∠DME =∠BMD ,∴△DME ∽△BMD.∴DM MB =ME DM,即DM 2=ME ·MB.∴ME ·MB =4-2 2. 12.解:设CD =x m .∵AM ⊥EC ,BN ⊥EC ,CD ⊥EC ,∴MA ∥CD ∥BN.又MA =EA ,∴EC =CD =x m .易知△ABN ∽△ACD ,∴BN CD =AB AC ,即1.75x = 1.25x -1.75,解得x =6.125≈6.1,即路灯的高度CD 约为6.1 m .13.解:如图,过点C 作CM ∥AB ,分别交EF ,AD 于点N ,M ,作CP ⊥AD ,分别交EF ,AD 于点Q ,P.由题意得四边形ABCM 是平行四边形,∴EN =AM =BC =20 cm .∴MD =AD -AM =50-20=30(cm ).由题意知CP =40 cm ,PQ=8 cm .∴CQ =32 cm .∵EF ∥AD ,∴△CNF ∽△CMD.∴NF MD =CQ CP ,即NF 30=3240,解得NF =24 cm .∴EF =EN +NF =20+24=44(cm ).即横梁EF 的长应为44 cm .(第13题)(第15题)14.(2,1)或(0,-1)15.解:(1)△A′B′C′如图所示.(2)如图,四边形AA′C′C的周长为AA′+A′C′+CC′+AC=2+22+2+42=4+6 2.。
2020年中考数学试题《相似》试题精编含答案
2020年中考数学试题《相似》试题精编含答案1.(2020•朝阳)如图,以AB为直径的⊙O经过△ABC的顶点C,过点O作OD∥BC交⊙O 于点D,交AC于点F,连接BD交AC于点G,连接CD,在OD的延长线上取一点E,连接CE,使∠DEC=∠BDC.(1)求证:EC是⊙O的切线;(2)若⊙O的半径是3,DG•DB=9,求CE的长.2.(2020•兰州)如图,在▱ABCD中,DE⊥AC于点O,交BC于点E,EG=EC,GF∥AD 交DE于点F,连接FC,点H为线段AO上一点,连接HD,HF.(1)判断四边形GECF的形状,并说明理由;(2)当∠DHF=∠HAD时,求证:AH•CH=EC•AD.3.(2020•呼伦贝尔)如图,⊙O是△ABC的外接圆,直线EG与⊙O相切于点E,EG∥BC,连接AE交BC于点D.(1)求证:AE平分∠BAC;(2)若∠ABC的平分线BF交AD于点F,且DE=3,DF=2,求AF的长.4.(2020•朝阳)如图所示的平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,2),B(﹣1,3),C(﹣1,1),请按如下要求画图:(1)以坐标原点O为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1,请画出△A1B1C1;(2)以坐标原点O为位似中心,在x轴下方,画出△ABC的位似图形△A2B2C2,使它与△ABC的位似比为2:1.5.(2020•永州)如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD 交AC的延长线于点D,E为BD的中点,连接CE.(1)求证:CE是⊙O的切线.(2)已知BD=3,CD=5,求O,E两点之间的距离.6.(2020•宁夏)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).(1)画出△ABC关于x轴成轴对称的△A1B1C1;(2)画出△ABC以点O为位似中心,位似比为1:2的△A2B2C2.7.(2020•湖北)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D 的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.8.(2020•通辽)如图,⊙O的直径AB交弦(不是直径)CD于点P,且PC2=PB•P A,求证:AB⊥CD.9.(2020•宜宾)如图,已知AB是⊙O的直径,点C是圆上异于A、B的一点,连结BC并延长至点D,使CD=BC,连结AD交⊙O于点E,连结BE.(1)求证:△ABD是等腰三角形;(2)连结OC并延长,与以B为切点的切线交于点F,若AB=4,CF=1,求DE的长.10.(2020•黄冈)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF•DB.11.(2020•怀化)如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD =CA,且∠D=30°.(1)求证:CD是⊙O的切线.(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:CG2=AE•BF.12.(2020•南京)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C'.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.13.(2020•乐山)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD =2,CE=1.求DF的长度.14.(2020•凉山州)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?15.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.16.(2020•绥化)如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若=,求的值.17.(2020•安顺)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.18.(2020•苏州)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)若AB=6,BC=4,求DF的长.19.(2020•滨州)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E 作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.20.(2020•济宁)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.21.(2020•无锡)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D=30°,DC=.(1)求证:△BOC∽△BCD;(2)求△BCD的周长.22.(2020•上海)已知:如图,在菱形ABCD中,点E、F分别在边BC、CD上,BE=FD,AF的延长线交BC的延长线于点H,AE的延长线交DC的延长线于点G.(1)求证:△AFD∽△GAD;(2)如果DF2=CF•CD,求证:BE=CH.23.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.24.(2020•杭州)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.25.(2020•杭州)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.26.(2020•黔西南州)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.27.(2019•恩施州)如图,在⊙O中,AB是直径,BC是弦,BC=BD,连接CD交⊙O于点E,∠BCD=∠DBE.(1)求证:BD是⊙O的切线.(2)过点E作EF⊥AB于F,交BC于G,已知DE=2,EG=3,求BG的长.28.(2019•铁岭)如图,在▱ABCD中,AD=2AB,以点A为圆心、AB的长为半径的⊙A 恰好经过BC的中点E,连接DE,AE,BD,AE与BD交于点F.(1)求证:DE与⊙A相切.(2)若AB=6,求BF的长.29.(2019•莱芜区)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.30.(2019•上海)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.31.(2019•雅安)如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.32.(2019•娄底)如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B 作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD•BE=AD•DE.33.(2019•宁夏)如图在△ABC中,AB=BC,以AB为直径作⊙O交AC于点D,连接OD.(1)求证:OD∥BC;(2)过点D作⊙O的切线,交BC于点E,若∠A=30°,求的值.34.(2019•百色)如图,已知AC、AD是⊙O的两条割线,AC与⊙O交于B、C两点,AD 过圆心O且与⊙O交于E、D两点,OB平分∠AOC.(1)求证:△ACD∽△ABO;(2)过点E的切线交AC于F,若EF∥OC,OC=3,求EF的值.[提示:(+1)(﹣1)=1]35.(2019•梧州)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.36.(2019•张家界)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.37.(2019•湘西州)如图,△ABC内接于⊙O,AC=BC,CD是⊙O的直径,与AB相交于点G,过点D作EF∥AB,分别交CA、CB的延长线于点E、F,连接BD.(1)求证:EF是⊙O的切线;(2)求证:BD2=AC•BF.38.(2019•泸州)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•P A.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.39.(2019•荆门)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.40.(2019•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.1.【解答】解:(1)证明:如图,连接OC,∵AB是直径,∴∠ACB=90°,∵OD∥BC,∴∠CFE=∠ACB=90°,∴∠DEC+∠FCE=90°,∵∠DEC=∠BDC,∠BDC=∠A,∴∠DEC=∠A,∵OA=OC,∴∠OCA=∠A,∴∠OCA=∠DEC,∵∠DEC+∠FCE=90°,∴∠OCA+∠FCE=90°,即∠OCE=90°,∴OC⊥CE,又∵OC是⊙O的半径,∴CE是⊙O切线.(2)由(1)得∠CFE=90°,∴OF⊥AC,∵OA=OC,∴∠COF=∠AOF,∴,∴∠ACD=∠DBC,又∵∠BDC=∠BDC,∴△DCG∽△DBC,∴DC2=DG•DB=9,∴DC=3,∵OC=OD=3,∴△OCD是等边三角形,∴∠DOC=60°,在Rt△OCE中,∴,∴.2.【解答】解:(1)四边形GECF是菱形,∵EG=EC,DE⊥AC,∴GO=CO,∵GF∥AD,AD∥BC,∴GF∥BC,∴∠FGO=∠ECO,∠GFO=∠CEO,∴△GFO≌△CEO(AAS),∴GF=EC,∴四边形GFCE是平行四边形,又∵EG=EC,∴平行四边形GFCE是菱形;(2)∵∠DHC=∠DAH+∠ADH=∠DHF+∠FHC,∠DHF=∠HAD,∴∠ADH=∠FHC,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAH=∠ACB,∵四边形GFCE是菱形,∴CE=CF,∠HCF=∠ACB,∴∠HCF=∠DAH,∴△ADH∽△CHF,∴AH•CH=AD•EC.3.【解答】解:(1)连接OE.∵直线EG与⊙O相切于E,∴OE⊥EG,∵EG∥BC,∴OE⊥BC,∴,∴∠BAE=∠CAE.∴AE平分∠BAC;(2)如图,∵AE平分∠BAC,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF平分∠ABC,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF,∴EB=EF,∵DE=3,DF=2,∴BE=EF=DE+DF=5,∵∠5=∠4,∠BED=∠AEB,∴△EBD∽△EAB,∴,即,∴AF=AE﹣EF=.4.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.5.【解答】证明:(1)如图,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∵E为BD的中点,∴BE=CE=DE,∴∠ECB=∠EBC,∵BD与⊙O相切于点B,∴∠ABD=90°,∴∠OBC+∠EBC=90°,∴∠OCB+∠ECB=90°,∴∠OCE=90°∴OC⊥CE,又∵OC为半径,∴CE是⊙O的切线;(2)连接OE,∵∠D=∠D,∠BCD=∠ABD,∴△BCD∽△ABD,∴,∴BD2=AD•CD,∴(3)2=5AD,∴AD=9,∵E为BD的中点,AO=BO,∴OE=AD=,∴O,E两点之间的距离为.6.【解答】解:(1)由题意知:△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C (1,1),则△ABC关于x轴成轴对称的△A1B1C1的坐标为A1(1,﹣3),B1(4,﹣1),C1(1,﹣1),连接A1C1,A1B1,B1C1得到△A1B1C1.如图所示△A1B1C1为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,△A2B2C2和△ABC在同一侧则A2(2,6),B2(8,2),C2(2,2),连接各点,得△A2B2C2.第二种,△A2B2C2在△ABC的对侧A2(﹣2,﹣6),B2(﹣8,﹣2),C2(﹣2,﹣2),连接各点,得△A2B2C2.因为在网格中作图,图中网格是有范围的,只能在网格中作图,所以位似放大只能能画一个.综上所述:如图所示△A2B2C2为所求.7.【解答】(1)证明:连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD∥AC,∴△EOD∽△EAF,∴,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,EO=x+3,EA=2x+3,∴=,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.8.【解答】证明:连接AC、BD,如图,∵∠A=∠D,∠C=∠B,∴△APC∽△BPD,∴PC:PB=P A:PD,∵PC2=PB•P A,∴PC=PD,∵AB为直径,∴AB⊥CD.9.【解答】证明:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴AC⊥BD,又∵CD=BC,∴AB=AD,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∴∠BAC=∠BAD,AB=AD,BC=BD,又∵∠BAC=∠BOC,∴∠BOC=∠BAD,∵BF是⊙O的切线,∴∠FBO=90°,∵AB是⊙O的直径,∴∠AEB=90°=∠OBF,∴△OBF∽△AEB,∴,∵AB=4,CF=1,∴OB=2,OF=OC+CF=3,∴,∴AE=,∴DE=AD﹣AE=.10.【解答】证明:(1)∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=90°,即∠ABC=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,∵∠DAF=∠DBE,∴∠DAF=∠ABD,∵∠ADB=∠ADF,∴△ADF∽△BDA,∴,∴AD2=DF•DB.11.【解答】(1)证明:连接OC,如图所示,∵CA=CD,且∠D=30°,∴∠CAD=∠D=30°,∵OA=OC,∴∠CAD=∠ACO=30°,∴∠COD=∠CAD+∠ACO=30°+30°=60°,∴∠OCD=180°﹣∠D﹣∠COD=180°﹣30°﹣60°=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)∵∠COB=60°,且OC=OB,∴△OCB为等边三角形,∴∠CBG=60°,又∵CG⊥AD,∴∠CGB=90°,∴∠GCB=∠CGB﹣∠CBG=30°,又∵∠GCD=60°,∴CB是∠GCD的角平分线,∵BF⊥CD,BG⊥CG,∴BF=BG,又∵BC=BC,∴Rt△BCG≌Rt△BCF(HL),∴CF=CG.∵∠D=30°,AE⊥ED,∠AED=90°,∴∠EAD=60°,又∵∠CAD=30°,∴AC是∠EAG的角平分线,∵CE⊥AE,CG⊥AB,∴CE=CG,∵∠AEC=∠BFC=90°,∠EAC=30°=∠BCF,∴△AEC∽△CFB,∴,即AE•BF=CF•CE,又CE=CG,CF=CG,∴AE•BF=CG2.12.【解答】(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C',∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=180°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′C′B′,∵=,∴△ABC∽△A′B′C′.13.【解答】解:∵四边形ABCD是矩形,∴DC=AB=3,∠ADC=∠C=90°.∵CE=1,∴DE==.∵AF⊥DE,∴∠AFD=90°=∠C,∠ADF+∠DAF=90°.又∵∠ADF+∠EDC=90°,∴∠EDC=∠DAF,∴△EDC∽△DAF,∴=,即=,∴FD=,即DF的长度为.14.【解答】解:∵四边形EGHF为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为x mm,则KD=EF=xmm,AK=(80﹣x)mm,∵AD⊥BC,∴=,∴=,解得:x=48.答:正方形零件的边长为48mm.15.【解答】解:(1)∵PD∥AB,∴,∵AC=3,BC=4,CP=x,∴,∴CD=,∴AD=AC﹣CD=3﹣,即AD=;(2)根据题意得,S=,∴当x≥2时,S随x的增大而减小,∵0<x<4,∴当S随x增大而减小时x的取值范围为2≤x<4.16.【解答】解:(1)连接OB,如图,∵CD是⊙O的直径,∴∠DBC=90°,∴∠D+∠BCD=90°,∵OB=OC,∴∠OCB=∠OBC,∴∠D+∠OBC=90°,∵∠D=∠BAC,∠BAC=∠CBG,∴∠CBG+∠OBC=90°,即∠OBG=90°,∴直线BG与⊙O相切;(2)∵OA=OC,OH⊥AC,∴∠COH=∠COA,CH=,∵∠ABC=∠AOC,∴∠EBF=∠COH,∵EF⊥BC,OH⊥AC,∴∠BEF=∠OHC=90°,∴△BEF∽△COH,∴,∵=,OC=OD,∴,∵CH=AC,∴,17.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∵AB=4,∴四边形AEFD的面积=AB×AD=4×10=40.18.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△ABE∽△DF A;(2)∵E是BC的中点,BC=4,∴BE=2,∵AB=6,∴AE=,∵四边形ABCD是矩形,∴AD=BC=4,∵△ABE∽△DF A,∴,∴.19.【解答】解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠DFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DF2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.20.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC∴PD∥AB.21.【解答】证明:(1)∵DC是⊙O的切线,∴∠OCD=90°,∵∠D=30°,∴∠BOC=∠D+∠OCD=30°+90°=120°,∵OB=OC,∴∠B=∠OCB=30°,∴∠DCB=120°=∠BOC,又∵∠B=∠B=30°,∴△BOC∽△BCD;(2)∵∠D=30°,DC=,∠OCD=90°,∴DC=OC=,DO=2OC,∴OC=1=OB,DO=2,∵∠B=∠D=30°,∴DC=BC=,∴△BCD的周长=CD+BC+DB=++2+1=3+2.22.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.∵AB∥CD,∴∠G=∠BAE=∠DAF,又∵∠D=∠D,∴△AFD∽△GAD.(2)证明:∵DF2=CF•CD,∴=,∵AD∥BH,∴=,∴=,∵AD=CD,∴CH=DF,∵△ABE≌△ADF,∴BE=DF,∴BE=CH.23.【解答】(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.24.【解答】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.25.【解答】解:(1)∵在正方形ABCD中,AD∥BC,∴∠DAG=∠F,又∵AG平分∠DAE,∴∠DAG=∠EAG,∴∠EAG=∠F,∴EA=EF,∵AB=2,∠B=90°,点E为BC的中点,∴BE=EC=1,∴AE==,∴EF=,∴CF=EF﹣EC=﹣1;(2)①证明:∵EA=EF,EG⊥AF,∴AG=FG,在△ADG和△FCG中,∴△ADG≌△FCG(AAS),∴DG=CG,即点G为CD的中点;②设CD=2a,则CG=a,由①知,CF=DA=2a,∵EG⊥AF,∠GCF=90°,∴∠EGC+∠CGF=90°,∠F+∠CGF=90°,∠ECG=∠GCF=90°,∴∠EGC=∠F,∴△EGC∽△GFC,∴,∵GC=a,FC=2a,∴,∴,∴EC=a,BE=BC﹣EC=2a﹣a=a,∴λ=.26.【解答】解:(1)如图1中,连接OD、DB,∵点E是线段OB的中点,DE⊥AB交⊙O于点D,∴DE垂直平分OB,∴DB=DO,OE=BE.解法一:∵在⊙O中,DO=OB,∴DB=DO=OB,∴△ODB是等边三角形,∴∠BDO=∠DBO=60°,∵BC=OB=BD,且∠DBE为△BDC的外角,∴∠BCD=∠BDC=∠DBO.∵∠DBO=60°,∴∠CDB=30°.∴∠ODC=∠BDO+∠BDC=60°+30°=90°,∴CD是⊙O的切线;解法二:∵BC=OB,OB=OD,∴===,又∵∠DOE=∠COD,∴△EOD∽△DOC,∴∠CDO=∠DEO=90°,∴CD为圆O的切线;(2)答:这个确定的值是.连接OP,如图2中:由已知可得:OP=OB=BC=2OE.∴==,又∵∠COP=∠POE,∴△OEP∽△OPC,∴==.27.【解答】(1)证明:如图1,连接AE,则∠A=∠C,∵AB是直径,∴∠AEB=90°,∴∠A+∠ABE=90°,∵∠C=∠DBE,∴∠ABE+∠DBE=90°,即∠ABD=90°,∴BD是⊙O的切线(2)解:如图2,延长EF交⊙O于H,∵EF⊥AB,AB是直径,∴,∴∠ECB=∠BEH,∵∠EBC=∠GBE,∴△EBC∽△GBE,∴,∵BC=BD,∴∠D=∠C,∵∠C=∠DBE,∴∠D=∠DBE,∴BE=DE=2,又∠AFE=∠ABD=90°,∴BD∥EF,∴∠D=∠CEF,∴∠C=∠CEF,∴CG=GE=3,∴BC=BG+CG=BG+3,∴,∴BG=﹣8(舍)或BG=5,即BG的长为5.28.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵EC=EB,∴BC=2BE=2CE,∵AD=2AB,∴AB=BE,∴AB=BE=AE,∴△ABE是等边三角形,∴∠ABE=∠AEB=60°,∵AB∥CD,∴∠C=180°﹣∠ABE=120°,∵CD=AB,AB=BE=CE,∴CD=CE,∴∠CED=(180°﹣∠C)=30°,∴∠AED=180°﹣∠AEB﹣∠CED=90°,∴DE⊥AE,∵AE是⊙A的半径,∴DE与⊙A相切.(2)如图,作BM⊥AE于M.∵△AEB是等边三角形,∴AE=AB=6,∵AD∥BC,∴△ADF∽△EBF,∴==2,∴AF=2EF,∴AF=AE=4,∵BM⊥AE,BA=BE,∴AM=ME=AE=3,∴FM=1,BM===3,在Rt△BFM中,BF==2.29.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.30.【解答】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.31.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,BC=AD,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)解:过点O作ON∥BC交AB于N,则△AON∽△ACB,∵OA=OC,∴ON=BC=2,BN=AB=3,∵ON∥BC,∴△ONE∽△MBE,∴=,即=,解得,BE=1.32.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵CD⊥AC,∴CD⊥OD,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴∠ABE=∠BDE=90°,∵CD⊥AC,∴∠C=∠BDE=90°,∵∠CAD=∠BAE=∠DBE,∴△ACD∽△BDE,∴CD•BE=AD•DE.33.【解答】解:(1)证明∵AB=BC ∴∠A=∠C∵OD=OA∴∠A=∠ADO∴∠C=∠ADO∴OD∥BC(2)如图,连接BD,∵∠A=30°,∠A=∠C∴∠C=30°∵DE为⊙O的切线,∴DE⊥OD∵OD∥BC∴DE⊥BC∴∠BED=90°∵AB为⊙O的直径∴∠BDA=90°,∠CBD=60°∴=tan∠C=tan30°=∴=cos∠CBD=cos60°=∴BE=BD=CD∴=34.【解答】证明:(1)∵OB平分∠AOC ∴∠BOE=∠AOC∵OC=OD∴∠D=∠OCD∵∠AOC=∠D+∠OCD∴∠D=∠AOC∴∠D=∠BOE,且∠A=∠A∴△ACD∽△ABO(2)∵EF切⊙O于E∴∠OEF=90°∵EF∥OC∴∠DOC=∠OEF=90°∵OC=OD=3∴CD==3∵△ACD∽△ABO∴∴∴AE=3∵EF∥OC∴∴∴EF=6﹣335.【解答】(1)解:∵矩形ABCD中,AD∥CF,∴∠DAF=∠ACF,∵AF平分∠DAC,∴∠DAF=∠CAF,∴∠F AC=∠AFC,∴AC=CF,∵AB=4,BC=3,∴==5,∴CF=5,∵AD∥CF,∴△ADE∽△FCE,∴,设DE=x,则,解得x=∴;(2)∵AD∥FH,AF∥DH,∴四边形ADFH是平行四边形,∴AD=FH=3,∴CH=2,BH=5,∵AD∥BH,∴△ADG∽△HBG,∴,∴,∴DG=,∵DE=,∴=,∴EG∥BC,∴∠1=∠AHC,又∵DF∥AH,∴∠AHC=∠DFC,∠1=∠DFC.36.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△EBF∽△EAD,∴==,∴BF=AD=BC,∴BF=CF;(2)解:∵四边形ABCD是平行四边形,∴AD∥CF,∴△FGC∽△DGA,∴=,即=,解得,FG=2.37.【解答】证明:(1)∵AC=BC,CD是圆的直径,∴由圆的对称性可知:∠ACD=∠BCD,∴CD⊥AB,∵AB∥EF,∴∠CDF=∠CGB=90°,∵OD是圆的半径,∴EF是⊙O的切线;(2)∵CD是圆的直径,∴∠CBD=90°,∵∠BDF+∠CDB=∠CDB+∠BCD=90°,∴∠BDF=∠BCD,∴△BCD∽△BDF,∴,∴BD2=BC•BF,∵BC=AC,∴BD2=AC•BF.38.【解答】(1)证明:连接OC,如图1所示:∵PC2=PB•P A,即=,∵∠P=∠P,∴△PBC∽△PCA,∴∠PCB=∠P AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵OC=OB,∴∠OBC=∠OCB,∴∠PCB+∠OCB=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:连接OD,如图2所示:∵PC=20,PB=10,PC2=PB•P A,∴P A===40,∴AB=P A﹣PB=30,∵△PBC∽△PCA,∴==2,设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,解得:x=6,即BC=6,∵点D是的中点,AB为⊙O的直径,∴∠AOD=90°,∵DE⊥AC,∴∠AEF=90°,∵∠ACB=90°,∴DE∥BC,∴∠DFO=∠ABC,∴△DOF∽△ACB,∴==,∴OF=OD=,即AF=,∵EF∥BC,∴==,∴EF=BC=.39.【解答】解:令OE=a,AO=b,CB=x,则由△GDC∽△EOC得,即,整理得:3.2+1.6b=2.1a﹣ax①,由△FBA∽△EOA得,即,整理得:1.6b=2a﹣ax②,将②代入①得:3.2+2a﹣ax=2.1a﹣ax,∴a=32,即OE=32,答:楼的高度OE为32米.40.【解答】证明:(1)连接OD,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,。
2020年人教版九年级数学下《第27章相似》专项训练含答案
2020年第27章相似专项训练专训1 证比例式或等积式的技巧名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·CF=BF·EC.(第1题)2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,试证明:AB·DF=BC·EF.(第2题)三点找三角形相似法3.如图,在▱ABCD中,E是AB延长线上的一点,DE交BC于F.求证:DCAE=CFAD.(第3题)4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.(第4题)构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.(第5题)等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.(第6题)7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.(第7题)两次相似法8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC 的平分线BE交AC于E,交AD于F.求证:BFBE=ABBC.(第8题)9.如图,在▱ABCD中,AM⊥BC,AN⊥CD,垂足分别为M,N.求证:(1)△AMB∽△AND;(2)AMAB=MNAC.(第9题)等积代换法10.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:AEAF=ACAB.(第10题)等线段代换法11.如图,等腰△ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF∥AB,延长BP交AC于点E,交CF 于点F,求证:BP2=PE·PF.(第11题)12.已知:如图,AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·PC.(第12题)专训2 巧用“基本图形”探索相似条件名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型.2.相交线型.3.子母型.4.旋转型.平行线型1.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE·BC=BD·AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.(第1题)相交线型2.如图,点D,E分别为△ABC的边AC,AB上的点,BD,CE交于点O,且EOBO=DOCO,试问△ADE与△ABC相似吗?请说明理由.(第2题)子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:ABAC =DFAF .(第3题)旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE∽△ABC;(2)ADAE=BDCE.(第4题)专训3 利用相似三角形巧证线段的数量和位置关系名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.证明两线段的数量关系类型1:证明两线段的相等关系1.如图,已知在△ABC中,DE∥BC,BE与CD交于点O,直线AO与BC边交于点M,与DE交于点N.求证:BM=MC.(第1题)2.如图,一直线和△ABC的边AB,AC分别交于点D,E,和BC的延长线交于点F,且AE CE=BF CF.求证:AD=DB.(第2题)类型2:证明两线段的倍分关系3.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,∠A=60°,求证:DE=12 BC.(第3题)4.如图,AM为△ABC的角平分线,D为AB的中点,CE∥AB,CE交DM的延长线于E.求证:AC=2CE.(第4题)证明两线段的位置关系类型1:证明两线段平行5.如图,已知点D为等腰直角三角形ABC的斜边AB 上一点,连接CD,DE⊥CD,DE=CD,连接CE,AE.求证:AE∥BC.(第5题)6.在△ABC中,D,E,F分别为BC,AB,AC上的点,EF∥BC,DF∥AB,连接CE和AD,分别交DF,EF于点N,M.(1)如图①,若E为AB的中点,图中与MN平行的直线有哪几条?请证明你的结论;(2)如图②,若E不为AB的中点,写出与MN平行的直线,并证明.(第6题)类型2:证明两线垂直7.如图,在△ABC中,D是AB上一点,且AC2=AB·AD,BC2=BA·BD,求证:CD⊥AB.(第7题)8.如图,已知矩形ABCD ,AD =13AB ,点E ,F 把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.(第8题)专训4 相似三角形与函数的综合应用名师点金:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题时常结合方程思想、分类讨论思想进行解答.相似三角形与一次函数1.如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝ ⎛⎭⎪⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.(第1题)相似三角形与二次函数2.如图,直线y=-x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A,B,C(1,0)三点.(1)求抛物线对应的函数解析式;(2)若点D的坐标为(-1,0),在直线y=-x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标.(第2题)3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=-x2+bx+c与直线BC交于点D(3,-4).(1)求直线BD和抛物线对应的函数解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN 垂直于x轴,垂足为点N,使得以M,O,N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由.(第3题)相似三角形与反比例函数4.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=kx(x>0)经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB 对应的函数解析式.(第4题)专训5 全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3 cm,6 cm,7 cm,9 cmB.2 cm,5 cm,0.6 dm,8 cmC.3 cm,9 cm,1.8 dm,6 cmD.1 cm,2 cm,3 cm,4 cm2.有一块三角形的草地,它的一条边长为25 m,在图纸上,这条边的长为5 cm,其他两条边的长都为4 cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.(第3题)概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.(第4题)2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?(第5题)性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE ⊥BC,DE与BA相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.(第6题)1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB 上一点,连接CD,DE⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE∽△OCD.(第7题)8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长.(第8题)2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?(第9题)应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.(第10题)1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O为位似中心,把△ABC 缩小为原来的一半(不改变方向),画出△ABC的位似图形.(第11题)1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC的延长线于点P,Q.(1)求∠PAQ的度数;(2)若点M为PQ的中点,求证:PM2=CM·BM.(第12题)答案专训1(第1题)1.证明:如图,过点C作CM∥AB交DF于点M. ∵CM∥AB,∴△CMF∽△BDF.∴BFCF =BD CM.又∵CM∥AD,∴△ADE∽△CME.∴AEEC=ADCM.∵D为AB的中点,∴BDCM =ADCM.∴BFCF=AEEC,即AE·CF=BF·EC.2.证明:过点D作DG∥BC,交AC于点G,∴△DGF∽△ECF,△ADG∽△ABC.∴EFDF=CEDG,ABBC=ADDG.∵AD=CE,∴CEDG =ADDG.∴ABBC=EFDF,即AB·DF=BC·EF.点拨:过某一点作平行线,构造出“A”型或“X”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD是平行四边形.∴AE∥DC,∠A=∠C.∴∠CDF=∠E,∴△DAE∽△FCD,∴DCAE=CFAD.4.证明:∵DM⊥BC,∠BAC=90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°.∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM. ∴∠B=∠BAM.∴∠BAM=∠D.又∵∠AME=∠DMA.∴△AME∽△DMA.∴AMMD=MEAM.∴AM2=MD·ME.(第5题) 5.证明:如图,连接PM,PN. ∵MN是AP的垂直平分线,∴MA=MP,NA=NP.∴∠1=∠2,∠3=∠4.又∵△ABC是等边三角形,∴∠B=∠C=∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C=120°. ∴∠5=∠7.∴△BPM∽△CNP.∴BPCN =BMCP,即BP·CP=BM·CN.6.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°,∴∠CED=∠BDE.又∵∠EDF=∠ABE,∴△DEF∽△BDE.(2)由△DEF∽△BDE得DEBD=EFDE,∴DE2=DB·EF.又由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴DG DE=DE DF,∴DE 2=DG ·DF ,∴DG ·DF =DB ·EF.7.证明:∵BG ⊥AP ,PE ⊥AB , ∴∠AEP =∠BED =∠AGB =90°.∴∠P +∠PAB =90°,∠PAB +∠ABG =90°. ∴∠P =∠ABG.∴△AEP ∽△DEB. ∴AE DE =PE BE,即AE ·BE =PE ·DE.又∵CE ⊥AB ,∴∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°.又∵∠ACB =90°,∴∠CAB +∠CBE =90°. ∴∠ACE =∠CBE.∴△AEC ∽△CEB.∴AE CE =CEBE,即CE 2=AE ·BE.∴CE 2=DE ·PE. 8.证明:易得∠BAC =∠BDF =90°. ∵BE 平分∠ABC ,∴∠ABE =∠DBF , ∴△BDF ∽△BAE ,得BD AB =BFBE.∵∠BAC =∠BDA =90°,∠ABC =∠DBA. ∴△ABC ∽△DBA ,得AB BC =BD AB ,∴BF BE =ABBC.9.证明:(1)∵四边形ABCD 为平行四边形.∴∠B =∠D.∵AM⊥BC,AN⊥CD,∴∠AMB=∠AND=90°,∴△AMB∽△AND.(2)由△AMB∽△AND得AMAN=ABAD,∠BAM=∠DAN.又AD=BC,∴AMAN=ABBC.∵AM⊥BC,AD∥BC,∴∠AMB=∠MAD=90°. ∴∠B+∠BAM=∠MAN+∠NAD=90°,∴∠B=∠MAN.∴△AMN∽△BAC,∴AMAB=MNAC.10.证明:∵AD⊥BC,DE⊥AB,∴∠ADB=∠AED=90°.又∵∠BAD=∠DAE,∴△ADE∽△ABD,得AD2=AE·AB,同理可得AD2=AF·AC,∴AE·AB=AF·AC,∴AEAF=ACAB.11.证明:连接PC,如图.∵AB=AC,AD⊥BC,∴AD垂直平分BC,∠ABC=∠ACB,∴BP=CP,∴∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4.∵CF∥AB,∴∠3=∠F,∴∠4=∠F.又∵∠CPF=∠CPE,∴△CPF∽△EPC,∴CPPE=PFCP,即CP2=PF·PE.∵BP=CP,∴BP2=PE·PF.(第11题)(第12题)12.证明:如图,连接PA,则PA=PD,∴∠PDA=∠PAD.∴∠B+∠BAD=∠DAC+∠CAP.又∵AD平分∠BAC,∴∠BAD=∠DAC.∴∠B=∠CAP.又∵∠APC=∠BPA,∴△PAC∽△PBA,∴PAPB=PCPA,即PA2=PB·PC,∴PD2=PB·PC. 专训21.(1)证明:∵ED ∥BC ,∴△ADE ∽△ABC.∴AE AC=DE BC.∵BE 平分∠ABC ,∴∠DBE =∠EBC. ∵ED ∥BC ,∴∠DEB =∠EBC. ∴∠DBE =∠DEB.∴DE =BD.∴AE AC =BD BC ,即AE ·BC =BD ·AC.(2)解:设h △ADE 表示△ADE 中DE 边上的高, h △BDE 表示△BDE 中DE 边上的高, h △ABC 表示△ABC 中BC 边上的高.∵S △ADE =3,S △BDE =2,∴S△ADE S△BDE=h △ADEh△BDE=32. ∴h △ADE h△ABC=35.∵△ADE∽△ABC,∴DEBC=h△ADEh△ABC=35.∵DE=6,∴BC=10.2.解:相似.理由如下:因为EOBO=DOCO,∠BOE=∠COD,∠DOE=∠COB,所以△BOE∽△COD,△DOE∽△COB.所以∠EBO=∠DCO,∠DEO=∠CBO.因为∠ADE=∠DCO+∠DEO,∠ABC=∠EBO+∠CBO.所以∠ADE=∠ABC.又因为∠A=∠A,所以△ADE∽△ABC.3.证明:∵∠BAC=90°,AD⊥BC于点D,∴∠BAC=∠ADB=90°.又∵∠CBA=∠ABD(公共角),∴△ABC∽△DBA.∴ABAC=DBDA,∠BAD=∠C.∵AD⊥BC于点D,E为AC的中点,∴DE=EC. ∴∠BDF=∠CDE=∠C.∴∠BDF=∠BAD.又∵∠F=∠F,∴△DBF∽△ADF.∴DBAD=DFAF.∴ABAC=DFAF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC中,AD⊥BC于点D,DE⊥AB于点E,DF⊥AC于点F,求证:AE·AB=AF·AC.可由两组“射影图”得AE·AB=AD2,AF·AC=AD2,∴AE·AB=AF·AC.4.证明:(1)∵∠DAB=∠EAC,∴∠DAE=∠BAC.又∵∠ADE=∠ABC,∴△ADE∽△ABC.(2)∵△ADE∽△ABC,∴ADAE=ABAC.∵∠DAB=∠EAC,∴△ADB∽△AEC.∴ADAE=BDCE.专训31.证明:∵DE∥BC.∴△NEO∽△MBO.∴NEMB=ONOM.同理可得DNMC=ONOM.∴DNMC=NEBM.∴DNNE=MCBM.∵DE∥BC,∴△ANE∽△AMC.∴ANAM=NEMC.同理可得ANAM=DNBM,∴DNBM=NEMC.∴DNNE=BMMC.∴MCBM=BMMC.∴MC2=BM2.∴BM=MC.(第2题) 2.证明:如图,过C作CG∥AB交DF于G点.∵CG∥AB,∴ADCG=AECE,BDCG=BFCF,∵AECE=BFCF,∴ADCG=BDCG,∴AD=BD.3.证明:∵BD⊥AC,CE⊥AB,∠A=60°,∠ABD=∠ACE=30°,∴ADAB=12,AEAC=12,∴ADAB=AEAC.又∠A=∠A,∴△ADE∽△ABC,∴DEBC=ADAB=12,∴DE=12BC.4.证明:如图,延长CE,交AM的延长线于F.∵AB∥CF,∴∠BAM=∠F,△BDM∽△CEM,△BAM∽△CFM,∴BD CE=BMMC,BACF=BMMC,∴BDCE=BACF.又∵BA=2BD,∴CF=2CE.又AM平分∠BAC,∴∠BAM=∠CAM,∴∠CAM=∠F,∴AC=CF,∴AC=2CE.(第4题)(第5题)5.证明:如图,过点C作CO⊥AB于点O.∵DE=CD,DE⊥CD,∴∠ECD=∠CED=45°.∵△ABC是等腰直角三角形,∴∠CAB=∠B=45°.∴∠CAB=∠CED.又∵∠AOC=∠EDC=90°,∴△ACO∽△ECD.∴ACCO=ECCD.又∵∠ACE+∠ECO=∠OCD+∠ECO=45°,∴∠ACE=∠OCD.∴△ACE∽△OCD.∴∠CAE=∠COD=90°.又∵∠ACB=90°,∴∠CAE+∠ACB=180°.∴AE∥BC.6.解:(1)MN∥AC∥ED.证明如下:∵EF∥BC,∴△AEM∽△ABD,△AMF∽△ADC,∴EMBD=AMAD=MFDC.∵E为AB的中点,EF∥BC,∴F为AC的中点.又∵DF∥AB,∴D为BC的中点,∴EM=MF.∵F为AC的中点,FN∥AE,∴N为EC的中点,从而MN∥AC.又∵D为BC的中点,E为AB的中点,∴ED∥AC,∴MN∥AC∥ED.(2)MN∥AC.证明如下:∵EF∥BC,∴△AEM∽△ABD,△AMF∽△ADC,∴EMBD=AMAD=MFDC,∴EMMF=BDDC.又∵DF∥AB,∴BDDC=ENNC,∴EMMF=ENNC,∴EMEF=ENEC.又∵∠MEN=∠FEC,∴△MEN∽△FEC.∴∠EMN=∠EFC.∴MN∥AC.7.证明:∵AC2=AB·AD,∴ACAD=ABAC.又∵∠A=∠A,∴△ACD∽△ABC.∴∠ADC=∠ACB.又∵BC2=BA·BD,∴BCBD=BABC.又∵∠B=∠B,∴△BCD∽△BAC.∴∠BDC=∠BCA.∴∠ADC=∠BDC.∵∠BDC+∠ADC=180°,∴∠ADC=∠BDC=90°. ∴CD⊥AB.8.证明:∵AD=13AB,点E,F把AB三等分,∴设AE=EF=FB=AD=k,则AB=CD=3k. ∵CD∥AB,∴∠DCG=∠FAG,∠CDG=∠AFG.∴△AFG∽△CDG,∴FGDG=AFCD=23.设FG=2m,则DG=3m,∴DF=FG+DG=2m+3m =5m.在Rt△AFD中,DF2=AD2+AF2=5k2,∴DF=5k.∴5m=5k.∴m=55k.∴FG=255k.∴AFFG=2k255k=5,DFEF=5kk= 5.∴AFFG=DFEF.又∠AFD=∠GFE,∴△AFD∽△GFE. ∴∠EGF=∠DAF=90°.∴EG⊥DF.专训41.解:(1)设直线AD 的解析式为y =kx +b(k ≠0)将D(0,1) A ⎝ ⎛⎭⎪⎫43,53代入解析式得:⎩⎪⎨⎪⎧b =153=43k +b 解得⎩⎪⎨⎪⎧b =1k =12∴直线AD 的解析式为y =12x +1.(2)直线AD 的解析式为y =12x +1.令y =0,得x =-2.得B(-2,0),即OB =2. 直线AC 为y =-x +3. 令y =0,得∴x =3. 得C(3,0),即BC =5设E ⎝ ⎛⎭⎪⎫x ,12x +1①当E 1C ⊥BC 时,如图,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC.∴△BOD ∽△BCE 1.此时点C 和点E 1的横坐标相同. 将x =3代入y =12x +1,解得y =52.∴E 1⎝ ⎛⎭⎪⎫3,52.②当CE 2⊥AD 时,如图,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C.过点E 2作EF ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. 又∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°. ∴∠E 2BF =∠CE 2F.∴△E 2BF ∽△CE 2F ,则E 2F BF =CFE 2F.即E 2F 2=CF ·BF.⎝ ⎛⎭⎪⎫12x +12=(3-x)(x +2)解得:x 1=2,x 2=-2(舍去) ∴E 2(2,2)当∠EBC =90°时,此情况不存在.综上所述:E 1⎝ ⎛⎭⎪⎫3,52或E 2(2,2).(第1题)(第2题)2.解:(1)由题意得A(3,0),B(0,3),∵抛物线经过A ,B ,C 三点,∴把A(3,0),B(0,3),C(1,0)三点的坐标分别代入y =ax 2+bx +c ,得方程组⎩⎪⎨⎪⎧9a +3b +c =0,c =3,a +b +c =0,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3,∴抛物线对应的函数解析式为y =x 2-4x +3. (2)如图,由题意可得△ABO 为等腰直角三角形.若△ABO ∽△AP 1D ,则AO AD =OB DP 1,∴DP 1=AD =4,∴P 1(-1,4);若△ABO ∽△ADP 2,过点P 2作P 2M ⊥x 轴于M ,∵△ABO 为等腰直角三角形,∴△ADP 2是等腰直角三角形,由三线合一可得DM =AM =2=P 2M ,即点M 与点C 重合,∴P 2(1,2),∴点P 的坐标为(-1,4)或(1,2).3.解:(1)易得A(-1,0),B(0,2),C(1,0). 设直线BD 对应的函数解析式为y =kx +m. 把B(0,2),C(1,0)的坐标分别代入y =kx +m ,得⎩⎪⎨⎪⎧m =2,k +m =0,解得⎩⎪⎨⎪⎧k =-2,m =2.∴直线BD 对应的函数解析式为y =-2x +2. ∵抛物线对应的函数解析式为y =-x 2+bx +c. ∴把B(0,2),D(3,-4)的坐标分别代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧c =2,-9+3b +c =-4,解得⎩⎪⎨⎪⎧b =1,c =2.∴抛物线对应的函数解析式为y =-x 2+x +2.(2)存在,①如图①,当△MON ∽△BCO 时,ON CO =MN BO ,即ON 1=MN 2,∴MN =2ON.设ON =a ,则M(a ,2a),∴-a 2+a +2=2a ,解得a 1=-2(不合题意,舍去),a 2=1,∴M(1,2);②如图②,当△MON ∽△CBO 时,ON BO =MN CO,即ON2=MN1,∴MN =12ON.设ON =n ,则M ⎝ ⎛⎭⎪⎫n ,12n ,∴-n 2+n +2=n2,解得n 1=1-334(不合题意,舍去),n 2=1+334,∴M(1+334,1+338).∴存在这样的点M(1,2)或⎝ ⎛⎭⎪⎫1+334,1+338.(第3题)4.解:(1)在矩形OABC 中,∵点B 的坐标为(2,3),∴BC 边的中点D 的坐标为(1,3).∵双曲线y =kx 经过点D(1,3),∴3=k1,∴k =3,∴y =3x .∵点E 在AB 上,∴点E 的横坐标为2.又∵双曲线y =3x 经过点E ,∴点E 的纵坐标为y =32,∴点E 的坐标为⎝ ⎛⎭⎪⎫2,32.(2)易得BD =1,BE =32,CB =2.∵△FBC ∽△DEB ,∴BDCF=BE CB ,即1CF =322,∴CF =43,∴OF =53,即点F 的坐标为⎝ ⎛⎭⎪⎫0,53.设直线FB 对应的函数解析式为y =k 1x +b ,而直线FB 经过B(2,3),F ⎝ ⎛⎭⎪⎫0,53,∴k 1=23,b =53,∴直线FB 对应的函数解析式为y =23x +53.专训5 1.C 2.203.解:四边形ABCD 与四边形A ′B ′C ′D ′相似.由已知条件知,∠DAB =∠D ′A ′B ′,∠B =∠B ′,∠BCD =∠B ′C ′D ′,∠D =∠D ′,且AB A ′B ′=BC B ′C ′=CD C ′D ′=DAD ′A ′=56,所以四边形ABCD与四边形A ′B ′C ′D ′相似.4.解:如图,过点B 作BM ⊥x 轴于点M ,过点B ′作B ′N ⊥x 轴于点N ,则△CBM ∽△CB ′N.所以MC NC =BMB ′N =BC B ′C.又由已知条件知NC =a +1,B ′N =-b ,BCB ′C =12,所以MC(a +1)=BM (-b)=12.所以MC =12(a +1),BM =-b2.所以MO =12(a +1)+1=a +32.所以点B 的坐标为⎝⎛⎭⎪⎫-a +32,-b 2.(第4题)5.解:(1)∵DE ∥BC ,∴AD AB =AE AC ,∴8-2x 8=y6,∴y =-32x +6(0≤x ≤4). (2)∵S △BDE =12·2x ·y =12·2x ·⎝ ⎛⎭⎪⎫6-32x =-32(x -2)2+6,∴当x =2时,S △BDE 有最大值,最大值为6.6.(1)证明:如图,∵D 是BC 边上的中点,DE ⊥BC , ∴EB =EC ,∴∠B =∠1.又∵AD =AC ,∴∠ACD =∠2,∴△ABC ∽△FCD. (2)解:如图,过点A 作AM ⊥CB 于点M. ∵D 是BC 边上的中点,∴BC =2CD.由(1)知△ABC ∽△FCD ,∴S△ABC S△FCD=⎝ ⎛⎭⎪⎫BC CD 2=41. 又∵S △FCD =5,∴S △ABC =20.∵S △ABC =12BC ·AM ,∴AM =2S△ABCBC=2×2010=4.∵DE ⊥BC ,AM ⊥BC ,∴DE ∥AM , ∴△BDE ∽△BMA.∴DE AM=BD BM.由AD =AC ,AM ⊥BC ,知DM =12CD =14BC =52.∴DE 4=55+52,∴DE =83.点拨:从复杂的图形中分析线段的特点和联系,找到切入点是解较复杂问题的关键.(第6题)7.证明:∵△ACB为等腰直角三角形,AB为斜边,∴∠CAB=45°.∵CO⊥AB.∴∠AOC=90°.又∵DE⊥CD,DE=CD,∴∠CED=45°,∠CDE=90°.∴∠CAO=∠CED,∠AOC=∠EDC.∴△ACO∽△ECD.∴∠ACO=∠ECD,ACCO =CE CD.∴∠ACE=∠OCD.∴△ACE∽△OCD.8.(1)证明:由四边形APCB内接于圆O,得∠FPC=∠B.又∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,所以∠APD=∠FPC,所以∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∠PAC=∠PDC,所以△PAC∽△PDF.(2)解:由(1)知△PAC∽△PDF,所以∠PCA=∠PFD.又∠PAC=∠CAF,所以△PAC∽△CAF,所以△CAF∽△PDF,所以PDAC=DFAF,则PD·AF=AC·DF.由AB=5,AC=2BC,∠ACB=90°,知BC=5,AC =2 5.由OE⊥CD,∠ACB=90°知CB2=BE·AB,CE=DE.所以BE=CB2AB=55=1.所以AE=4,CE=CB2-BE2=5-1=2,所以DE=2.又=,∠AFD=∠PCA,所以∠AFD=∠PCA=45°. 所以FE=AE=4,AF=42,所以PD=AC·DFAF=25×(4+2)42=3102.9.解:(方法一:作延长线)延长AD,与地面交于点M,如图①.(第9题)由AM∥FH知∠AMB=∠FHG.又因为AB⊥BG,FG⊥BG,DC⊥BG,所以△ABM∽△DCM∽△FGH,所以ABBM=CDCM=FGGH.因为CD=2 m,FG=1.2 m,GH=2 m,所以2CM=1.22,解得CM=103m.因为BC=4 m,所以BM=BC+CM=4+103=223(m).所以AB223=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.(方法二:作垂线)过点D作DM⊥AB于点M,如图②.所以AMDM=FGGH.而DM=BC=4 m,AM=AB-CD=AB-2(m),FG =1.2 m,GH=2 m,所以AB-24=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.10.解:如图,过点A作AF⊥DE,垂足为F,并延长交BC于点G.∵DE∥BC,∴△ADE∽△ABC.∵AF⊥DE,DE∥BC,∴AG⊥BC,∴AFAG=DEBC,∴30AG=2460.解得AG=75,∴FG=AG-AF=75-30=45,即河的宽度为45 m.(第10题)(第11题)11.思路导引:本题位似中心为O,先连接CO,因为要把原三角形缩小为原来的一半,可确定C′O=12CO,由其确定出C′的位置,再根据同样的方法确定出另外两个点.解:画出图形,如图中的△A′B′C′即为所求作的图形.点拨:抓住位似图形的性质,根据位似中心与三角形对应点的关系及位似比的大小确定所画位似图形的对应点,再画出图形.12.思路导引:(1)由角平分线的定义及∠BAD为平角直接可得.(2)由于线段PM,CM,BM在同一条直线上,所以必须把某条线段转化为另一相等的线段,构造相似三角形,因此可证PM=AM,从而证明△ACM与△ABM相似即可.(1)解:∵AP平分∠BAC,∴∠PAC=12∠BAC.又∵AQ平分∠CAD,∴∠CAQ=12∠CAD.∴∠PAC+∠CAQ=12∠BAC+12∠CAD=12(∠BAC+∠CAD).又∵∠BAC+∠CAD=180°,∴∠PAC+∠CAQ=90°,即∠PAQ=90°.(2)证明:由(1)知∠PAQ=90°,又∵M是线段PQ的中点,∴PM=AM,∴∠APM=∠PAM.∵∠APM=∠B+∠BAP,∠PAM=∠CAM+∠PAC,∠BAP=∠PAC,∴∠B=∠CAM.又∵∠AMC=∠BMA,∴△ACM∽△BAM.∴CMAM =AMBM,∴AM2=CM·BM,即PM2=CM·BM.点拨:本题运用了转化思想,在证明等积式时,常把它转化成比例式,寻找相似三角形进行求解.。
2020年九年级数学中考专题复习过关检测——图形的相似(Word版附答案)
《图形的相似》一、选择题(本大题共10小题,每题3分,共30分)1.已知xy =52,则x-yy的值为()A.32 B.2 C.-32D.-22.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF 分别交l1,l2,l3于点D,E,F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为()A.12 B.2 C.25D.35第2题图第3题图第4题图3.如图,为估算某河的宽度(河两岸平行),在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D 在同一条直线上,若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB等于()A.60 mB.40 mC.30 mD.20 m4.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为() A.1∶2 B.1∶4 C.1∶5 D.1∶65.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC 的延长线上,连接EF,分别交AD,CD于点G,H,连接AC,则下列结论错误的是()A.EABE =EGEFB.EGGH=AGGDC.ABAE =BCCFD.FHEH=CFAD6.△ABC如图所示,则下列四个选项中的三角形与△ABC相似的是(网格均由边长为1的小正方形组成)()A B C D7.如图,在△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A B C D8.如果五边形ABCDE∽五边形PQGMN,且周长之比为3∶2,那么五边形ABCDE和五边形PQGMN的面积之比是() A.2∶3 B.3∶2 C.6∶4 D.9∶4第8题图第9题图第10题图9.如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CD,连接AE,AF,EF.给出下列结CF=14论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的个数为()A.1B.2C.3D.410.如图所示,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F 在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12√2-6D.6√2-6二、填空题(本大题共8小题,每题4分,共32分)11.若一个三角形的三边之比为3∶5∶7,与它相似的三角形的最长边的长为21,则最短边的长为.12.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF 位似,原点O是位似中心,若AB=2,则DE= .第12题图第13题图第14题图13.如图,已知有两堵墙AB,CD,AB墙高2米,两墙之间的距离BC为 8米,小明将一架木梯放在距B点3米的E处靠向墙AB时,木梯有很多露出墙外.将木梯绕点E旋转90°靠向墙CD时,木梯刚好达到墙的顶端,则墙CD的高为米.14.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC 为边的正方形BCED的面积,S2表示长为AG、宽为AC的矩形ACFG的面积,其中AG=AB.则S1与S2的大小关系为.15.在△ABC中,∠B=25°,AD是BC边上的高,且AD2=BD·DC,则∠BCA 的度数为.16.如图,已知AB∥EF∥CD,若AB=6 cm,CD=9 cm,则EF= .第16题图第17题图第18题图17.如图,在矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP= .18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2……以此类推,则S n= .(用含n的式子表示,n为正整数)三、解答题(本大题共5小题,共58分)19.(10分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,DE,AC与DE相交于点F.(1)求证:△ADF∽△CEF;的值.(2)若AD=4,AB=6,求ACAF20.(10分)如图,在6×6的正方形网格中,每个小正方形的边长都为1.(顶点都在网格线交点处的三角形叫做格点三角形)(1)在图1中,请判断△ABC与△DEF是否相似,并说明理由;(2)在图2中,以O为位似中心,再画一个格点三角形,使它与△ABC的相似比为2∶1;(3)在图3中,请画出所有与△ABC相似,且有一条公共边和一个公共角的格点三角形.图1图2图321.(12分)如图,在△ABC中,BA=BC=20 cm,AC=30 cm,点P从点A出发,沿着AB边以4 cm/s的速度向点B运动;同时点Q从点C出发,沿CA 边以3 cm/s的速度向点A运动,当点P到达点B时停止运动,Q点随之停止运动.设运动的时间为x s.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.22.(12分)雯雯和笑笑想利用皮尺和所学的几何知识测量学校操场上旗杆的高度,他们的测量方案如下:当雯雯站在旗杆正前方地面上的点D处时,笑笑在地面上找到一点G,使得点G、雯雯的头顶C及旗杆的顶部A三点在同一直线上,并测得DG=2.8 m;然后雯雯向前移动1.5 m到达点F处,笑笑同样在地面上找到一点H,使得点H、雯雯的头顶E 及旗杆的顶部A三点在同一直线上,并测得GH=1.7 m.已知图中的所有点均在同一平面内,且点B,D,F,G,H均在同一直线上,AB⊥BH,CD⊥BH,EF⊥BH,雯雯的身高CD=EF=1.6 m.请你根据以上测量数据,求该校旗杆的高度AB.23.(14分)如图1所示,在等边三角形ABC 中,线段AD 为其内角平分线,过点D 的直线B 1C 1⊥AC 于点C 1,交AB 的延长线于点B 1. (1)请你探究:AC AB =CD DB ,AC 1AB 1=DC 1DB 1是否都成立?(2)请你继续探究:若△ABC 为任意三角形,线段AD 为其内角平分线,AC AB =CD DB一定成立吗?并证明你的判断.(3)如图2所示,在Rt△ABC 中,∠ACB=90°,AC=8,AB=403,E 为AB 上一点且AE=5,CE 交内角平分线AD 于点F.试求DFFA 的值.图1图2参考答案题号 12345678910答案 A D B B C B C D B D11.9 12.6 13.7.5 14.S 1=S 2 15.65°或115° 16.185cm 17.1或4或2.5 18.√32×(34)n19. (1)∵∠ACB=90°,E 为AB 的中点,∴AE=CE ,∴∠EAC=∠ACE.∵AC平分∠DAB,∴∠DAC=∠CAB, ∴∠DAC=∠ACE,又∵∠AFD=∠CFE,∴△ADF∽△CEF.(2)由(1)知△ADF∽△CEF,∴ADCE =AF CF.∵CE=12AB=3,AD=4,∴AFCF =ADCE=43,∴ACAF=74.20. (1)△ABC与△DEF相似.理由如下:∵AB=1,BC=√5,AC=2 √2,DE=√2,EF=√10,DF=4,∴ABDE =BCEF=ACDF=√2=√22,∴△ABC∽△DEF.(2)如图所示,△A'B'C'即所求.(3)如图所示,△ADC,△CEB和△AFB即所求.21. (1)由题意得AP=4x cm,CQ=3x cm,AQ=(30-3x)cm,0≤x≤5.当PQ∥BC时,有APAB =AQAC,即4x20=30−3x30,解得x=103,∴当x=103时,PQ∥BC.(2)能.∵AB=CB ,∴∠A=∠C.分两种情况讨论.①若△APQ ∽△CBQ ,则AP CB =AQ CQ ,即4x 20=30−3x3x,解得x=5或x=-10(舍去),此时AP=20 cm .②若△APQ ∽△CQB ,则AP CQ =AQCB ,即4x 3x =30−3x20,解得x=109或x=0(舍去),此时AP=409cm.综上,当AP=20 cm 或409cm 时,△APQ 与△CQB 相似. 22. 由题意知,FH=2.8-1.5+1.7=3(m). 由AB ⊥BH ,CD ⊥BH ,EF ⊥BH , 可得△CDG ∽△ABG ,△EFH ∽△ABH ,∴CD AB =DG BG ,EF AB =FHBH ,∴DG BG =FHBH ,即 2.8BD+2.8=3BD+2.8+1.7,解得BD=21 m,∴1.6AB = 2.821+2.8,解得AB=13.6 m .即该校旗杆的高度AB 为13.6 m . 23. (1)两个等式都成立.理由如下:∵△ABC 为等边三角形,AD 为其内角平分线, ∴∠CAD=∠BAD=30°,AB=AC ,DB=CD , ∴AC AB =CDDB .∵∠C 1AB 1=60°,B 1C 1⊥AC , ∴∠B 1=30°,∴AB 1=2AC 1.∵∠DAB1=∠B1=30°,∴DA=DB1, 而DA=2DC1,∴DB1=2DC1,∴AC1AB1=DC1 DB1.(2)一定成立.证明如下:如图,△ABC为任意三角形,过点B作BE∥AC交AD的延长线于点E, ∴∠E=∠CAD=∠BAD,∴BE=AB.由BE∥AC,可得△EBD∽△ACD,∴ACBE =CD DB.又∵BE=AB,∴ACAB =CD DB.(3)如图,连接DE,∵AD为△ABC的内角平分线,∴由(2)知,在△ABC中,CDDB =ACAB=35,在△ACE中,EFFC=AEAC=58.∵AEEB =AEAB-AE=5403-5=35,∴CDDB=AEEB,又∵∠DFE=∠AFC,∴△DEF∽△ACF,∴DFFA =EFCF=58.。
2020-2021九年级数学 相似的专项 培优易错试卷练习题含详细答案
2020-2021九年级数学相似的专项培优易错试卷练习题含详细答案一、相似1.在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC= ,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,,直接写出tan∠CEB的值.【答案】(1)解:∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN(2)解:如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.∵∠BAP+∠1=∠CPM+∠1=90°,∴∠BAP=∠CPM=∠C,∴MP=MC∵tan∠PAC=,设MN=2m,PN=m,根据勾股定理得,PM=,∴tanC=(3)解:在Rt△ABC中,sin∠BAC= = ,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴ =同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC= =【解析】【分析】(1)根据垂直的定义得出∠AMB=∠BNC=90°,根据同角的余角相等得出∠BAM=∠CBN,利用两个角对应相等的两个三角形相似得出:△ABM∽△BCN;(2)过点P作PF⊥AP交AC于F,在Rt△AFP中根据正切函数的定义,由tan∠PAC=,同(1)的方法得,△ABP∽△PQF,故,设AB= a,PQ=2a,BP= b,FQ=2b(a>0,b>0),然后判断出△ABP∽△CQF,得从而表示出CQ,进根据线段的和差表示出BC,再判断出△ABP∽△CBA,得出再得出BC,从而列出方程,表示出BC,AB,在Rt△ABC中,根据正切函数的定义得出tanC的值;(3)在Rt△ABC中,利用正弦函数的定义得出:sin∠BAC=,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,根据平行线分线段成比例定理得出,同(1)的方法得,△ABG∽△BCH ,故,设BG=4m,CH=3m,AG=4n,BH=3n,根据等腰三角形的三线合一得出EG=BG=4m,故GH=BG+BH=4m+3n,根据比例式列出方程,求解得出n与m的关系,进而得出EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中根据正切函数的定义得出tan∠BEC的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 A
B
C
D
N
D
相似
1.在△ABC 中,∠CAB=90°,AD ⊥BC 于点 D ,点 E 为 AB 的中点,EC 与 AD 交于点 G ,点 F 在 BC 上.
(1)如图 1,AC :AB=1:2,EF ⊥CB ,求证:EF=CD .
(2)如图 2,AC :AB=1: ,EF ⊥CE ,求 EF :EG 的值.
2.如图△ABC 中,AB=AC ,BD ∥AC ,CE ∥AB ,过点 A 的直线交 BD 于 D ,交 CE 于 E ; (1)求证:△ABD ∽△ECA ;
(2)延长 CD 交 AB 于 N ,延长 EB 交 CA 于 M ,求证:AM=BN 。
M
A
B
C
E E
3.△ABC 中,AB=AC=5.
(1)如图1,若sin∠BAC=,求S
;
△ABC
(2)如图2,若 BC=AC,延长 BC 到D,使 CD=BC,点 M 为BC 上一点,连接 AM 并延长到P,使∠APD=∠B ,延长AC 交PD 于N,连接MN.求证:AM=MN;
4.如图,等腰直角△ABC 中,∠C=90°,CA=CB,AD 平分∠BAC 交BC 于D,过D 作DE⊥AD 交AB 于E,垂足为D,过B 作BF⊥AB 交AD 的延长线于F,垂足为B,连EF 交BD 于M.
(1)求证:AE=2BD;(2)求证:MF2=DM•BF;
5.如图,已知正方形ABCD,点E 是边AB 上一动点,点F 在边AB 延长线上,点G 在边AD 上,FG 分别交ED,BC 于点M, N,AE=BF,连接CF.
6.已知:四边形ABCD 为正方形,P 为BC 延长线上的一点,E 为直线DP 上的一动点,过点E 作直线,分别交直线CD 和直线AB 于M、N 两点.
7.如图1,在△ACD 中,AC=2DC,AD= 5 DC
,
(1
)求∠C 的度数;
(2)如图2,延长CA 到E,使AE=CD,延长CD 到B,使DB=CE,AB、ED 交于点O.求证:∠BOD=45°;
8.如图,Rt△ABC 中,∠BAC=90°,AB=2,AC=4,D 是BC 边上一动点,G 是BC 边上的一动点,GE∥AD 分别交AC、BA 或其延长线于F、E 两点.
(1)如图2,若BD=CD 时,求证:FG+EG=2AD
(2)
如图1,当BC=5BD,
EF
FC
2
时,求AE 的值3
9.在等腰Rt△ABC 中,AC=BC,点D 在BC 上,过点D 作DE⊥AD,过点B 作BE⊥AB 交DE 于点E,DE 交AB 于 F.
(1)求证:AD=DE;(2)若BD=2CD,求证:AF=5BF
10.△ABC 是边长为6 的等边三角形,D、E 分别是AB、BC 上的动点,且BE=DC,连AD、CE 交于点M,
(1)求证:△AME∽△ABD
(2)连DE,若BD=2DC,①求证:DE⊥AB;②连BM,求BM 的长
11.矩形ABCD 中,E 为AB 上一点EF⊥DE 交BC 于F,G 为DE 上一点,AH⊥DE 于H,EF=EG=AE (1)如图②,求证:BF=EH
12.Rt△ABC 中,∠ACB=90°,AC=BC,点D 是线段BC 上一点,BD
=n
,过点
C 作
CE⊥
AD 于F,
BC
交AB 于E,连DE.
(1)连AD,当n =
1
时,求tan∠DAB;(2)在(1)的条件下,求
CE
的值;
2 DE
13.Rt△ABC 中,∠ACB=90°,AC=BC,点D 是线段BC 上一点,
BD
=n ,过点C 作CE⊥AD 于F,
BC
交AB 于E,连DE.
(1)连AD,当n =
1
时,求tan∠DAB;(2)在(1)的条件下,求
CE
的值;
2 DE
14.如图1,在矩形ABCD 中,AE⊥BD 于点E.
(1)求证:BE•BC=AE•CD;
(2)如图2,若点P 是边AD 上一点,且PE⊥EC.求证:AE•AB=DE•AP.
15.如图,四边形 ABCD 是矩形,点 E 在线段CB 的延长线上,连接 DE 交AB 于点F,∠AED=2∠CED ,点G 是DF 的中点.
(1)求证:AE=AG;
(2)若BE=2,BF=1,AG=5,点H 是AD 的中点,求GH 的长.
16.如图,在菱形ABCD 中,点F 在AD 上,连接BF,与AC 交于点E.
(1)若AB=6,AF=2,EF=1,求 BE 的长度;
(2)已知点 P 在边 CD 上,请以 CP 为边,用尺规作一个与△CPQ 与△AEF 相似,并使得点 Q 在 AC 上.(只须作出一个△CPQ,保留作图痕迹,不写作法).
17.如图,在△ABC 中,点 D 、E 分别在边 AB 、BC 上,AE 与 CD 交于点 F ,若 AE 平分∠BAC , AB•AF=AC•AE .
(1)求证:∠AFD=∠AEC ;
(2)若 EG ∥CD ,交边 AC 的延长线于点 G ,求证:CD•CG=FC•BD .
18.如图,△ABC 中,DE ∥BC ,G 是 AE 上一点,连接 BG 交 DE 于 F ,作 GH ∥AB 交 DE 于点 H . (1)如图 1,与△GHE
相似三角形是 (直接写出答案);
(2
)如图 1,若 AD=3BD ,BF=FG ,求 EG :AG 的值;
(3)如图 2,连接 CH 并延长交 AB 于 P 点,交 BG 于 Q ,连接 PF ,则一定有 PF ∥CE ,请说明理由.
19.如图,在▱ ABCD 中,E 为对角线 AC 上一点,连接 DE ,作 EF ⊥DE ,交 AD 于点 F ,G 为 AD 边上一点,且 AB=AG ,连接 GE .
(1)若点 G 为 DF 的中点,AF=2,EG=4,∠B=60°,求 AC 的长;
(2)连接 CG 交 DE 于点 H ,若 EG ∥CD ,∠ACB=∠DCG ,求证:∠ECG=2∠AEF .
20.如图,在 Rt △ABC 中,∠C=90°,AD 平分∠BAC 交 BC 于点 D ,DE ⊥AD 交 AB 于 E ,EF ∥BC 交 AC 于 F .
(1)求证:△ACD ∽△ADE ; (2)求证:AD 2=AB•AF ;
(3)作 DG ⊥BC 交 AB 于 G ,连接 FG ,若 FG=5,BE=8,直接写出 AD 的长.
21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.
(1)如图 1,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是 BD ,AD 上的点.求证: 四边形 ABEF 是邻余四边形.
(2)如图 2,在(1)的条件下,取 EF 中点 M ,连结 DM 并延长交 AB 于点 Q ,延长 EF 交 AC 于点 N .若 N 为 AC 的中点,DE=2BE ,QB=3,求邻余线 AB 的长.
22.在 Rt △ABC 中,∠ACB=90°,AB=5,AC=3.矩形 DEFG 的顶点 D 、G 分别在边 AC 、BC 上, EF 在边 AB 上. (1)点 C 到 AB 的距离为
.
(2
)如图①,若 DE=DG ,求矩形 DEFG 的周长. (3)如图②,若矩形 DEFG 的周长是 DE 长的 8 倍,则矩形 DEFG 的周长为 .
23.已知:如图,在△ABC 中,AB=AC ,AD 是边 BC 上的中线,BE ⊥AC 于点 E ,AD 与 BE 交于点 H .
(1)求证:BD 2=DH•DA ;
(2)过点 C 作 CF ∥AB 交 BE 的延长线于点 F .求证:HB 2=HE•HF .
24.在平行四边形ABCD 中,AD=BD,E 为AB 的中点,F 为CD 上一点,连接EF 交BD 于G.
(1)如图1,若DF=DG=2,AB=8,求EF 的长;
(2)如图2,∠ADB=90°,点P 为平行四边形ABCD 外部一点,且AP=AD,连接BP、DP、EP,DP 交EF 于点Q,若BP⊥DP,EF⊥EP,求证:DQ=PQ.
25.已知,如图,矩形ABCD 中,AD=2,AB=3,点E,F 分别在边AB,BC 上,且BF=FC,连接DE,EF,并以DE,EF 为边作▱DEFG.
(1)求▱DEFG 对角线DF 的长;
(2)求▱DEFG 周长的最小值;
(3)当▱DEFG 为矩形时,连接BG,交EF,CD 于点P,Q,求BP:QG 的值.
26.如图,正方形ABCD 的边长为1.对角线AC、BD 相交于点O,P 是BC 延长线上的一点,AP 交BD 于点E,交CD 于点H,OP 交CD 于点F,且EF 与AC 平行.
(1)求证:EF⊥BD.
(2)求证:四边形ACPD 为平行四边形.
(3)求OF 的长度.
27.如图,在正方形ABCD 中,边长为4,∠MDN=90°,将∠MDN 绕点D 旋转,其中DM 边分别与射线BA、直线AC 交于E、Q 两点,DN 边与射线BC 交于点F;连接EF,且EF 与直线AC 交于点P.(1)如图1,点E 在线段AB 上时,①求证:AE=CF;②求证:DP 垂直平分EF;
(2)当AE=1 时,求PQ 的长.。