广东省中考数学试题解析版.doc

合集下载

2020年广东省深圳市中考数学试题及参考答案(word解析版)

2020年广东省深圳市中考数学试题及参考答案(word解析版)

深圳市2020年初中毕业生学业考试数学试卷(满分100分,考试时间90分钟)一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,2476.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.59.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.18.(6分)先化简,再求值:÷(2+),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解答过程】解:2020的相反数是:﹣2020.故选:C.【总结归纳】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答过程】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.【总结归纳】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答过程】解:将150000000用科学记数法表示为1.5×108.故选:D.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【知识考点】简单几何体的三视图.【思路分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【解答过程】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【总结归纳】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,247【知识考点】算术平均数;中位数.【思路分析】根据中位数、众数的计算方法,分别求出结果即可.【解答过程】解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.【总结归纳】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【解答过程】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.【总结归纳】本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【知识考点】平行线的性质.【思路分析】根据平角的定义和平行线的性质即可得到结论.【解答过程】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.【总结归纳】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.5【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】依据等腰三角形的性质,即可得到BD=BC,进而得出结论.【解答过程】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.【总结归纳】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和【知识考点】分式方程的解;平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【思路分析】根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.【解答过程】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【解答过程】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.【总结归纳】此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根【知识考点】根的判别式;二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c 与直线y=n+1无交点,可对D进行判断.【解答过程】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.【总结归纳】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【知识考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【思路分析】连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.【解答过程】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.【总结归纳】本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【解答过程】解:m3﹣m=m(m2﹣1),=m(m+1)(m﹣1).【总结归纳】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.【知识考点】概率公式.【思路分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【解答过程】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【解答过程】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.【总结归纳】本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.【知识考点】角平分线的性质;解直角三角形.【思路分析】通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC∽△DAN,进而得出对应边成比例,再根据tan∠ACB=,=,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.【解答过程】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.【总结归纳】本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.【解答过程】解:原式=3﹣2×+3﹣13﹣+﹣1=2.【总结归纳】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(6分)先化简,再求值:÷(2+),其中a=2.【知识考点】分式的化简求值.【思路分析】先将分式进行化简,然后代入值即可求解.【解答过程】解:原式=÷=÷=×=当a=2时,原式==1.【总结归纳】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.【解答过程】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【知识考点】三角形中位线定理;切线的性质.【思路分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解答过程】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【知识考点】一元一次方程的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.【解答过程】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【总结归纳】本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.【知识考点】相似形综合题.【思路分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP =∠PAE=90°,连接EG,BD,由勾股定理可求出答案.【解答过程】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【总结归纳】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)将点A(﹣3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;(2)分三种情况:①0<t<1时,②1≤t<时,③≤t≤3时,可由面积公式得出答案;(3)令F(﹣1,t),则MF=,ME=﹣n,得出,可求出n=.则得出答案.【解答过程】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,若B'C'与y轴交于点F,∵OO'=t,OB'=1﹣t,∴OF=3OB'=3﹣3t,∴S=×(C'O'+OF)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).【总结归纳】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。

2022年广东省中山市中考数学试卷(解析版)

2022年广东省中山市中考数学试卷(解析版)

2022年广东省中山市中考数学试卷(真题)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.43.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.26.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC 9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y410.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.12.(3分)(2022•广东)单项式3xy的系数为.13.(3分)(2022•广东)菱形的边长为5,则它的周长是.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2022年广东省中山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.【分析】根据绝对值的意义解答即可.【解答】解:根据绝对值的意义:|﹣2|=2,故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.4【分析】应用有理数的乘方运算法则进行计算即可得出答案.【解答】解:22=4.故选:D.【点评】本题主要考查了有理数的乘方,熟练掌握有理数的乘方运算法则进行求解是解决本题的关键.3.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°【分析】利用平行线的性质可得结论.【解答】解:∵a∥b,∴∠2=∠1=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行,同位角角相等”是解决本题的关键.5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.2【分析】由题意可得DE是△ABC的中位线,再根据三角形中位线的性质即可求出DE的长度.【解答】解:∵点D,E分别为AB,AC的中点,BC=4,∴DE是△ABC的中位线,∴DE=BC=×4=2,故选:D.【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线的定义和性质是解决问题的关键.6.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.【点评】本题主要考查了平面直角坐标系中点的坐标,熟练掌握点的平移规律是解答本题的关键.7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.【分析】应用简单随机事件概率计算方法进行计算即可得出答案.【解答】解:根据题意可得,P(从中任取1本书是物理书)=.故选:B.【点评】本题主要考查了概率公式,熟练掌握简单随机事件概率的计算方法进行求解是解决本题的关键.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC【分析】根据平行四边形的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,故选:C.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对边相等的性质是解决问题的关键.9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y4【分析】根据k>0可知增减性:在每一象限内,y随x的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k=4>0,∴在第一象限内,y随x的增大而减小,∵(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,且1<2<3<4,∴y4最小.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象的增减性是解答此题的关键.10.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.【点评】本题主要考查了特殊角三角函数值,熟练掌握特殊角三角函数值进行求解是解决本题的关键.12.(3分)(2022•广东)单项式3xy的系数为 3 .【分析】应用单项式的定义进行判定即可得出答案.【解答】解:单项式3xy的系数为3.故答案为:3.【点评】本题主要考查了单项式,熟练掌握单项式的定义进行求解是解决本题的关键.13.(3分)(2022•广东)菱形的边长为5,则它的周长是20 .【分析】根据菱形的性质即可解决问题;【解答】解:∵菱形的四边相等,边长为5,∴菱形的周长为5×4=20,故答案为20.【点评】本题考查菱形的性质、解题的关键是记住菱形的四边相等,属于中考基础题.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a= 1 .【分析】把x=1代入方程x2﹣2x+a=0中,计算即可得出答案.【解答】解:把x=1代入方程x2﹣2x+a=0中,得1﹣2+a=0,解得a=1.故答案为:1.【点评】本题主要考查了一元二次方程的解,应用一元二次方程的解的定义进行求解是解决本题的关键.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.【分析】应用扇形面积计算公式进行计算即可得出答案.【解答】解:S===π.故答案为:π.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解即可得出答案.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.【分析】原式通分并利用同分母分式的加法法则计算,得到最简结果,把a 的值代入计算即可求出值.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【分析】根据角平分线性质得出PD=PE,即可利用HL证明Rt△OPD≌Rt△OPE.【解答】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL).【点评】此题考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)把x=2,y=19代入y=kx+15中,即可算出k的值,即可得出答案;(2)把y=20代入y=2x+15中,计算即可得出答案.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15;(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.【点评】本题主要考查了函数关系式及函数值,熟练掌握函数关系式及函数值的计算方法进行求解是解决本题的关键.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?【分析】(1)根据销售成绩统计,即可得出销售4万元和8万元的人数,即可补充完整图形;(2)根据众数,中位数,算术平均数的计算方法进行求解即可得出答案;(3)根据(2)中的结论进行分析即可得出答案.【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4,中位数为:5,平均数为:=7(3)应确定销售目标为7万元,要让一半以上的销售人员拿到奖励.【点评】本题主要考查了条形统计图,中位数,众数,算术平均数,熟练掌握条形统计图,中位数,众数,算术平均数的计算方法进行求解是解决本题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.【点评】本题主要考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理,熟练掌握相关性质定理是解答本题的关键.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【分析】(1)根据A(1,0),AB=4求出B(﹣3,0),把A、B的坐标代入抛物线y=x2+bx+c,即可求解;(2)过Q作QE⊥x轴于E,设P(m,0),则PA=1﹣m,易证△PQA∽△BCA,利用相似三角形的性质即可求出QE的长,又因为S△CPQ=S△PCA﹣S△PQA,进而得到△CPQ面积和m的二次函数关系式,利用二次函数的性质即可求出面积最大值.【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则PA=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴OB=3 AB=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=PA•CF﹣PA•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,解题的关键是抓住图形中某些特殊的数量关系和位置关系.此题综合性较强,中等难度,是一道很好的试题.。

2022年广东省中考数学试卷真题+答案解析

2022年广东省中考数学试卷真题+答案解析

2022年广东省初中学业水平考试数学本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值等于()A.2B.C.D.﹣22.计算的结果是()A.1B.C.2D.43.下列图形中具有稳定性的是()A.平行四边形B.三角形C.长方形D.正方形4.如图,直线a,b被直线c所截,a∥b,∠1=40°,则∠2等于()A.30°B.40°C.50°D.60°5.如图,在中,,点D,E分别为,中点,则()A. B. C.1D.26.在平面直角坐标系中,将点向右平移2个单位后,得到的点的坐标是()A. B. C. D.7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A. B. C. D.8.如图,在中,一定正确的是()A. B. C. D.9.点,,,在反比例函数图象上,则,,,中最小的是()A. B. C. D.10.水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为.下列判断正确的是()A.2是变量B.是变量C.r是变量D.C是常量二、填空题:本大题共5小题,每小题3分,共15分.11.sin30°的值为_____.12.单项式的系数为___________.13.菱形的边长为5,则它的周长为____________.14.若是方程的根,则____________.15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留)为____________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.解不等式组:.17.先化简,再求值:,其中.18.如图,已知,点P在上,,,垂足分别为D,E.求证:.四、解答题(二):本大题共3小题,每小题9分,共27分.19.《九章算术》是我国古代数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.物理实验证实:在弹性限度内,某弹簧长度y()与所挂物体质量x()满足函数关系.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20时,求所挂物体质量.21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22.如图,四边形内接于,为的直径,.(1)试判断的形状,并给出证明;(2)若,,求长度.23.如图,抛物线(b,c是常数)的顶点为C,与x轴交于A,B两点,,,点P为线段上的动点,过P作交于点Q.(1)求该抛物线的解析式;(2)求面积的最大值,并求此时P点坐标.2022年广东省初中学业水平考试数学本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的值等于()A.2B.C.D.﹣2【答案】A【解析】【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以,故选A.2.计算的结果是()A.1B.C.2D.4【答案】D【解析】【分析】利用乘方的意义计算即可.【详解】解:故选:D.【点睛】本题考查有理数的乘方,熟练掌握乘方的意义是解答本题的关键.3.下列图形中具有稳定性的是()A.平行四边形B.三角形C.长方形D.正方形【答案】B【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性可得结论.详解】解:三角形具有稳定性;故选:B.【点睛】本题考查了三角形的稳定性和四边形的不稳定性,比较简单.4.如图,直线a,b被直线c所截,a∥b,∠1=40°,则∠2等于()A.30°B.40°C.50°D.60°【答案】B【解析】【分析】两条平行线被第三条直线所截,同位角相等.即:两直线平行,同位角相等.【详解】,,.故选.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.5.如图,在中,,点D,E分别为,的中点,则()A. B. C.1D.2【答案】D【解析】【分析】利用中位线的性质即可求解.【详解】∵D、E分比为AB、AC的中点,∴DE为△ABC的中位线,∴,∵BC=4,∴DE=2,故选:D.【点睛】本题考查了中位线的判定与性质,掌握中位线的判定与性质是解答本题的关键.6.在平面直角坐标系中,将点向右平移2个单位后,得到的点的坐标是()A. B. C. D.【答案】A【解析】【分析】把点的横坐标加2,纵坐标不变,得到,就是平移后的对应点的坐标.【详解】解:点向右平移2个单位长度后得到的点的坐标为.故选A.【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键.7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A. B. C. D.【答案】B【解析】【分析】根据概率公式直接求概率即可;【详解】解:一共有3本书,从中任取1本书共有3种结果,选中的书是物理书的结果有1种,∴从中任取1本书是物理书的概率=,故选:B.【点睛】本题考查了概率的计算,掌握概率=所求事件的结果数÷总的结果数是解题关键.8.如图,在中,一定正确的是()A. B. C. D.【答案】C【解析】【分析】根据平行四边形的性质:平行四边形的对边相等,然后对各选项进行判断即可.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC故选C.【点睛】本题考查了平行四边形的性质.解题的关键在于熟练掌握平行四边形的性质.9.点,,,在反比例函数图象上,则,,,中最小的是()A. B. C. D.【答案】D【解析】【分析】根据反比例函数的性质可直接进行求解.【详解】解:由反比例函数解析式可知:,∴在每个象限内,y随x的增大而减小,∵点,,,在反比例函数图象上,∴,故选D.【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.10.水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为.下列判断正确的是()A.2是变量B.是变量C.r是变量D.C是常量【答案】C【解析】【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.【详解】解:2与π为常量,C与r为变量,故选C.【点睛】本题考查变量与常量概念,能够熟练掌握变量与常量的概念为解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.sin30°的值为_____.【答案】【解析】【详解】试题分析:根据特殊角的三角函数值计算即可:sin30°=.12.单项式的系数为___________.【答案】3【解析】【分析】单项式中数字因数叫做单项式的系数,从而可得出答案.【详解】的系数是3,故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义.13.菱形的边长为5,则它的周长为____________.【答案】20【解析】【分析】根据菱形的四条边相等,即可求出.【详解】∵菱形的四条边相等.∴周长:,故答案为:20.【点睛】本题考查菱形的性质;熟练掌握菱形的性质是本题解题关键.14.若是方程的根,则____________.【答案】1【解析】【分析】本题根据一元二次方程的根的定义,把x=1代入方程得到a的值.【详解】把x=1代入方程,得1−2+a=0,解得a=1,故答案:1.【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留)为____________.【答案】【解析】【分析】根据扇形面积公式可直接进行求解.【详解】解:由题意得:该扇形的面积为;故答案为.【点睛】本题主要考查扇形面积公式,熟练掌握扇形的面积公式是解题的关键.三、解答题(一):本大题共3小题,每小题8分,共24分.16.解不等式组:.【答案】【解析】【分析】分别解出两个不等式,根据求不等式组解集的口诀得到解集.【详解】解:解①得:,解②得:,∴不等式组的解集是.【点睛】本题考查求不等式组的解集,掌握求不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解题关键.17.先化简,再求值:,其中.【答案】,11【解析】【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=,a=5代入得:原式=2×5+1=11;【点睛】本题考查了分式化简求值,掌握平方差公式是解题关键.18.如图,已知,点P在上,,,垂足分别为D,E.求证:.【答案】见解析【解析】【分析】根据角平分线的性质得,再用HL证明.【详解】证明:∵,∴为的角平分线,又∵点P在上,,,∴,,又∵(公共边),∴.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生人数为7人,该书的单价为53元.【解析】【分析】设学生人数为x人,然后根据题意可得,进而问题可求解.【详解】解:设学生人数为x人,由题意得:,解得:,∴该书的单价为(元),答:学生人数为7人,该书的单价为53元.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.20.物理实验证实:在弹性限度内,某弹簧长度y()与所挂物体质量x()满足函数关系.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20时,求所挂物体的质量.【答案】(1)(2)所挂物体的质量为2.5kg【解析】【分析】(1)由表格可代入x=2,y=19进行求解函数解析式;(2)由(1)可把y=20代入函数解析式进行求解即可.【小问1详解】解:由表格可把x=2,y=19代入解析式得:,解得:,∴y与x的函数关系式为;【小问2详解】解:把y=20代入(1)中函数解析式得:,解得:,即所挂物体的质量为2.5kg.【点睛】本题主要考查一次函数的应用,解题的关键是得出一次函数解析式.21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)作图见解析;(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;(3)月销售额定为7万元合适,【解析】【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;(2)根据众数、中位数及平均数的计算方法求解即可;(3)根据题意,将月销售额定为7万元合适.【小问1详解】解:根据数据可得:销售额为4万元的人数为4人;销售额为8万元的人数为2人;补全统计图如图所示:【小问2详解】由条形统计图可得:月销售额在4万元的人数最多;将数据按照从小到大排序后,中间的月销售额为第8名销售员的销售额为5万元;平均数为:万元;小问3详解】月销售额定为7万元合适,给予奖励,可以激发销售员的积极性,振兴乡村经济.【点睛】题目主要考查条形统计图及相关统计数据的计算方法,包括,众数、中位数、平均数,以及利用平均数做决策等,理解题意,综合运用这些知识点是解题关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如图,四边形内接于,为的直径,.(1)试判断的形状,并给出证明;(2)若,,求的长度.【答案】(1)△ABC是等腰直角三角形;证明见解析;(2);【解析】【分析】(1)根据圆周角定理可得∠ABC=90°,由∠ADB=∠CDB根据等弧对等角可得∠ACB=∠CAB,即可证明;(2)Rt△ABC中由勾股定理可得AC,Rt△ADC中由勾股定理求得CD即可;【小问1详解】证明:∵AC是圆的直径,则∠ABC=∠ADC=90°,∵∠ADB=∠CDB,∠ADB=∠ACB,∠CDB=∠CAB,∴∠ACB=∠CAB,∴△ABC是等腰直角三角形;【小问2详解】解:∵△ABC是等腰直角三角形,∴BC=AB=,∴AC=,Rt△ADC中,∠ADC=90°,AD=1,则CD=,∴CD=;【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.23.如图,抛物线(b,c是常数)的顶点为C,与x轴交于A,B两点,,,点P为线段上的动点,过P作交于点Q.(1)求该抛物线的解析式;(2)求面积的最大值,并求此时P点坐标.【答案】(1)(2)2;P(-1,0)【解析】【分析】(1)用待定系数法将A,B的坐标代入函数一般式中,即可求出函数的解析式;(2)分别求出C点坐标,直线AC,BC的解析式,PQ的解析式为:y=-2x+n,进而求出P,Q的坐标以及n的取值范围,由列出函数式求解即可.【小问1详解】解:∵点A(1,0),AB=4,∴点B的坐标为(-3,0),将点A(1,0),B(-3,0)代入函数解析式中得:,解得:b=2,c=-3,∴抛物线的解析式为;【小问2详解】解:由(1)得抛物线的解析式为,顶点式为:,则C点坐标为:(-1,-4),由B(-3,0),C(-1,-4)可求直线BC的解析式为:y=-2x-6,由A(1,0),C(-1,-4)可求直线AC的解析式为:y=2x-2,∵PQ∥BC,设直线PQ的解析式为:y=-2x+n,与x轴交点P,由解得:,∵P在线段AB上,∴,∴n的取值范围为-6<n<2,则∴当n=-2时,即P(-1,0)时,最大,最大值为2.【点睛】本题考查二次函数的面积最值问题,二次函数的图象与解析式间的关系,一次函数的解析式与图象,熟练掌握数形结合思想是解决本题的关键.。

2021年广东省广州市数学中考真题含答案解析及答案(word解析版)

2021年广东省广州市数学中考真题含答案解析及答案(word解析版)

解:从几何体的正面看可得图形.点评:从几何体的正面看可得图形.向下移动1格 B 向上移动1格 C 向上移动2格 D分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图可以将图形N向下移动2格.故选点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位是一道基础题:电视,C:网络,D:身边的人,E:其名中学生进行该问卷调查,根据调查的结分析:根据等量关系为:两数x,y之和是得:.故选:点评:此题主要考查了由实际问题抽象出二元一次方程组)分析:根据二次根式的性质和分式的意义解:根据题意得:,解得:点评:本题考查的知识点为:分式有意义EF=AB=2,∵==1,,AF==4,则AC=2AF=8,tanB===2.故选D=AOD=OA=3,OP=,OD=3,PD===2,BO==3,===x+y=1+2+12=2,∴△BA′E≌△DCE点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2021年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率。

(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数。

(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率。

2020年广东省中考数学试卷及答案(word解析版)

2020年广东省中考数学试卷及答案(word解析版)

2020年广东省初中毕业生学业考试数 学说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。

2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。

题序一二三四五六七八总分得分说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是A.21B. 21C.-2D.2 答案:C解析:2的相反数为-2,选C ,本题较简单。

2.下列几何体中,俯视图为四边形的是答案:D解析:A 、B 、C 的俯视图分别为五边形、三角形、圆,只有D 符合。

3.据报道,2020年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 答案:B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 1 260 000 000 000=1.26×1012元 4.已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33> 答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误,选D 。

2023年广东省中考数学试题(含答案)

2023年广东省中考数学试题(含答案)

机密★启用前2023年广东省初中学业水平考试数学本试卷共4页, 23小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作A.-5元B.0元C.+5元D.+10元2.下列出版社的商标图案中,是轴对称图形的为3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为A.0.186×10⁵B.1.86×10⁵C.18.6×10⁴D.186×10³4.如题4图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=A.43°B.53°C.107°D.1375.计算3a+2a的结果为A. 1a B.6a2C.5aD. 6a6.我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了A.黄金分割数B.平均数C.众数D.中位数7.某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4 门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为A.18B. 16C. 14D. 12 8.一元一次不等式组 {x −2>1,x <4的解集为 A.-1<x <4 B.x <4C. x <3D.3<x <49.如题9图,AB 是⊙O 的直径,∠BAC =50°,则∠D =A.20°B.40°C.50°D.80°10.如题10图, 抛物线y=ax²+c 经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则a 的值为A.-1B.-2C.-3D.-4二、填空题:本大题共5小题,每小题3分,共15分.11.因式分解: X ²-1= .12.计算: √3×√12= .13.某蓄电池的电压为48V ,使用此蓄电池时,电流I (单位:A)与电阻R (单位:Ω)的函数表达式为 I =48R .当R =12Ω时, I 的值为 A.14.某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打 折.15.边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如题15图),则图中阴影部分的面积为 .三、解答题(一): 本大题共3小题, 第16题10分, 第17、 18题各7分, 共24分.16.(1) 计算:√83+|−5| +(−1)2023.(2)已知一次函数y =k X +b 的图象经过点(0,1)与点(2,5),求该一次函数的表达式.17.某学校开展了社会实践活动,活动地点距离学校12km.甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min ,求乙同学骑自行车的速度. 18.2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如题18图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC = BC =10m,两臂夹角∠ACB =100°时,求A ,B 两点间的距离.(结果精确到0.1m,参考数据 sin50°≈0.766, cos50°≈0.643, tan 50°≈1.192)根据以上信息解答下列问题:四、解答题(二):本大题共3小题,每小题9分,共27分.19.如题19图,在ABCD 中,∠DAB =30°.(1)实践与操作:用尺规作图法过点D 作AB 边上的高DE ; (保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD =4,AB =6,求BE 的长.20.综合与实践主题:制作无盖正方体形纸盒素材:一张正方形纸板.步骤1:如题20-1图,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如题20-2图,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC 与纸盒上∠A ₁B ₁C ₁的大小关系;(2)证明(1)中你发现的结论.21.小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日) 选择A 线路,第二周(5个工作日)选择B 线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表 数据折线统计图(1) 填空: a = ; b = ; c = ;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.五、解答题(三):本大题共2小题,每小题12分,共24分.试验序号 1 2 3 4 5 6 7 8 9 10A 线路所用时间 15 32 15 16 34 18 21 14 35 20B 线路所用时间 25 29 23 25 27 26 31 28 30 24平均数 中位数 众数 方差 A 线路所用时间22 a 15 63.2 B 线路所用时间 b 26.5 c6.3622.综合探究如题22-1图, 在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A'. 连接AA'交BD于点E,连接CA'.(1)求证: AA′⊥CA′;(2)以点O为圆心,OE为半径作圆.①如题22-2图,⊙O与CD相切,求证: AA′=√3CA′;②如题22-3图,⊙O与CA'相切,AD=1,求⊙O的面积.23.综合运用如题23-1图,在平面直角坐标系中,正方形OABC的顶点A在X轴的正半轴上. 如题23-2图,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y= X于点E, BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3), 求FC的长;(3)如题23-3图, 对角线AC交y轴于点M, 交直线y= X于点N,连接FN.将△OFN与△OCF的面积分别记为S₁与S₂.设S=S₁-S₂, AN=n,求S关于n的函数表达式.。

(精品中考卷)广东省中考数学真题(解析版)

(精品中考卷)广东省中考数学真题(解析版)

2022年广东省初中学业水平考试数学本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的值等于()A. 2B.12- C. 12D. ﹣2【答案】A【解析】【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A.2. 计算22的结果是()A. 1B.C. 2D. 4【答案】D【解析】【分析】利用乘方的意义计算即可.【详解】解:22224=⨯=故选:D .【点睛】本题考查有理数的乘方,熟练掌握乘方的意义是解答本题的关键.3. 下列图形中具有稳定性的是( )A. 平行四边形B. 三角形C. 长方形D. 正方形【答案】B【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性可得结论. 详解】解:三角形具有稳定性;故选:B .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,比较简单.4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=40°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°【答案】B【解析】 【分析】两条平行线被第三条直线所截,同位角相等.即:两直线平行,同位角相等.【详解】 //a b ,140∠=︒,∴240∠=︒.故选B .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 5. 如图,在ABC 中,4BC =,点D ,E 分别为AB ,AC 的中点,则DE =( )A. 14B. 12 C. 1 D. 2【答案】D【解析】【【分析】利用中位线的性质即可求解.【详解】∵D 、E 分比为AB 、AC 的中点,∴DE 为△ABC 的中位线, ∴12DE BC =, ∵BC =4,∴DE =2,故选:D .【点睛】本题考查了中位线的判定与性质,掌握中位线的判定与性质是解答本题的关键. 6. 在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A. ()3,1B. ()1,1-C. ()1,3D. ()1,1- 【答案】A【解析】【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键. 7. 书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( ) A. 14 B. 13 C. 12 D. 23【答案】B【解析】【分析】根据概率公式直接求概率即可;【详解】解:一共有3本书,从中任取1本书共有3种结果,选中的书是物理书的结果有1种,∴从中任取1本书是物理书的概率=13, 故选: B .【点睛】本题考查了概率的计算,掌握概率=所求事件的结果数÷总的结果数是解题关键. 8. 如图,在ABCD 中,一定正确的是( )A. AD CD =B. AC BD =C. AB CD =D. CD BC =【答案】C【解析】【分析】根据平行四边形的性质:平行四边形的对边相等,然后对各选项进行判断即可.【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ,AD =BC故选C .【点睛】本题考查了平行四边形的性质.解题的关键在于熟练掌握平行四边形的性质. 9. 点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A. 1yB. 2yC. 3yD. 4y 【答案】D【解析】【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>, ∴在每个象限内,y 随x 的增大而减小, ∵点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x =图象上, ∴1234y y y y >>>,故选D .【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键. 10. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2πC r =.下列判断正确的是( )A. 2是变量B. π是变量C. r 是变量D. C 是常量【答案】C【解析】【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.【详解】解:2与π为常量,C 与r 为变量,故选C .【点睛】本题考查变量与常量概念,能够熟练掌握变量与常量的概念为解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11. sin30°的值为_____. 【答案】12【解析】【详解】试题分析:根据特殊角的三角函数值计算即可:sin30°=12.12. 单项式3xy 的系数为___________.【答案】3【解析】【分析】单项式中数字因数叫做单项式的系数,从而可得出答案.【详解】3xy 的系数是3,故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义. 13. 菱形的边长为5,则它的周长为____________.【答案】20【解析】【分析】根据菱形的四条边相等,即可求出.【详解】∵菱形的四条边相等.∴周长:5420⨯=,故答案为:20.【点睛】本题考查菱形的性质;熟练掌握菱形的性质是本题解题关键.14. 若1x =是方程220x x a -+=的根,则=a ____________.【答案】1【解析】【分析】本题根据一元二次方程的根的定义,把x =1代入方程得到a 的值.【详解】把x =1代入方程220x x a -+=,得1−2+a =0,解得a =1,故答案:1. 的为【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.15. 扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________.【答案】π【解析】【分析】根据扇形面积公式可直接进行求解. 【详解】解:由题意得:该扇形的面积为2902360ππ⨯⨯=; 故答案为π.【点睛】本题主要考查扇形面积公式,熟练掌握扇形的面积公式是解题的关键.三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解不等式组:32113x x ->⎧⎨+<⎩. 【答案】12x <<【解析】【分析】分别解出两个不等式,根据求不等式组解集的口诀得到解集.【详解】解:32113x x ->⎧⎨+<⎩①②解①得:1x >,解②得:2x <,∴不等式组的解集是12x <<.【点睛】本题考查求不等式组的解集,掌握求不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解题关键.17. 先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【解析】【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式化简求值,掌握平方差公式是解题关键.18. 如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为的D ,E .求证:OPD OPE ≌V V .【答案】见解析【解析】【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌V V .【详解】证明:∵AOC BOC ∠=∠,∴OC 为AOB ∠的角平分线,又∵点P 在OC 上,PD OA ⊥,PE OB ⊥,∴PD PE =,90PDO PEO ∠=∠=︒,又∵PO PO =(公共边),∴()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生人数为7人,该书的单价为53元.【解析】【分析】设学生人数为x 人,然后根据题意可得8374x x -=+,进而问题可求解.【详解】解:设学生人数为x 人,由题意得:8374x x -=+,解得:7x =,∴该书的单价为77453⨯+=(元),答:学生人数为7人,该书的单价为53元.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.20. 物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足函数关系15y kx =+.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5y 15 19 25(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量.【答案】(1)215y x =+(2)所挂物体的质量为2.5kg【解析】【分析】(1)由表格可代入x =2,y =19进行求解函数解析式;(2)由(1)可把y =20代入函数解析式进行求解即可.【小问1详解】解:由表格可把x =2,y =19代入解析式得: 21519k +=,解得:2k =,∴y 与x 的函数关系式为215y x =+;【小问2详解】解:把y =20代入(1)中函数解析式得:21520x +=,解得: 2.5x =,即所挂物体的质量为2.5kg .【点睛】本题主要考查一次函数的应用,解题的关键是得出一次函数解析式. 21. 为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)作图见解析;(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;(3)月销售额定为7万元合适,【解析】【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;(2)根据众数、中位数及平均数的计算方法求解即可;(3)根据题意,将月销售额定为7万元合适.【小问1详解】解:根据数据可得:销售额为4万元的人数为4人;销售额为8万元的人数为2人;补全统计图如图所示:【小问2详解】由条形统计图可得:月销售额在4万元的人数最多;将数据按照从小到大排序后,中间的月销售额为第8名销售员的销售额为5万元; 平均数为:3144537182103181715⨯+⨯+⨯+⨯+⨯+⨯+⨯=万元; 小问3详解】月销售额定为7万元合适,给予奖励,可以激发销售员的积极性,振兴乡村经济.【点睛】题目主要考查条形统计图及相关统计数据的计算方法,包括,众数、中位数、平均数,以及利用平均数做决策等,理解题意,综合运用这些知识点是解题关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22. 如图,四边形ABCD 内接于O ,AC 为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明;(2)若AB =,1AD =,求CD 的长度.【答案】(1)△ABC 是等腰直角三角形;证明见解析;(2【解析】【分析】(1)根据圆周角定理可得∠ABC =90°,由∠ADB =∠CDB 根据等弧对等角可得∠ACB =∠CAB ,即可证明;(2)Rt △ABC 中由勾股定理可得AC ,Rt △ADC 中由勾股定理求得CD 即可;【【小问1详解】证明:∵AC 是圆的直径,则∠ABC =∠ADC =90°,∵∠ADB =∠CDB ,∠ADB =∠ACB ,∠CDB =∠CAB ,∴∠ACB =∠CAB ,∴△ABC 是等腰直角三角形;【小问2详解】解:∵△ABC 是等腰直角三角形,∴BC =AB ,∴AC 2=,Rt △ADC 中,∠ADC =90°,AD =1,则CD =∴CD ; 【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.23. 如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,()1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ 面积的最大值,并求此时P 点坐标.【答案】(1)223y x x =+-(2)2;P (-1,0)【解析】【分析】(1)用待定系数法将A ,B 的坐标代入函数一般式中,即可求出函数的解析式;(2)分别求出C 点坐标,直线AC ,BC 的解析式,PQ 的解析式为:y =-2x +n ,进而求出P ,Q 的坐标以及n 的取值范围,由CPQ CPA APQ S S S =-△△△列出函数式求解即可.【小问1详解】解:∵点A (1,0),AB =4,∴点B 的坐标为(-3,0),将点A (1,0),B (-3,0)代入函数解析式中得:01093b c b c =++⎧⎨=-+⎩, 解得:b =2,c =-3,∴抛物线的解析式为223y x x =+-;【小问2详解】解:由(1)得抛物线的解析式为223y x x =+-,顶点式为:2y (x 1)4=+-,则C 点坐标为:(-1,-4),由B (-3,0),C (-1,-4)可求直线BC 的解析式为:y =-2x -6,由A (1,0),C (-1,-4)可求直线AC 的解析式为:y =2x -2,∵PQ ∥BC ,设直线PQ 的解析式为:y =-2x +n ,与x 轴交点P ,02n ⎛⎫ ⎪⎝⎭, 由222y x n y x =-+⎧⎨=-⎩解得:22,42n n Q +-⎛⎫ ⎪⎝⎭, ∵P 在线段AB 上, ∴312n -<<, ∴n 的取值范围为-6<n <2,则CPQ CPA APQ S S S =-△△△11214122222n n n -⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()21228n =-++ ∴当n =-2时,即P (-1,0)时,CPQ S △最大,最大值为2.【点睛】本题考查二次函数的面积最值问题,二次函数的图象与解析式间的关系,一次函数的解析式与图象,熟练掌握数形结合思想是解决本题的关键。

2023年广东省河源市中考数学试卷含答案解析

2023年广东省河源市中考数学试卷含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作( )A. −5元B. 0元C. +5元D. +10元2.下列出版社的商标图案中,是轴对称图形的为( )A. B.C. D.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A. 0.186×105B. 1.86×105C. 18.6×104D. 186×1034.如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=( )A. 43°B. 53°C. 107°D. 137°5.计算3a +2a的结果为( )A. 1a B. 6a2C. 5aD. 6a6.我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了( )A. 黄金分割数B. 平均数C. 众数D. 中位数7.某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( ) A. 18B. 16C. 14D. 128.一元一次不等式组{x −2>1x <4的解集为( )A. −1<x <4B. x <4C. x <3D. 3<x <49.如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A. 20°B. 40°C. 50°D. 80°10.如图,抛物线y =ax 2+c 经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则ac 的值为( ) A. −1 B. −2 C. −3 D. −4二、填空题:本题共5小题,每小题3分,共15分。

2023年广东省中考数学真题(解析版)

2023年广东省中考数学真题(解析版)

2023年广东省初中学业水平考试数学满分120分,考试用时90分钟.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作5+元,那么支出5元记作( ) A 5−元 B. 0元C. 5+元D. 10+元【答案】A 【解析】【分析】根据相反数的意义可进行求解.【详解】解:由把收入5元记作5+元,可知支出5元记作5−元; 故选A .【点睛】本题主要考查相反数的意义,熟练掌握相反数的意义是解题的关键. 2. 下列出版社的商标图案中,是轴对称图形的为( )A. B. C. D.【答案】A 【解析】【分析】根据轴对称图形的概念:一个图形沿一条直线折叠,直线两旁部分能够完全重合的图形;由此问题可求解.【详解】解:符合轴对称图形的只有A 选项,而B 、C 、D 选项找不到一条直线能使直线两旁部分能够完全重合; 故选A .【点睛】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键.3. 2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为( ) A. 50.18610× B. 51.8610×C. 418.610×D. 318610×【答案】B 【解析】.【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数. 【详解】解:将数据186000用科学记数法表示为51.8610×; 故选B【点睛】本题主要考查科学记数法,熟练掌握科学记数法的表示方法是解题的关键. 4. 如图,街道AB 与CD 平行,拐角137ABC ∠=°,则拐角BCD ∠=( )A. 43°B. 53°C. 107°D. 137°【答案】D 【解析】【分析】根据平行线的性质可进行求解. 【详解】解:∵AB CD ,137ABC ∠=°, ∴137BCD ABC ∠=∠=°; 故选D .【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键. 5. 计算32a a+的结果为( ) A.1aB.26aC.5aD.6a【答案】C 【解析】【分析】根据分式的加法运算可进行求解. 【详解】解:原式5a=; 故选C .【点睛】本题主要考查分式的运算,熟练掌握分式的运算是解题的关键.6. 我国著名数学家华罗庚曾为普及优选法作出重要贡献,优选法中有一种0.618法应用了( ) A. 黄金分割数 B. 平均数C. 众数D. 中位数【答案】A【解析】【分析】根据黄金分割比可进行求解.【详解】解:0.618为黄金分割比,所以优选法中有一种0.618法应用了黄金分割数; 故选A .【点睛】本题主要考查黄金分割比,熟练掌握黄金分割比是解题的关键.7. 某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为( ) A.18B.16C.14D.12【答案】C 【解析】【分析】根据概率公式可直接进行求解.【详解】解:由题意可知小明恰好选中“烹饪”的概率为14; 故选C .【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键. 8. 一元一次不等式组214x x −> <的解集为( )A. 14x −<<B. 4x <C. 3x <D. 34x <<【答案】D 【解析】【分析】第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:214x x −><①② 解不等式①得:3x >结合②得:不等式组的解集是34x <<, 故选:D .【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键. 9. 如图,AB 是O 的直径,50BAC ∠=°,则D ∠=( )A. 20°B. 40°C.50°D. 80°【答案】B 【解析】【分析】根据圆周角定理可进行求解. 【详解】解:∵AB 是O 直径,∴90ACB ∠=°, ∵50BAC ∠=°,∴9040ABC BAC ∠=°−∠=°,∵ AC AC=, ∴40D ABC ∠=∠=°; 故选B .【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键. 10. 如图,抛物线2y ax c =+经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则ac 的值为( )A. 1−B. 2−C. 3−D. 4−【答案】B 【解析】【分析】连接AC ,交y 轴于点D ,根据正方形的性质可知22AC OB AD OD ===,然后可得点,22c c A,进而代入求解即可.的【详解】解:连接AC ,交y 轴于点D ,如图所示:当0x =时,则y c =,即OB c =, ∵四边形OABC 是正方形,∴22AC OB AD OD c ====,AC OB ⊥,∴点,22c c A, ∴224c c a c =×+, 解得:2ac =−, 故选B .【点睛】本题主要考查二次函数的图象与性质及正方形的性质,熟练掌握二次函数的图象与性质及正方形的性质是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11. 因式分解:21x −=______. 【答案】()()11x x +− 【解析】【分析】利用平方差公式进行因式分解即可得. 【详解】解:()()2111x x x −+−,故答案为:()()11x x +−.【点睛】本题考查了利用平方差公式进行因式分解,熟记平方差公式是解题关键. 12.=_________. 【答案】6 【解析】【分析】利用二次根式的乘法法则进行求解即可.6==.故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.13. 某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为48IR=,当12R=Ω时,I的值为_______A.【答案】4【解析】【分析】将12R=Ω代入48IR=中计算即可;【详解】解:∵12R=Ω,∴4848412IR===()A故答案为:4.【点睛】本题考查已知自变量的值求函数值,掌握代入求值的方法是解题的关键.14. 某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打_______折.【答案】8.8【解析】【分析】设打x折,由题意可得5441010x×−≥×%,然后求解即可.【详解】解:设打x折,由题意得5441010x×−≥×%,解得:8.8≥x;故答案为8.8.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.15. 边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为_______.【答案】15 【解析】【分析】根据正方形的性质及相似三角形的性质可进行求解. 【详解】解:如图,由题意可知10,6,90AD DC CG CE GF CEF EFG =====∠=∠=°,4GH =, ∴10CH AD ==,∵90,D DCH AJD HJC ∠=∠=°∠=∠, ∴()AAS ADJ HCJ ≌, ∴5CJ DJ ==, ∴1EJ =, ∵GI CJ ∥, ∴HGI HCJ ∽, ∴25GIGH CJ CH ==, ∴2GI =, ∴4FI =, ∴()1152EJIF S EJ FI EF =+⋅=梯形; 故答案为15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16. (12023|5|(1)−+−;(2)已知一次函数y kx b =+的图象经过点(0,1)与点(2,5),求该一次函数的表达式. 【答案】(1)6;(2)21y x =+ 【解析】【分析】(1)先求出立方根及有理数的乘方运算,绝对值的化简,然后计算加减法即可; (2)将两个点代入解析式求解即可.【详解】解:(12023|5|(1)−+−251=+− 6=;(2)�一次函数y kx b =+的图象经过点(0,1)与点(2,5), �代入解析式得:152b k b = =+ ,解得:12b k == , ∴一次函数的解析式为:21y x =+. 【点睛】题目主要考查实数的混合运算及待定系数法确定一次函数解析式,熟练掌握这些基础知识点是解题关键.17. 某学校开展了社会实践活动,活动地点距离学校12km ,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min ,求乙同学骑自行车的速度. 【答案】乙同学骑自行车的速度为0.2千米/分钟. 【解析】【分析】设乙同学骑自行车的速度为x 千米/分钟,则甲同学骑自行车的速度为1.2x 千米/分钟,根据时间=路程÷速度结合甲车比乙车提前10分钟到达,即可得出关于x 的分式方程,解之并检验后即可得出结论. 【详解】解:设乙同学骑自行车的速度为x 千米/分钟,则甲同学骑自行车的速度为1.2x 千米/分钟, 根据题意得:1212101.2x x−=, 解得:0.2x =.经检验,0.2x =是原方程的解,且符合题意, 答:乙同学骑自行车的速度为0.2千米/分钟.【点睛】题目主要考查分式方程的应用,理解题意列出分式方程是解题的关键.18. 2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂10m AC BC ==,两臂夹角100ACB ∠=°时,求A ,B 两点间的距离.(结果精确到0.1m ,参考数据sin 500.766°≈,cos500.643°≈,tan 50 1.192°≈)【答案】15.3m 【解析】【分析】连接AB ,作作CD AB ⊥于D ,由等腰三角形“三线合一”性质可知,2AB AD =,1502ACD ACB ∠=∠=°,在Rt ACD △中利用sin AD ACD AC∠=求出AD ,继而求出AB 即可.【详解】解:连接AB ,作CD AB ⊥于D ,∵AC BC =,CD AB ⊥,∴CD 是边AB 边上的中线,也是ACB ∠的角平分线,∴2AB AD =,1502ACD ACB ∠=∠=°, 在Rt ACD △中,10m AC =,50ACD ∠=°,sin AD ACD AC∠= ∴sin 5010AD°=, ∴10sin 50100.7667.66AD =°≈×=∴()227.6615.3215.3m ABAD =≈×=≈ 答:A ,B 两点间的距离为15.3m .【点睛】本题考查等腰三角的性质,解直角三角形的应用等知识,掌握等腰三角形的性质是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 如图,ABCD Y 中,30DAB ∠=°.在(1)实践与操作:用尺规作图法过点D 作AB 边上的高DE ;(保留作图痕迹,不要求写作法) (2)应用与计算:在(1)的条件下,4=AD ,6AB =,求BE 的长. 【答案】(1)见解析 (2)6− 【解析】【分析】(1)根据过直线外一点作已知直线的垂线的方法作图即可,可用圆规以点D 为圆心,在AB 上找到两个点到点D 的距离相等,再分别以这两个点为圆心,相等且大于这两点距离的一半为半径画弧,再找到一个到这两个点的距离相等的点,连接最后得到的点与点D 所得线段所在的直线就是高DE 所在的直线,据此画图即可;(2)先利用30度角余弦值求出AE ,再由BE AB AE =−计算即可. 【小问1详解】解:依题意作图如下,则DE 即为所求作的高:【小问2详解】∵4=AD ,30DAB ∠=°,DE 是AB 边上的高, ∴cos AEDAB AD∠=,即cos304AE =°=,∴4AE 又∵6AB =,∴6BE AB AE =−=−, 即BE的长为6−.【点睛】本题考查尺规作图—作垂线,30度角的余弦值,掌握过直线外一点作垂线的方法和30度角的余弦值是解题的关键. 20. 综合与实践主题:制作无盖正方体形纸盒的素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形; 步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上ABC ∠与纸盒上111A B C ∠的大小关系;(2)证明(1)中你发现的结论.【答案】(1)111ABC A B C ∠=∠(2)证明见解析.【解析】【分析】(1)ABC 和111A B C ∆均是等腰直角三角形,11145A BC B A C ∠∠==°;(2)证明ABC 是等腰直角三角形即可.【小问1详解】解:111ABC A B C ∠=∠【小问2详解】证明:连接AC ,设小正方形边长为1,则AC BC ===AB ==22255AC BC AB +=+=Q ,ABC ∴ 为等腰直角三角形,∵111111111A C B C A C B C ==⊥,, ∴111A B C 为等腰直角三角形,11145A B BC C A ∠∠=°∴=,故111ABC A B C ∠=∠ 【点睛】此题考查了勾股定理及其逆定理的应用和等腰三角形的性质,熟练掌握其性质是解答此题的关键�21. 小红家到学校有两条公共汽车线路,为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A 线路,第二周(5个工作日)选择B 线路,每天在固定时间段内乘车2次并分别记录所用时间,数据统计如下:(单位:min)数据统计表 试验序号 1 2 3 4 5 6 7 8 9 10A 线路所用时间 15 32 15 16 34 18 21 14 35 20B 线路所用时间 25 29 23 25 27 26 31 28 30 24数据折线统计图根据以上信息解答下列问题:平均数 中位数 众数 方差A 线路所用时间 22 a15 63.2 B 线路所用时间 b26.5 c 6.36(1)填空:=a __________;b =___________;c =___________;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.【答案】(1)19,26.8,25(2)见解析【解析】【分析】(1)根据中位数定义将A线路所用时间按从小到大的顺序排列,求中间两个数的平均数即为A线路所用时间的中位数a,利用平均数的定义求出B线路所用时间的平均数b,找出B线路所用时间中出现次数最多的数据即为B线路所用时间的众数c,从而得解;(2)根据四个统计量分析,然后根据分析结果提出建议即可.【小问1详解】解:将A线路所用时间按从小到大顺序排列得:14,15,15,16,18,20,21,32,34,35,中间两个数是18,20,�A线路所用时间的中位数为:1820192a+=,由题意可知B线路所用时间得平均数为:2529232527263128302426.810b+++++++++=,�B线路所用时间中,出现次数最多的数据是25,有两次,其他数据都是一次,�B线路所用时间的众数为:25c=故答案为:19,26.8,25;【小问2详解】根据统计量上来分析可知,A线路所用时间平均数小于B线路所用时间平均数线路,A线路所用时间中位数也小于B线路所用时间中位数,但A线路所用时间的方差比较大,说明A线路比较短,但容易出现拥堵情况,B线路比较长,但交通畅通,总体上来讲A路线优于B路线.因此,我的建议是:根据上学到校剩余时间而定,如果上学到校剩余时间比较短,比如剩余时间是21分钟,则选择A路线,因为A路线的时间不大于21分钟的次数有7次,而B路线的时间都大于21分钟;如果剩余时间不短也不长,比如剩余时间是31分钟,则选择B路线,因为B路线的时间都不大于31分钟,而A路线的时间大于31分钟有3次,选择B路线可以确保不迟到;如果剩余时间足够长,比如剩余时间是36分钟,则选择A路线,在保证不迟到的情况,选择平均时间更少,中位数更小的路线.【点睛】本题考查求平均数,中位数和众数,以及根据统计量做决策等知识,掌握统计量的求法是解题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22综合探究.如图1,在矩形ABCD 中()AB AD >,对角线AC BD ,相交于点O ,点A 关于BD 的对称点为A ′,连接AA ′交BD 于点E ,连接CA ′.(1)求证:AA CA ′⊥′;(2)以点O 为圆心,OE 为半径作圆.�如图2,O 与CD 相切,求证:AA ′=′;�如图3,O 与CA ′相切,1AD =,求O 的面积.【答案】(1)见解析 (2)�见解析; 【解析】【分析】(1)由点A 关于BD 的对称点为A ′可知点E 是AA ′的中点,90AEO ∠=°,从而得到OE 是ACA ′ 的中位线,继而得到OE A C ′∥,从而证明AA CA ′⊥′;(2)�过点O 作OF AB ⊥于点F ,延长FO 交CD 于点G ,先证明()AAS OCG OAF ≌得到OG OF =,由O 与CD 相切,得到OG OE =,继而得到OE OF =,从而证明AO 是EAF ∠的角平分线,即OAE OAF ∠=∠,OAE OAF x ∠=∠=,求得2AOE x ∠=,利用直角三角形两锐角互余得到90AOE OAE ∠+∠=°,从而得到30OAE ∠=°,即30A AC ′∠=°,最后利用含30度角的直角三角形的性质得出AA ′=′;�先证明四边形A EOH ′是正方形,得到OE OH A H ′==,再利用OE 是ACA ′ 的中位线得到12OE A C ′=,从而得到OH CH =,45OCH ∠=°,再利用平行线的性质得到45AOE ∠=°,从而证明AEO △是等腰直角三角形,AE OE =,设AE OE r ==,求得)1DEr =−,在Rt ADE △中,222AE DE AD +=即)222211r r +−=,解得2r =,从而得到O 的面积为2S r π==.【小问1详解】∵点A 关于BD 的对称点为A ′,∴点E 是AA ′的中点,90AEO ∠=°,又∵四边形ABCD 是矩形,∴O 是AC 的中点,∴OE 是ACA ′ 的中位线,∴OE A C ′∥∴90AA C AEO ∠′=∠=°,∴AA CA ′⊥′【小问2详解】�过点O 作OF AB ⊥于点F ,延长FO 交CD 于点G ,则90OFA ∠=°,∵四边形ABCD 是矩形,∴AB CD ,AO BO CO DO ===,∴OCG OAF ∠=∠,90OGC OFA ∠=∠=°.∵OCG OAF ∠=∠,90OGC OFA ∠=∠=°,AO CO =,∴()AAS OCG OAF ≌,∴OG OF =.∵O 与CD 相切,OE 为半径,90OGC ∠=°,∴OG OE =,∴OE OF =又∵90AEO ∠=°即OE AE ⊥,OF AB ⊥,∴AO 是EAF ∠的角平分线,即OAE OAF ∠=∠,设OAE OAF x ∠=∠=,则OCG OAF x ∠=∠=,又∵CO DO =∴OCG ODG x ∠=∠=∴2AOE OCG ODG x ∠=∠+∠=又∵90AEO ∠=°,即AEO △是直角三角形,∴90AOE OAE ∠+∠=°,即290x x +=°解得:30x =°,∴30OAE ∠=°,即30A AC ′∠=°,在Rt A AC ′△中,30A AC ′∠=°,90AA C ′∠=°,∴2AC CA ′=,∴AA ′===′;�过点O 作OH A C ′⊥于点H ,∵O 与CA ′相切,∴OE OH =,90A HO ′∠=°∵90AA C AEO A EO A HO ′′∠′=∠=∠=∠=°∴四边形A EOH ′是矩形,又∵OE OH =,∴四边形A EOH ′是正方形,∴OE OH A H ′==,又∵OE 是ACA ′ 的中位线,∴12OE A C ′=∴12A H CH A C ′′==∴OH CH =又∵90A HO ′∠=°,∴45OCH ∠=°又∵OE A C ′∥,∴45AOE ∠=°又∵90AEO ∠=°,∴AEO △是等腰直角三角形,AE OE =,设AE OE r ==,则AO DO =∴)1DE DO OE r r =−=−=− 在Rt ADE △中,222AE DE AD +=,1AD =即)222211r r +=∴2r =∴O 的面积为:2S r π== 【点睛】本题考查矩形的性质,圆的切线的性质,含30度角的直角三角形的性质,等腰直角三角形的性质与判定,中位线的性质定理,角平分线的判定定理等知识,掌握相关知识并正确作出辅助线是解题的关键.23. 综合运用如图1,在平面直角坐标系中,正方形OABC 的顶点A 在x 轴的正半轴上,如图2,将正方形OABC 绕点O 逆时针旋转,旋转角为()045αα°<<°,AB 交直线y x =于点E ,BC 交y 轴于点F .(1)当旋转角COF ∠为多少度时,OE OF =;(直接写出结果,不要求写解答过程)(2)若点(4,3)A ,求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y x =于点N ,连接FN ,将OFN △与OCF △的面积分别记为1S 与2S ,设12SS S =−,AN n =,求S 关于n 的函数表达式. 【答案】(1)22.5°(2)154FC =(3)212S n =【解析】【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出AOG AOE ∠∠=,再由题意得出45EOG ∠=°,即可求解;(2)过点A 作AP x ⊥轴,根据勾股定理及点的坐标得出5OA =,再由相似三角形的判定和性质求解即可; (3)根据正方形的性质及四点共圆条件得出O 、C 、F 、N 四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出FN ON =,90FNO ∠=°,过点N 作GQ BC ⊥于点G ,交OA 于点Q ,利用全等三角形及矩形的判定和性质得出,CG OQ CO QG ==,结合图形分别表示出1S ,2S ,得出212S S S NQ =−=,再由等腰直角三角形的性质即可求解.【小问1详解】解:�正方形OABC ,�OA OC =,90A C ∠=∠=°,�OE OF =,�Rt Rt (HL)OCF OAE ≌ ,�COF AOE ∠∠=,�COF AOG ∠∠=,�AOG AOE ∠∠=,�AB 交直线y x =于点E ,�45EOG ∠=°,�22.5AOG AOE ∠∠==°,即22.5COF ∠=°;【小问2详解】过点A 作AP x ⊥轴,如图所示:�(4,3)A ,�3,4AP OP ==,�5OA =,�正方形OABC ,�5OC OA ==,90C ∠=°,�90C APO ∠∠==°,�AOP COF ∠∠=,�OCF OPA ∽ , �OCFC OP AP =即543FC =, ∴154FC =;【小问3详解】�正方形OABC ,�45BCA OCA ∠∠==°,�直线y x =,�45FON ∠=°,�45BCA FON ∠∠==°,�O 、C 、F 、N 四点共圆,�45OCN FON ∠∠==°,�45OFN FON ∠∠==°,�FON ∆为等腰直角三角形,�FN ON =,90FNO ∠=°,过点N 作GQ BC ⊥于点G ,交OA 于点Q ,�BC OA ∥,�GQ OA ⊥,�90FNO ∠=°,�1290∠∠+=°,�1390∠∠+=°,�23∠∠=,∴(AAS)FGN NQO ≌�,GN OQFG QN ==, �GQ BC ⊥,90FCOCOQ ∠∠==°, �四边形COQG 为矩形,�,CG OQCO QG ==, �()()222222************OFN S S ON OQ NQ GN NQ GN NQ ∆===+=+=+, ()()()222221*********COF S S CF CO GC FG GN NQ GN NQ GN NQ ∆==⋅=−+=−=−, �212S S S NQ =−=,�45OAC ∠=°,�AQN △为等腰直角三角形,�NQ AN =,∴22212S NQ n ==【点睛】题目主要考查全等三角形、相似三角形及特殊四边形的判定和性质,四点共圆的性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.21。

2020年广东省中考数学试题(解析版)

2020年广东省中考数学试题(解析版)

2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)(2020•广东)9的相反数是( ) A .﹣9B .9C .19D .−19【分析】根据相反数的定义即可求解. 【解答】解:9的相反数是﹣9, 故选:A .【点评】此题主要考查相反数的定义,比较简单.2.(3分)(2020•广东)一组数据2,4,3,5,2的中位数是( ) A .5B .3.5C .3D .2.5【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数. 【解答】解:将数据由小到大排列得:2,2,3,4,5, ∵数据个数为奇数,最中间的数是3, ∴这组数据的中位数是3. 故选:C .【点评】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.(3分)(2020•广东)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( ) A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【解答】解:点(3,2)关于x 轴对称的点的坐标为(3,﹣2). 故选:D .【点评】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)(2020•广东)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)(2020•广东)若式子√2x−4在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2【分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解答】解:∵√2x−4在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.【点评】此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.(3分)(2020•广东)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2√2C.16D.4【分析】根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.【点评】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.(3分)(2020•广东)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( ) A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3【分析】先求出y =(x ﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】解:二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y =(x ﹣2)2+2. 故选:C .【点评】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式. 8.(3分)(2020•广东)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式2﹣3x ≥﹣1,得:x ≤1, 解不等式x ﹣1≥﹣2(x +2),得:x ≥﹣1, 则不等式组的解集为﹣1≤x ≤1, 故选:D .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 9.(3分)(2020•广东)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为()A.1B.√2C.√3D.2【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.【点评】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.(3分)(2020•广东)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)(2020•广东)分解因式:xy﹣x=x(y﹣1).【分析】直接提取公因式x,进而分解因式得出答案.【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(4分)(2020•广东)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解答】解:∵单项式3x m y 与﹣5x 3y n 是同类项, ∴m =3,n =1, ∴m +n =3+1=4. 故答案为:4.【点评】本题考查同类项的定义,正确根据同类项的定义得到关于m ,n 的方程组是解题的关键.13.(4分)(2020•广东)若√a −2+|b +1|=0,则(a +b )2020= 1 . 【分析】根据非负数的意义,求出a 、b 的值,代入计算即可. 【解答】解:∵√a −2+|b +1|=0, ∴a ﹣2=0且b +1=0, 解得,a =2,b =﹣1,∴(a +b )2020=(2﹣1)2020=1, 故答案为:1.【点评】本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a 、b 的值是解决问题的关键.14.(4分)(2020•广东)已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为 7 .【分析】由x =5﹣y 得出x +y =5,再将x +y =5、xy =2代入原式=3(x +y )﹣4xy 计算可得.【解答】解:∵x =5﹣y , ∴x +y =5,当x +y =5,xy =2时, 原式=3(x +y )﹣4xy =3×5﹣4×2 =15﹣8 =7, 故答案为:7.【点评】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x +y 、xy 及整体代入思想的运用.15.(4分)(2020•广东)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 45° .【分析】根据∠EBD =∠ABD ﹣∠ABE ,求出∠ABD ,∠ABE 即可解决问题. 【解答】解:∵四边形ABCD 是菱形, ∴AD =AB ,∴∠ABD =∠ADB =12(180°﹣∠A )=75°, 由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°, 故答案为45°.【点评】本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(4分)(2020•广东)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为13m .【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径. 【解答】解:由题意得,阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120π×1180,而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120π×1180,解得,r =13, 故答案为:13.【点评】本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.(4分)(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为 2√5−2 .【分析】如图,连接BE ,BD .求出BE ,BD ,根据DE ≥BD ﹣BE 求解即可. 【解答】解:如图,连接BE ,BD .由题意BD =√22+42=2√5, ∵∠MBN =90°,MN =4,EM =NE , ∴BE =12MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的圆, ∴当点E 落在线段BD 上时,DE 的值最小, ∴DE 的最小值为2√5−2. 故答案为2√5−2.【点评】本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)(2020•广东)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【点评】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)(2020•广东)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【点评】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)(2020•广东)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE ≌△ACD(AAS),得出AB=AC即可.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,{∠ABE=∠ACD ∠A=∠ABE=CD,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)(2020•广东)已知关于x,y的方程组{ax+2√3y=−10√3,x+y=4与{x−y=2,x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【分析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值;(2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.【解答】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =﹣4√3,b =12;(2)当a =﹣4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2﹣4√3x +12=0,解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【点评】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)(2020•广东)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD . (1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE ̂上一点,AD =1,BC =2.求tan ∠APE 的值.【分析】(1)证明:作OE ⊥CD 于E ,证△OCE ≌△OCB (AAS ),得出OE =OB ,即可得出结论;(2)作DF ⊥BC 于F ,连接BE ,则四边形ABFD 是矩形,得AB =DF ,BF =AD =1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,{∠OEC=∠OBC ∠OCE=∠OCB OC=OC,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO ⊥BE ,∴∠BCH +∠CBH =∠CBH +∠ABE =90°, ∴∠ABE =∠BCH , ∵∠APE =∠ABE , ∴∠APE =∠BCH , ∴tan ∠APE =tan ∠BCH =OB BC =√22.【点评】本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键. 23.(8分)(2020•广东)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B 类摊位的占地面积为x 平方米,则每个A 类摊位占地面积为(x +2)平方米,根据用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.【点评】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)(2020•广东)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C 对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【分析】(1)设点B (s ,t ),st =8,则点M (12s ,12t ),则k =12s •12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD ,即可求解; (3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F (5m ,0),即可求解.【解答】解:(1)设点B (s ,t ),st =8,则点M (12s ,12t ),则k =12s •12t =14st =2, 故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD =12×8−12×2=3;(3)设点D (m ,2m),则点B (4m ,2m),∵点G 与点O 关于点C 对称,故点G (8m ,0), 则点E (4m ,12m),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m 2b =52m, 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F (5m ,0), 故FG =8m ﹣5m =3m ,而BD =4m ﹣m =3m =FG , 则FG ∥BD ,故四边形BDFG 为平行四边形.【点评】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)(2020•广东)如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.【分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=3+√36(x+1)(x﹣3)=3+√36x2−3+√33x−3+√32,∴b=−3+√33,c=−3+√32;(2)如图1,过点D作DE⊥AB于E,∴CO ∥DE , ∴BC CD=BO OE,∵BC =√3CD ,BO =3, ∴√3=3OE, ∴OE =√3,∴点D 横坐标为−√3, ∴点D 坐标(−√3,√3+1), 设直线BD 的函数解析式为:y =kx +b , 由题意可得:{√3+1=−√3k +b 0=3k +b ,解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3;(3)∵点B (3,0),点A (﹣1,0),点D (−√3,√3+1), ∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1, ∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C (0,√3), ∴OC =√3,∵tan ∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2, ∴DK =√AD 2−AK2=√8−4=2,∴DK =AK , ∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N (1,0),若∠CBO =∠PBO =30°, ∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD ∽△BPQ , ∴BP BA=BQ BD,∴BQ =4√33×(2√3+2)4=2+2√33,∴点Q (1−2√33,0); 当△BAD ∽△BQP , ∴BP BD=BQ AB,∴BQ=4√33×423+2=4−4√33,∴点Q(﹣1+4√33,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=√2BN=2√2,当△BAD∽△BPQ,∴BPAD =BQ BD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1﹣2√3,0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=2√2×2√22√3+2=2√3−2,∴点Q(5﹣2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(﹣1+4√33,0)或(1﹣2√3,0)或(5﹣2√3,0).【点评】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。

2023年广东省深圳市中考数学真题 (解析版)

2023年广东省深圳市中考数学真题 (解析版)

2023年深圳市初中学业水平测试(回忆版)数学学科试卷一、选择题1. 如果10+°C 表示零上10度,则零下8度表示( )A. 8+℃B. 8−℃C. 10+℃D. 10−℃【答案】B【解析】【分析】根据“负数是与正数互为相反意义的量”即可得出答案.【详解】解:因为10+°C 表示零上10度,所以零下8度表示“8−℃”.故选B【点睛】本题考查正负数的意义,属于基础题,解题的关键在于理解负数的意义.2. 下列图形中,为轴对称的图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、是轴对称图形,故本选项符合题意.故选:D .【点睛】本题主要考查了轴对称图形,解决问题的关键是熟练掌握轴对称图形的概念,轴对称图形概念,一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就是轴对称图形.3. 深中通道是世界级“桥、岛、隧、水下互通”跨海集群工程,总计用了320000万吨钢材,320000这个数用科学记数法表示为( )A. 60.3210×B. 53.210×C. 93.210×D. 83210×【答案】B【解析】【分析】根据科学记数法的表示方法求解即可.【详解】5320000 3.210=×.故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ×的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.4. 下表为五种运动耗氧情况,其中耗氧量的中位数是( ) 打网球 跳绳 爬楼梯 慢跑 游泳80L /h 90L /h 105L /h 110L /h 115L /hA. 80L /hB. 107.5L /hC. 105L /h D. 110L /h 【答案】C【解析】【分析】将数据排序后,中间一个数就是中位数.【详解】解:由表格可知,处在中间位置的数据为105L /h ,∴中位数为105L /h ,故选C .【点睛】本题考查中位数.熟练掌握中位数的确定方法:将数据进行排序后,处在中间位置的一个数据或者两个数据的平均数为中位数,是解题的关键.5. 如图,在平行四边形ABCD 中,4AB =,6BC =,将线段AB 水平向右平移a 个单位长度得到线段EF ,若四边形ECDF 为菱形时,则a 的值为( )A 1B. 2C. 3D. 4【答案】B【解析】 【分析】首先根据平行四边形的性质得到4CD AB ==,然后根据菱形的性质得到4EC CD ==,然后求解即可..【详解】�四边形ABCD 是平行四边形,�4CD AB ==,�四边形ECDF 为菱形,�4EC CD ==,�6BC =,�2BE BC CE =−=,�2a =.故选:B .【点睛】此题考查了平行四边形和菱形的性质,平移的性质等知识,解题的关键是熟练掌握以上知识点. 6. 下列运算正确的是( )A. 326a a a ⋅=B. 44ab ab −=C. ()2211a a +=+D. ()236a a −= 【答案】D【解析】【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.【详解】解:∵325a a a ⋅=,故A 不符合题意;∵4=3ab ab ab −,故B 不符合题意;∵()22211a a a ++=+,故C 不符合题意;∵()236a a −=,故D 符合题意;故选:D .【点睛】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.7. 如图为商场某品牌椅子侧面图,120DEF ∠=°,DE 与地面平行,50ABD ∠=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°【答案】A的【解析】【分析】根据平行得到50ABD EDC ∠=∠=°,再利用外角的性质和对顶角相等,进行求解即可.【详解】解:由题意,得:DE AB ∥,∴50ABD EDC ∠=∠=°,∵120DEF EDC DCE ∠=∠+∠=°,∴70DCE ∠=°,∴70ACB DCE ∠∠°==; 故选A .【点睛】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键. 8. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A. 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 【答案】B【解析】【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x −吨, 则75505x x =−. 故选B【点睛】本题考查分式方程的应用,理解题意准确找到等量关系是解题的关键.9. 爬坡时坡角与水平面夹角为α,则每爬1m 耗能()1.025cos J α−,若某人爬了1000m ,该坡角为30°,1.732≈, 1.414≈)( )A. 58JB. 159JC. 1025JD. 1732J【答案】B【解析】 【分析】根据特殊角三角函数值计算求解.【详解】1000(1.025cos )=1000(1.025cos30)10251025500 1.732159α−−°=−≈−×= 故选:B .【点睛】本题考查特殊角三角函数值,掌握特殊角三角函数值是解题的关键.10. 如图1,在Rt ABC △中,动点P 从A 点运动到B 点再到C 点后停止,速度为2单位/s ,其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为( )A.B. C. 17 D.【答案】C【解析】【分析】根据图象可知0=t 时,点P 与点A 重合,得到15AB =,进而求出点P 从点A 运动到点B 所需的时间,进而得到点P 从点B 运动到点C 的时间,求出BC 的长,再利用勾股定理求出AC 即可.【详解】解:由图象可知:0=t 时,点P 与点A 重合,∴15AB =,∴点P 从点A 运动到点B 所需的时间为1527.5s ÷=;∴点P 从点B 运动到点C 的时间为11.57.54s −=,∴248BC =×=;在Rt ABC △中:17AC;故选C .【点睛】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出,AB BC 的长,是解题的关键. 二、填空题11. 小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为______.【答案】14##0.25 【解析】 【分析】根据概率公式进行计算即可.【详解】解:随机挑选一本书共有4种等可能的结果,其中拿到《红星照耀中国》这本书的结果有1种, ∴14P =, 故答案为:14. 【点睛】本题考查概率.熟练掌握概率公式,是解题的关键.12. 已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______.【答案】42【解析】【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b +76=×42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.13. 如图,在O 中,AB 为直径,C 为圆上一点,BAC ∠的角平分线与O 交于点D ,若20ADC ∠=°,则BAD ∠=______°.【答案】35【解析】【分析】由题意易得90ACB ∠=°,20ADC ABC ∠=∠=°,则有70BAC ∠=°,然后问题可求解.【详解】解:∵AB 是O 的直径,∴90ACB ∠=°, ∵ AC AC=,20ADC ∠=°, ∴20ADC ABC ∠=∠=°,∴70BAC ∠=°, ∵AD 平分BAC ∠, ∴1352BAD BAC ∠∠==°; 故答案为35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.14. 如图,Rt OAB 与Rt OBC △位于平面直角坐标系中,30AOB BOC ∠=∠=°,BA OA ⊥,CB OB ⊥,若AB =,反比例函数()0k y k x=≠恰好经过点C ,则k =______.【答案】【解析】【分析】过点C 作CD x ⊥轴于点D ,由题意易得2,30OB BC COD =∠=°,然后根据含30度直角三角形的性质可进行求解.【详解】解:过点C 作CD x ⊥轴于点D ,如图所示:∵30AOB BOC ∠=∠=°,BA OA ⊥,CB OB ⊥,∴11,22AB OB BC OC ==, ∵90AOD ∠=°, ∴30COD ∠=°,∵AB =,∴2OB AB ==在Rt OBC △中,OB ==,∴2BC =,4OC =,∵30COD ∠=°,90CDO ∠=°, ∴122CD OC ==,∴OD =,∴点()2C ,∴k =,故答案为:【点睛】本题主要考查反比例函数的图象与性质及含30度直角三角形的性质,熟练掌握反比例函数的图象与性质及含30度直角三角形的性质是解题的关键.15. 如图,在ABC 中,AB AC =,3tan 4B =,点D 为BC 上一动点,连接AD ,将ABD △沿AD 翻折得到ADE V ,DE 交AC 于点G ,GE DG <,且:3:1AG CG =,则AGEADG S S =三角形三角形______.【答案】4975【解析】 【分析】AM BD ⊥于点M ,AN DE ⊥于点N ,则AM AN =,过点G 作GP BC ⊥于点P ,设12AM a =,根据3tan 4AM B BM ==得出16BM a =,继而求得20AB a =,5CG a =,15AG a =,再利用3tantan 4GP C B CP ===,求得3,4GP a CP a ==,利用勾股定理求得9GN a,16EN a ==,故7EG EN GN a =−=,【详解】由折叠的性质可知,DA 是BDE ∠的角平分线,AB AE =,用HL 证明ADM ADN △≌△,从而得到DM DN =,设DM DN x ==,则9DG x a =+,12DPa x =−,利用勾股定理得到222DP GP DG +=即()()()2221239a x a x a −+=+,化简得127x a =,从而得出757DG a =,利用三角形的面积公式得到:174921757527AGEADG EG AN EG a DG DG AN S a S ⋅====⋅三角形三角形.作AM BD ⊥于点M ,AN DE ⊥于点N ,则AM AN =,过点G 作GP BC ⊥于点P ,∵AM BD ⊥于点M , ∴3tan 4AMB BM ==,设12AM a =,则16BM a =,20AB a =,又∵AB AC =,AM BD ⊥,∴12CM AM a ==,20AB AC a ==,B C ∠=∠,∵:3:1AG CG =,即14CG AC =,∴5CG a =,15AG a =,Rt PCG △中,5CG a =,3tan tan 4GPC B CP ===,设3GP m =,则4,5CP m CG m ===∴m a =∴3,4GP a CP a ==,∵15AG a =,12AM AN a ==,AN DE ⊥,∴9GN a ,∵20AB AE a ==,12AN a =,AN DE ⊥在∴16EN a ==,∴7EG EN GN a =−=,∵AD AD =,AM AN =,AM BD ⊥,AN DE ⊥,∴()HL ADM ADN △≌△,∴DM DN =,设DM DN x ==,则9DG DN GN x a =+=+,16412DP CM CP DM a a x a x =−−=−−=−, 在Rt PDG △中,222DP GP DG +=,即()()()2221239a x a x a −+=+, 化简得:127x a =, ∴7597DG x a a =+=, ∴174921757527AGE ADG EG AN EG a DG DG AN S a S ⋅====⋅三角形三角形 故答案是:4975. 【点睛】本题考查解直角三角形,折叠的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等知识,正确作出辅助线并利用勾股定理列出方程是解题的关键.三、解答题16. 计算:()01232sin45π++−−+°.【解析】【分析】根据零次幂及特殊三角函数值可进行求解.【详解】解:原式2321+−+==.【点睛】本题主要考查零次幂及特殊三角函数值,熟练掌握各个运算是解题的关键.17. 先化简,再求值:22111121x x x x − +÷ −−+,其中3x =. 【答案】1x x +,34【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】22111121x x x x −+÷ −−+ ()()()21111x x x x x +−÷−− 111x x x x −×−+ 1x x =+ �3x = �原式33314=+. 【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18. 为了提高某城区居民的生活质量,政府将改造城区配套设施,并随机向某居民小区发放调查问卷(1人只能投1票),共有休闲设施,儿童设施,娱乐设施,健身设施4种选项,一共调查了a 人,其调查结果如下:如图,为根据调查结果绘制的扇形统计图和条形统计图,请根据统计图回答下面的问题: �调查总人数=a ______人; �请补充条形统计图;�若该城区共有10万居民,则其中愿意改造“娱乐设施”的约有多少人?�改造完成后,该政府部门向甲、乙两小区下发满意度调查问卷,其结果(分数)如下:若以1:1:1:1进行考核,______小区满意度(分数)更高;若以1:1:2:1进行考核,______小区满意度(分数)更高.【答案】�100;�见解析;�愿意改造“娱乐设施”的约有3万人;�乙;甲. 【解析】【分析】�根据健身的人数和所占的百分比即可求出总人数; �用总数减去其他3项的人数即可求出娱乐的人数; �根据样本估计总体的方法求解即可; �根据加权平均数的计算方法求解即可. 【详解】�4040%100a =÷=(人), 调查总人数100a =人; 故答案为:100;�10017134030−−−=(人) �娱乐的人数为30(人) �补充条形统计图如下:�30100000100%30000100××=(人) �愿意改造“娱乐设施”的约有3万人; �若以1:1:1:1进行考核, 甲小区得分为()177987.754×+++=, 乙小区得分为()1887984×+++=, �若以1:1:1:1进行考核,乙小区满意度(分数)更高;若以1:1:2:1进行考核,甲小区得分为1121779885555×+×+×+×=, 乙小区得分为112188797.85555×+×+×+×=,�若以1:1:2:1进行考核,甲小区满意度(分数)更高; 故答案为:乙;甲.【点睛】本题考查条形统计图、扇形统计图,加权平均数,样本估计总体等知识,理解两个统计图中数量之间的关系是正确解答的关键.19. 某商场在世博会上购置A ,B 两种玩具,其中B 玩具的单价比A 玩具的单价贵25元,且购置2个B 玩具与1个A 玩具共花费200元. (1)求A ,B 玩具的单价;(2)若该商场要求购置B 玩具的数量是A 玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A 玩具?【答案】(1)A 、B 玩具的单价分别为50元、75元; (2)最多购置100个A 玩具. 【解析】【分析】(1)设A 玩具的单价为x 元每个,则B 玩具的单价为()25x +元每个;根据“购置2个B 玩具与1个A 玩具共花费200元”列出方程即可求解;(2)设A 玩具购置y 个,则B 玩具购置2y 个,根据“购置玩具的总额不高于20000元”列出不等式即可得出答案. 【小问1详解】解:设A 玩具的单价为x 元,则B 玩具的单价为()25x +元;由题意得:()225200x x ++=; 解得:50x =,则B 玩具单价2575x +=(元); 答:A 、B 玩具的单价分别为50元、75元; 【小问2详解】设A 玩具购置y 个,则B 玩具购置2y 个, 由题意可得:5075220000y y +×≤, 解得:100y ≤,∴最多购置100个A 玩具.【点睛】本题考查一元一次方程和一元一次不等式的应用,属于中考常规考题,解题的关键在于读懂题目,找准题目中的等量关系或不等关系.为20. 如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:�过点A 作切线AC ,且4AC =(点C 在A 的上方); �连接OC ,交O 于点D ; �连接BD ,与AC 交于点E . (1)求证:BD 为O 的切线; (2)求AE 的长度.【答案】(1)画图见解析,证明见解析 (2)32AE = 【解析】【分析】(1)根据题意作图,首先根据勾股定理得到5OC ==,然后证明出()SAS AOC DOB ≌,得到90OAC ODB ∠=∠=°,即可证明出BD 为O 的切线;(2)首先根据全等三角形的性质得到4BD AC ==,然后证明出BAE BDO V V ∽,利用相似三角形的性质求解即可. 【小问1详解】 如图所示,�AC 是O 的切线, �OA AC ⊥,�3OA =,4AC =,�5OC ==,�3OA =,2AB =, �5OB OA AB =+=, �OB OC =,又�3==OD OA ,AOC DOB ∠=∠, �()SAS AOC DOB ≌, �90OAC ODB ∠=∠=°, �OD BD ⊥, �点D 在O 上, �BD 为O 的切线; 【小问2详解】 �AOC DOB V V ≌, �4BD AC ==,�ABE DBO ∠=∠,BAE BDO ∠=∠, �BAE BDO V V ∽, �AE AB OD BD =,即234AE =, �解得32AE =.【点睛】此题考查了格点作图,圆切线的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.21. 蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中3m AB =,4m BC =,取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E ,若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E ,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR ,若0.75m FL NR ==,求两个正方形装置的间距GM 的长;(3)如图,在某一时刻,太阳光线透过A 点恰好照射到C 点,此时大棚截面的阴影为BK ,求BK 的长.【答案】(1)2144y x =−+ (2)0.5m (3)97m 12【解析】【分析】(1)根据顶点坐标,设函数解析式为24y ax =+,求出A 点坐标,待定系数法求出函数解析式即可;(2)求出 3.75y =时对应的自变量的值,得到FN 的长,再减去两个正方形的边长即可得解;(3)求出直线AC 的解析式,进而设出过点K 的光线解析式为34y x m =−+,利用光线与抛物线相切,求出m 的值,进而求出K 点坐标,即可得出BK 的长. 【小问1详解】解:∵抛物线AED 的顶点()0,4E , 设抛物线的解析式为24y ax =+,∵四边形ABCD 为矩形,OE 为BC 的中垂线, ∴4m AD BC ==,2m OB =, ∵3m AB =,∴点()2,3A −,代入24y ax =+,得:344a =+,∴14a =−, ∴抛物线的解析式为2144y x =−+; 【小问2详解】∵四边形LFGT ,四边形SMNR 均正方形,0.75m FL NR ==, ∴0.75m MG FN FL NR ====,延长LF 交BC 于点H ,延长RN 交BC 于点J ,则四边形FHJN ,四边形ABFH 均为矩形,∴3m,FHAB FN HJ ===, ∴ 3.75m HL HF FL =+=,∵2144y x =−+,当 3.75y =时,213.7544x =−+,解得:1x =±, ∴()1,0H −,()1,0J ,为∴2m FN HJ ==,∴0.5m GM FN FG MN =−−=; 【小问3详解】∵4m BC =,OE 垂直平分BC , ∴2m OB OC ==, ∴()()2,0,2,0B C −,设直线AC 的解析式为y kx b =+, 则:2023k b k b +=−+= ,解得:3432k b=− =, ∴3342y x =−+, ∵太阳光为平行光,设过点K 平行于AC 的光线的解析式为34y x m =−+, 由题意,得:34y x m =−+与抛物线相切, 联立214434y x y x m =−+ =−+,整理得:234160x x m −+−=,则:()()2344160m ∆=−−−=,解得:7316m =; ∴373416y x =−+,当0y =时,7312x =,∴73,012K, ∵()2,0B−,∴73972m 1212BK =+=. 【点睛】本题考查二次函数的实际应用.读懂题意,正确的求出二次函数解析式,利用数形结合的思想,进行求解,是解题的关键.22. (1)如图,在矩形ABCD 中,E 为AD 边上一点,连接BE ,①若BE BC =,过C 作CF BE ⊥交BE 于点F ,求证:ABE FCB ≌△△;②若20ABCD S =矩形时,则BE CF ⋅=______.(2)如图,在菱形ABCD 中,1cos 3A =,过C 作CE AB ⊥交AB 的延长线于点E ,过E 作EF AD ⊥交AD 于点F ,若24ABCD S =菱形时,求EF BC ⋅的值.(3)如图,在平行四边形ABCD 中,60A ∠=°,6AB =,5AD =,点E 在CD 上,且2CE =,点F 为BC 上一点,连接EF ,过E 作EG EF ⊥交平行四边形ABCD 的边于点G ,若EF EG ⋅时,请直接写出AG 的长.【答案】(1)①见解析;②20;(2)32;(3)3或4或32【解析】【分析】(1)①根据矩形的性质得出90ABE CBF ∠+∠=°,90CFB A ∠=∠=°,进而证明FCB ABE ∠=∠结合已知条件,即可证明ABE FCB ≌△△;②由①可得FCB ABE ∠=∠,90CFB A ∠=∠=°,证明 ∽ABE FCB ,得出AB BECF BC=,根据20ABCD S AB CD =⋅=矩形,即可求解;(2)根据菱形的性质得出AD BC ∥,AB BC =,根据已知条件得出14,33BE BC AE AB ==,证明AFE BEC △∽△,根据相似三角形的性质即可求解;(3)分三种情况讨论,①当点G 在AD 边上时,如图所示,延长FE 交AD 的延长线于点M ,连接GF ,过点E 作EH DM ⊥于点H ,证明EDM ECF ∽,解Rt DEH △,进而得出7MG =,根据tan tan MEH HGE ∠=∠,得出2HE HM HG =⋅,建立方程解方程即可求解;②当G 点在AB 边上时,如图所示,连接GF ,延长GE 交BC 的延长线于点M ,过点G 作GN AD ∥,则GN BC ∥,四边形ADNG 是平行四边形,同理证明ENG ECM ∽,根据tan tan FEH M ∠=∠得出2EH FH HM =⋅,建立方程,解方程即可求解;③当G 点在BC 边上时,如图所示,过点B 作BT DC ⊥于点T ,求得BTC S =EFG S = 【详解】解:(1)①�四边形ABCD 是矩形,则90A ABC ∠=∠=°, �90ABE CBF ∠+∠=°, 又�CF BC ⊥,∴90FCB CBF ∠+∠=°,90CFB A ∠=∠=°, ∴FCB ABE ∠=∠, 又∵BC BE =, ∴ABE FCB ≌△△;②由①可得FCB ABE ∠=∠,90CFB A ∠=∠=° ∴ ∽ABE FCB ∴AB BECF BC=, 又∵20ABCD S AB CD =⋅=矩形 ∴20BE CF AB BC ⋅=⋅=, 故答案为:20.(2)�在菱形ABCD 中,1cos 3A =, ∴AD BC ∥,AB BC =, 则CBE A ∠=∠, �CEAB ⊥,�90CEB ∠=°,�cos BECBE CB ∠= ∴1cos cos 3BE BC CBE BC A BC =⋅∠=×∠=,�114333AE AB BE AB BC AB AB AB =+=+=+=,�EF AD ⊥,CE AB ⊥�90AFE BEC ∠=∠=°,又CBE A ∠=∠,�AFE BEC △∽△, ∴AE EF AFBC CE BE ==,∴EF BC ⋅2443342433ABCD AE CE AB CE S ×==×⋅==菱形;(3)①当点G 在AD 边上时,如图所示,延长FE 交AD 的延长线于点M ,连接GF ,过点E 作EH DM ⊥于点H ,�平行四边形ABCD 中,6AB =,2CE =,∴6CD AB ==,624DE DC EC =−=−=,�DM FC ∥,�EDM ECF ∽ ∴422EM ED EF EC ===, ∴2MGE FEG S EM S EF==∴2MGE EFG S S ==EF EG ⋅在Rt DEH △中,60HDE A ∠=∠=°,则4EH ===,122DH DE ==,∴12MG HE ×∴7MG =,∵,GE EF EH MG ⊥⊥,∴90MEH HEG HGE ∠=°−∠=∠∴tan tan MEH HGE ∠=∠ ∴HE HM HG HE= ∴2HE HM HG =⋅设AG a =,则5GD AD AG a =−=−,527GH GD HD a a =+=−+=−,()77HM GM GH a a =−=−−=,∴(()27x x −解得:3a =或4a =,即3AG =或4AG =,②当G 点在AB 边上时,如图所示,连接GF ,延长GE 交BC 的延长线于点M ,过点G 作GN AD ∥,则GN BC ∥,四边形ADNG 是平行四边形,设AG x =,则DN AG x ==,4EN DE DN x =−=−, �GN CM ∥∴ENG ECM ∽∴42EG EN GNx EM EC CM −===, ∴21044GN CM x x ==−− ∴42GEF MEF S EGx S EM −== ,∵EF EG ⋅∴24GEF MEF S S x ==−过点E 作EH BC ⊥于点H ,在Rt EHC △中,2,60EC ECH =∠=°,�EH =,1CH =, �12MEF S MF EH =××,则12MF , ∴144MF x =−, ∴14101444xFH MF CM CH x x x =−−=−−=−−−,1014144xMH CM CH x x−=+=+=−−90MEF EHM ∠=∠=° ,∴90FEH MEH M ∠=°−∠=∠∴tan tan FEH M ∠=∠, 即FH EHEH HM =,∴2EH FH HM =⋅即21444x xx x −×−− 解得:123,82x x ==(舍去) 即32AG =;③当G 点在BC 边上时,如图所示,过点B 作BT DC ⊥于点T ,在Rt BTC 中,1522CT BC ==,BT =,∴115222BTC S BT TC =×=∵EF EG ⋅∴EFG S = ,<, ∴G 点不可能在BC 边上, 综上所述,AG 的长为3或4或32. 【点睛】本题考查了相似三角形的性质与判定,平行四边形的性质,解直角三角形,矩形的性质,熟练掌握相似三角形的性质与判定,分类讨论是解题的关键.。

2020年广东省中考数学试题及参考答案(word解析版)

2020年广东省中考数学试题及参考答案(word解析版)

2020年广东省初中学业水平考试数学(满分为120分,考试用时为90分钟)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.75.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣26.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.47.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣38.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤19.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.210.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.若+|b+1|=0,则(a+b)2020=.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案与解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣【知识考点】相反数.【思路分析】根据相反数的定义即可求解.【解题过程】解:9的相反数是﹣9,故选:A.【总结归纳】此题主要考查相反数的定义,比较简单.2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.5【知识考点】中位数.【思路分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解题过程】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.【总结归纳】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解题过程】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.【总结归纳】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.7【知识考点】多边形内角与外角.【思路分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解题过程】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.【总结归纳】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣2【知识考点】二次根式有意义的条件.【思路分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解题过程】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.【总结归纳】此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.4【知识考点】三角形中位线定理.【思路分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解题过程】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.【总结归纳】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣3【知识考点】二次函数图象与几何变换.【思路分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解题过程】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.【总结归纳】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤1【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.2【知识考点】正方形的性质;翻折变换(折叠问题).【思路分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解题过程】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.【总结归纳】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解题过程】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【总结归纳】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=x(y﹣1).【知识考点】因式分解﹣提公因式法.【思路分析】直接提取公因式x,进而分解因式得出答案.【解题过程】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【总结归纳】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【知识考点】34:同类项.【思路分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解题过程】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.【总结归纳】本题考查同类项的定义,正确根据同类项的定义得到m,n的值是解题的关键.13.若+|b+1|=0,则(a+b)2020=1.【知识考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【思路分析】根据非负数的意义,求出a、b的值,代入计算即可.【解题过程】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.【总结归纳】本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【知识考点】33:代数式求值.【思路分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解题过程】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.【总结归纳】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy及整体代入思想的运用.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【知识考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.【思路分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解题过程】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.【总结归纳】本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【知识考点】M5:圆周角定理;MP:圆锥的计算.【思路分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解题过程】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.【总结归纳】本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【知识考点】KP:直角三角形斜边上的中线;M8:点与圆的位置关系.【思路分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解题过程】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.【总结归纳】本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【知识考点】4J:整式的混合运算—化简求值.【思路分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解题过程】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【知识考点】用样本估计总体.【思路分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解题过程】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【总结归纳】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【知识考点】KD:全等三角形的判定与性质;KI:等腰三角形的判定.【思路分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解题过程】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.【总结归纳】本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【知识考点】二元一次方程组的解;解二元一次方程组;一元二次方程的解;根与系数的关系.【思路分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解题过程】解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.【总结归纳】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【知识考点】直角梯形;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解题过程】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.【总结归纳】本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【知识考点】B7:分式方程的应用;C9:一元一次不等式的应用.【思路分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解题过程】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.【总结归纳】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【知识考点】GB:反比例函数综合题.【思路分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解题过程】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.【总结归纳】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【知识考点】HF:二次函数综合题.【思路分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解题过程】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△BAD∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).【总结归纳】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。

精品解析:2024年广东省广州市中考数学试题(解析版)

精品解析:2024年广东省广州市中考数学试题(解析版)

2024年广州市初中学业水平考试数学试卷共8页,25小题,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的圆珠笔或钢笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.非选择题答案必须用黑色字迹的圆珠笔或钢笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)−,1−,0,10中,最小的数是()1. 四个数10− B. 1− C. 0 D. 10A. 10【答案】A【解析】【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.−<−<<,【详解】解:101010∴最小的数是10−,故选:A.2. 下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A. B. C. D.【答案】C【解析】【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O对称的是C,故选:C.3. 若0a≠,则下列运算正确的是()A.235a a a+= B. 325a a a⋅=C.235a a a⋅= D. 321a a÷=【答案】B【解析】【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分母分数相加,可判断A 选项;根据同底数幂相乘,底数不变,指数相加,可判断B选项;根据分式乘法法则计算,可判断C选项;根据同底数幂除法,底数不变,指数相减,可判断D 选项.【详解】解:A、32523666a a a a a+=+=,原计算错误,不符合题意;B、325a a a⋅=,原计算正确,符合题意;C、2236a a a⋅=,原计算错误,不符合题意;D、32a a a÷=,原计算错误,不符合题意;故选:B.4. 若a b<,则()A. 33a b+>+ B. 22a b−>− C. a b−<− D. 22a b<【答案】D【解析】【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .5. 为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A. a 的值为20B. 用地面积在812x <≤这一组的公园个数最多C. 用地面积在48x <≤这一组的公园个数最少D. 这50个公园中有一半以上的公园用地面积超过12公顷 【答案】B 【解析】【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案. 【详解】解:由题意可得:5041612810a =−−−−=,故A 不符合题意; 用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意; 故选B6. 某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( ) A. 1.2110035060x += B. 1.2110035060x −= C. 1.2(1100)35060x += D. 110035060 1.2x −=⨯【答案】A 【解析】【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆, 根据题意得:1.2110035060x +=, 故选:A .7. 如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A. 18B.C. 9D.【答案】C 【解析】【分析】本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.连接AD ,根据等腰直角三角形的性质以及AE CF =得出ADE CDF V V ≌,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.【详解】解:连接AD ,如图:∵90BAC ∠=︒,6AB AC ==,点D 是BC 中点,AE CF = ∴45,BAD B C AD BD DC ∠=∠=∠=︒== ∴ADE CDF V V ≌,∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S =+=+==四边形△△△△△△ 又∵166182ABCS=⨯⨯= ∴1=92ABCAEDF S S =四边形故选:C8. 函数21y ax bx c =++与2ky x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A. 1x <−B. 10x −<<C. 02x <<D. 1x >【答案】D 【解析】【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9. 如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A. 点P 在O 上B. 点P 在O 内C. 点P 在O 外D. 无法确定【答案】C 【解析】【分析】本题考查了垂径定理,圆周角定理,点与圆的位置关系,锐角三角函数,掌握圆的相关性质是解题关键.由垂径定理可得AD =由圆周角定理可得60AOC ∠=︒,再结合特殊角的正弦值,求出O 的半径,即可得到答案.【详解】解:如图,令OC 与AB 的交点为D ,OC 为半径,AB 为弦,且OC AB ⊥,12AD AB ∴==,30ABC =︒∠260AOC ABC ∴∠=∠=︒,在ADO △中,90ADO ∠=︒,60AOD ∠=︒,AD = sin ADAOD OA∠=,4sin 60AD OA ∴===︒,即O 的半径为4,54OP =>,∴点P 在O 外,故选:C .10. 如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是( )A.π8B.π8C.D.【答案】D 【解析】【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r ,则圆锥的底面周长为2r π,根据弧长公式得出侧面展开图的弧长为2π=,进而得出1r =,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r ,则圆锥的底面周长为2r π,圆锥的侧面展开图是一个圆心角为72︒的扇形,且扇形的半径l 是5,∴扇形的弧长为7252180ππ⨯=, 圆锥的底面周长与侧面展开图扇形的弧长相等,22r ππ∴=,1r ∴=,∴=,∴圆锥的体积为2113π⨯⨯,故选:D .第二部分 非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11. 如图,直线l 分别与直线a ,b 相交,ab ,若171∠=︒,则2∠的度数为______.【答案】109︒ 【解析】【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒, ∴21803109∠=︒−∠=︒; 故答案为:109︒12. 如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.【答案】220 【解析】【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=, 故答案为:220.13. 如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.【答案】5 【解析】【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长. 【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠, BAE EBA ∴∠=∠,3BE AE ∴==,235DE AD AE ∴=+=+=,故答案为:5.14. 若2250a a −−=,则2241a a −+=______. 【答案】11 【解析】【分析】本题考查了因式分解,提取公因式,得出条件的等价形式是解题关键.由2250a a −−=,得225a a −=,根据提公因式法分解因式得()22241221a a a a −+=−+,代入可得答案. 【详解】解:2250a a −−=,225a a ∴−=,()2224122125111a a a a ∴−+=−+=⨯+=,故答案为:11.15. 定义新运算:()()200a b a a b a b a ⎧−≤⎪⊗=⎨−+>⎪⎩例如:224(2)40−⊗=−−=,23231⊗=−+=.若314x ⊗=−,则x 的值为______.【答案】12−或74【解析】【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a ⎧−≤⎪⊗=⎨−+>⎪⎩, 而314x ⊗=−, ∴①当0x ≤时,则有2314x −=−, 解得,12x =−; ②当0x >时,314x −+=−, 解得,74x =综上所述,x 的值是12−或74, 故答案为:12−或74. 16. 如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)ky x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)ky x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有______.(填写所有正确结论的序号) 【答案】①②④ 【解析】【分析】由()1,2B ,可得122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',证明四边形A DEO '为矩形,可得当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,可得A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,可得()1,2B n '+,证明B BD A OB '''∽,可得B BD B OA '''∠=∠,再进一步可得答案.【详解】解:∵(1,0)A ,(0,2)C ,四边形OABC 是矩形; ∴()1,2B ,∴122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,∵1212AOBA ODS S'==⨯=, ∴BOKAKDA S S '=四边形, ∴BOKBKDBKDAKDA SSS S'+=+四边形,∴OBD 的面积等于四边形ABDA '的面积;故②符合题意; 如图,连接A E ',∵DE y ⊥轴,90DA O EOA ''∠=∠=︒, ∴四边形A DEO '为矩形, ∴A E OD '=,∴当OD 最小,则A E '最小, 设()2,0D x x x ⎛⎫> ⎪⎝⎭, ∴2224224OD x x x x=+≥⋅⋅=, ∴2OD ≥,∴A E '的最小值为2,故③不符合题意; 如图,设平移距离为n , ∴()1,2B n '+, ∵反比例函数为2y x=,四边形A B CO ''为矩形, ∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭, ∴BB n '=,1OA n '=+,22211n B D n n '=−=++,2A B ''=, ∴2112n BB n B D n OA n A B ''+==='''+,∴B BD A OB '''∽, ∴B BD B OA '''∠=∠, ∵B C A O ''∥, ∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意; 故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17. 解方程:1325x x=−.【答案】3x = 【解析】【分析】本题考查的是解分式方程,掌握分式方程的解法是解题关键,注意检验.依次去分母、去括号、移项、合并同类项求解,检验后即可得到答案. 【详解】解:1325x x=−,去分母得:()325x x =−, 去括号得:615x x =−, 移项得:615x x −=−, 合并同类项得:515x −=−, 解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18. 如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.【答案】见解析 【解析】【分析】本题考查了正方形的性质,相似三角形的判定,掌握相似三角形的判定定理是解题关键.根据正方形的性质,得出90B C ∠=∠=︒,9AB CB ==,进而得出AB BEEC CF=,根据两边成比例且夹角相等的两个三角形相似即可证明. 【详解】解:3BE =,6EC =,9BC ∴=,四边形ABCD 是正方形, 9AB CB ∴==,90B C ∠=∠=︒,9362AB EC ==,32BE CF =, AB BEEC CF∴= 又90B C ∠=∠=︒,ABE ECF ∴∽.19. 如图,Rt ABC △中,90B??.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析 (2)证明见解析 【解析】【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求; (2)先证明四边形ABCD 为平行四边形,再结合矩形判定可得结论. 【小问1详解】解:如图,线段BO 即为所求;【小问2详解】证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =, ∴四边形ABCD 为平行四边形, ∵90ABC ∠=︒, ∴四边形ABCD 为矩形.20. 关于x 的方程2240x x m −+−=有两个不等的实数根. (1)求m 的取值范围;(2)化简:2113|3|21m m m m m −−−÷⋅−+.【答案】(1)3m > (2)2− 【解析】【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键; (1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可. 【小问1详解】解:∵关于x 的方程2240x x m −+−=有两个不等的实数根. ∴()()224140m ∆=−−⨯⨯−>, 解得:3m >;的【小问2详解】解:∵3m>,∴2113|3|21m m mm m−−−÷⋅−+()()1123311 m m mm m m−+−−=⋅⋅−−+2=−;21. 善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.【答案】(1)A组同学得分的中位数为85分,众数为82分;(2)1 3【解析】【分析】本题考查了中位数与众数,列表法或树状图法求概率,掌握相关知识点是解题关键.(1)根据中位数和众数的定义求解即可;(2)由题意可知,A、B两组得分超过90分同学各有2名,画树状图法求出概率即可.【小问1详解】解:由题意可知,每组学生人数为10人,∴中位数为第5、6名同学得分的平均数,∴A组同学得分的中位数为8486852+=分,82分出现了两次,次数最多,∴众数为82分;【小问2详解】的解:由题意可知,A 、B 两组得分超过90分的同学各有2名, 令A 组的2名同学为1A 、2A ,B 组的2名同学为1B 、2B , 画树状图如下:由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有4种,∴这2名同学恰好来自同一组的概率41123=. 22. 2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin36.870.60︒≈,cos36.870.80︒≈,tan36.870.75︒≈) 【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒. 【解析】【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键. (1)过点B 作BE CD ∥交AD 于点E ,根据余弦值求出CD 的长即可;(2)先由勾股定理,求出AC 的长,再利用正弦值求出BC 的长,进而得到AB 的长,然后除以速度,即可求出下降时间.【小问1详解】解:如图,过点B 作BE CD ∥交AD 于点E , 由题意可知,36.87DBE ∠=︒, 36.87BDC ∴∠=︒,在BCD △中,90C ∠=︒,10BD =米,cos CDBDC BD∠=, cos36.87100.808CD BD ∴=⋅︒≈⨯≈米,即CD 的长约为8米;【小问2详解】解:17AD =Q 米,8CD =米,15AC ∴==米,在BCD △中,90C ∠=︒,10BD =米, sin BCBDC BD∠=, sin36.87100.606BC BD ∴=⋅︒≈⨯≈米, 1569AB AC BC ∴=−=−=米,模拟装置从A 点以每秒2米的速度匀速下降到B 点,∴模拟装置从A 点下降到B 点的时间为92 4.5÷=秒,即模拟装置从A 点下降到B 点的时间为4.5秒.23. 一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:(1)在图1中描出表中数据对应的点(,)x y ; (2)根据表中数据,从(0)y ax b a =+≠和(0)ky k x=≠中选择一个函数模型,使它能近似地反映身高和脚长函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析 (2)75y x =− (3)175.6cm 【解析】【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键. (1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =−代入即可求解; 【小问1详解】 解:如图所示:的【小问2详解】解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系, 将点()()23,156,24,163代入得:1562316324a ba b=+⎧⎨=+⎩, 解得:75a b =⎧⎨=−⎩∴75y x =− 【小问3详解】解:将25.8cm 代入75y x =−得:725.85175.6cm y =⨯−=∴估计这个人身高175.6cm24. 如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围; ②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【答案】(1)AF AD =,AF AD ⊥(2)①3r ≥+;②12 【解析】【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论; (2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒−︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒−︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案. 【小问1详解】解:AF AD =,AF AD ⊥;理由如下: ∵在菱形ABCD 中,120C ∠=︒, ∴120BAD C ∠=∠=︒,AB AD =, ∵30BAF ∠=︒,∴1203090FAD ∠=︒−︒=︒, ∴AF AD ⊥,由对折可得:AB AF =, ∴AF AD =; 【小问2详解】 解:①如图,设AEF△外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒, ∴AC BD ⊥, 60BCA ∠=︒,BA BC =, ∵ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,的∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上, ∵AO OE =,∴30AEO EAO ∠=∠=︒, 过O 作OJ AE ⊥于J ,∴AJ EJ =,3AO AJ =,∴3AO AE =, 当AE BC ⊥时,AE 最小,则AO 最小,∵6AB =+60ABC ∠=︒,∴(sin 6069AE AB =⋅︒=+=,∴)93AO ==+∴r 的取值范围为3r ≥+; ②DF 能为O 的切线,理由如下:如图,以A 为圆心,AC 为半径画圆, ∵AB AC AF AD ===, ∴,,,B C F D A 上,延长CA 与A 交于L ,连接DL ,在同理可得ACD 为等边三角形, ∴60CAD ∠=︒, ∴30CLD ∠=︒,∴18030150CFD ∠=︒−︒=︒, ∵DF 为O 的切线,∴90OFD ∠=︒, ∴60OFC ∠=︒, ∵OC OF =,∴OCF △为等边三角形, ∴60COF ∠=︒, ∴1302CAF COF ∠=∠=︒, ∴603030DAF ︒−︒=︒∠=, ∴1203090BAF ∠=︒−︒=︒,由对折可得:45BAE FAE ∠=∠=︒,BE EF =, 过E 作EM AF ⊥于M , ∴设AMEM x ==,∵60EFM ∠=︒,∴33FM EM x ==,∴63x x +=+解得:x =∴63FM =⨯=, ∴212BE EF FM ===.【点睛】本题考查的是轴对称的性质,菱形的性质,等边三角形的判定与性质,圆周角定理的应用,锐角三角函数的应用,勾股定理的应用,切线的性质,本题难度很大,作出合适的辅助线是解本题的关键. 25. 已知抛物线232:621(0)G y ax ax a a a =−−++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+. (1)求抛物线G 的对称轴; (2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点. ①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.【答案】(1)对称轴为直线:3x =; (2)1m =±(3)①15t =,②k的最大值为G 为262y x x =−+; 【解析】【分析】(1)直接利用对称轴公式可得答案;(2)如图,由122C C =+,可得A 在B 的左边,2AD AC CD CD BC BD ++=+++,证明CA CB =,可得2AD BD =+,设(),2D p ,建立1212232x x p x x p +=⨯⎧⎨−=−+⎩,可得:4p =,()4,2D ,再利用待定系数法求解即可;(3)①如图,当l AB '∥时,与抛物线交于,E F ,由直线y x n =+,可得45DCF ∠=︒,可得345t =,从而可得答案;②计算()1122AEFA E SEF y y EF =⋅−=,当1y =时, 可得22620x x a a −−+=,则126x x +=,2122x x a a =−+,可得12EF x x =−==1a =时,EF 的最小值为【小问1详解】解:∵抛物线232:621(0)G y ax ax a a a =−−++>, ∴抛物线对称轴为直线:632ax a−=−=; 【小问2详解】解:∵直线2:l y m x n =+过点(3,1)C , ∴231m n +=, 如图,∵直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+,∴A 在B 的左边,2AD AC CD CD BC BD ++=+++, ∵C 在抛物线的对称轴上, ∴CA CB =, ∴2AD BD =+, 设(),2D p ,∴1212232x x p x x p +=⨯⎧⎨−=−+⎩,解得:4p =, ∴()4,2D ,∴223142m n m n ⎧+=⎨+=⎩, ∴21m =, 解得:1m =±; 【小问3详解】解:①如图,当l AB '∥时,与抛物线交于,E F , ∵直线y x n =+, ∴45DCF ∠=︒,∴345t =, 解得:15t =, ②∵()1122AEFA E SEF y y EF =⋅−=, 当1y =时,2326211ax ax a a −−++=, ∴22620x x a a −−+=,∴126x x +=,2122x x a a =−+,∴12EF x x =−====∵40>,∴当1a =时,EF 的最小值为∴此时12AEFS=⨯= ∵对于任意的0a >,均有S k ≥成立,∴k 的最大值为 ∴抛物线G 为262y x x =−+;【点睛】本题考查的是二次函数的图象与性质,一次函数的性质,坐标与图形面积,一元二次方程根与系数的关系,理解题意,利用数形结合的方法解题是关键.。

广东省中考数学试题解析版

广东省中考数学试题解析版

广东省2011年中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)1、(2011?广东)﹣2的倒数是( )A 、﹣12B 、12C 、2D 、﹣2 考点:倒数。

分析:根据倒数的定义,即可得出答案解答:解:根据倒数的定义,∵﹣2×(﹣12)=1,∴﹣2的倒数是﹣12点评:本题主要考查了倒数的定义,比较简单2、(2011?广东)据中新社北京2010年12月8日电,2010年中国粮食总产量达到0吨,用科学记数法表示为( )A 、×107吨B 、×108吨C 、×109吨D 、×1010吨 考点:科学记数法—表示较大的数。

专题:常规题型。

分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:将0用科学记数法表示为×108.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3、(2011?广东)将下图中的箭头缩小到原来的12,得到的图形是( ) A 、 B 、 C 、 D 、考点:相似图形。

专题:应用题。

分析:根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.解答:解:∵图中的箭头要缩小到原来的12,∴箭头的长、宽都要缩小到原来的12; 选项B 箭头大小不变;选项C 箭头扩大;选项D 的长缩小、而宽没变.故选A .点评:本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4、(2011?广东)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A 、15B 、13C 、58D 、38 考点:概率公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12、( 2011?广东)解不等式组
,并把解集在数轴上表示出来.
考点 :解一元一次不等式组;在数轴上表示不等式的解集。 专题 :数形结合。 分析: 分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.
解答: 解:

由 ① 得, x>﹣ 2, 由 ② 得, x≥3, 故原不等式组的解集为: 在数轴上表示为:
的距离 AD 的长度(精确到 0.1m ;参考数据: ≈1.414, ≈1.732)
考点 :解直角三角形的应用。 分析: 根据 AD=x,得出 BD=x,进而利用解直角三角形的知识解决,注意运算的正确性. 解答: 解:假设 AD=x, ∵ AD=x, ∴ BD=x, ∵∠ ACD=3°0 ,∠ ABD=45°, BC=50m,
与弦 AB 围成的图形的面积.
( 2)如图:∠ BP1A=90°, P1A=P1B=2,
谢谢聆听
∴ S 扇形 BP1A=
=π, S△AP1B= × 2× 2,=2
∴劣弧
与弦 AB 围成的图形的面积为: π﹣2.
谢谢聆听
点评: 此题考查了圆与圆的位置关系以及扇形面积的求解方法.题目难度不大,解题的关键是注意数形结 合思想的应用.
一个球,摸到红球的概率为(

5 个红球 3 个白球,它们除颜色外都相同,从中任意摸出
A、
B、
C、
D、
考点 :概率公式。 专题 :应用题。 分析: 先求出球的所有个数与红球的个数,再根据概率公式解答即可. 解答: 解:∵共 8 球在袋中,其中 5 个红球,
谢谢聆听
谢谢聆听
∴其概率为 ,
故选 C. 点评: 本题考查了概率的求法:如果一个事件有
x≥3,
点评: 本题考查的是解一元一次不等式组及在数轴上表示一元一次不等式组的解集,解此类题目常常要结 合数轴来判断.要注意 x 是否取得到,若取得到则 x 在该点是实心的.反之 x 在该点是空心的.
13、( 2011?广东)已知:如图, E、 F 在 AC上, AD∥CB 且 AD=CB,∠ D=∠B. 求证: AE=CF.
14、( 2011?广东)如图,在平面直角坐标系中,点 P 的坐标为(﹣ 4, 0),⊙ P 的半径为 2,将⊙ P 沿 x 轴 向右平移 4 个单位长度得⊙ P1 ( 1)画出⊙ P1,并直接判断⊙ P 与⊙ P1 的位置关系;
( 2)设⊙ P1 与 x 轴正半轴, y 轴正半轴的交点分别为 A、B.求劣弧 保留 π)
故选 B. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为
a×10n 的形式,其中 1≤|a|< 10,n 为整
数,表示时关键要正确确定 a 的值以及 n 的值.
3、( 2011?广东)将下图中的箭头缩小到原来的
,得到的图形是(

A、
B、
C、
D、
考点 :相似图形。
专题 :应用题。
分析: 根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.
谢谢聆听
广东省 2011 年中考数学试卷
一、选择题(本大题 5 小题,每小题 3 分,共 15 分)
1、( 2011?广东)﹣ 2 的倒数是(

A、﹣
B、
C、 2
考点 :倒数。 分析: 根据倒数的定义,即可得出答案 解答: 解:根据倒数的定义,
D、﹣ 2
∵﹣ 2×(﹣ ) =1,∴﹣ 2 的倒数是﹣
点评: 本题考查了分式方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系.注意
“买一
送三 ”的含义.
17、( 2011?广东)如图,小明家在 A 处,门前有一口池塘,隔着池塘有一条公路
l , AB 是 A 到 l 的小路,
现新修一条路 AC 到公路 l,小明测量出∠ ACD=3°0 ,∠ ABD=45°, BC=50m,请你帮小明计算他家到公路 l
各边中点, 连接成正六角星形 A2F2B2D2C2E2,如图( 3)中阴影部分, 如此下去 …,则正六角星形 A4F4B4D4C4E4
的面积为 .
考点 :相似多边形的性质;三角形中位线定理。 专题 :规律型。 分析: 先分别求出第一个正六角星形 AFBDCE与第二个边长之比,再根据相似多边形面积的比等于相似比 的平方,找出规律即可解答. 解答: 解:∵ A1、 F1、 B1、 D1、 C1、E1 分别是 △ ABC 和 △ DEF各边中点, ∴正六角星形 AFBDCE∽正六角星形 A1F1B1D1C1E1,且相似比为 2: 1, ∵正六角星形 AFBDCE的面积为 1,
解答: 解:∵图中的箭头要缩小到原来的 ,
∴箭头的长、宽都要缩小到原来的

选项 B 箭头大小不变; 选项 C 箭头扩大;选项 D 的长缩小、而宽没变. 故选 A. 点评: 本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变 换.
4、( 2011?广东)在一个不透明的口袋中,装有
11、( 2011?广东)计算:

考点 :特殊角的三角函数值;零指数幂。 分析: 本题涉及零指数幂、特殊角的三角函数值、二次根式的化简,乘方四个考点.在计算时,需要针对 每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
解答: 解:原式 =1+3 × ﹣ 4,
=1+3﹣ 4, =0. 点评: 此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟 记特殊角的三角函数值,熟练掌握二次根式的化简等考点的运算.
∴正六角星形 A1F1B1D1C1E1 的面积为 ,
谢谢聆听
谢谢聆听
同理可得,第三个六角形的面积为:
=,
第四个六角形的面积为:
=,
故答案为:

点评: 本题考查的是相似多边形的性质及三角形中位线定理,解答此题的关键是熟知相似多边形面积的比 等于相似比的平方. 三、解答题(一) (本大题 5 小题,每小题 6 分,共 30 分)
考点 :全等三角形的判定与性质。 专题 :证明题。
谢谢聆听
谢谢聆听
分析: 根据两直线平行内错角相等即可得出∠ A=∠ C,再根据全等三角形的判定即可判断出 △ ADF≌△ CBE, 得出 AF=CE,进而得出 AE=CF. 解答: 证明:∵ AD∥CB, ∴∠ A=∠ C, ∵ AD=CB,∠ D=∠ B, ∴△ ADF≌△ CBE, ∴ AF=CE, ∴ AE=CF. 点评: 本题考查了平行线的性质以及全等三角形的判定及性质,难度适中.
与弦 AB 围成的图形的面积(结果
考点 :圆与圆的位置关系;坐标与图形性质;扇形面积的计算。
分析:( 1)根据题意作图即可求得答案,注意圆的半径为
2;
( 2)首先根据题意求得扇形 BP1A 与 △ BP1A 的面积, 再作差即可求得劣弧
解答: 解:( 1)如图: ∴⊙ P 与⊙ P1 的位置关系是外切;
AOB 的度数,然后用三
点评: 本题考查的是切线的性质,根据求出的性质得到∠
OBA 的度数,然后在三角形中求出∠ C 的度数.
10、(2011?广东)如图( 1),将一个正六边形各边延长,构成一个正六角星形
AFBDCE,它的面积为 1,取
△ ABC和 △ DEF各边中点, 连接成正六角星形 A1F1B1D1C1E1,如图( 2)中阴影部分, 取 △ A1B1C1 和 △ D1E1F1
考点 :科学记数法 —表示较大的数。
专题 :常规题型。
分析: 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|< 10,n 为整数.确定 n 的值时,要看把原数变
成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值>
1 时, n 是正数;当
原数的绝对值< 1 时, n 是负数. 解答: 解:将 546400000 用科学记数法表示为 5.464 ×180.
n 种可能,而且这些事件的可能性相同,其中事件
A 出现
m 种结果,那么事件 A 的概率 P(A) = ,难度适中.
5、( 2011?广东)正八边形的每个内角为(

A、 120 ° B、 135 °C、 140 ° 考点 :多边形内角与外角。
D、 144 °
分析: 根据正多边形的内角求法,得出每个内角的表示方法,即可得出答案.
15、( 2011?广东)已知抛物线
与 x 轴没有交点.
( 1)求 c 的取值范围; ( 2)试确定直线 y=cx+1 经过的象限,并说明理由. 考点 :抛物线与 x 轴的交点;一次函数的性质。 专题 :代数综合题。 分析:( 1)根据题意的判别式小于 0,从而得出 c 的取值范围即可; ( 2)根据 c 的值,判断直线所经过的象限即可.
x 的值代入,按程序一步一步计算.
9、( 2011?广东)如图, AB 与⊙ O 相切于点 B,AO 的延长线交⊙ O 于点 C,连接 BC,若∠ A=40°,则∠ C=
25° .
谢谢聆听
谢谢聆听
考点 :切线的性质;圆周角定理。 专题 :计算题。 分析: 连接 OB,AB 与⊙ O 相切于点 B,得到∠ OBA=9°0 ,根据三角形内角和得到∠ 角形外角的性质求出∠ C 的度数. 解答: 解:如图:连接 OB, ∵ AB 与⊙ O 相切于点 B, ∴∠ OBA=9°0 , ∵∠ A=40°, ∴∠ AOB=5°0 , ∵ OB=OC, ∴∠ C=∠ OBC, ∵∠ AOB=∠ C+∠ OBC=2∠ C, ∴∠ C=25°. 故答案是: 25°.
分析: 根据等量关系:整箱购买,则买一送三瓶,相当于每瓶比原价便宜了
0.6 元,依此列出方程求解即
可.
解答: 解:设该品牌饮料一箱有 x 瓶,依题意,得
谢谢聆听
相关文档
最新文档