十三中2011学年第一学期八年级数学期末模拟卷
2011年八年级(上)期末数学模拟试卷(四)及答案
2011年八年级(上)期末数学模拟试卷(四)一、选择题(共10小题,每小题3分,共30分)温馨提示:每题的四个选项中只有一个是正确的,请将正确的选项选出来。
1、在平面直角坐标系中,点(23)P -,关于原点对称点P '的坐标是 ( ) A 、(-2,-3) B 、(-3,-2) C 、(-2,3) D 、(-3,2) 2、不等式组⎩⎨⎧>-->-01125x x 的解集是( )A 、3<xB 、3>xC 、31<<xD 、1>x 3、如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A 、y=-x+2B 、y=x+2C 、y=x -2D 、y=-x -24. 若正比例函数()14y m x =-的图象经过点()11,A x y 和点()22,B x y ,当12x x <时,12y y >,则m 的取值范围是( )A 、0m <B 、0m >C 、14m <D 、14m > 5、不等式组10235x x +≥⎧⎨+<⎩的解集在数轴上表示为( ).6.已知a ,b 为实数,则解可以为 – 2 < x < 2的不等式组是( ) A 、⎩⎨⎧>>11bx ax B 、⎩⎨⎧<>11bx ax C 、⎩⎨⎧><11bx ax D 、⎩⎨⎧<<11bx ax7.5个相异正整数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大 值是( )A 、21B 、22C 、23D 、24 8. 如图,已知△ABC 中,BC =13cm ,AB =10cm ,AB 边上的中线CD =12cm ,第3题ABCD则AC 的长是( )A 、13cmB 、12cmC 、10cmD 、269cm9.学校科学老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子的粒数为( ) A 、12+nB 、12-nC 、n 2D 、2+n10、如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后, 继续注水,直至注满水槽。
2013-2014学年度第一学期八年数学期末模拟考试试卷(二)
2013-2014学年度第一学期八年数学期末模拟考试 试 卷(二)2013.1(考试时间90分钟 满分100分) 成绩一、选择题(每题3分,共21分)1.以下列各组线段为边,能组成三角形的是 ( )A. 4cm 、5cm 、6cmB. 2cm 、3cm 、5cmC. 4cm 、4cm 、9cmD. 12cm 、5cm 、6cm 2.下列各式中,计算结果等于82x 的是 ( )A .44x x +B .242x x ⋅C .24)2(xD .2102x x÷3.若分式xx-1有意义,则x 的取值范围是 ( ) A .0≠x B .1≠x C .x ≠-1 D .0<x <14.若n 边形的内角和是1260°,则边数n 为( )A. 7B. 8C. 9D. 10 5. 下列图形中,轴对称图形有( )( ) A .1个 B .2个 C .3个D .4个6. 下列轴对称图形中,对称轴最多的图形是( ) A .线段 B .角C .等腰直角三角形D .等边三角形7. 下列说法中,正确的是 ( ) A. 面积相等的两个三角形全等 B. 两锐角对应相等的两个直角三角形全等 C. 两腰分别对应相等的两个等腰三角形全等 D. 两角和它们夹边对应相等的两个三角形全等二、填空题(每题3分,共24分)8.如图,△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,若∠A=52°,则∠BDC= °.OEDBAC D C AB CDAB第8题 第11题 第12题 第13题 9. 北京市政府力争在今年使空气质量达到国家二级标准,即可吸入颗粒物日均浓度低于0.00015 g/ m 3,则这个数字用科学记数法表示为 .10. 已知119⨯21=2499,则119⨯213-2498⨯212= .11. 如图,点D 、E 分别在线段AB 、AC 上,BE 和CD 相交于点O AE AD =,,要使ABE ACD △≌△,则需添加的一个条件是 (写出一种即可).12. 如图,在ABC △中,90C ∠=,AD 平分CAB ∠,CD=1 cm ,那么D 点到边AB 所在直线的距离是 cm .13. 如图,在△ABC 中,AB =AD =DC ,∠C =40°,则∠BAD 的度数为 . 14. 如图,ABC △中, ∠ABC=90°,∠C=30°, 直线DE 是BC 的垂直平分线,分别交AC 于点D 、交BC 于点E ,若DE=3,则AC 的长为 . 15. 一组按规律排列的式子:2b a -,53b a ,83b a-,114b a ,…(0ab ≠),其中第7个式子是 ,第n 个式子是(n 为正整数).三、解答题(16—22小题每题5分,23、24每小题6分,25题8分,共55分)16.已知x 2+3x-1=0,求(x+2)(x-2)+(x-1)2 -x (x-5)的值.17.先化简,再求值:aa a a a 1121122++-÷-,其中a =2000..DE A B C18.分解因式: x x x ++232 19. 解方程:44212-=-x x20. 先化简,再求值:[]a b a b a b a b a ÷--+-+)4)(()2)(2(,其中a= –1,b=3.21.已知:如图,在△ABC 和△EDA 中,∠C=∠EAD=90°,点D 在AC 上,BC=DA ,AB 与ED 相交于点F ,且AB=ED . 求证:(1)△ABC≌△EDA; (2)AB⊥ED.22.四川汶川发生特大地震灾害以后,全国人民大力发扬“一方有难,八方支援”的精神,积极为灾区生产和运送急需的各类救援物资.某厂家要在一定期限内生产一批救灾帐篷,共36000顶.工人们克服困难,争分夺秒加紧生产,实际每天生产量是原计划每天生产量的1.2倍,结果提前2天完成任务,该厂原计划每天生产多少顶救灾帐篷?23.如图,在平面直角坐标系中,(1)画出△ABC 关于y 轴对称的△A B C ''',并写出各顶点坐标;(2)△ABC 和△C B A ''''''关于直线m 对称,作出直线m (要求:尺规作图,保留作图痕迹,不用写作法);(3)若直线m 与y 轴相交于点P ,且所夹锐角记为α,试探究∠B P B '''与∠α之间数量关系(直接写出结论即可).xy A''C''B''C BA O12345-1-2-3-4-512345678924.已知:如图,AD 是△ABC 的角平分线,AD 的垂直平分线EF 交AD 于点E ,且分别交AB 、AC 和BC 的延长线于点F 、M 和N.求证:(1)FE=ME ;(2)∠B=∠CAN.25.已知:如图,△OAB中,OB=AB,以O为坐标原点建立平面直角坐标系:(1)画出△OAB关于y轴对称的图形△OCD,且使点A对应点为C;(2)在(1)的条件下,分别连结AC、BD,则AC、BD的位置关系为;(3)在(1)、(2)的条件下,连结BC,若∠BAC=2∠ACB,求∠BOD的度数。
2013—2014学年度第一学期8年级数学期末模拟训练(含参考答案)
2013—2014学年度第⼀学期8年级数学期末模拟训练(含参考答案)2013—2014学年度第⼀学期期末模拟训练⼋年级数学(考试时间:120分钟总分:150分) ⼀、选择题(每题3分,共30分)1、( ),则x 的取值范围为:A .21≥x B . 21≤x C .21-≥x D . 21-≤x 2、( ) 下列汽车标志中,是轴对称图形的有()个.A .1B .2C . 3D . 4 3、( ) 下列计算中,正确的是A .(a 3b )2=a 6b 2 B .a?a 4=a 4 C .a 6÷a 2=a 3 D .3a+2b=5ab4、( ) 如图,已知△ABC ≌△AEF ,∠BAF =50°,则∠EAC 的度数为 A. 60°B. 40°C. 50°D. 45°5、( )分式112--x x 的值为零,则x 的值是A .-1B .0C .±1D .16、( ) 若等腰三⾓形有两条边的长度为3和1,则此等腰三⾓形的周长为A .5B .7C .5或7D .67、( ) 在直⾓坐标系中,点P (-2,-1)到原点的距离是(A )5 (B )13 (C )11 (D )2 8、( ) 下列多项式可以⽤平⽅差公式因式分解的是A .22y x +; B .22y x --; C .22y x +-; D .23y x - 9、( ) 已知x 31x -=,则214x 22x 3-+的值为 A .1B .32C .52D .7210、( ) 如图,正⽅形ABCD 的边长为4,点E 在对⾓线BD 上,且0BAE 22.5∠=,EF ⊥AB ,垂⾜为F ,则EF 的长为A .1 BC.4- D.42014.01.10制卷⼆、填空题(每题3分,共24分)11、分解因式:32a 4ab -= 。
12、计算[]x x y x y y x 28)2()(2÷-+-+ = 。
2011学年八上第一学期数学期末考试含答案
(第1题图)第6题图FGE D BCAD.C.B.A.2011学年第一学期期末考试八年级数学考生须知:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分. 2.答题前,请在答题卷的左上角填写学校、班级、姓名和考试编号. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应. 试题卷一、 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1. 如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是 A .同位角 B.内错角 C .对顶角 D.同旁内角2.下列函数中,y 的值随着x 值的增大而增大的是A .y =x+1B .y =-xC .y =1-xD .y =-x -13.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是4.某皮鞋厂为提高市场占有率而对鞋码进行调查时,他最应该关注鞋码的 A.平均数 B.中位数 C.众数 D.方差 5.直角三角形两条直角边长分别是5和12,则第三边上的中线长为 A.5 B.6 C.6.5 D.12 6.如图,已知DC ∥EF,点A 在DC 上,BA 的延长线交EF 于点G ,AB=AC,∠AGE=130°,则∠B 的度数是A.50°B.65°C.75°D.55°图甲图乙第3题图2)第10题图t(小时)S7.若a>b ,则下列各式中一定成立的是A .ma>mbB .c 2a>c 2b C .1-a>1-b D .(1+c 2)a>(1+c 2)b8.为了了解某路口每天在学校放学时段的车流量,有下面几个样本,统计该路口在学校放学时段的车流量,你认为合适的是A.抽取两天作为一个样本B. 春、夏、秋、冬每个季节各选两周作为样本C. 选取每周星期日作为样本D. 以全年每一天作为样本 9.如图,直线y 1=ax+b 与直线y 2=mx+n 相交于点(2,3),则不等式ax+b >mx+n 的解是A.x >2B.x <2C.x >3D.x <310.如图在一次越野赛跑中,当小明跑了9千米时,小强跑了5千米,此后两人匀速跑的路程S(千米)和时间t(小时)的关系如图所示,则由图上的信息可知S 1的值为A. 21千米B. 29千米C.15千米D.18千米二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.球的表面积S 与半径R 之间的关系是24R S π=.对于各种不同大小的圆,请指出公式24R S π=中常量是 ▲ ,变量是 ▲ .12.用不等式表示:“a 的2倍与1的和是非负数”是 ▲ . 13.把点A(-1,3)先向右平移3个单位,再向下平移2个单位,则最后所得的像的坐标是 ▲ .14. 在某公用电话亭打电话时,需付电话费y (元)与 通话时间 x (分钟)之间的函数关系用图象表示如图. 则小明打了6分钟需付费 ▲ 元.15.若一组数据x 1, x 2,……x n 的平均数是x ,则数据2x 1-1, 2x 2-1,……2x n -1的平均数是 ▲ .2011学年第一学期八年级数学期末试卷 第 3 页 共 7 页CBA第19题图B 1第20B1B第16题图GFE DCBA 16. 如图,正方形(正方形的四边相等,四个角都是直角)ABCD 中,AB =6,点E 在边CD 上,且CD =3DE.将△ADE 沿对折至△AFE ,延长EF交边BC 于点G ,连结AG 、CF.则ΔFGC 的面积是 ▲ .三、全面答一答 (本题有7个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17. (本小题满分10分)解不等式(组):出来并将解集在数轴上表示()(⎪⎩⎪⎨⎧-+≥-+≤-131325135)132x x x x 18.(本小题满分6分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A ,B 两点. 请你用两种不同方法表述点B 相对点A 的位置.19. (本小题满分9分)一个蔬菜大棚(四周都是塑料薄膜)的形状如图. (1)它可以看成是怎样的棱柱?(2)若它的底面是边长为AB=3米的正三角形,大棚总长BC=10米,那么搭建这个蔬菜大棚需要多少的塑料薄膜?20. (本小题满分9分)在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转得到ΔA 1B 1C ,设A 1B 1与BC 相交于点D .(1)如图1,当AB ∥CB 1时,说明△A 1CD 是等第18题图Bxx 211411≤-)(边三角形;(2) 如图2,当点A1正好在边AB上时,判别A1B1与BC的位置关系,并说明理由.21. (本小题满分10分)某校从两名优秀选手中选一名参加全市中小学运动会的男子100米跑项目,该校预先对这两名选手测试了8次,测试成绩如下表(1)为了衡量这两名选手100米跑的水平,你选择哪些统计量?请分别求出这些统计量的值.(2)你认为选派谁比较合适?为什么?22. (本小题满分10分)为了抓住世博会的商机,某商店决定购进甲、乙两种玩具.其中甲种玩具是每件5元,乙种玩具是每件10元.(1)若该商店决定拿出1000元钱全部用来购进这两种玩具,考虑市场需要,要求购进甲种玩具的数量不少于乙种玩具数量的6倍,且不超过乙种玩具数量的8倍,那么该商店有几种不同购进方案?(2)若销售每件甲种玩具可获利3元,销售每件乙种玩具可获利4元,在第(1)问的各种进货方案中,哪种进货方案获利最大?最大利润为多少?23. (本小题满分12分)如图,点O是坐标系原点,直线y=kx+b与x轴交于点A,与直线y=-x+5交于点B,点B 的纵坐标是3,且AB=5,直线y=-x+5与y轴交于点C.(1)求直线y=kx+b的解析式;(2)求ΔABC的面积;(3)在直线BC上是否存在一点P,使ΔPOC的面积是ΔBOC面积的一半,若不存在,请说明理由,若存在,求出点P的坐标.42011学年第一学期八年级数学期末试卷 第 5 页 共 7 页-----图2分2011年第一学期期末考试八年级数学参考答案一.选择题 (每小题3分, 共30分)二.填空题 (每小题4分,共24分)11. 4π , S,R; 12. 2a+1≥0 ; 13. (2,1) ; 14. 1.8 ; 15. 12-x ; 16.518. 三.解答题 (本大题有7个小题,共66分) 17.(本题满分10分)(1)解:不等式两边同乘4得: (2)由①解得x ≥-3---------1分x-4≤2x---------1分 由①解得x ≤31---------1分 -x ≤4----------1分 所以不等式组的解集是-3≤x ≤31------2分X ≥-4----------2分18. (本题满分6分) 解:有两种:(1)用坐标(或有序实数对)来表示点B 相对于A 的位置,------ -1 如图建立坐标系后,------ -1分 B 点的坐标是(3,3)------ -1分(2)用方向和距离来表示点B 相对于A 的位置--------- 1分点B 在点A 的东北方向的23个单位处-----------2分(若此答案对,则上面的1分可以不扣,第一种方法也一样) 19. (本题满分9分) 解:(1)它可以看成是直三棱柱------3分(2)分分分分侧底侧底16023912223010324393432----------------------------------------+=+==⨯==⨯=S S S S S6B 1第20B1B 20. (本题满分9分) 证明:(1)当AB ∥CB 1时,∠BCB 1=∠B=∠B 1=30°∴∠A 1DC=∠BCB 1+∠B 1=60°(或∠A 1DC=60°) ----------------2分又因为∠A 1=60°∴∠A 1DC=∠A 1=∠A 1CD=60°------------2分 所以△A 1CD 是等边三角形(3)A 1B 1⊥BC ----------1分∵A 1C=AC, ∠A=60° ∴△A 1CA 是等边三角形----------2分∴∠A 1CA=60°= ∠CA 1D ∴∠A 1CD=30°----------1分 ∴∠A 1DC=90°---------1分 ∴A 1B 1⊥BC21. (本题满分10分) 解:(1)为了衡量这两名选手100米跑的水平,应选择平均数、方差、中位数这些统计量.…1分(2) 分,秒,乙成绩的中位数是甲成绩的中位数是分,分秒秒乙甲乙甲2----45.1255.122------085.0125.02------5.126.1222====S S(3)应选择乙参赛.-----------1分因为乙比较稳定,从平均数和中位数来看,也是乙的成绩比较好,故选乙参赛。
2011.11十三中分校八年级数学期中试题及答案
第Ⅰ卷一、选择题:(每题3分,共30分)1.下列图形中,是.轴对称图形的是()2.下列根式中,不是..最简二次根式的是()A B C D3.若分式242xx-+的值为0,则x应满足的条件是()A.2x=-B.2x=C.2x≠-D.2x=±4.若16)3(22+--xmx是完全平方式,则m的值等于( ) A.-1 B.7 C.7或-7 D.7或-15.已知:如图△ABC≌△DCB,其中点A与点D,点B与点C分别是对应顶点,如果AB=2,AC=3.CB=4,那么DC的长为().A.2B.3C.4D.不确定2011---2012学年度北京市第十三中学分校第一学期期中八年级数学试卷AB CDB6.A 、B 两地相距36千米,一艘小船从A 地匀速顺流航行至B 地,又立即从B 地匀速逆流返回A 地,共用去9小时。
已知水流速度为3千米/时,若设该轮船在静水中的速度为x 千米/时,则求x 时所列方程正确的是( )A .9336336=-++x x B . 9336336=-++x x C .9336=+x D .9372372=-++x x 7.△ABC 中, AC = 5, 中线AD = 7, 则AB 边的取值范围是 ( )A .1 < AB < 29 B .4 < AB < 24C .9 < AB < 19D .4 < AB < 19 8.关于x 的方程112=-+x ax 的解是正数,则a 的取值范围是( ) A .a >-1 B .a <-1且a ≠-2 C .a <-1 D .a <-1且0a ≠9.已知:3=-b a ,5-=+c b ,则代数式ab a bc ac -+-2的值为( )A .-15B .-2C .-6D .610. 如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AD ,下列结论正确的是( )A.AB -AD >CB -CDB.AB -AD=CB -CDC.AB -AD <CB -CDD.AB -AD 与CB -CD 的大小关系不确定第Ⅱ卷二、填空题:(每题2分,共16分)11.要使式子x有意义,x 的取值范围是 。
2011年八年级(上)期末数学模拟试卷(二)及答案
2011年八年级(上)期末数学模拟试卷(二)一、选择题(共10小题,每小题3分,共30分)温馨提示:每题的四个选项中只有一个是正确的,请将正确的选项选出来。
1、在平面直角坐标系中,点(23)P -,关于原点对称点P '的坐标是 ( ) A .(-2,-3) B .(-3,-2) C .(-2,3) D .(-3,2)2、若一个立体图形的主视图与左视图都是长方体,俯视图是圆,则这个几何体是 ( ) A .圆柱 B .三棱柱 C .四棱柱 D .球3.小张参加招考公务员考试,报名参考人数是1280名,按考试成绩从高到低排列,前640 名通过笔试.小张得知自己的成绩后,想知道自己是否通过笔考,他最应该了解的考试成绩统计量是( )A .中位数B .平均数C .标准差D .众数 4.若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33b a >C . b a -<-D . bc ac < 5、由四个大小相同的小正方体搭成的几何体的左视图如图所示,则这个几何体的搭法不能是( )6、两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图像可能是( )7. 已知a b <,则有以下结论①a c b c +<+;②a bc c<;③c a c b ->-;④a c b c <,其中正确的结论的序号是( )A 、①③B 、①②③C 、①③④D 、①②③④8.在平面直角坐标系中有两点A(一2,2),B(3,2),C 是坐标轴上的一点,若△ABC是等腰三角形,ABCD则满足条件的点C 有( )A .7个B .8个C .9个D .10个 9.甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为40km .他们行进的路程S (km )与乙出发后的时间t (h )之间的函数图像如图.根据图像信息,下列说法正确的是A 、甲的速度是20km/ hB 、乙的速度是10 km/ hC 、乙比甲晚出发1 hD 、乙比甲晚到B 地3 h 10.如图,已知点A 的坐标为(-1,0 ),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( ) A 、(0,0) B 、(22,22-) C 、(-21,-21) D 、(-22,-22)二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题的答案要求是最简捷,最正确的答案。
2011学年第一学期八年级数学科期末测试题
- 1 -2011学年第一学期八年级数学科期末测试题本试卷共6页,25小题,全卷满分100分,考试时间为120分钟. 注意事项:1.答卷时,考生务必用黑色字迹的钢笔或签字笔将自己的学校、班级、姓名和座位号、准考证号填写在答题卡上,并用2B 铅笔将准考证号填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作图题请先用2B 铅笔作图,然后用黑色字迹的钢笔或签字笔将所作线条覆盖.5.本次考试可以使用计算器.一、选择题 (本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出来,填入下表中相对应的表格.) 1.(※). (A )8(B )4(C )4± (D )4-2.下列四个图形中,轴对称图形的个数是(※)个.(A )1 (B )2 (C )3 (D )4 3.下列运算中正确的是(※).(A )325m m m ⋅= (B )235m n mn +=(C )623m m m ÷= (D )22()m n m n 2-=-4.点A (-2,1)关于x 轴对称的点为B ,则点B 的坐标为(※).(A )(21)-,(B )(21), (C )(21)--, (D )(21)-, 5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是(※).(A )0x > (B )0x < (C )2x > (D )2x <x第5题图第2题图- 2 -6.下列判断中错误..的是(※). (A )有两角和一边对应相等的两个三角形全等 (B )有两边和一角对应相等的两个三角形全等 (C )有三边对应相等的两个三角形全等 (D )有一边对应相等的两个等边..三角形全等 7.把多项式3222x x y xy -+分解因式结果正确的是(※).(A )2(2)x x y - (B )2()x x y + (C )2(2)xy x y - (D )2()x x y - 8.如图,已知函数 y x b =+和3y ax =+的图象交点为(1,2)P ,则不等式3x b ax +≤+的 解集为(※).(A )1x ≤ (B ) 1x ≥ (C )2x ≤ (D ) 2x > 9.如图所示,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ',C '的位置. 若65DEF ∠=︒,则AED '∠=(※).(A ) 25° (B ) 50° (C ) 65° (D )70°10.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 (※). (A )203210x y x y +-=⎧⎨--=⎩, (B )2103210x y x y --=⎧⎨--=⎩,(C )2103250x y x y --=⎧⎨+-=⎩, (D )20210x y x y +-=⎧⎨--=⎩,第10题图第8题图- 3 -二、填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上.)11.函数y=的自变量x 的取值范围是 ※ .12.如图,点D 、E 分别在线段AB 、AC 上,BE CD 、相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是 ※ (不添加辅助线,只写一个条件).13.如图,等腰ABC △中,AB AC =,AD 是底边上的高,若5cm 30BD BAD =∠=︒,,则ABC ∆的周长为 ※ cm . 14. 实数127-的立方根是 ※ .15.根据如图所示的流程图中的程序,当输入数值x 为2-时,输出函数值y 为 ※ . 16. 在平面直角坐标系中,将直线21y x =-向上平移动4个单位长度后,所得直线的解析式为 ※ .三、解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分,各题3分)计算: (1) ()23(2)x y xy -+-; (2)32221-7x y x y ÷(). 18.(本小题满分6分)分解因式:(1)225x -; (2)2712a a -+. 19.(本小题满分7分)已知直线1l :45y x =-+和直线2l :142y x =-. (1)在坐标系中作出此两条直线,并求出直线1l 和2l 的交点P 的坐标;(2)判断该交点P 是否在正比例函数2y x =-的图象上.第15题图AC D B第13题图OCEA DB第12题图第19题图- 4 -20.(本小题满分7分)如图所示,BAC ABD AC BD ∠=∠=,,AD BC 、交于点O . (1)判断BAC △与ABD △是否全等,并给出证明;(2)用直尺和圆规作AB 的垂直平分线l (保留作图痕迹, 不写作法),试判断直线l 是否过点O ,并说明理由.21.(本小题满分8分)(1)已知:3,2a +b =ab =,求22a b+ab 的值.(2)先化简,再求值:2228(2)(76)(3)x y x x y x y --+++,其中x y ==.22.(本小题满分8分)如图,在方格纸上建立平面直角坐标系,ABC ∆的顶点都在格点上,直线MN 经过坐标原点O ,且点M 的坐标是(1,2). (1)写出点C 的坐标;(2)分别求直线MN 、AB 所对应的函数关系式, 并说明其函数的名称; (3)作出ABC ∆关于直线MN 的对称图形(保留作图痕迹,不写作法).COEAD第20题图第22题图- 5 -23.(本小题满分8分)如图, 已知C 为AB 的中点,CD CE =,DCA ECB ∠=∠,BD 与AE 交于点M . (1)证明:AD BE =;(2)判断AE 与BD 是否相等, 并对结论加以证明; (3)DMA ∆与EMB ∆是否全等?为什么?24.(本小题满分9分)据羊城晚报报道,为了倡导节约用水,居民生活用水“阶梯式计量水价”制度写入了广州市地方性法规.某自来水公司工作人员设计了一个居民用水以户为单位“分段收费方案”,提交听证会给市民讨论:一月用水不超过15吨的用户,每吨收水费a 元;一月用水超过15吨的用户,15吨水仍按每吨a 元收费,超过15吨的部分,按每吨b 元(b a >)收费,设某户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图所示.按此方案, (1)求a 的值,若某户居民用水10吨,应交水费多少元? (2)求b 的值,并写出当15x >时,y 与x 之间的函数关系式;(3)某户居民每月用水不超过25吨,拟每月水费支出不超过32元,上述方案能否满足要求? 若不满足,请你重新设计一个满足此户居民要求的“分段收费方案”,并用函数关系式表示出来,再画出它的图象。
2011年八年级上册数学期末试卷精品
2011—2012学年度八年级数学期末试卷第一学期班级_________ 姓名________ 学号_________一.填空题(每题3分,共18分,直接填写结果)1.若式子5+x 在实数范围内有意义,则x 的取值范围是 .2.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .3.已知P 是⊙O 外一点,PA 切⊙O 于A ,PB 切⊙O 于B.若PA =6,则PB = .4.将抛物线21(5)33y x =--+向左平移5个单位,再向上平移3个单位后得到的抛物线的解析式为 .5.函数y = k x + b (k ≠o)的图象平行于直线y=2x+3,且交y 轴于点(0,一1),则其解析 式是_______________________________。
6.设x 2(,x y ==xy 等于__________。
二、选择题.(本大题共10个小题,每小题3分,共30分)7.如图,已知,在△ABC 中,AB=AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F , 那么图中全等的三角形有( )对A 、2B 、3C 、4D 、5F E DCBA第7题图第8题图8.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm , △ADC 的周长为9cm ,则△ABC 的周长是( )9.已知点1(1,5)P a -和2(2,1)P b -关于x 轴对称。
则2009()a b +的值为 ( )A .0B .1-C .1D .2009(3)-10.下列函数中,自变量x 的取值范围是x ≥2的是 ( ) A.y =B.y =C.y =D.y =11.甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的1.5倍.如果设甲植树x 棵,乙植树y 棵,那么可以列方程组.( )(A )⎩⎨⎧==+y x y x 5.2,20 (B )⎩⎨⎧=+=y x y x 5.1,20 (C )⎩⎨⎧==+y x y x 5.1,20 (D )⎩⎨⎧+==+5.1,20y x y x12.一次函数y ax a =-(0a ≠)的大致图像是( )A B C D13点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于原点的对称点2P 的坐标是 ( )A 、 (-4,-8)B 、 (4,8)C 、 (-4,8)D 、 (4,-8) 14.已知直线y=(k 一2) x + k 不经过第三象限,则k 的取值范围是( ) A .k ≠2 B .k>2 C .0<k<2 D .0≤k<215.一个三角形任意一边上的高都是这边上的中线, 则对这个三角形的形状最准确的判 断是( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形16.某学校组织团员举行申奥成功宣传活动,从学校骑车出发, 先上坡到达某地后,宣传8分钟;然后下坡到某地宣传8分 钟返回,行程情况如图.若返回时,上、下坡速度仍保持不 变,在A 地仍要宣传8分钟, 那么他们从B 地返回学校用 的时间是( )A .45.2分钟B .48分钟C .46分钟D .33分钟三、解答题:(本大题共6小题,共52分,解答应写出必要的计算过程、推演步骤或文字说明,把解答过程写在答题纸相应的位置上) 17.(本题满分6分)求tan 2 60°+4sin30°cos45°的值.18.(本题满分8分)解不等式215132x x -+-≤1,并把它的解集在数轴上表示出来.19.(本题满分8分)解方程:2(3)4(3)0x x x -+-=20.(本题满分8分)如图,在平面直角坐标内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO=5,sin ∠BOA=35. (1)求点B 的坐标; (2)求tan ∠BAO 的值.第23题图FEDCBAG21.(本题满分10分)关于x 的方程222(4)10x a x a ---+=. (1)a= 时,方程的一根为0 ? (2)a 为何值时,方程的两根互为相反数?(3)试证明:无论a 取何值,方程的两根不可能互为倒数22.如图,已知△ABC 是等边三角形,D 为AC 边上的一个动点,DG ∥AB ,延长AB 到E ,使BE=CD ,连结DE 交BC 于F .(本题满分12分) (1)求证:DF=EF ;(2)若△ABC 的边长为a ,BE 的长为b ,且a 、b 满足096)5(22=+-+-b b a ,求BF 的长;(3)若△ABC 的边长为5,设CD=x ,BF=y ,求y 与x 间的函数关系式,并写出自变量x 的取值范围.。
北京市十三中2011-2012学年八年级上学期期中数学试卷
北京市第十三中学2011—2012学年度第一学期八年级数学期中测试本试卷共100分,考试时间90分钟。
请在答题纸左侧密封线内书写班级、姓名、准考证号,并在答题纸上作答。
考试结束后,只将答题纸交回。
一、选择题(每小题3分,共30分。
在答题纸上涂黑所选答案对应的字母) 1.9的平方根是( )A . 3B . 3C .-3D . 81 2.如图,轴对称图形有( )A.1个B.2个C.3个D.4个 3.下列各式从左到右的变形属于分解因式的是( )A. 4)2)(2(2+=-+x x xB. 1)(122--=--y x xy xy y xC. 222)2(44b a b ab a -=+-D. )(y x a a ay ax +=++4.在、3π、3.1415和0六个数中,无理数的个数是( ) A .4个 B .3个 C .2个 D .1个 5.不能确定△ABC 与△DEF 全等的是( )A .AB=DE ,∠A=∠D , BC=EFB .AC=DF ,AB=DE ,BC=EFC .AC= DF ,∠A=∠D ,∠C=∠F D .AC= DF ,∠B=∠E ,∠A=∠D 6.下列式子成立的是( ) A.()222-=- B.525±= C.3355=- D. 8)8(33-=-7.下列说法中不正确...的是( ) A .有一腰长相等的两个等腰三角形全等B .有一边对应相等的两个等边三角形全等C .斜边相等、一条直角边也相等的两个直角三角形全等D .斜边相等的两个等腰直角三角形全等8.如图,点C 、D 分别在∠AOB 的边OA 、OB 上, 若在线段CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ).A. 线段CD 的中点B. OA 与OB 的中垂线的交点C. CD 与∠AOB 的平分线的交点D. OA 与CD 的中垂线的交点9.在直角坐标系中有A,B 两点,要在y 轴上找一点C,使得它到A,B 的距离之和最小,现有如下四种方案,其中正确的是( )10.如图所示,将一张正方形纸片经过两次对折,并剪出一个小洞后展开铺平,得到的图形是( )二、填空题(每题2分,共16分)11.在平面直角坐标系中,点P(2-,5-)关于y 轴的对称点P ’的坐标是. 12.等腰三角形的一外角等于140°,则它的顶角为13.若2(2)0x +=,则y x 的值为.14.已知:如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA 于D ,若PC=6,则PD= .15.若20-x 是49的算术平方根,则x 的立方根是 。
2010——2011学年度第一学期期末考试八年级试题
2010—2011学年度八年级数学第一学期期末测试题(满分120分,时间120分钟)一.选择题(本题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.能与数轴上的点一一对应的是( )A .整数B .有理数C .无理数D .实数2.下列各数中,没有平方根是( )A .0B .2)3(-C .23-D .)3(-- 3.使分式2x +12x -1无意义的x 的值是( )A .x =-12B .x =12C .x ≠-12D .x ≠ 12 4.实数38-,3,711,0.6,π,3.10这六个数,无理数有( )个。
A .2 B .3 C .4 D .65.把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处,若90FPH = ∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( ) A.20B.22C.24D.306.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A .中位数 B .众数 C .平均数 D .最高成绩与最低成绩的差7.不等式组⎪⎩⎪⎨⎧≥--12103-<x x 的解集在数轴上表示正确的是( )A. B. C. D. 8.如图,数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的数是( )?BC AA .12-B .21-C .22-D .22-9.如图,△ABC 中,∠CAB =120º,A B ,AC 的垂直平分线分别交BC 于点E 、F ,则∠EAF 等于( ) A .40º B .50º C .60ºD .80º10.化简211()(3)31x x x x +-∙---的结果是( ) A .2 B .21x - C .23x - D .41x x --11.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+ 12.临清市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )A .至少20户B .至多20户C .至少21户D .至多21户二、填空题(本题共5个小题,每小题3分,共15分。
北京第十三中八年级上册期末数学模拟试卷及答案
北京第十三中八年级上册期末数学模拟试卷及答案一、选择题1.下面计算正确的是( )A .2a+3b =5abB .a 2+a 3=a 5C .(﹣2a 3b 2)3=﹣8a 9b 6D .a 3•a 2=a 62.芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00 000 201kg ,用科学记数法表示10粒芝麻的重量为( )A .2.01×10﹣6kgB .2.01×10﹣5kgC .20.1×10﹣7kgD .20.1×10﹣6kg 3.在△ABC 中,∠BAC=115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为( )A .50°B .40°C .30°D .25°4.如图,AB =AC ,若要使△ABE ≌△ACD ,则添加的一个条件不能是( )A .∠B =∠CB .BE =CDC .BD =CE D .∠ADC =∠AEB5.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒6.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于O ,连结AO ,则图中共有全等三角形的对数为( )A .2对B .3对C .4对D .5对7.下列图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个8.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个B .4个C .6个D .8个 9.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( ) A .8B .9.6C .10D .12 10.下列计算正确的是( ) A .(a 2)3=a 5 B .(15x 2y ﹣10xy 2)÷5xy =3x ﹣2yC .10ab 3÷(﹣5ab )=﹣2ab 2D .a ﹣2b 3•(a 2b ﹣1)﹣2=66b a 二、填空题11.若78a b =,则分式a a b+的值为_____. 12.如图,在Rt △ABC 中,∠ACB =90°,∠A =45°,BD 平分∠ABC 交AC 边于点D ,若CD =3.则AD 的长为_____.13.计算:x (1﹣x )=_____.14.若正多边形的内角和等于720︒,那么它的每一个外角是 __________︒15.将一副三角板(30A ∠=︒)按如图所示方式摆放,使得ABEF ,则1∠等于______度.16.已知点(,4)M a -与点(6,)N b 关于直线2x =对称,那么-a b 等于______.17.已知直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为___________.18.小敏设计了一种衣架,如图,在使用时能轻易收拢,然后套进衣服后松开即可,衣架杆18OA OB cm ==,若衣架收拢时,60AOB ∠=,则A 、B 的距离为_____cm .19.已知等腰△ABC 中∠A=50°,则∠B=_______.20.将正三角形、正方形、正五边形,按如图所示的位置摆放,且每一个图形的一个顶点都在另一个图形的一条边上,则123∠+∠+∠=__________度.三、解答题21.如图所示,△ABC 中,AB =AC ,E 在AC 上,D 在BA 的延长线上,且AD =AE ,连接DE .求证:DE ⊥BC .22.(1)因式分解;()()22a x y b x y ---;(2)解方程:213211x y x y +=⎧⎨-=⎩. 23.化简求值:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2,其中a =﹣12,b =2. 24.如图,∠ADB =∠ADC ,∠B =∠C .(1)求证:AB =AC ;(2)连接BC ,求证:AD ⊥BC .25.已知分式:222222()1211x x x x x x x x x +--÷--++,解答下列问题: (1)化简分式;(2)当x =3时,求分式的值;(3)原分式的值能等于-1吗?为什么?26.如图,已知直线y =13x -+1与x 轴、y 轴分别交于点A 、B ,以线AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90o 、点P (x 、y )为线段BC 上一个动点(点P 不与B 、C 重合),设△OPA 的面积为S .(1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的的取值范围;(3)△OPA 的面积能于92吗,如果能,求出此时点P 坐标,如果不能,说明理由. 27.如图所示,在不等边ABC 中,2AB =,3AC =,AB 的垂直平分线交BC 边于点E ,交AB 边于点D ,AC 垂直平分线交BC 边于点N ,交AC 边于点M .(1)若100BAC ∠=︒,求EAN ∠的度数;(2)若BC 边长为整数,求AEN △的周长.28.已知ΔABC 是等腰三角形.(1)若∠A = 100°,求∠B 的度数;(2)若∠A = 70°,求∠B 的度数;(3)若∠A =α(45°<α< 90°),过顶点B 的角平分线BD 与过顶点C 的高CE 交于点F ,求∠BFC 的度数(用含α的式子表示).29.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler ,1707-1783年)才发现指数与对数之间的联系,对数的定义:一般地,若()0,1xa N a a =>≠,那么x 叫做以a 为底N 的对数,记作:log N a x =,比如指数式4216=可以转化为1624log =,对数式2552log =可以转化为2525=,我们根据对数的定义可得到对数的一个性质:()log log log a a a MN M N =+ ()0,1,0,0a a M N >≠>>),理由如下:设log ,log a a M m N n ==则m n M a N a ==,∴m n m n MN a a a +==,由对数的定义得log ()a m n MN +=又∵log log a a m n M N +=+,所以()log log log a a a MN M N =+,解决以下问题:(1)将指数3464=转化为对数式____;计算2log 8=___;(2)求证:log log log (0,1,0,0)a a a M M N a a M N N=->≠>> (3)拓展运用:计算333log 2log 6log 4+-=30.已知,//AB CD ,点M 在AB 上,点N 在CD 上.(1)如图1中,BME E END ∠∠∠、、的数量关系为:________;(不需要证明) 如图2中,BMF F FND ∠∠∠、、的数量关系为:__________;(不需要证明)(2)如图3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=︒,求FME ∠的度数;(3)如图4中,60BME ∠=︒,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】分别根据合并同类项的法则,积的乘方运算法则以及同底数幂的乘法法则逐一判断即可.【详解】解:2a与3b不是同类项,所以不能合并,故选项A不合题意;a2与a3不是同类项,所以不能合并,故选项B不合题意;(-2a3b2)3=-8a9b6,正确,故选项C符合题意;a3•a2=a5,故选项D不合题意.故选:C.【点睛】本题主要考查了合并同类项,幂的乘方与积的乘方及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.2.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】0.00000201kg×10=0.0000201kg0.0000201kg=2.01×10﹣5kg故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.A解析:A【解析】【分析】根据三角形内角和定理求出∠B+∠C,根据线段的垂直平分线的性质得到EA=EB,GA=GC,根据等腰三角形的性质计算即可.【详解】∵∠BAC=115°,∴∠B+∠C=65°,∵DE、FG分别为AB、AC的垂直平分线,∴EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAG=∠BAC-(∠EAB+∠GAC)=∠BAC-(∠B+∠C)=50°,故选A.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.B解析:B【解析】【分析】已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【详解】A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;故选B.5.B解析:B【解析】【分析】延长DE交BC于F,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求 的度数.出C【详解】延长DE交BC于F,如图,∵AB∥DE,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.【点睛】此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.6.C解析:C【解析】【分析】先根据条件,利用AAS可知△ADB≌△AEC,然后再利用HL、ASA即可判断△AOE≌△AOD,△BOE≌△COD,△AOC≌△AOB.【详解】∵AB=AC,BD⊥AC于D,CE⊥AB于E,∴∠ADB=∠AEC=90°,∵∠A为公共角,∴△ADB≌△AEC,(AAS)∴AE=AD,∠B=∠C∴BE=CD,∵AE=AD,OA=OA,∠ADB=∠AEC=90°,∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.7.B解析:B【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.B解析:B【解析】【分析】 首先把分式转化为6321x +-,则原式的值是整数,即可转化为讨论621x -的整数值有几个的问题.【详解】 6363663212121x x x x x +-+==+---, 当216x -=±或3±或2±或1±时,621x -是整数,即原式是整数. 当216x -=±或2±时,x 的值不是整数,当等于3±或1±是满足条件. 故使分式6321x x +-的值为整数的x 值有4个,是2,0和1±. 故选B .【点睛】 本题主要考查了分式的值是整数的条件,把原式化简为6321x +-的形式是解决本题的关键. 9.B解析:B【解析】【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B. 【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.10.B解析:B【解析】【分析】根据合并同类项、幂的乘方和积的乘方进行计算即可.【详解】A 、(a 2)3=a 6,故A 错误;B 、(15x 2y ﹣10xy 2)÷5xy =3x ﹣2y ,故B 正确;C 、10ab 3÷(﹣5ab )=﹣2b 2,故C 错误;D 、a ﹣2b 3•(a 2b ﹣1)﹣2=56b a ,故D 错误; 故选B .【点睛】本题考查了整式的混合运算,掌握合并同类项、幂的乘方和积的乘方的运算法则是解题的关键.二、填空题11.【解析】【分析】可根据设a=7k,b=8k(k≠0),然后代入分式计算即可.【详解】解:∵,∴设a=7k,b=8k(k≠0),则有:==.故答案为:.【点睛】本题考查分式的值,属解析:7 15【解析】【分析】可根据78ab=设a=7k,b=8k(k≠0),然后代入分式aa b+计算即可.【详解】解:∵78ab=,∴设a=7k,b=8k(k≠0),则有:a ab +=778kk k+=715.故答案为:7 15.【点睛】本题考查分式的值,属于基础知识的考查,比较简单.12.【解析】【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD=3,再证明△ADG是等腰直角三角形可得结论.【详解】解:如图,过D作DG⊥AB于G,∵BD平分∠ABC,∠ACB=解析:【解析】【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD=3,再证明△ADG是等腰直角三角形可得结论.【详解】解:如图,过D作DG⊥AB于G,∵BD平分∠ABC,∠ACB=90°,∴CD=DG=3,∵∠A=45°,∠AGD=90°,∴AG=DG=3,∴AD=32故答案为:32【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并作辅助线是解题的关键.13.x﹣x2.【解析】【分析】按单项式乘以多项式法则求值即可.【详解】解:原式=x﹣x2.故答案为:x﹣x2.【点睛】本题考查了单项式乘以多项式法则,熟练掌握运算法则是解题的关键.解析:x﹣x2.【解析】【分析】按单项式乘以多项式法则求值即可.【详解】解:原式=x﹣x2.故答案为:x﹣x2.【点睛】本题考查了单项式乘以多项式法则,熟练掌握运算法则是解题的关键.14.60【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=720,即可求得n=6,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得解析:60【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=720,即可求得n=6,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角等于:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.15.105°【解析】【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【详解】∵AB∥EF解析:105°【解析】【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【详解】∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是掌握平行线的性质和三角形外角的性质.16.2【解析】【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以,.【详解】点与点关于直线对称∴,解得,∴故答案为2.【点睛】本题考察了坐解析:2【解析】【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以622a +=,4b -=. 【详解】点(,4)M a -与点(6,)N b 关于直线2x =对称 ∴622a +=,4b -= 解得2a =-,∴2(4)2-=---=a b故答案为2.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键. 17.40°【解析】【分析】如图,过E 作EF∥AB,则AB∥EF∥CD,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,解析:40°【解析】【分析】如图,过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=180°-90°-30°=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°.故答案为:40°.【点睛】本题以三角板为载体,主要考查了平行线的性质和三角形的内角和定理,正确添加辅助线、熟练掌握平行线的性质是解题的关键.18.18【解析】【分析】证明△AOB是等边三角形,得出AB=OA=18cm即可.【详解】解:连接,如图所示:∵,,∴是等边三角形,∴,故答案为:18.【点睛】本题考查了等边三角形解析:18【解析】【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接AB ,如图所示:∵OA OB =,60AOB ∠=,∴AOB ∆是等边三角形,∴18AB OA cm ==,故答案为:18.【点睛】本题考查了等边三角形的判定与性质;熟练掌握等边三角形的判定方法是解题的关键. 19.50°或65°或80°【解析】【分析】分∠A、∠B、∠C 为顶点三种情况,根据等腰三角形的性质,利用三角形内角和求出∠B 的度数即可.【详解】①∠A 为顶角时,∵∠A=50°,∴∠B=∠C=解析:50°或65°或80°【解析】【分析】分∠A 、∠B 、∠C 为顶点三种情况,根据等腰三角形的性质,利用三角形内角和求出∠B 的度数即可.【详解】①∠A 为顶角时,∵∠A=50°,∴∠B=∠C=12(180°-∠A )=65°, ②当∠B 为顶角时,∵∠A=50°,∴∠C=∠A=50°,∴∠B=180°-∠A-∠C=80°,③当∠C 为顶角时,∠B=∠A=50°,综上所述:∠B 的度数为50°或65°或80°,故答案为:50°或65°或80°【点睛】本题考查等腰三角形的性质及三角形内角和定理,等腰三角形的两个底角相等;三角形的内角和是180°;运用分类讨论的思想是解题关键.20.102°【解析】【分析】根据领补角的定义、正多边形的内角和及三角形内角和进行求解即可.【详解】解:由题意得,如图所示,正五边形的每个内角为108°,正方形的每个内角为90°,正三角形的每解析:102°【解析】【分析】根据领补角的定义、正多边形的内角和及三角形内角和进行求解即可.【详解】 解:由题意得,如图所示,正五边形的每个内角为108°,正方形的每个内角为90°,正三角形的每个内角为60°,所以2418010872∠+∠=︒-︒=︒,3618060120∠+∠=︒-︒=︒,151809090∠+∠=︒-︒=︒,因为54+6180∠+∠∠=︒,所以可得1+2372+120+90180102∠∠+∠=︒︒︒-︒=︒. 故答案为102°.【点睛】本题主要考查三角形内角和、正多边形的内角,关键是根据图形得到角之间的等量关系,然后利用三角形内角和进行求解即可.三、解答题21.见解析.【解析】【分析】过A 作AM ⊥BC 于M ,根据等腰三角形三线合一的性质得出∠BAC =2∠BAM ,由三角形外角的性质及等边对等角的性质得出∠BAC =2∠D ,则∠BAM =∠D ,根据平行线的判定得出DE ∥AM ,进而得到DE ⊥BC .【详解】证明:如图,过A 作AM ⊥BC 于M ,∵AB =AC ,∴∠BAC =2∠BAM ,∵AD =AE ,∴∠D =∠AED ,∴∠BAC =∠D +∠AED =2∠D ,∴∠BAC =2∠BAM =2∠D ,∴∠BAM =∠D ,∴DE ∥AM ,∵AM ⊥BC ,∴DE ⊥BC .【点睛】考查了等腰三角形的性质,三角形外角的性质,平行线的判定等知识,难度适中.准确作出辅助线是解题的关键.22.(1)()()()x y a b a b -+-;(2)31x y =⎧⎨=-⎩ 【解析】【分析】(1)先提取公因式,再采用平方差公式继续分解.(2)根据加减法解方程即可求解.【详解】(1)()()22a x y b x y ---22()()x y a b =--()()()x y a b a b =-+-;(2)213211x y x y ①②+=⎧⎨-=⎩ ①+②,得412x =,解得:3x =,将3x =代入①,得321y +=,解得1y =-,所以方程组的解是31x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组,提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.23.2ab ,-2【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】解:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2=4a 2﹣b 2+2ab +b 2﹣4a 2=2ab ,当a =﹣12,b =2时,原式=2×(﹣12)×2=﹣2. 【点睛】本题考查了整式的混合运算和求值的应用以及学生的计算和化简能力,题目比较好,难度适中.24.(1)见解析;(2)见解析【解析】【分析】(1)根据题意证明△ADB ≌△ADC 即可证明AB =AC ;(2)连接BC ,由中垂线的逆定理证明即可.【详解】证明:(1)∵在△ADB 和△ADC 中,==ADB ADC B CAD AD ∠⎧⎪∠∠⎨⎪=⎩, ∴△ADB ≌△ADC (AAS ),∴AB =AC ;(2)连接BC ,∵△ADB ≌△ADC ,∴AB =AC ,BD =CD ,∴A 和D 都在线段BC 的垂直平分线上,∴AD 是线段BC 的垂直平分线,即AD ⊥BC .【点睛】本题主要考查全等三角形的判定与性质以及中垂线的逆定理,熟记相关定理是解题关键.25.(1)11x x +-;(2)当3x =时,分式的值为2;(3)原分式的值不能等于-1.理由见解析.【解析】【分析】(1)先做括号内的减法,注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式;(2)将x=3代入计算即可;(3)令111x x +=--,求解即可判断. 【详解】(1)222222()1211x x x x x x x x x +--÷--++ 22(1)(1)1()(1)(1)(1)x x x x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21()11x x x x x x +=-⋅-- 11x x x x+=⋅- 11x x +=-; (2)当3x =时,原式31231+==-; (2)如果111x x +=--, 那么()11x x +=--,解得0x =,又因为0x =时,原分式无意义.故原分式的值不能等于1-.【点睛】本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.26.(1)(4,3);(2)S=3342x +, 0<x <4;(3)不存在. 【解析】【分析】(1)直线y =13x -+1与x 轴、y 轴分别交于点A 、B ,可得点A 、B 的坐标,过点C 作CH ⊥x 轴于点H ,如图1,易证△AOB ≌△CHA ,从而得到AH =OB 、CH =AO ,就可得到点C 的坐标;(2)易求直线BC 解析式,过P 点作PG 垂直x 轴,由△OPA 的面积=1OA PG 2即可求出S 关于x 的函数解析式.(3)当S =92求出对应的x 即可. 【详解】解:(1)∵直线y =13x -+1与x 轴、y 轴分别交于点A 、B , ∴A 点(3,0),B 点为(0,1),如图:过点C 作CH ⊥x 轴于点H ,则∠AHC =90°.∴∠AOB =∠BAC =∠AHC =90°,∴∠OAB =180°-90°-∠HAC =90°-∠HAC =∠HC A .在△AOB 和△CHA 中,AOB CHA OAB HCA AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AOB ≌△CHA (AAS ),∴AO =CH =3,OB =HA =1,∴OH =OA +AH =4∴点C 的坐标为(4,3);(2)设直线BC 解析式为y =kx +b ,由B (0,1),C (4,3)得:143b k b =⎧⎨+=⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线BC 解析式为112y x =+, 过P 点作PG 垂直x 轴,△OPA 的面积=12OA PG ,∵PG =112y x =+,OA =3, ∴S =113(1)22x +=3342x +; 点P (x 、y )为线段BC 上一个动点(点P 不与B 、C 重合),∴0<x <4. ∴S 关于x 的函数解析式为S =3342x +, x 的的取值范围是0<x <4; (3)当s =92时,即339422x +=,解得x =4,不合题意,故P 点不存在. 【点睛】本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.27.(1)20°;(2)4【解析】【分析】(1)根据垂直平分线的性质得到EBA EAB ∠=∠和NAC NCA ∠=∠,再根据三角形内角和去算出角EAN ∠的度数;(2)根据三角形三边关系求出BC 长,再根据垂直平分线的性质证明AEN △的周长等于BC 的长.【详解】解:(1)∵DE 、MN 分别是线段AB 和线段AC 的垂直平分线,∴AE=BE ,AN=CN ,∴EBA EAB ∠=∠,NAC NCA ∠=∠,∵EAN BAC EAB NAC ∠=∠-∠-∠,∴()100EAN EBA NCA ∠=︒-∠+∠,∴()()10018010018010020EAN BAC ∠=︒-︒-∠=︒-︒-︒=︒;(2)在ABC 中,AC AB BC AC AB -<<+,即15BC <<,∵BC 边长是整数,∴BC 的长度可以取2、3、4,∵ABC 是不等边的,∴BC=4,由(1)知AE=BE ,AN=CN ,∴4AEN C AE EN AN BE EN NC BC =++=++==.【点睛】本题考查垂直平分线的性质,三角形三边关系和内角和,解题的关键是掌握垂直平分线的性质.28.(1)40°;(2)55°或70°或40°;(3)135°-14α或180°-α或90°+12α. 【解析】【分析】(1)根据等腰三角形的性质和三角形内角和计算即可;(2)分∠A 为顶角时和∠A 为底角时两种情况分别求解;(3)主要分∠A 为顶角时和∠A 为底角时两种情况分别求解.【详解】解:(1)∵∠A =100°,∴△ABC 中,∠B=∠C ,∴∠B =()1180100402⨯︒-︒=︒; (2)①当∠A 为顶角时,∠B =()118070552⨯︒-︒=︒; ②∠A 为底角时,若∠B 为底角,则∠B =∠A=70°,若∠B 为顶角,则∠B =180707040︒-︒-︒=︒, 故∠B 的度数为55°或70°或40°;(3)①∠A 为顶角时,如图,BD 平分∠ABC ,CE ⊥AB ,∴∠ABC=90°-12α,∴∠DBC=∠ABD=12∠ABC=45°-14α, ∴∠BFC=∠BEF+∠ABD=90°+45°-14α=135°-14α;②∠A为底角时,若∠B为顶角,如图,∵CD⊥AB,∴∠ACE=90°-∠A=90°-α,∵AB=BC,BD平分∠ABC,∴BD⊥AC,∴∠BFC=∠ACE+∠CDF=90°-α+90°=180°-α;若∠B为底角,如图,∵AC=BC,∴∠A=∠ABC=α,∵BD平分∠ABC,∴∠ABD=∠CBD=12α,∵CE⊥AB,∴∠CEB=90°,∴∠BFC=∠CEB+∠EBF=90°+12α.综上:∠BFC 的度数为135°-14α或180°-α或90°+12α. 【点睛】 本题考查了等腰三角形的性质,角平分线的定义,以及三角形内角和,特别注意利用分类讨论的方法,避免漏解.29.(1)33log 64=,3;(2)证明见解析;(3)1【解析】【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设log a M =m ,log a N =n ,根据对数的定义可表示为指数式为:M =a m ,N =a n ,计算M N的结果,同理由所给材料的证明过程可得结论; (3)根据公式:log a (M•N )=log a M +log a N 和log MN a =log a M −log a N 的逆用,将所求式子表示为:log 3(2×6÷4),计算可得结论.【详解】解:(1)由题意可得,指数式43=64写成对数式为:3=log 464,故答案为:3=log 464;(2)设log a M =m ,log a N =n ,则M =a m ,N =a n , ∴M N =mn a a=a m−n ,由对数的定义得m−n =log M N a , 又∵m−n =log a M −log a N , ∴log MN a =log a M −log a N (a >0,a≠1,M >0,N >0); (3)log 32+log 36−log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.30.(1)BME MEN END ∠=∠-∠,BMF MFN FND ∠=∠+∠;(2)120°;(3)没发生变化,30°【解析】【分析】(1)过E 作//EH AB ,易得////EH AB CD ,根据平行线的性质可求解;过F 作//FH AB ,易得////FH AB CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2()180BME END BMF FND ∠+∠+∠-∠=︒,可求解60BMF ∠=︒,进而可求解;(3)根据培训心得性质及角平分线的定义可推知12FEQ BME ∠=∠,进而可求解. 【详解】解:(1)过E 作//EH AB ,如图1,BM E M EH ∴∠=∠,//AB CD ,//HE CD ∴,END HEN ∴∠=∠,MEN MEH HEN BME END ∴∠=∠+∠=∠+∠,即BME MEN END ∠=∠-∠.如图2,过F 作//FH AB ,BMF MFK ∴∠=∠,//AB CD ,//FH CD ∴,FND KFN ∴∠=∠,MFN MFK KFN BMF FND ∴∠=∠-∠=∠-∠,即:BMF MFN FND ∠=∠+∠.故答案为BME MEN END ∠=∠-∠;BMF MFN FND ∠=∠+∠.(2)由(1)得BME MEN END ∠=∠-∠;BMF MFN FND ∠=∠+∠. NE 平分FND ∠,MB 平分FME ∠,FM E BM E BM F ∴∠=∠+∠,FND FNE END ∠=∠+∠,2180MEN MFN ∠+∠=︒,2()180BME END BMF FND ∴∠+∠+∠-∠=︒,22180BME END BMF FND ∴∠+∠+∠-∠=︒,即2180BMF FND BMF FND ∠+∠+∠-∠=︒,解得60BMF ∠=︒,2120FME BMF ∴∠=∠=︒;(3)FEQ ∠的大小没发生变化,30FEQ ∠=︒.由(1)知:MEN BME END ∠=∠+∠, EF 平分MEN ∠,NP 平分END ∠,11()22FEN MEN BME END ∴∠=∠=∠+∠,12ENP END ∠=∠, //EQ NP ,NEQ ENP ∴∠=∠,111()222FEQ FEN NEQ BME END END BME ∴∠=∠-∠=∠+∠-∠=∠, 60BME ∠=︒,160302FEQ ∴∠=⨯︒=︒. 【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.。
北京第十三中八年级上册期末数学模拟试卷含详细答案
北京第十三中八年级上册期末数学模拟试卷含详细答案一、选择题1.如图,在△ABC 中,AB =AC ,以点B 为圆心,BC 长为半径画弧,交AC 于点D ,连接BD ,则下列结论不一定成立的是( )A .BC =BDB .∠BDC =∠ABC C .∠A =∠CBD D .AD =BD2.下列式子中,运算结果为1x +的是 ( )A .211x x x x -⋅+B .2211x x x +++C .11x +D .111x x x +÷- 3.若分式211x x -+的值等于0,则x 的值为( ) A .2 B .0 C .1- D .124.如图,把ABC ∆沿EF 对折.若60A ∠=︒,195∠=︒,则2∠的度数为( )A .25︒B .30C .35︒D .40︒5.已知:如图,AB ⊥CD 于O ,EF 为经过点O 的一条直线,那么∠1与∠2的关系是( )A .互为对顶角B .互补C .互余D .相等6.已知等腰三角形ABC 的底边8BC =,且4AC BC -=,则腰AC 长为( ) A .4或12 B .12 C .4 D .8或127.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交BC 于点D ,则下列说法中:①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的垂直平分线上;④:1:3DAC ABC SS =.其中正确的个数是( )A .1B .2C .3D .48.如图,EB 交AC 于点M ,交FC 于点D ,AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:其中正确的结论有( )①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN ;⑤△AFN ≌△AEM . A .2个 B .3个C .4个D .5个 9.下列属于最简分式的是( ) A .()2211x x -- B .233x x + C .211x x +- D .1751x10.如图,已知12,AC AD ∠=∠=,增加下列条件,不能肯定ABC AED ≌的是( )A .C D ∠=∠B .B E ∠=∠C . AB AE =D .BC ED =二、填空题11.AC 、BD 是四边形ABCD 的两条对角线,△ABD 是等边三角形,∠DCB =30°,设CD =a ,BC =b ,AC =4,则a +b 的最大值为_____.12.若2·8n ·16n =222,求n 的值等于_______. 13.若m+n=1,mn=-6,则22m n mn +代数式的值是____________________;14.如图,在平面直角坐标系中,510.若点A 坐标为(1,2),则点B的坐标为_____.15.如图,CA ⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM ⊥BQ,垂足为B,动点P 从C 点出发以1cm/s 的速度沿射线CQ 运动,点N 为射线BM 上一动点,满足PN=AB,随着P 点运动而运动,当点P 运动_______秒时,△BCA 与点P 、N 、B 为顶点的三角形全等.(2个全等三角形不重合)16.如图,在Rt ABC 中,90C ∠=︒,30A ∠=︒,6AB =,BD 是ABC 的角平分线,点P ,点N 分别是BD ,AC 边上的动点,点M 在BC 上,且1BM =,则PM PN +的最小值为___________.17.在多项式241x +中添加一个单项式,使其成为一个完全平方式,则添加的单项式是______(只写出一个即可).18.计算:()10132-⎛⎫π---= ⎪⎝⎭_________. 19.若分式方程3211m x x+=--的解为正数,则m 的取值范围是__________. 20.如图,在△ABC 中,AB =10,AC =6,BC =8,将△ABC 折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则△BDE 的周长为_____.三、解答题21.如图,在ABC 中,110ABC ∠=,40A ∠=.(1)作ABC 的角平分线BE (点E 在AC 上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求BEC ∠的度数.22.已知如图,点A 、点B 在直线l 异侧,以点A 为圆心,AB 长为半径作弧交直线l 于C 、D 两点.分别以C 、D 为圆心,AB 长为半径作弧,两弧在l 下方交于点E,连结AE. (1)根据题意,利用直尺和圆规补全图形;(2)证明:l 垂直平分AE.23.如图,ABC ∆和AED ∆是等腰直角三角形,AB AC =,AE AD =,90BAC EAD ∠=∠=︒,点E 在ABC ∆的内部,且130BEC ∠=︒.图1 备用图 备用图(1)猜想线段EB 和线段DC 的数量关系,并证明你的猜想;(2)求DCE ∠的度数;(3)设AEB α∠=,请直接写出α为多少度时,CED ∆是等腰三角形.24.问题情景:如图1,在同一平面内,点B 和点C 分别位于一块直角三角板PMN 的两条直角边PM ,PN 上,点A 与点P 在直线BC 的同侧,若点P 在ABC ∆内部,试问ABP ∠,ACP ∠与A ∠的大小是否满足某种确定的数量关系?(1)特殊探究:若55A ∠=︒,则ABC ACB ∠+∠=_________度,PBC PCB ∠+∠=________度,ABP ACP ∠+∠=_________度;(2)类比探索:请猜想ABP ACP ∠+∠与A ∠的关系,并说明理由;(3)类比延伸:改变点A 的位置,使点P 在ABC ∆外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出ABP ∠,ACP ∠与A ∠满足的数量关系式.25.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,∠ACD=∠B .(1)求证:BC=DE(2)若∠A=40°,求∠BCD 的度数.26.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BF 平分∠ABC 交AD 于点E ,交AC 于点F .(1)求证:AE =AF ;(2)过点E 作EG ∥DC ,交AC 于点G ,试比较AF 与GC 的大小关系,并说明理由.27.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F .(1)求证:△DAE ≌△CFE ;(2)若AB =BC +AD ,求证:BE ⊥AF .28.(1)解方程组:202321x y x y -=⎧⎨+=⎩. (2)解不等式组:202(21)15x x x -<⎧⎨-≤+⎩. (3)分解因式:3x x -.(4)分解因式:221x x -++.29.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC(1)若∠B=70°,∠C=30°,求;①∠BAE 的度数.②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.30.如图①所示是一个长为2m ,宽为2n(m n)>的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形()1如图②中的阴影部分的正方形的边长等于______(用含m 、n 的代数式表示); ()2请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:______;方法②:______;()3观察图②,试写出2(m n)-、mn这三个代数式之间的等量关系:(m n)+、2______;()4根据()3题中的等量关系,若m n12=,求图②中阴影部分的面积.+=,mn25【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据等腰三角形的性质判断即可.【详解】解:∵AB=AC,∴∠ABC=∠ACB,又∵BC、BD是以点B为圆心,BC长为半径圆弧的半径,∴BC=BD,故A成立;∵BC=BD,∴∠BDC=∠BCD,∴∠BDC=∠ABC,故B成立;∵∠ABC=∠ACB=∠BDC,∴∠A=∠CBD,故C成立;若∠A=30°,则∠ABC=∠ACB=75°,∵∠A=∠CBD=30°,∴∠ABD=75°﹣30°=45°,∴∠ABD≠∠A,∴AD≠BD,故D不一定成立;故选:D.【点睛】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.2.B解析:B【解析】【分析】分别对每个选项进行化简,然后进行判断,即可得到答案.【详解】解:A、21(1)(1)111x x x x xxx x x x-+-•=•=-++,故A错误;B、2221(1)111x x xxx x+++==+++,故B正确;C、111xx x++=,故C错误;D、21111(1)1x x xxx x x x++-÷=•-=-,故D错误;故选:B.【点睛】本题考查了分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.3.D解析:D【解析】【分析】根据分式值为零的条件是分子等于零且分母不等于零列式计算;【详解】由题意得, 2x-1=0,x+1≠0,解得,x=12,x≠-1,所以当x=12时,此分式的值为零.故选:D【点睛】本题考查分式值为0的条件,解题关键是熟练掌握分式值为零的条件是分子等于零且分母不等于零.4.A解析:A【解析】【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=95°,∴∠2=120°-95°=25°,故选:A .【点睛】本题考查了折叠的性质:翻折变换(折叠问题)实质上就是轴对称变换;折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.C解析:C【解析】【分析】根据垂线的定义得出∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【详解】解:∵AB ⊥CD ,∴∠BOD =90°.又∵EF 为过点O 的一条直线,∴∠1+∠2=180°﹣∠BOD =90°,即:∠1与∠2互余,故选:C .【点睛】本题考查了垂线的定义、平角的定义、角的互余关系;熟练掌握垂线的定义和平角的定义是解题的关键.6.B解析:B【解析】【分析】先化简绝对值,得到4AC BC -=±,结合三角形的三边关系,即可得到腰的长度.【详解】 解:∵4AC BC -=,∴4AC BC -=±,∵等腰ABC ∆的底边8BC =,∴12AC =.4AC =,∵448+=,则4AC =不符合题意,故选:B .【点睛】本题考查了等腰三角形的性质,化简绝对值,以及三角形的三边关系,解题的关键是正确化简绝对值.7.D解析:D【解析】【分析】①连接NP ,MP ,根据SSS 定理可得ANP AMP ≌,故可得出结论;②根据三角形的外角的性质即可得出结论;③先根据三角形内角和定理求出CAB ∠的度数,再由AD 是BAC ∠的平分线得出30BAD CAD ∠=∠=︒,根据BAD B =∠∠可知AD BD =,故可得出结论;④先根据直角三角形的性质得出30CAD ∠=︒,12CD AD =,再由三角形的面积公式即可得出结论.【详解】解:①证明:连接NP ,MP ,在ANP 与AMP 中,AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩, ()ANP AMP SSS ∴△≌△,则CAD BAD ∠=∠,故AD 是BAC ∠的平分线,故此结论正确;②在ABC 中,90C ∠=︒,30B ∠=︒,60CAB ∴∠=︒.AD 是BAC ∠的平分线,1302BAD CAD CAB ∴∠=∠=∠=︒, ∴60ADC BAD B ∠=∠+∠=︒,故此结论正确;③1302BAD CAD CAB ∠=∠=∠=︒, 30BAD B ∴∠=∠=︒,AD BD ∴=,∴点D 在AB 的垂直平分线上,故此结论正确;④在Rt ACD △中,30CAD ∠=︒,12CD AD ∴=,1322BC BD CD AD AD AD ∴=+=+=,1124DAC S AC CD AC AD =⋅=⋅△, 11332224ABC S AC BC AC AD AC AD ∴=⋅=⋅=⋅△, :1:3DAC ABC S S ∴=△△,故此结论正确;综上,正确的是①②③④.故选:D .【点睛】本题考查的是角平分线的性质,线段垂直平分线的性质,作图-基本作图等,熟知角平分线的作法是解答此题的关键.8.C解析:C【解析】【分析】①正确.可以证明△ABE ≌△ACF 可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA 证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA 证明三角形全等即可.【详解】∵∠E =∠F =90°,∠B =∠C ,AE =AF ,∴△ABE ≌△ACF (AAS ),∴BE =CF ,AF =AE ,故②正确,∠BAE =∠CAF ,∠BAE−∠BAC =∠CAF−∠BAC ,∴∠1=∠2,故①正确,∵△ABE ≌△ACF ,∴AB =AC ,又∠BAC =∠CAB ,∠B =∠C△ACN ≌△ABM (ASA ),故③正确,CD =DN 不能证明成立,故④错误∵∠1=∠2,∠F =∠E ,AF =AE ,∴△AFN ≌△AEM (ASA ),故⑤正确,故选:C .【点睛】本题考查三角形全等的判定方法和三角形全等的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.9.B解析:B【解析】【分析】最简分式的分子和分母中不含能在约分的因数或因数,根据定义解答.【详解】A 、()2211x x --=()221111x x x x --=-+,故该项不符合题意; B 、233x x +不能化简,故该项符合题意; C 、211x x +-=21111x x x +-=---,故该项不符合题意; D 、1751x =13x,故该项不符合题意; 故选:B .【点睛】此题考查最简分式的定义,正确理解定义并能分解因式化简分式是解题的关键.10.D解析:D【解析】【分析】根据等式的性质可得∠CAB=∠DAE ,然后再结合判定两个三角形全等的一般方法SSS 、SAS 、ASA 、AAS 、HL 分别进行分析.【详解】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB ,∴∠CAB=∠DAE ,A 、添加∠C=∠D 可利用ASA 定理判定△ABC ≌△AED ,故此选项符合题意;B 、添加∠B=∠E 可利用AAS 定理判定△ABC ≌△AED ,故此选项符合题意;C 、添加AB=AE 可利用SAS 定理判定△ABC ≌△AED ,故此选项符合题意;D 、添加CB=DE 不能判定△ABC ≌△AED ,故此选项符合题意.故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL ,解题关键是:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题11.【解析】【分析】如图,过点C 作EC⊥DC 于点C ,使EC =BC ,连接DE ,BE ,首先证明a2+b2=16,再证明a =b 时,a+b 的值最大即可.【详解】解:如图,过点C 作EC⊥DC 于点C ,使E解析:【解析】【分析】如图,过点C 作EC ⊥DC 于点C ,使EC =BC ,连接DE ,BE ,首先证明a 2+b 2=16,再证明a =b 时,a +b 的值最大即可.【详解】解:如图,过点C 作EC ⊥DC 于点C ,使EC =BC ,连接DE ,BE ,∵∠DCB =30°,∴∠3=60°,∵BC =EC ,∴△BCE 是等边三角形,∴BC =BE =EC ,∠2=60°,∴∠ABD +∠1=∠2+∠1,即∠DBE =∠ABC ,∵在△ABC 和△DBE 中,BD AB DBE ABC BE BC ⎧=⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DBE (SAS ),∴AC =ED ,在Rt △DCE 中,DC 2+CE 2=DE 2,∴DC 2+BC 2=AC 2,∴a 2+b 2=16,∵(a +b )2=a 2+b 2+2ab =16+2ab ,∵以a ,b ,4为边的三角形是直角三角形,a ,b 是直角边,∴S △=12ab , 易知当a =b 时,三角形的面积最大,此时a =b =ab =8,∴(a +b )2的最大值为32,∴a +b 的最大值为【点睛】本题主要考查了全等三角形的性质与判定,结合等边三角形的性质、勾股定理、旋转的性质计算是关键.12.3【解析】【分析】将8和16分别看成 代入,然后再根据同底数幂的运算法则运算即可求解.【详解】解:由题意可知:,即:,∴,∴,解得:,故答案为:3.【点睛】本题考查了幂的乘方解析:3【解析】【分析】将8和16分别看成342,2 代入,然后再根据同底数幂的运算法则运算即可求解.【详解】解:由题意可知:34222(2)(2)2n n , 即:1342222n n , ∴172222n ,∴1722n ,解得:3n ,故答案为:3.【点睛】本题考查了幂的乘方及同底数幂的运算法则,熟练掌握运算法则是解决本题的关键.13.-6【解析】【分析】利用提公因式法因式分解,再把m+n=1,mn=-6代入计算即可.【详解】解:∵m+n=1,mn=-6,∴m2n+mn2=mn(m+n)=(-6)×1=-6.故答案为解析:-6【解析】【分析】利用提公因式法因式分解,再把m+n=1,mn=-6代入计算即可.【详解】解:∵m+n=1,mn=-6,∴m2n+mn2=mn(m+n)=(-6)×1=-6.故答案为:-6.【点睛】本题主要考查了因式分解的应用,熟练掌握提公因式法因式分解是解答本题的关键.14.(﹣2,1).【解析】【分析】作BN⊥x轴,AM⊥x轴,根据题意易证得△BNO≌△OMA,再根据全等三角形的性质可得NB=OM,NO=AM,又已知A点的坐标,即可得B点的坐标.【详解】解解析:(﹣2,1).【解析】【分析】作BN⊥x轴,AM⊥x轴,根据题意易证得△BNO≌△OMA,再根据全等三角形的性质可得NB=OM,NO=AM,又已知A点的坐标,即可得B点的坐标.【详解】解:作BN⊥x轴,AM⊥x轴,∵OA=OB=5,AB=10,∴AO2+OB2=AB2,∴∠BOA=90°,∴∠BON+∠AOM=90°,∵∠BON+∠NBO=90°,∴∠AOM=∠NBO,∵∠AOM=∠NBO,∠BNO=∠AMO,BO=OA,∴△BNO≌△OMA,∴NB=OM,NO=AM,∵点A的坐标为(1,2),∴点B的坐标为(-2,1).故答案为(-2,1).【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质. 15.0;4;8;12【解析】【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况A C=BP或AC=BN进行计算即可.【详解】解:①当P在线段BC上,AC=BP时,△解析:0;4;8;12【解析】【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP 或AC=BN进行计算即可.【详解】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP =6−2=4,∴点P 的运动时间为4÷1=4(秒);②当P 在线段BC 上,AC =BN 时,△ACB ≌△NBP ,这时BC =PN =6,CP =0,因此时间为0秒;③当P 在BQ 上,AC =BP 时,△ACB ≌△PBN ,∵AC =2,∴BP =2,∴CP =2+6=8,∴点P 的运动时间为8÷1=8(秒);④当P 在BQ 上,AC =NB 时,△ACB ≌△NBP ,∵BC =6,∴BP =6,∴CP =6+6=12,点P 的运动时间为12÷1=12(秒),故答案为0或4或8或12.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16..【解析】【分析】作点关于的对称点,连接,则,,当,,在同一直线上,且时,的最小值等于垂线段的长,利用含角的直角三角形的性质,即可得到的最小值.【详解】解:如图所示,作点关于的对称点,连接 解析:52. 【解析】【分析】作点M 关于BD 的对称点M ',连接PM ',则PM PM '=,1BM BM ,当N ,P ,M '在同一直线上,且M N AC 时,PN PM 的最小值等于垂线段M N '的长,利用含30角的直角三角形的性质,即可得到PM PN +的最小值.【详解】 解:如图所示,作点M 关于BD 的对称点M ',连接PM ',则PM PM '=,1BM BM ,PN PM PN PM ,当N ,P ,M '在同一直线上,且M N AC 时,PN PM 的最小值等于垂线段M N '的长,此时,Rt △AM N 中,30A ∠=︒, 115(61)222M N AM , PM PN ∴+的最小值为52, 故答案为:52.【点睛】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17.或【解析】【分析】【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是4x2=2解析:4x ±或416x【解析】【分析】【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是4x 2=2⋅2x 2,所以Q=4x 4;如果该式只有4x 2项或1,它也是完全平方式,所以Q=-1或-4x 2.解:∵4x 2+1±4x=(2x±1)2;4x 2+1+4x 4=(2x 2+1)2;4x 2+1-1=(±2x )2;4x 2+1-4x 2=(±1)2.∴加上的单项式可以是±4x 、4x 4、-4x 2、-1中任意一个.18.3【解析】【分析】根据零指数幂和负指数幂的意义计算.【详解】解:原式=故答案为3.【点睛】本题考查整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键.解析:3【解析】【分析】根据零指数幂和负指数幂的意义计算.【详解】解:原式=()112123--=+=故答案为3.【点睛】本题考查整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键. 19.m >1且m≠3【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】解:方程两边同乘以x-1,得,m-3=2(x-1),解得,∵分式方程解为正解析:m >1且m ≠3【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】解:方程两边同乘以x-1,得,m-3=2(x-1), 解得12m x -=, ∵分式方程3211m x x+=--解为正数∴12mx-=>且x-1≠0,即m>1且11 2m-≠,∴m>1且m≠3,故答案为:m>1且m≠3.【点睛】本题考查了分式方程的解,要注意分式的分母不为0的条件,此题是一道易错题,有点难度.20.12【解析】【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,解析:12【解析】【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,且AB=10,AC=6,BC=8,∴BE=AB-AE=10-6=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12.故答案为:12.【点睛】本题考查翻折变换,解题的关键是熟练掌握翻折变换的性质.三、解答题21.(1)见解析;(2)95°【解析】【分析】(1)依据角平分线的作法,即可得到△ABC的角平分线BE;(2)依据三角形内角和定理,即可得到∠AEB的度数,再根据邻补角的定义,即可得到∠BEC的度数.【详解】(1)如图(满足“三弧一线”可得)线段BE 即为所求(2)由(1)得,BE 平分ABC ∠∵110ABC ∠=︒ ∴1552ABE ABC ∠=∠=︒ ∵40A ∠=︒∴180554085AEB ∠=︒-︒-︒=︒∵180AEB BEC ∠+∠=︒∴1808595BEC ∠=︒-︒=︒【点睛】本题主要考查了三角形内角和定理以及基本作图,解决问题的关键是掌握角平分线的作法.22.(1)见解析;(2)证明见解析.【解析】【分析】(1)根据题意进行作图即可;(2)根据题意可证明△ACD ≌△ECD ,再利用全等的性质及等腰三角形“三线合一”的性质即可证明结论.【详解】解:(1)如图所示;(2)证明:由题意可知,AC=AD=AB ,CE=ED=AB ,∴AC=CE ,AD=DE ,又∵CD=CD ,∴△ACD ≌△ECD ,∴∠ACD=∠ECD ,又∵AC=CE ,∴CO 垂直平分AE ,∴l 垂直平分AE.【点睛】本题考查了作图及线段的垂直平分线,需熟练掌握全等三角形的判定及性质,等腰三角形的性质,学会应用“三线合一”证明线段的垂直平分线.23.(1)EB DC =,证明见解析;(2)40︒;(3)为115︒或85︒或145︒【解析】【分析】(1)EB =DC ,证明△AEB ≌△ADC ,可得结论;(2)如图1,先根据三角形的内角和定理可得∠ECB +∠EBC =50°,根据直角三角形的两锐角互余得:∠ACB +∠ABC =90°,所以∠ACE +∠ABE =90°−50°=40°,由(1)中三角形全等可得结论;(3)△CED 是等腰三角形时,有三种情况:①当DE =CE 时,②当DE =CD 时,③当CE =CD 时,根据等腰三角形等边对等角可得α的值.【详解】解:(1)证明:EB DC =90BAC EAD ∠=∠=︒BAC CAE EAD CAE ∴∠-∠=∠-∠EAB DAC ∴∠=∠在AEB ∆与ADC ∆中AB AC EAB DAC AE AD =⎧⎪∠=∠⎨⎪=⎩AEB ADC ∴∆≅∆,EB DC ∴=;(2)130BEC ∠=︒,360130230BEA AEC ∴∠+∠=︒-︒=︒AEB ADC ∆≅∆,AEB ADC ∠=∠,230ADC AEC ∴∠+∠=︒,又AED ∆是等腰直角三角形,90DAE ∴∠=︒,∴四边形AECD 中,3609023040DCE ∠=︒-︒-︒=︒;(3)当△CED 是等腰三角形时,有三种情况:①当DE =CE 时,∠DCE =∠EDC =40°,∴α=∠ADC =40°+45°=85°,②当DE =CD 时,∠DCE =∠DEC =40°,∴∠CDE=100°,∴α=∠ADE+∠EDC=45°+100°=145°,③当CE=CD时,∵∠DCE=40°,∴∠CDE=180402︒-︒=70°,∴α=70°+45°=115°,综上,当α的度数为115︒或85︒或145︒时,AED∆是等腰三角形.【点睛】本题是三角形的综合题,考查了等腰三角形的判定和性质、三角形全等的性质和判定、等腰直角三角形的性质等知识,第一问证明全等三角形是关键,第二问运用整体的思想是关键,第三问分情况讨论是关键.24.(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP - ∠ABP =90°-∠A.【解析】【分析】(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB -(∠PBC+∠PCB)=125°-90°=35度;(2)猜想:∠ABP+∠ACP=90°-∠A;证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.(3)判断:(2)中的结论不成立.证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP - ∠ABP =90°-∠A.【点睛】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.25.(1)证明见解析;(2)140°;【解析】【分析】(1)根据平行线的性质可得∠ACB=∠DEC,∠ACD=∠D,再由∠ACD=∠B可得∠D=∠B,然后可利用AAS证明△ABC≌△CDE,进而得到CB=DE;(2)根据全等三角形的性质可得∠A=∠DCE=40°,然后根据邻补角的性质进行计算即可.【详解】(1)∵AC∥DE,∴∠ACB=∠DEC,∠ACD=∠D,∵∠ACD=∠B.∴∠D=∠B,在△ABC和△DEC中,===ACB EB DAC CE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABC≌△CDE(AAS),∴BC=DE;(2)∵△ABC≌△CDE,∴∠A=∠DCE=40°∴∠BCD=180°–40°=140°.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键. 26.(1)见解析;(2)AF=GC,理由见解析.【解析】【分析】(1)根据直角三角形的性质和角平分线的定义可得∠BED=∠AFB,然后根据对顶角的性质和等量代换可得∠AEF=∠AFB,进一步即可推出结论;(2)如图,过F作FH⊥BC于点H,根据角平分线的性质可得AF=FH,进而可得AE=FH,易得FH∥AE,然后根据平行线的性质可得∠EAG=∠HFC,∠AGE=∠C,进而可根据AAS证明△AEG≌△FHC,再根据全等三角形的性质和线段的和差即可得出结论.【详解】(1)证明:∵∠BAC=90°,∴∠ABF+∠AFB=90°,∵AD⊥BC,∴∠EBD+∠BED=90°,∵BF平分∠ABC,∴∠ABF=∠EBD,∴∠BED=∠AFB,∵∠BED=∠AEF,∴∠AEF=∠AFB,∴AE=AF;(2)AF=GC;理由如下:如图,过F作FH⊥BC于点H,∵BF平分∠ABC,且FH⊥BC,AF⊥BA,∴AF=FH,∵AE=AF,∴AE=FH,∵FH⊥BC,AD⊥BC,∴FH∥AE,∴∠EAG=∠HFC,∵EG∥BC,∴∠AGE=∠C,∴△AEG≌△FHC(AAS),∴AG=FC,∴AF=GC.【点睛】本题考查了直角三角形的性质、角平分线的性质、全等三角形的判定和性质、平行线的性质以及等腰三角形的判定等知识,涉及的知识点多,但难度不大,熟练掌握上述知识、灵活应用全等三角形的判定和性质是解题的关键.27.(1)见解析;(2)见解析【解析】【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ; (2)由(1)知△ADE ≌△FCE ,得到AE=EF ,AD=CF ,由于AB=BC+AD ,等量代换得到AB=BC+CF ,即AB=BF ,证得△ABE ≌△FBE ,即可得到结论.【详解】证明:(1)∵AD ∥BC (已知),∴∠ADC =∠ECF (两直线平行,内错角相等),∵E 是CD 的中点(已知),∴DE =EC (中点的定义).∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF ,∵AB =BC +AD ,∴AB =BC +CF ,即AB =BF ,在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩, ∴△ABE ≌△FBE (SSS ),∴∠AEB =∠FEB =90°,∴BE ⊥AF .【点睛】主要考查了平行线的性质,全等三角形的判定与性质,等腰三角形的“三线合一”的性质.28.(1)63x y =⎧⎨=⎩;(2)32x -≤<;(3)()()11x x x +-;(4)()21x - 【解析】【分析】(1)加减消元法解方程组;(2)先分别解不等式,再找解集的公共部分;(3)先提公因式,再用平方差公式;(4)应用完全平方公式.【详解】(1)解:202321x y x y -=⎧⎨+=⎩①②, ②-①×2,得:721y =,解得:3y =,把3y =代入①得:6x =,∴原方程组的解为:63x y =⎧⎨=⎩; (2)解:202(21)15x x x -<⎧⎨-≤+⎩①②, 由①得:2x <,由②得:4-215x x ≤+,解得:3x ≥-,∴原不等式组的解为:32x -≤<;(3)原式=()()()211-1x x x x x -=+; (4)原式=221x x -++=()21x -.【点睛】本题考查二元一次方程组的解法,一元一次不等式组的解法,因式分解的方法,熟练掌握基础知识是关键.29.(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】【分析】(1)①利用三角形的内角和定理求出∠BAC ,再利用角平分线定义求∠BAE .②先求出∠BAD ,就可知道∠DAE 的度数.(2)用∠B ,∠C 表示∠DAE ,即可求岀∠DAE 的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE 平分∠BAC ,∴∠BAE=40°;②∵AD ⊥BC ,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE 为角平分线,∴∠BAE=12(180°-∠B-∠C ), ∵∠BAD=90°-∠B , ∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C )-(90°-∠B )=12(∠B-∠C ), 又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键.30.(1)()m n -(2)①2(m n)-②2(m n)4mn +-(3)22(m n)4mn (m n)+-=-(4)44【解析】【分析】()1由图①可知,分成的四个小长方形每个长为m ,宽为n ,因此图②中阴影部分边长为小长方形的长减去宽,即()m n -;()2①直接用阴影正方形边长的平方求面积;②用大正方形面积减四个小长方形的面积; ()3根据阴影部分面积为等量关系列等式;()4直接代入计算.【详解】()1小长方形每个长为m ,宽为n ,∴②中阴影部分正方形边长为小长方形的长减去宽,即()m n -故答案为()m n -()2①阴影正方形边长为()m n -∴面积为:2(m n)-故答案为2(m n)-②大正方形边长为()m n +∴大正方形面积为:2(m n)+四个小长方形面积为4mn∴阴影正方形面积=大正方形面积4-⨯小长方形面积,为:2(m n)4mn +-故答案为2(m n)4mn +-()3根据阴影正方形面积可得:22(m n)4mn (m n)+-=-故答案为22(m n)4mn (m n)+-=-()224(m n)4mn (m n)+-=-且m n 12+=,mn 25= ,222(m n)(m n)4mn 1242514410044∴-=+-=-⨯=-=【点睛】本题考查了根据图形面积列代数式,用几何图形面积验证完全平方公式.找准图中各边的等量关系是解题关键.。
北京第十三中八年级上册压轴题数学模拟试卷及答案
北京第十三中八年级上册压轴题数学模拟试卷及答案一、压轴题1.问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.2.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.3.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.4.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.5.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.6.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.7.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.8.在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、E 处,请问:(1)如图1,在爬行过程中,CD 和BE 始终相等吗,请证明?(2)如果将原题中的“由A 向B 和由C 向A 爬行”,改为“沿着AB 和CA 的延长线爬行”,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中∠CQE 的大小保持不变,请利用图2说明:∠CQE =60°;(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,如图3,则爬行过程中,证明:DF =EF9.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.10.(概念认识)如图①,在∠ABC 中,若∠ABD =∠DBE =∠EBC ,则BD ,BE 叫做∠ABC 的“三分线”.其中,BD 是“邻AB 三分线”,BE 是“邻BC 三分线”.(问题解决)(1)如图②,在△ABC 中,∠A =70°,∠B =45°,若∠B 的三分线BD 交AC 于点D ,则∠BDC = °;(2)如图③,在△ABC 中,BP 、CP 分别是∠ABC 邻AB 三分线和∠ACB 邻AC 三分线,且BP ⊥CP ,求∠A 的度数;(延伸推广)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°,∠B=n°,直接写出∠BPC的度数.(用含 m、n的代数式表示)11.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平-+-=.面直角坐标系,点A(0,a),C(b,0)满足a6b80(1)a= ;b= ;直角三角形AOC的面积为.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).12.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.13.探索发现: 111111111;;12223233434=-=-=-⨯⨯⨯…… 根据你发现的规律,回答下列问题:(1)145⨯= ,1(1)n n ⨯+= ; (2)利用你发现的规律计算:1111122334(1)n n ⋅++++⨯⨯⨯⨯+ (3)利用规律解方程:1111121(1)(1)(2)(2)(3)(3)(4)(4)(5)(5)x x x x x x x x x x x x x -++++=++++++++++ 14.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一条边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE .(1)如图,当点D 在BC 延长线上移动时,若∠BAC =40°,则∠ACE = ,∠DCE = ,BC 、DC 、CE 之间的数量关系为 ;(2)设∠BAC =α,∠DCE =β.①当点D 在BC 延长线上移动时,α与β之间有什么数量关系?请说明理由; ②当点D 在直线BC 上(不与B ,C 两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE ∥AB 时,若△ABD 中最小角为15°,试探究∠ACB 的度数(直接写出结果,无需写出求解过程).15.如图,在ABC 中,3AB AC ==,50B C ∠=∠=,点D 在边BC 上运动(点D不与点,B C 重合),连接AD ,作50ADE ∠=,DE 交边AC 于点E .(1)当100BDA ∠=时,EDC ∠= ,DEC ∠= (2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请求出BDA ∠的度数;若不可以,请说明理由.16.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.17.探究发现:如图①,在ABC 中,内角ACB ∠的平分线与外角ABD ∠的平分线相交于点E .(1)若80A ∠=︒,则E ∠= ;若50A ∠=︒,则E ∠= ;(2)由此猜想:A ∠与E ∠的关系为 (不必说明理由).拓展延伸:如图②,四边形ABCD 的内角DCB ∠与外角ABE ∠的平分线相交于点F ,//BF CD .(3)若125A ∠=︒,95D ∠=︒,求F ∠的度数,由此猜想F ∠与A ∠,D ∠之间的关系,并说明理由.18.如图1,直角三角形DEF 与直角三角形ABC 的斜边在同一直线上,∠EDF =30°,∠ABC =40°,CD 平分∠ACB ,将△DEF 绕点D 按逆时针方向旋转,记∠ADF 为α(0°<α<180°),在旋转过程中;(1)如图2,当∠α= 时,//DE BC ,当∠α= 时,DE ⊥BC ;(2)如图3,当顶点C 在△DEF 内部时,边DF 、DE 分别交BC 、AC 的延长线于点M 、N , ①此时∠α的度数范围是 ;②∠1与∠2度数的和是否变化?若不变求出∠1与∠2度数和;若变化,请说明理由; ③若使得∠2≥2∠1,求∠α的度数范围.19.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式. 20.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【解析】【分析】(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠ADB =∠CEA =90°∵∠BAC =90°∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°∴∠CAE =∠ABD∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE即:DE =BD +CE(2)解:数量关系:DE =BD +CE理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD ,∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC ,∴∠ABD=∠CAE ,在△ABD 和△CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABD ≌△CAE (AAS )∴AE=BD ,AD=CE ,∴DE=AD+AE=BD+CE ;(3)解:如图,作AE ⊥x 轴于E ,BF ⊥x 轴于F ,由(1)可知,△AEC ≌△CFB ,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴点B 的坐标为B (1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.2.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=12 CE,∵BD=CE,∴CF=OF=12 BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.3.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF .证明如下:同(1)可设∠BAD =∠CAD =α,∠ACE =∠AEC =β,∴∠CAE =180°-2β,∴∠BAE =2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE 为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD =∠BEF ,在AF 上截取AG =EF ,连接BG ,BF ,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.4.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE AMC ︒∠+∠+∠=,112()90CMF ABE AMC ︒∴∠+∠+∠=,()1129090EMF A MC ︒︒∴-∠+∠=, ()112906090A MC ︒︒︒∴-+∠=, 1130AMC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.5.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC , ∴DB EC AB AC=, ∵AB=AC ,∴DB=EC ,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形,∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.6.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.7.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆, CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =, ∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.8.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD ≌△CBE ,再由全等三角形的性质即可证得CD=BE ;(2)先证明△BCD ≌△ABE ,得到∠BCD=∠ABE ,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC ,∠CQE=180°-∠DQB ,即可解答; (3)如图3,过点D 作DG ∥BC 交AC 于点G ,根据等边三角形的三边相等,可以证得AD=DG=CE ;进而证明△DGF 和△ECF 全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD 和BE 始终相等,理由如下:如图1,AB=BC=CA ,两只蜗牛速度相同,且同时出发,∴CE=AD ,∠A=∠BCE=60°在△ACD 与△CBE 中,AC=CB ,∠A=∠BCE ,AD=CE∴△ACD ≌△CBE (SAS ),∴CD=BE ,即CD 和BE 始终相等;(2)证明:根据题意得:CE=AD ,∵AB=AC ,∴AE=BD ,∴△ABC 是等边三角形,∴AB=BC ,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC ,在△BCD 和△ABE 中,BC=AB ,∠DBC=∠EAB ,BD=AE∴△BCD ≌△ABE (SAS ),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF 始终等于EF 是正确的,理由如下:如图,过点D 作DG ∥BC 交AC 于点G ,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E ,∴△ADG 为等边三角形,∴AD=DG=CE ,在△DGF 和△ECF 中,∠GFD=∠CFE ,∠GDF=∠E ,DG=EC∴△DGF ≌△EDF (AAS ),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.9.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒ BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD=⎧⎨=⎩ ()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF ∴∆是等边三角形,60MF DM F DMF ∴=∠=∠=︒60BMG ∠=︒DMF DM B M G G D M G ∴∠+∠=+∠∠,即FMG DMB ∠=∠在FMG ∆和DMB ∆中,60F MDB MF MD FMG DMB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA ∴∆≅∆GF BD ∴=,即DF DG BD +=AD DF DG MD DG ∴=+=+即AD DG MD =+;(3)结论:AD DG ND =-,证明过程如下:如图,延长BD 使得DH ND =,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD ∠=︒∠=︒-∠-∠=︒= HDN ∴∆是等边三角形,60NH ND H HND ∴=∠=∠=︒60BNG ∠=︒HND BND BND BNG ∠+∠=+∠∴∠,即N HNB D G ∠=∠在HNB ∆和DNG ∆中,60H NDG NH ND HNB DNG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA ∴∆≅∆HB DG ∴=,即DH BD DG +=ND AD DG ∴+=即AD DG ND =-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.10.(1)85或100;(2)45°;(3)23m 或13m 或23m +13n 或13m -13n 或13n -13m 【解析】【分析】(1)根据题意可得B 的三分线BD 有两种情况,画图根据三角形的外角性质即可得BDC ∠的度数;(2)根据BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线,且BP CP ⊥可得135ABC ACB ,进而可求A ∠的度数;(3)根据B 的三分线所在的直线与ACD ∠的三分线所在的直线交于点P .分四种情况画图:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时;情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时;情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时;情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,再根据A m ∠=︒,B n ∠=︒,即可求出BPC ∠的度数.【详解】解:(1)如图,当BD 是“邻AB 三分线”时,701585BD C ;当BD 是“邻BC 三分线”时,7030100BD C; 故答案为:85或100;(2)BP CP , 90BPC ∴∠=︒,90PBC PCB , 又BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线, 23PBC ABC ,23PCB ACB ∠=∠, ∴229033ABC ACB , 135ABC ACB ,在ABC ∆中,180A ABC ACB ∠+∠+∠=︒ 180()45A ABCACB . (3)分4种情况进行画图计算:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时,2233BPC A m ; 情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时,1133BPC A m ; 情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时,21213333BPC A ABC m n ; 情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,①当m n >时,11113333BPC A ABC m n ∠=∠-∠=-; ②当m n <时,11113333P ABC A n m ∠=∠-∠=-. 【点睛】 本题考查了三角形的外角性质,解决本题的关键是掌握三角形的外角性质.注意要分情况讨论.11.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析【解析】【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论. 【详解】解:(1) 解:(1)∵a 6b 80--=,∴a-6=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y 轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD ,∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.12.(1)互相平行;(2)35,20;(3)见解析;(4)不变,12 【解析】【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=12BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于12;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=12.【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.13.(1)1111,451n n--+;(2)nn1+;(3)见解析.【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到1 45⨯和1(1) n n⨯+(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】解:(1)1114545=-⨯,111(1)1n n n n=-++;故答案为1111,451n n--+(2)原式=111111111+122334111nn n n n--+-++-=-=+++;(3)已知等式整理得:11111121 11245(5)xx x x x x x x x--+-++-=++++++所以,原方程即:11215(5)xx x x x--=++,方程的两边同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,检验:把x=3代入x(x+5)=24≠0,∴原方程的解为:x=3.【点睛】本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.。
北京第十三中八年级上册压轴题数学模拟试卷及答案
北京第十三中八年级上册压轴题数学模拟试卷及答案一、压轴题1.完全平方公式:()2222a b a ab b ±=±+适当的变形,可以解决很多的数学问题.例如:若3,1a b ab ,求22a b +的值. 解:因为3,1a b ab 所以()29,22a b ab +==所以2229,22a b ab ab ++==得227a b +=.根据上面的解题思路与方法,解决下列问题:(1)若228,40x y x y +=+=,求xy 的值;(2)①若()45x x -=,则()224x x -+= ; ②若()()458x x --=则()22()45x x -+-= ; (3)如图,点C 是线段AB 上的一点,以AC BC 、为边向两边作正方形,设6AB =,两正方形的面积和1218S S +=,求图中阴影部分面积.解析:(1)12;(2)①6;②17;(3)92 【解析】【分析】(1)根据完全平方公式的变形应用,解决问题;(2)①两边平方,再将(4)5x x -=代入计算;②两边平方,再将()()458x x --=代入计算;(3)由题意可得:6AC BC +=,2218AC BC +=,两边平方从而得到9AC BC =,即可算出结果.【详解】解:(1)8x y +=;22()8x y ∴+=;22264x xy y ++=;又2240x y +=;22264()xy x y ∴=-+,2644024xy ∴=-=,∴12xy =.(2)①(4)4x x -+=,22[(4)]4x x ∴-+=222[(4)](4)2(4)16x x x x x x -+=-+-+=;又(4)5x x -=,22(4)162(4)16256x x x x ∴-+=--=-⨯=.②由(4)(5)1x x ---=-,2222[(4)(5)](4)2(4)(5)(5)(1)x x x x x x ∴---=----+-=-;又(4)(5)8x x --=,22(4)(5)12(4)(5)12817x x x x ∴-+-=+--=+⨯=.(3)由题意可得,6AC BC +=,2218AC BC +=;22()6AC BC +=,22236AC AC BC BC ++=;22236()361818AC BC AC BC ∴=-+=-=,9AC BC =;图中阴影部分面积为直角三角形面积,BC CF =, ∴1922ACF S AC CF ∆==.【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①(4)4x x -+=,②(4)(5)1x x ---=-是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段6AB BC +=,再根据两个正方形面积和为18,利用完全平方公式变形应用得到9AC BC =,再根据直角三角形面积公式得出答案.2.探究发现:如图①,在ABC 中,内角ACB ∠的平分线与外角ABD ∠的平分线相交于点E .(1)若80A ∠=︒,则E ∠= ;若50A ∠=︒,则E ∠= ;(2)由此猜想:A ∠与E ∠的关系为 (不必说明理由).拓展延伸:如图②,四边形ABCD 的内角DCB ∠与外角ABE ∠的平分线相交于点F ,//BF CD .(3)若125A ∠=︒,95D ∠=︒,求F ∠的度数,由此猜想F ∠与A ∠,D ∠之间的关系,并说明理由.解析:(1)40°25°;(2)12∠=∠E A (或2E ∠=∠A)(3)F ∠=()1902A D ∠+∠-︒ 【解析】【分析】(1)先根据两角平分线写出对应的等式关系,再分别写出两个三角形内角和的等式关系,最后联立两等式化解,将A ∠的角度带入即可求解;(2)由(1)可得,即可求解;(3)在DCB ∠与ABE ∠的平分线相交于点F ,可知1==2BCF DCF BCD ∠∠∠12EBF ABE ∠=∠,又因为//BF CD ,两直线平行内错角相等,得出F DCF ∠=∠,再根据三角形一外角等于不相邻的两个内角的和,得出+EBF F BCF ∠=∠∠,再由四边形的内角和定理得出++360ABC BCD A D ∠+∠∠∠=,最后在FBC 中:++180F FBC BCF ∠∠∠=,代入整理即可得出结论.【详解】解:(1)由题可知:BE 为DBA ∠的角平分线,CE 为BCA ∠的角平分线,∴DBA ∠=2EBA ∠=2EBD ∠,BCA ∠=2BCE ∠,∴1802ABC EBA ∠=-∠,三角形内角和等于180,∴在ABC 中:+180A ABC BCA ∠∠+∠=,即:+(1802)2180A EBA BCE ∠-∠+∠=,220A EBA BCE ∠-∠+∠=①,在EBC 中:+180E EBC BCE ∠∠+∠=,即:+180-180E EBA BCE ∠∠+∠=(),-0E EBA BCE ∠∠+∠=②,综上所述联立①②,由①-②×2可得 :22-2-0A EBA BCE E EBA BCE ∠-∠+∠∠∠+∠=(),22-2+2-20A EBA BCE E EBA BCE ∠-∠+∠∠∠∠=,-20A E ∠∠=,1=2E A ∠∠, 当80A =∠,则E ∠=40;当50A ∠=,则E ∠=25;故答案为40,25;(2)由(1)知:12∠=∠E A (或2A E ∠=∠); (3)∵DCB ∠与ABE ∠的平分线相交于点F , ∴1==2BCF DCF BCD ∠∠∠,12EBF ABE FBA ∠=∠=∠ , 又∵//BF CD ,∴F DCF ∠=∠(两直线平行,内错角相等)BCF =∠,∵EBF ∠是CBF 的一个外角,∴+=2EBF F BCF F FBA ∠=∠∠∠=∠(三角形一外角等于不相邻的两个内角的和), 在四边形ABCD 中,四边形内角和为360,125A ∠=, 95D ∠=,∴++360ABC BCD A D ∠+∠∠∠=,∴360---=360---2ABC A D BCD A D F ∠=∠∠∠∠∠∠①,∴=360-125-95-2=140-2ABC F F ∠∠∠,即140-2ABC F ∠=∠,在FBC 中:++180F FBC BCF ∠∠∠=,2FBC FBA ABC F ABC ∠=∠+∠=∠+∠,由上可得:+2+180F F F ABC ∠∠=∠+∠,4180F ABC =∠+∠②,又∵=140-2ABC F ∠∠,∴-42014018F F ∠=∠+,240F ∠=,20F ∠=,由①②可得,-4-13608-20F A D F ∠+∠∠=∠,2+180F A D =∠+∠∠,+-9102F A D ∠∠=∠)(. 【点睛】本题主要考查了三角形的外角性质的应用和角平分线的定义,能正确运用性质进行推理和计算是解此题的关键,注意三角形的一个外角等于和它不相邻的两个内角的和.3.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.解析:(1)详见解析;(2)①详见解析;②PB PC PD BE ++=,理由详见解析 【解析】【分析】(1)根据等边三角形的性质得出BC=AC ,CE=CD ,∠ACB=∠DCE=60°,进而得出∠BCE=∠ACD ,判断出BCE ACD ≌(SAS ),即可得出结论;(2)①同(1)的方法判断出≌ACD BCE (SAS ),ABD CBF ≌(SAS ),即可得出结论; ②先判断出∠APB=60°,∠APC=60°,在PE 上取一点M ,使PM=PC ,证明CPM △是等边三角形, 进而判断出PCD MCE ≌(SAS ),即可得出结论.【详解】(1)证明:∵ABC 和DCE 都是等边三角形,∴BC=AC ,CE=CD ,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,∴BCE ACD ≌(SAS ),∴BE=AD ;(2)①证明:∵ABC 和DCE 是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠BCE ,∴≌ACD BCE (SAS ),∴AD=BE ,同理:ABD CBF ≌(SAS ),∴AD=CF ,即AD=BE=CF ;②解:结论:PB+PC+PD=BE ,理由:如图2,AD 与BC 的交点记作点Q ,则∠AQC=∠BQP ,由①知,≌ACD BCE ,∴∠CAD=∠CBE ,在ACQ 中,∠CAD+∠AQC=180°-∠ACB=120°,∴∠CBE+∠BQP=120°,在BPQ 中,∠APB=180°-(∠CBE+∠BQP )=60°,∴∠DPE=60°,同理:∠APC=60°,60,CPE ∴∠=︒ ∠CPD=120°,在PE 上取一点M ,使PM=PC ,∴CPM △是等边三角形,∴CP CM PM ==,∠PCM=∠CMP=60°,∴∠CME=120°=∠CPD ,∵CDE △是等边三角形,∴CD=CE ,∠DCE=60°=∠PCM ,∴∠PCD=∠MCE ,∴PCD MCE ≌(SAS ),∴PD=ME ,∴BE=PB+PM+ME=PB+PC+PD .【点睛】此题是三角形综合题,主要考查了三角形的内角和定理,等边三角形的性质和判定,全等三角形的判定和性质,构造出全等三角形是解本题的关键.4.如图,在ABC 中,D 为AB 的中点,10AB AC cm ==,8BC cm =.动点P 从点B 出发,沿BC 方向以3/cm s 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以3/cm s 的速度向点A 运动,运动时间是ts .(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值;(2)在运动过程中,当BPD CQP ≌时,求出t 的值;(3)是否存在某一时刻t ,使BPD CPQ ≌?若存在,求出t 的值;若不存在,请说明理由.解析:(1)43t =时,点C 位于线段PQ 的垂直平分线上;(2)1t =;(3)不存在,理由见解析.【解析】【分析】 (1)根据题意求出BP ,CQ ,结合图形用含t 的代数式表示CP 的长度,根据线段垂直平分线的性质得到CP =CQ ,列式计算即可;(2)根据全等三角形的对应边相等列式计算;(3)根据全等三角形的对应边相等列式计算,判断即可.【详解】解:(1)由题意得3BP CQ t ==,则83CP t -=,当点C 位于线段PQ 的垂直平分线上时,CP CQ =,∴833t t -=, 解得,43t =, 则当43t =时,点C 位于线段PQ 的垂直平分线上; (2)∵D 为AB 的中点,10AB AC ==, ∴5BD =,∵BPD CQP ≌,∴BD CP =,∴835t -=,解得,1t =, 则当BPD CQP ≌时,1t =; (3)不存在,∵BPD CPQ △≌△,∴BD CQ BP CP =,=,则35383t t t -=,=解得,53t =,43t =, ∴不存在某一时刻t ,使BPD CPQ △≌△.【点睛】本题考查的是几何动点运动问题、全等三角形的性质、线段垂直平分线的性质、等腰三角形的性质,掌握全等三角形的对应边相等是解题的关键.5.探索发现:111111111;;12223233434=-=-=-⨯⨯⨯…… 根据你发现的规律,回答下列问题:(1)145⨯= ,1(1)n n ⨯+= ; (2)利用你发现的规律计算:1111122334(1)n n ⋅++++⨯⨯⨯⨯+ (3)利用规律解方程:1111121(1)(1)(2)(2)(3)(3)(4)(4)(5)(5)x x x x x x x x x x x x x -++++=++++++++++ 解析:(1)1111,451n n --+;(2)n n 1+;(3)见解析. 【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到145⨯和1(1)n n ⨯+ (2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可. 【详解】 解:(1)1114545=-⨯, 111(1)1n n n n =-++ ; 故答案为1111,451n n --+ (2)原式=111111111+122334111n n n n n --+-++-=-=+++ ;(3)已知等式整理得:11111121 11245(5)xx x x x x x x x--+-++-=++++++所以,原方程即:11215(5)xx x x x--=++,方程的两边同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,检验:把x=3代入x(x+5)=24≠0,∴原方程的解为:x=3.【点睛】本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点. 6.问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.解析:(1)证明见解析;(2)DE=BD+CE;(3)B(1,4)【解析】【分析】(1)证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠ADB =∠CEA =90°∵∠BAC =90°∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°∴∠CAE =∠ABD∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE即:DE =BD +CE(2)解:数量关系:DE =BD +CE理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD ,∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC ,∴∠ABD=∠CAE ,在△ABD 和△CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABD ≌△CAE (AAS )∴AE=BD ,AD=CE ,∴DE=AD+AE=BD+CE ;(3)解:如图,作AE ⊥x 轴于E ,BF ⊥x 轴于F ,由(1)可知,△AEC ≌△CFB ,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴点B 的坐标为B (1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.7.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2= ;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.解析:(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1) ∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2) ∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如图3,设DP与BE的交点为F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE与AC的交点为G,∵∠PGD=∠EGC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.8.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.解析:(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】 (1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119; 由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.9.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明) 解析:(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上,∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.10.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.解析:(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.11.探究:如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若∠B =30°,则∠ACD 的度数是 度;拓展:如图②,∠MCN =90°,射线CP 在∠MCN 的内部,点A 、B 分别在CM 、CN 上,分别过点A 、B 作AD ⊥CP 、BE ⊥CP ,垂足分别为D 、E ,若∠CBE =70°,求∠CAD 的度数;应用:如图③,点A 、B 分别在∠MCN 的边CM 、CN 上,射线CP 在∠MCN 的内部,点D 、E 在射线CP 上,连接AD 、BE ,若∠ADP =∠BEP =60°,则∠CAD +∠CBE +∠ACB = 度.解析:探究:30;(2)拓展:20°;(3)应用:120【解析】【分析】(1)利用直角三角形的性质依次求出∠A,∠ACD即可;(2)利用直角三角形的性质直接计算得出即可;(3)利用三角形的外角的性质得出结论,直接转化即可得出结论.【详解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案为:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案为120.【点睛】此题是三角形的综合题,主要考查了直角三角形的性质,三角形的外角的性质,垂直的定义,解本题的关键是充分利用直角三角形的性质:两锐角互余,是一道比较简单的综合题.12.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系. 解析:90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠,()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知, 11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE AMC ︒∠+∠+∠=, 112()90CMF ABE AMC ︒∴∠+∠+∠=,()1129090EMF A MC ︒︒∴-∠+∠=, ()112906090A MC ︒︒︒∴-+∠=, 1130AMC ︒∴∠=; (3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.13.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.解析:(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.14.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.解析:(1522213221【解析】【分析】 (1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩, ∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b ,∴2221=4a a +,2222=4b b +,解得:3=3a ,23=3b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=433, ∴AB=22AP BP +=()22AM PM BP ++=2213;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:23 ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:QM=3, ∴AM=23=CN ,∴PC=CN-NP=AM-NP=433, 在△BPC 中,BP 2+CP 2=BC 2,即BC=222243221233BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=2213.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.15.如图,ABC ∆在平面直角坐标系中,60BAC ∠=︒,()0,43A ,8AB =,点B 、C 在x 轴上且关于y 轴对称.(1)求点C 的坐标;(2)动点P 以每秒2个单位长度的速度从点B 出发沿x 轴正方向向终点C 运动,设运动时间为t 秒,点P 到直线AC 的距离PD 的长为d ,求d 与t 的关系式;(3)在(2)的条件下,当点P 到AC 的距离PD 为33AP ,作ACB ∠的平分线分别交PD 、PA 于点M 、N ,求MN 的长.解析:(1)C (4,0);(2)433d t =;(3)103MN =【解析】【分析】(1)根据对称的性质知ABC ∆为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得AC PD PC OA ⋅=⋅,再利用坐标系中点的特征即可求得答案; (3)利用(2)的结论求得2BP =,利用角平分线的性质证得ABO CBQ ∆∆≌,求得43CQ AO ==437QN =,再利用直角三角形中30度角的性质即可求得答案.【详解】(1)∵点B 、C 关于y 轴对称, ∴12OB OC BC ==, ∴AB AC =,∵60BAC ∠=︒,∴ABC ∆为等边三角形,∴8AB BC AC ===, ∴142OC BC ==, ∴点C 的坐标为:()4,0C ;(2)连接AP ,∵1122APC S AC PD PC OA ∆=⋅=⋅, ∴AC PD PC OA ⋅=⋅,∵()0,43A ,∴43OA =,∵2BP t =,∴82PC t =-,∵8AC =,∴433PC OA PD t AC⋅==-, 即:433d t =-;(3)∵点P 到AC 的距离为33,∴43333d t =-=,∴1t =,∴2BP =,延长CN 交AB 于点Q ,过点N 作NE x ⊥轴于点E ,连接PQ 、BN ,∵CQ 为ACB ∠的角平分线,ABC ∆为等边三角形,∴1302BCQ ACB ∠=∠=︒,CQ AB ⊥, ∵1302BAO BAC ∠=∠=︒,AB BC =, ∴ABO CBQ ∆∆≌,∴CQ AO ==设2QN a =,在Rt CNE ∆中,30QCB ∠=︒,∴112)22NE CN a a ===, ∵ABP ABN BPN S S S ∆∆∆=+, ∴111222BP OA AB QN BP NE ⋅=⋅+⋅,∴1112822)222a a ⨯⨯=⨯⨯+⨯⨯,∴7a =,∴QN =, ∵60ACB ∠=︒,90PDC ∠=︒,∴30DPC ∠=︒,∵30BCQ ∠=︒,∴PM CM =,在Rt CDM ∆中,90MDC ∠=︒,30MCD ∠=︒, ∴12MD MC =,∴12MD PM =,PD =∴PM CM ==∴77MN CQ QN CM =--=-=.【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键.二、选择题16.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A 、5+3×6+1×6×6=59(颗),故本选项错误;B 、1+3×6+2×6×6=91(颗),故本选项正确;C 、2+3×6+1×6×6=56(颗),故本选项错误;D 、1+2×6+3×6×6=121(颗),故本选项错误;故选:B .【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.17.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°解析:C【解析】【分析】 根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.18.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( )A .1B .2C .3D .4解析:B【解析】【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案.【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.19.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ时,t=12,其中正确结论的个数是()A.0 B.1 C.2 D.3解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点。
十三中初二数学期末考试卷
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3.5B. -2C. 0D. 32. 下列代数式中,同类项是()A. a²bB. 2a²C. a² + 2aD. a² - b²3. 已知直线l经过点A(2,3)和B(4,-1),则直线l的斜率是()A. 1B. 2C. -1D. -24. 在直角坐标系中,点P(-2,5)关于原点的对称点是()A.(2,5)B.(-2,-5)C.(-2,5)D.(2,-5)5. 如果一个三角形的两边长分别是5和8,那么第三边的长度可能是()A. 10B. 12C. 13D. 146. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x² + 1D. y = 2x² - 17. 已知等腰三角形ABC中,AB=AC,底边BC上的高AD垂直于BC,如果BC=6,那么AD的长度是()A. 3B. 4C. 5D. 68. 在梯形ABCD中,AD∥BC,且AB=CD,如果AB=5,BC=8,那么梯形的高h可能是()A. 2B. 3C. 4D. 59. 已知一元二次方程x² - 5x + 6 = 0,则方程的解是()A. x = 2, x = 3B. x = 3, x = 2C. x = 1, x = 4D. x = 4, x = 110. 在一个长方形ABCD中,AB=6cm,BC=4cm,那么对角线AC的长度是()A. 8cmB. 10cmC. 12cmD. 14cm二、填空题(每题5分,共50分)11. 计算:3² - 2 × 3 + 1 = _______12. 简化表达式:4a²b - 2ab² + 3a²b - ab² = _______13. 若直线y = kx + 1与x轴交于点A,与y轴交于点B,则点A的坐标是_______,点B的坐标是_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第3题)杭十三中2011学年第一学期八年级数学期末模拟卷一.选择题(30分)1. 如图,笑脸盖住的点的坐标可能为(▲ )A 、(5,2)B 、(-2,3)C 、(-4,-6)D 、(3,-4)2.如图,AB 、CD 相交于点O ,∠1=80º,如果DE ∥AB ,那么∠D 为( ▲ ) A .80º B .90º C .100º D .110º3.若图示的两架天平都保持平衡,则对a 、b 、c 三种物体的重量判断正确..的是( ▲ ) A .a c > B .a c < C .a b < D .b c < 4.下列四个几何体中,主视图是三角形的是(▲ )5. 一个等腰三角形的一个外角等于110,则这个三角形的底角为( ▲ ) A .55 B .70 C .55或40 D .70或55 6.某地区连续5天的最高气温(单位:℃)分别是30,33,24,29,24.这组数据的中位数是( ▲ ) A.29 B.28 C.24 D.307. 一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是(▲)8.一元一次不等式组1x a x >⎧⎨>-⎩的解集为x >a ,且a ≠-1,则a 取值范围是( ▲ )。
A .a >0B .a <-1C .a >-1D .a <09.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按逆时针方向旋转900得到OA ',(第2题)第1题图则点A '的坐标为( ▲ )A.(3,-6)B.(-3,6)C.(-3,-6)D.(3,6)10. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程 S (米)与所用时间 t (秒)之间的函数图象分别为线段OA 和折线OBCD . 下列说法正确的是(▲) A.小莹的速度随时间的增大而增大 B.小梅的平均速度比小莹的平均速度大 C.在起跑后 180 秒时,两人相遇 D.在起跑后 50 秒时,小梅在小莹的前面 二.填空题(24分)11. 如图所示,在Rt △ABC 中,∠C=90°,EF//AB ,∠CEF=50°,则∠B 的度数为 12. 甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是20.65S =甲,20.55S =乙,20.50S =丙 20.45S =丁,则射箭成绩最稳定的是13如图是正方体的展开图,则原正方体相对 两个面上的数字之和的最小值为14.将一副三角尺如图所示叠放在一起,若A B =14cm ,则阴影部分的面积是__ _____cm 2.16. 一次函数y kx b =+的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程0kx b +=的解为2x =.其中说法正确的有 (把你认为说法正确的序号都填上).三、解答题(本题有8小题,共66分)17.(6分)在下列三个一元一次不等式中,任选其两个..组成一个一元一次不等式组,解.这个不等式组,并把解集表示在数轴..上. 14题图B13题图第11题图FE C BA①2x+1>3 ②123x x -≤③2(x-1)<3x-1答:我选择的两个不等式的序号为.(必须填写,但不计分)解不等式组过程如下:18.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内作出平面直角坐标系; ⑵请作出△ABC 关于y 轴对称的△A′B′C′; ⑶写出点B′的坐标.19. (6分)已知y – 2与x 成正比例关系,且当x=1时,(1)求y与x 之间的函数解析式;(2)请画出这个函数的图像,算出图像与坐标轴的交点坐标.20(8分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF ,∠C=∠D ,则∠A=∠F ,请说明理由.解:∵∠AGB=∠EHF ( ) ∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB ∥EC ( ) ∴∠=∠DBA ( 两直线平行,同位角相等)又∵∠C=∠D ∴∠DBA=∠D ∴DF ∥(内错角相等 ,两直线平行)∴∠A=∠F ( )第19题图ABCDEFG H21.(8分)某校要从小王和小李两名同学中挑选一人参加县初中数学竞赛,在最近10次成绩测试中,他俩的成绩如下图所示:(1)完成上表:(2)若将成绩80分以上(含80分)视为优秀,则小王、小李在这10次测试中的优秀率各是多少?(3)历届比赛成绩表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获一等奖. 那么你认为选谁参加比赛比较合适?说明你的理由. 22.(10分)如图,在△ABC 中∠ABC=45°,AD ⊥BC 于点D ,AC=BE.(1)说明AD=BD 的理由。
(2)连结EC ,猜想△EDC 的形状,并说明理由。
23.(本题l0分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒ACBEDx②按两种纸盒的生产个数来分,有哪几种生产方案?(5分)(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则a的值是.(写出一个即可)(2分)24.(本题12分)如图,一次函数y = kx + b的图象与x轴和y轴分别交于点A(6,0)和B (0,32),再将△AOB沿直线CD对折,使点A与点B重合.直线CD与x轴交于点C,与AB交于点D.(1)试确定这个一次函数的解析式;(4分)(2)求点C的坐标;(2分)(3)在x轴上有一点P,且△PAB是等腰三角形不需计算过程,直接写出点P的坐标.(4分)32O 杭十三中2011学年第一学期八年级数学期末模拟答题卷一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题4分,共24分)11、 12、 13、 14、 15、 16、三.解答题:17.(6分)在下列三个一元一次不等式中,任选其两个..组成一个一元一次不等式组,解.这个不等式组,并把解集表示在数轴..上. ①2x+1>3 ②123x x -≤ ③2(x-1)<3x-1答:我选择的两个不等式的序号为.(必须填写,但不计分)解不等式组过程如下:18.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内作出平面直角坐标系;⑵请作出△ABC 关于y 轴对称的△A′B′C′;⑶写出点B′的坐标.19. (6分)已知y – 2与x 成正比例关系,且当x=1时,y=5. (1)求y 与x 之间的函数解析式;(2)请画出这个函数的图像,算出图像与坐标轴的交点坐标.20(6分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF ,∠C=∠D ,则∠A=∠F ,请说明理由.解:∵∠AGB=∠EHF ( ) ∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB ∥EC ( ) ∴∠=∠DBA ( 两直线平行,同位角相等)又∵∠C=∠D ∴∠DBA=∠D ∴DF ∥(内错角相等 ,两直线平行)∴∠A=∠F ( )21.(8分)某校要从小王和小李两名同学中挑选一人参加县初中数学竞赛,在最近10次成绩测试中,他俩的成绩如下图所示:(1)完成上表:(2)若将成绩80分以上(含80分)视为优秀,则小王、小李在这10次测试中的优秀率各是多少?(3)历届比赛成绩表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90第19题图ABCDEFGH分以上(含90分)就很可能获一等奖. 那么你认为选谁参加比赛比较合适?说明你的理由.22.(10分)如图,在△ABC 中∠ABC=45°,AD ⊥BC 于点D ,AC=BE. (1)说明AD=BD 的理由。
(2)连结EC ,猜想△EDC 的形状,并说明理由。
23.(本题l0分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒xACBED②按两种纸盒的生产个数来分,有哪几种生产方案?(5分)(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则a的值是.(写出一个即可)(2分)24.(本题10分)如图,一次函数y = kx + b的图象与x轴和y轴分别交于点A(6,0)和B(0,32),再将△AOB沿直线CD对折,使点A与点B重合.直线CD与x轴交于点C,与AB交于点D.(1)试确定这个一次函数的解析式;(4分)(2)求点C的坐标;(2分)(3)在x轴上有一点P,且△PAB是等腰三角形不需计算过程,直接写出点P的坐标.(4分)2011学年第一学期八年级数学答案二、填空题11、 40° 12、 丁 13、 6 14、 24.5 15、x <53 16、①②③三、解答题 17.略18【答案】⑴⑵如图,⑶B′(2,1) 19、(1)得3分。
画图1分 坐标轴2分(1)∵2y -与x 成正比例关系 ∴设2(0)y kx k -=≠,并把1x =,5y =代入,解得3k = ∴原解析式为23y x -=,即32y x =+(2)与y 轴交于(0,2), 与x 轴交于2,03⎛⎫- ⎪⎝⎭20.(本题6分)已知 ∠DGF 同位角相等,两直线平行 ∠C AC (填AB 、BC 均可) 两直线平行,内错角相等……………………………………(每空1分)21.(本题8分)(1)80…………………………………….(2分) (2)优秀率:小王60%,小李80%……(4分) (3)选小王:获一等奖的可能性大,稳定性好;选小李:获奖可能性大. (两者只要选其中一条..即可给2分) 22.(本题10分)(1)解:∵AD ⊥BD,∠ABC=45°………………..…(1分) ∴∠DAB=90°- 45°=45°…………………(1分) ∴∠ABC=∠DAB............................................(1分)2011年第一学期 ∴AD=BD.........................................................(1分)(2)猜想:△EDC 是等腰直角三角形........................(1分) 解:∵AD=BD,AC=BE,AD ⊥BC …………….(2分) ∴Rt △EBD ≌Rt △CAD ………………….(1分)∴DE=DC …………………………………(1分)∵∠CDA=90°∴△EDC 是等腰直角三角形……………(1分)23.24.(1) 3233+-=x y (2) (2,0)(3))0,2()0,634()0,634()0,6(321P P P P +--。