不锈钢特性及氯离子腐蚀
氯离子腐蚀不锈钢的原理
氯离子腐蚀不锈钢的原理氯离子腐蚀不锈钢的原理是指在含氯环境中,氯离子与不锈钢表面发生作用,导致不锈钢产生腐蚀现象。
不锈钢在大气环境中具有较好的耐腐蚀性能,主要是因为不锈钢表面形成了一层致密的氧化铬膜,称为钝化膜。
然而,在氯离子的存在下,钝化膜容易被破坏,导致不锈钢发生腐蚀。
1.氯离子的吸附和浸润:氯离子具有较强的亲水性,容易吸附在不锈钢表面并浸润到钝化膜下。
氯离子吸附在表面会导致表面电位升高,从而破坏了钝化膜的稳定性。
2.氯离子的电化学反应:在氯离子存在的条件下,钝化膜中的铬离子会与氯离子发生反应,生成可溶性的铬氯络合物,从而破坏了钝化膜的连续性。
这个过程被称为局部腐蚀,即氯离子会形成一个微小的腐蚀细胞,在细胞中,不锈钢表面处于阳极,而钝化膜破坏的部分则处于阴极,形成阳极和阴极之间的电流。
3.氯离子的传输:氯离子可以通过水分子或气态状态传输到不锈钢表面,特别是在高温高湿的环境中,氯离子的迁移速度会增加,导致氯离子浓度在钝化膜下积累,进一步加剧了腐蚀。
除了以上几个方面,氯离子腐蚀不锈钢还受到以下因素的影响:1.氯离子浓度:氯离子浓度越高,腐蚀速度越快。
当氯离子浓度低于一定的临界值时,腐蚀基本不发生。
但一旦超过临界值,腐蚀速率会显著增加。
2.温度和湿度:高温高湿的环境会加速氯离子的传输和吸附,进而加速不锈钢的腐蚀。
3.氧气含量:氧气对于钝化膜的稳定性至关重要,充足的氧气可以帮助钝化膜修复和再生。
因此,氯离子腐蚀不锈钢更为显著的情况通常发生在氧气缺乏的环境中,如密封系统。
总的来说,氯离子通过吸附、浸润、电化学反应等行为,破坏不锈钢表面的钝化膜,进而导致不锈钢发生腐蚀。
要防止氯离子腐蚀不锈钢,可以通过以下途径进行控制:1.减少氯离子的接触:避免在含氯环境中使用不锈钢材料,或者使用防腐涂料、防护层等措施将不锈钢与氯离子隔离。
2.增加氧气供应:通过增加通气量、增加氧气浓度等方式,提高不锈钢表面氧气的含量,增强钝化膜的稳定性。
氯离子对不锈钢腐蚀原理
精心整理氯离子对不锈钢有多种腐蚀?1.对钝化膜的破坏?目前有几种理论,比较权威:?✍成相膜理论:Cl-半径小,穿透能力强,容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性的化合物,使氧化膜的结构发生变化。
?✍吸附理论:Cl-有很强的可被金属吸附的能力,优先被金属吸附,并从金属表面把氧排掉,氯离子和氧子争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。
?2.孔蚀(点蚀)孔蚀失效机理?在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀)。
点蚀一般在静止的介质中容易发生。
具有自钝化特性的金属在含有氯离子的介质中,?经常发生孔蚀。
蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。
? 含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20μm?~30μm小蚀坑,这些小蚀坑便是孔蚀核。
在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。
在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。
氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。
蚀孔内的金属表面处于活化状态电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态———钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。
孔内主要发生阳极溶解:?Fe?→Fe2+?+?2e?,?Cr?→Cr3?+?+?3e?,?Ni?→Ni2?+?+?2e。
?介质呈中性或弱碱性时,孔外的主要反应为:?O2?+?H2O?+?2e?→2OH-。
氯离子与不锈钢腐蚀
氯离子与不锈钢腐蚀氯离子对不锈钢腐蚀的机理!氯离子腐蚀是一种金属晶粒间的腐蚀,表现为不锈钢的脆裂,而且电焊修补后,这中裂纹会沿着焊缝延伸。
根据我们公司的使用情况,设备使用了10年,水温度在70,85摄氏度时候,氯离子在100PPM左右,304的设备开始产生裂纹,最初在焊缝上最为突出,而316L的设备倒是还未出现问题。
但是按照规范奥氏体不锈钢设备氯离子的含量应该控制在25PPM。
从我们使用的情况看,cl-对304的腐蚀一般表现为应力腐蚀的特征,而且多数从焊缝的热影响区、煅件的本体等应力集中的区域开始出现腐蚀。
不锈钢耐腐蚀的机理是由于存在元素铬,铬在很多条件下能钝化从而使设备得以保护。
而以氯为代表的活性阴离子极易破坏钝化膜,在材料局部区域形成孔蚀核,最终形成蚀孔。
因而不锈钢最怕氯离子。
从资料看,什么样的不锈钢对氯离子都没有防腐蚀。
但是我们公司有一种产品的反应釜中包含双氧水,氯化钠,氢氧化钠。
但反应釜使用了好多年还没有出现腐蚀情况。
个人认为,碱性环境氯离子对材质腐蚀不是特别明显。
氯离子一般都是海水里,所以要选耐海水腐蚀的钢种,通常的18-8型奥氏体不锈钢经验证,耐海水腐蚀并不好。
在海水环境下不锈钢的使用,孔蚀、间隙腐蚀的局部腐蚀有时发生。
对这些局部腐蚀的抑制,已知增加Cr和Mo,奥氏体系不锈钢和双相钢,特别是添加N是有效果的,美国研制的超级奥氏体不锈钢(牌号我记不清了),日本研制的高N奥氏体系不锈钢,因为316L,317L这类钢不抗海水腐蚀~以下钢种供参考:高强度耐海水腐蚀马氏体时效不锈钢 00Cr16Ni6Mo3Cu1N高强度耐海水腐蚀不锈钢 00Cr26Ni6Mo4CuTiAl耐海水不锈钢Yus270(20Cr,18Ni,6Mo,0(2N)(2 ,3(6 ,海水因地域不同而多少有些差异,溶于海水的盐类浓度为3其中氯离子浓度为19000 ppm。
而自来水的氯离子浓度上限值为200 ppm,所以海水中氯离子浓度相当于自来水的lOO倍。
氯离子对不锈钢的腐蚀
氯离子对不锈钢的腐蚀(2012-02-28 18:51:09)问题描述:对于奥氏体不锈钢在氯离子环境下的腐蚀,各种权威的书籍均有严格的要求,氯离子含量要小于25ppm,否则就会发生应力腐蚀、孔蚀、晶间腐蚀。
但是事实上在工程应用中我们有很多高浓度的氯离子含量的情况下在使用奥氏体不锈钢,因些分析氯离子对不锈钢的腐蚀,采取预防措施,延长使用寿命,或合理选材。
不锈钢的腐蚀失效分析:1、应力腐蚀失:不锈钢在含有氧的氯离子的腐蚀介质环境产生应力腐蚀。
应力腐蚀失效所占的比例高达45 %左右。
常用的防护措施:合理选材,选用耐应力腐蚀材料主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。
其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。
控制应力:装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。
严格遵守操作规程:严格控制原料成分、流速、介质温度、压力、pH 值等工艺指标。
在工艺条件允许的范围内添加缓蚀剂。
铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1. 0×10 - 6以下。
实践证明,在含有氯离子质量分数为500. 0 ×10 - 6的水中,只需加入质量分数为150. 0 ×10 - 6的硝酸盐和质量分数为0. 5×10 - 6亚硫酸钠混合物,就可以得到良好的效果。
2、孔蚀失效及预防措施小孔腐蚀一般在静止的介质中容易发生。
蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,即向深处自动加速。
,不锈钢表面的氧化膜在含有氯离子的水溶液中便产生了溶解,结果在基底金属上生成孔径为20μm~30μm 小蚀坑,这些小蚀坑便是孔蚀核。
只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。
常见预防措施:在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量。
降低氯离子在介质中的含量。
加入缓蚀剂,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。
氯离子腐蚀不锈钢原理
氯离子腐蚀不锈钢原理
氯离子腐蚀不锈钢的原理是由于氯离子具有强氧化性和侵蚀性。
在碱性或酸性环境中,氯离子能与不锈钢表面形成氯化物。
当氯离子存在于不锈钢表面时,会与金属表面的铁原子结合形成氯化铁,并释放出电子。
这个过程叫做氧化还原反应。
氯化铁会沉积到不锈钢表面,形成一层氯化铁膜,称为氯化物膜。
这层氯化物膜是不稳定的,容易形成微小的孔洞和裂纹。
这些孔洞和裂纹会导致环境中的水分和氧气进入不锈钢材料中,造成钢材表面的局部腐蚀和丧失抗腐蚀性能的能力。
氯化物膜的形成和破坏是一个动态平衡过程。
而当氯离子的浓度较高时,氯化物膜的形成速度会比破坏速度快,导致腐蚀发生。
此外,氯离子还可作为催化剂加速不锈钢表面的电化学反应,进一步促使腐蚀的发生。
这些电化学反应包括阳极溶解和阴极氧化反应,它们都会加速不锈钢表面的金属离子释放和金属腐蚀。
综上所述,氯离子腐蚀不锈钢的主要原理是氯化物膜的形成和破坏,以及氯离子在不锈钢表面的电化学反应。
这会导致不锈钢表面的腐蚀和丧失抗腐蚀性能的能力。
氯离子对不锈钢腐蚀的机理
氯离子对不锈钢腐蚀的机理Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998氯离子对不锈钢腐蚀的机理在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。
普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。
Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。
Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。
氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。
虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点。
成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。
吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。
因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。
电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。
这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。
因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。
3. 2 防止孔蚀的措施(1)在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。
耐孔蚀不锈钢基本上可分为3 类:铁素体不锈钢;铁素体—奥氏体双相钢;奥氏体不锈钢。
设计时应优先选用耐孔蚀材料。
氯离子对不锈钢的腐蚀
氯离子对不锈钢有多种腐蚀1对钝化膜破坏目前有儿种理论,比较权威:1>成相膜理论:C1-半径小,穿透能力强,容易穿透氧化膜内极小孔隙,到达金属表面,并及金属相互作用形成了可溶性化合物,使氧化膜结构发生变化。
2〉吸附理论:C1-有很强可被金属吸附能力,优先被金属吸附,并从金属表面把氧排掉,氯离子和氧离子争夺金属表面上吸附点,甚至可以取代吸附中钝化离子及金属形成氯化物,氯化物及金属表面吸附并不稳定,形成了可溶性物质,这样导致了腐蚀加速2孔蚀(点蚀)孔蚀失效机理在压力容器表面局部地区,出现向深处腐蚀小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀)。
点蚀一般在静止介质中容易发生。
具有自钝化特性金属在含有氯离子介质中,经常发生孔蚀。
蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖动力,即向深处自动加速。
含有氯离子水溶液中,不锈钢表面氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20 U m〜30 U m小蚀坑,这些小蚀坑便是孔蚀核。
在外加阳极极化条件下,只要介质中含有一定量氯离子,便可能使蚀核发展成蚀孔。
在自然条件下腐蚀,含氯离子介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。
氧化剂能促进阳极极化过程,使金属腐蚀电位上升至孔蚀临界电位以上。
蚀孔内金属表面处于活化状态,电位较负,蚀孔外金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态------- 钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。
孔内主要发生阳极溶解:Fe fFe2 + + 2e ,Cr -*Cr3 + + 3e , Ni fNi2 + + 2e o 介质呈中性或弱碱性时,孔外主要反应为:02 + H20 + 2e -20H-。
氯离子对不锈钢腐蚀的机理
氯离子对不锈钢腐蚀的机理氯离子对不锈钢腐蚀的机理:在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。
普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。
Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。
Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。
氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。
虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点。
成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。
吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。
因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。
电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。
这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。
因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。
2 应力腐蚀失效及防护措施2. 1 应力腐蚀失效机理其中在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。
因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。
所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。
应力腐蚀一般都是在特定条件下产生:①只有在拉应力的作用下。
②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。
氯离子腐蚀及不锈钢知识
氯离子对热力机组的腐蚀危害极大,其腐蚀表现形式主要是破坏金属表面的钝化膜,进而向金属晶格里面渗透,引起金属表面性质的变化.本文分析了氯离子对金属腐蚀的机理,并针对热力系统内部氯离子的来源,提出了相应的解决措施.岭澳核电站循环水过滤系统316L不锈钢管道点腐蚀的理论分析Analysis of Pitting Corrosions on 316L Stainless Steel Pipes ofCirculation Water Filtering System in Ling抋o Nuclear Power Station简隆新1 ,时建华2(1.中广核工程有限公司,广东深圳518124;2.大亚湾核电运营管理有限公司,广东深圳518124)简单介绍了循环水旋转滤网反冲洗系统及316L不锈钢管道的使用情况,分析了316L不锈钢的抗腐蚀性。
详细介绍了点腐蚀形成的机理和影响因素,分析了316L不锈钢点腐蚀的情况,提出了对反冲洗管道可采取的防护措施。
316L不锈钢;管道;点腐蚀Abstract: This paper gives a general introduction to the rotating drum filter back flushing system and the usage of 316L stainless steel pipes. It also analyses the characteristic of anti-corrosion of 316L stainless steel. At the same time, it gives a detailed introduction to the mechanism of forming pitting corrosion and the factors affecting its formation. The analysis of the pitting phenomena and suggestion for the pipe material selection are also discussed in this paper.Key words: 316L Stainless steel; Pipe; Pitting corrosion1 循环水旋转滤网反冲洗系统简介循环水过滤系统(CFI)的主要设备是旋转海水滤网,在其运行中要不断清除滤出的污物,通过反冲洗系统来实现。
不锈钢 氯离子腐蚀 点蚀 时间
不锈钢氯离子腐蚀点蚀时间
摘要:
一、不锈钢的概述
二、氯离子腐蚀的影响
三、点蚀现象及其产生原因
四、不锈钢腐蚀的时间因素
正文:
不锈钢是一种合金材料,由于其良好的抗腐蚀性能,被广泛应用于各个领域。
然而,不锈钢在特定环境下也会受到氯离子腐蚀的影响,导致其失去原有的性能。
氯离子腐蚀是一种常见的电化学腐蚀现象。
当不锈钢表面存在氯离子时,会与不锈钢中的金属元素发生反应,形成氯氧化物,从而导致不锈钢的局部腐蚀。
这种腐蚀现象被称为点蚀。
点蚀会使不锈钢表面形成凹坑,严重时会穿透不锈钢的表面,导致内部金属暴露,从而降低不锈钢的抗腐蚀性能。
点蚀现象的产生原因主要包括:不锈钢成分不纯、表面存在缺陷、氯离子浓度较高以及环境温度和湿度等因素。
其中,不锈钢成分中的杂质元素和表面缺陷会降低不锈钢的抗腐蚀性能,使得氯离子更容易与其发生反应。
此外,氯离子浓度越高,不锈钢的腐蚀速度越快。
环境温度和湿度也会影响氯离子腐蚀的速率。
不锈钢腐蚀的时间因素主要体现在不锈钢腐蚀的速度和腐蚀程度。
腐蚀速度受氯离子浓度、环境温度和湿度等因素影响,而腐蚀程度则与不锈钢的使用
时间和使用环境有关。
在不锈钢的使用过程中,随着腐蚀的进行,不锈钢的厚度会逐渐减小,导致其承载能力降低。
因此,掌握不锈钢腐蚀的时间因素对于不锈钢制品的设计和使用具有重要意义。
总之,不锈钢在受到氯离子腐蚀时,会产生点蚀现象,导致其失去原有的性能。
氯离子对不锈钢腐蚀原理知识讲解
氯离子对不锈钢腐蚀原理氯离子对不锈钢有多种腐蚀1.对钝化膜的破坏目前有几种理论,比较权威:①成相膜理论:Cl-半径小,穿透能力强,容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性的化合物,使氧化膜的结构发生变化。
②吸附理论:Cl-有很强的可被金属吸附的能力,优先被金属吸附,并从金属表面把氧排掉,氯离子和氧子争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。
2.孔蚀(点蚀)孔蚀失效机理在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀)。
点蚀一般在静止的介质中容易发生。
具有自钝化特性的金属在含有氯离子的介质中, 经常发生孔蚀。
蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。
含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20μm ~30μm小蚀坑,这些小蚀坑便是孔蚀核。
在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。
在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。
氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。
蚀孔内的金属表面处于活化状态电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态———钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。
孔内主要发生阳极溶解: Fe →Fe2+ + 2e , Cr →Cr3 + + 3e , Ni →Ni2 + + 2e。
介质呈中性或弱碱性时,孔外的主要反应为: O2 + H2O + 2e →2OH-。
氯离子腐蚀不锈钢原理
氯离子腐蚀不锈钢原理
氯离子腐蚀不锈钢是由于氯离子具有强氧化性和强电化学活性。
不锈钢中的铬元素形成一层致密的铬氧化物膜(铬酸盐)作为钝化层,防止钢材被进一步氧化。
然而,氯离子可以使钢材表面的钝化层破坏,导致不锈钢变得容易腐蚀。
氯离子可以通过以下方式破坏钝化层:
1. 氯离子与钢材表面的钢离子结合形成氯化物,使钢离子离开钝化层,导致钝化层破坏。
2. 氯离子与钢离子结合形成溶解性氯化物,溶解度远高于钝化层中的铬氧化物,导致氯化物进一步侵蚀钝化层。
3. 氯离子与钢材中的钛、铌等金属元素反应,形成溶解性氯化物,使钢材表面失去保护。
一旦钝化层被破坏,不锈钢表面容易形成局部腐蚀,如点蚀、晶间腐蚀等。
氯离子也可以与水形成氯离子离子对,使腐蚀反应得以继续进行。
因此,在含有氯离子的环境中,不锈钢容易受到腐蚀破坏。
为了防止氯离子腐蚀不锈钢,可以采取以下措施:
1. 避免不锈钢与含有氯离子的介质接触,如避免海水、含氯洗涤剂等的使用。
2. 选择高耐蚀性的不锈钢材料,添加更多的合金元素来提高不锈钢的耐蚀性能。
3. 进行防腐处理,如电镀、涂层等,增加钢材表面的保护层。
4. 定期清洁和维护不锈钢,避免积累氯化物和其他腐蚀物质。
综上所述,氯离子腐蚀不锈钢的原理是由于氯离子破坏钢材表
面的钝化层,导致不锈钢容易受到腐蚀破坏。
为了防止氯离子腐蚀,可以采取适当的措施来保护不锈钢材料。
氯离子对管道的腐蚀
氯离子对管道的腐蚀不锈钢耐腐蚀是由于在不锈钢表面生成了一层极薄的、粘着性好的、半透明的氧化铬薄膜。
这层膜一旦遭到破坏,钢中的铬与大气中的氧发生化学反应就能迅速地恢复这层薄膜,同时,机械损伤也能很快再生成一层保护薄膜。
但是,如果受到离子的化学侵蚀,比如氯离子,可能难于抵抗侵蚀,这就可能因氧气毫无阻挡地进入,而使腐蚀加剧。
锈蚀是一个专用术语,专指表面十分均匀的失去光泽,也可能是表面形成了一层干涉膜。
通常有轻微的颜色变化,和一定程度的光亮度损失,特别是细小的脏东西进入了表面膜。
通过清洗表面可得到一定程度的改善。
在任何情况下,在外观形态方面的所有努力收效甚微,特别是从远距离来观看更是如此。
点蚀是不锈钢明显腐蚀的通常形式。
一般以针状腐蚀开始,由于腐蚀的产生,受腐蚀部位变黑色或变成深褐色。
大多数严重腐蚀环境中,点蚀的数量和深度增加,使表面呈现受腐蚀的外观。
在弱腐蚀条件下,点蚀本身不可能从表面上明显减少,但是在表面上可能出现腐蚀产生一层薄膜,当锈斑渗出就可能使周围失去光泽。
缝隙腐蚀是在氧气不足的情况下产生的。
如,既可以是由金属清洗剂,也可以是非金属清洗剂产生,由雨水或冷凝水形成的含水电解液也可导致缝隙腐蚀的产生。
低合金钢更容易出现这种腐蚀,特别在裂缝非常小、氧气很难渗进的地方常出现缝隙腐蚀。
设计中对尽可能减少缝隙腐蚀要给予特别的注意。
在特别容易碰到水汽的地方,要努力避免缝隙的产生。
如果缝隙不可能避免,就应该考虑使用更耐腐蚀、更高合金含量的钢种。
电化学腐蚀:当两种电化学势能差很大的金属相互接触过程中可能产生这种腐蚀。
如果水汽把这两种金属连接起来就产生一个电流回路,合成电流将显著地增加容易产生化学反应的金属的腐蚀速度。
任何两种不锈钢之间的势能差都不足以引起这种腐蚀,只是有些影响,而不会成倍地增加腐蚀。
但碳钢和大面积的不锈钢结合到一起,碳钢就会遭到迅速地腐蚀,因此不同金属要连接在一起的地方,要避免水汽在这些地方集聚。
双相不锈钢 氯离子
氯离子对双相不锈钢的腐蚀
氯离子对双相不锈钢的腐蚀主要体现在以下几个方面:
首先,氯离子在不锈钢的氧化膜的穿透力强,能穿透不锈钢的氧化膜达到金属表面,和金属发生一系列的化学反应,产生一些可溶性的物质,这些物质可以改变不锈钢的氧化膜的结构,使其失去阻止金属氧化的性能,从而加速不锈钢的腐蚀。
其次,氯离子具有超强的金属吸附能力,能优先被金属吸附,将金属表面的氧元素给排除掉,这个过程中会破坏不锈钢的钝化状态,加速不锈钢腐蚀。
另外,特定的电位条件下,氯离子会使不锈钢的钝化表面出现活化现象。
只有存在一个特定的电位值,给予其相应的电位条件,才能够使不锈钢的钝化表面出现活化现象。
而这个特定的电位指的是不锈钢氧化膜的击穿电位,与不锈钢的耐腐蚀性有着直接的联系。
总的来说,氯离子对双相不锈钢的腐蚀影响很大,因此在一些需要避免氯离子腐蚀的环境中,应尽可能采取防护措施,比如使用更耐腐蚀的不锈钢材料或涂层等。
304不锈钢耐氯离子浓度的标准
304不锈钢是一种常见的不锈钢材料,具有良好的耐腐蚀性能,被广泛应用于化工、食品加工、医疗器械等领域。
在实际应用中,304不锈钢在含氯环境中的耐腐蚀性能尤为重要。
对304不锈钢在氯离子浓度方面的标准和要求十分重要。
1. 304不锈钢的特性304不锈钢具有优良的耐腐蚀性能和加工性能,是一种通用的不锈钢材料。
其主要成分包括17-19%的铬、8-10%的镍和小量的碳、锰等元素。
这些元素赋予了304不锈钢优异的耐腐蚀性能,在一般环境下能够抵抗大部分化学腐蚀介质的侵蚀。
然而,在含氯环境中,304不锈钢的耐蚀性受到挑战。
2. 氯离子对304不锈钢的影响氯离子是一种常见的腐蚀介质,尤其是在高温、高湿等恶劣环境下,氯离子对304不锈钢的腐蚀作用更为显著。
氯离子能够破坏304不锈钢表面的致密氧化膜,进而促进腐蚀过程的进行。
3. 标准的制定和要求针对304不锈钢在含氯环境中的耐蚀性能,国际上制定了一系列的标准和要求。
主要包括对304不锈钢在不同氯离子浓度下的耐蚀性能进行测试,并根据测试结果制定相应的标准和规范。
这些标准和要求可以帮助生产厂家和使用者选择合适的304不锈钢材料,并指导其在实际应用中做好防腐措施。
4. 个人观点与理解在实际应用中,对304不锈钢在氯离子浓度方面的标准和要求十分重要。
我认为制定和执行相应的标准可以有效保障304不锈钢材料在含氯环境中的使用安全,并延长其使用寿命。
也可以促进材料生产技术的进步,推动不锈钢材料在恶劣环境下的应用。
总结回顾:304不锈钢在含氯环境中的耐蚀性能受到广泛关注,并且相关的标准和要求也得到了国际上的制定和执行。
这些标准和要求的制定不仅可以指导材料生产和选择,还能够保障材料在实际应用中的安全性和稳定性。
对于使用者来说,了解和遵循这些标准和要求也能够为其在工程实践中提供有效的参考和指导。
我对于304不锈钢耐氯离子浓度标准的重视程度在不断增加,并期待未来能够有更多的研究和实践工作为这一领域的发展做出贡献。
不锈钢与氯离子
不锈钢与氯离子不锈钢与氯离子含氯离子高的废水都不能使用不锈钢产品与之接触,氯离子会腐蚀不锈钢,因此我想问如下两个问题:1、氯离子浓度到多高的时候才会腐蚀不锈钢?GW7x6C$S412、氯离子腐蚀不锈钢的原理是什么?3、循环水排水氯离子含量80mg/l,304可行否?管道、泵等材料选型应如何?poS0R9P"Txx!1、25PPM以下另外也和温度和压力有关系2、氯离子对不锈钢钝化膜的破坏9B#%%K&CpL35K&m7&px+YM7处于钝态的金属仍有一定的反应能力,即钝化膜的溶解和修复(再钝化)处于动平衡状态。
当介质中含有活性阴离子(常见的如氯离子)时,平衡便受到破坏,溶解占优势。
其原因是氯离子能优先地有选择地吸附在钝化膜上,把氧原子排挤掉,然后和钝化膜中的阳离子结合成可溶性氯化物,结果在新露出的基底金属的特定点上生成小蚀坑(孔径多在20~30μm),这些小蚀坑称为孔蚀核,亦可理解为蚀孔生成的活性中心。
氯离子的存在对不锈钢的钝态起到直接的破环作用。
对含不同浓度氯离子溶液中的不锈钢试样采取恒电位法测量的电位与电流关系曲线中可以看出阳极电位达到一定值,电流密度突然变小,表示开始形成稳定的钝化膜,其电阻比较高,并在一定的电位区域(钝化区)内保持。
随着氯离子浓度的升高,其临界电流密度增加,初级钝化电位也升高,并缩小了钝化区范围。
对这种特性的解释是在钝化电位区域内,氯离子与氧化性物质竞争,并且进入薄膜之中,因此产生晶格缺陷,降低了氧化物的电阻率。
因此在有氯离子存在的环境下,既不容易产生钝化,也不容易维持钝化。
在局部钝化膜破坏的同时其余的保护膜保持完好,这使得点蚀的条件得以实现和加强。
根据电化学产生机理,处于活化态的不锈钢较之钝化态的不锈钢其电极电位要高许多,电解质溶液就满足了电化学腐蚀的热力学条件,活化态不锈钢成为阳极,钝化态不锈钢作为阴极。
腐蚀点只涉及到一小部分金属,其余的表面是一个大的阴极面积。
(完整)不锈钢特性及氯离子腐蚀
腐蚀与不锈钢应力腐蚀应力腐蚀是指零件在拉应力和特定的化学介质联合作用下所产生的低应力脆性断裂现象.应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。
应力腐蚀导致材料的断裂称为应力腐蚀断裂。
它的发生一般有以下四个特征:一、一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀.二、对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。
三、一般应力腐蚀都属于脆性断裂。
四、应力腐蚀的裂纹扩展速率一般为10— 6~10—3 mm/min,而且存在孕育期,扩展区和瞬段区三部分应力腐蚀机理的机理一般认为有阳极溶解和氢致开裂晶间腐蚀说明:局部腐蚀的一种。
沿着金属晶粒间的分界面向内部扩展的腐蚀。
主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在.晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。
而且金属表面往往仍是完好的,但不能经受敲击,所以是一种很危险的腐蚀。
通常出现于黄铜、硬铝和一些含铬的合金钢中.不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。
晶间腐蚀是沿着或紧靠金属的晶界发生腐蚀。
腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化.不锈钢、镍基合金、铝合金等材料都较易发生晶间腐蚀。
不锈钢的晶间腐蚀:不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。
产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。
晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。
不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。
当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。
因为室温时碳在奥氏体中的熔解度很小,约为0。
02%~0。
03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C8等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
腐蚀与不锈钢应力腐蚀应力腐蚀是指零件在拉应力和特定的化学介质联合作用下所产生的低应力脆性断裂现象。
应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。
应力腐蚀导致材料的断裂称为应力腐蚀断裂。
它的发生一般有以下四个特征:一、一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。
二、对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。
三、一般应力腐蚀都属于脆性断裂。
四、应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬段区三部分应力腐蚀机理的机理一般认为有阳极溶解和氢致开裂晶间腐蚀说明:局部腐蚀的一种。
沿着金属晶粒间的分界面向内部扩展的腐蚀。
主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。
晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。
AHA12GAGGAGAGGAFFFFAFAF而且金属表面往往仍是完好的,但不能经受敲击,所以是一种很危险的腐蚀。
通常出现于黄铜、硬铝和一些含铬的合金钢中。
不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。
晶间腐蚀是沿着或紧靠金属的晶界发生腐蚀。
腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化。
不锈钢、镍基合金、铝合金等材料都较易发生晶间腐蚀。
AHA12GAGGAGAGGAFFFFAFAF不锈钢的晶间腐蚀:不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。
产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。
晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。
不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。
当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。
因为室温时碳在奥氏体中的熔解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C6等。
但是由于铬的扩散速度较小,来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。
不锈钢的晶间腐蚀含碳量超过0.03%的不稳定的奥氏体型不锈钢(不含钛或铌的牌AHA12GAGGAGAGGAFFFFAFAF号),如果热处理不当则在某些环境中易产生晶间腐蚀。
这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。
这样的热处理造成碳化物在晶界沉淀(敏化作用),并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。
敏化作用也可出现在焊接时,在焊接热影响区造成其后的局部腐蚀。
最通用的检查不锈钢敏感性的方法是65%硝酸腐蚀试验方法。
试验时将钢试样放入沸腾的65%硝酸溶液中连续48h为一个周期,共5个周期,每个周期测定重量损失。
一般规定,5个试验周期的平均腐蚀率应不大于0.05mm/月。
奥氏体型不锈钢焊接结构的晶间腐蚀可用如下方法预防:AHA12GAGGAGAGGAFFFFAFAF①使用低碳牌号00Cr19Ni10或00Cr17Ni14Mo2,或稳定的牌号0Cr18Ni11Ti或0Cr18Ni11Nb.使用这些牌号不锈钢可防止焊接时碳化物沉淀出造成有害影响的数量。
②如果面品结构件小,能够在炉中进行热处理,则可在1040-1150℃进行热处理以溶解碳化铬,并且在425-815℃区间快速冷却以防止瑞沉淀。
焊接铁素体不锈钢在某些介质中也可能出现晶间腐蚀。
这是当钢从925℃以上快速冷却时,碳化物或氧化物沉淀,金属晶格应变造成的,焊接后进行消除应力热处理可消除应力并恢复耐腐蚀性能。
在1Cr17不锈钢中加入超过8倍碳含量的钛,通常可减少焊接钢结构在一些介质中的晶间腐蚀。
然而加入钛在浓硝酸中不是有效的。
奥氏体型不锈钢的细分美国钢铁学会是用三位数字来标示各种标准级的可锻不锈钢的。
其中:①奥氏体型不锈钢用200系列(无镍或低镍的铬锰氮不锈钢)和300系列(镍铬不锈钢)数字标示,②铁素体和马氏体型不锈钢用400系列的数字表示。
在所有的钢种里不锈钢的种类和牌号较多,大概有上百个牌号,标准化和非标准化共有200个。
最常用的是如下品种:AHA12GAGGAGAGGAFFFFAFAF== 常用不锈钢材料对照表 ===日本美国英国德国法国中国SUS304 304 304S15 X5CrNi189 Z6CN18.09 0Cr18Ni9SUS304L 304L 304S12 X2CrNi189 Z2CN18.09 00Cr18Ni10SUS316 316 316S16 X5CrNiMo1810 Z6CND17.120Cr18Ni12Mo2TiSUS316L 316L 316S12 X2CrNiMo1810 Z2CND17.1200Cr17Ni14Mo2SUS317 317 317S16 -- 0Cr18Ni12Mo3TiSUS317L 317L 317S12 X2CrNiMo1816 Z2CND19.1500Cr17Ni14Mo3AHA12GAGGAGAGGAFFFFAFAFSUS321 321 321S12 X10CrNi189 Z6CNT18.10 0Cr18Ni9Ti奥氏体不锈钢的焊条选用要点:不锈钢主要用于耐腐蚀,但也用作耐热钢和低温钢。
因此,在焊接不锈钢时,焊条的性能必须与不锈钢的用途相符。
不锈钢焊条必须根据母材和工作条件(包括工作温度和接触介质等)来选用。
1、一般来说,焊条的选用可参照母材的材质,选用与母材成分相同或相近的焊条。
如:A102对应0Cr19Ni9;A137对应1Cr18Ni9Ti。
2、由于碳含量对不锈钢的抗腐蚀性能有很大的影响,因此,一般选用熔敷金属含碳量不高于母材的不锈钢焊条。
如316L必须选用A022焊条。
3、奥氏体不锈钢的焊缝金属应保证力学性能。
可通过焊接工艺评定进行验证。
4、对于在高温工作的耐热不锈钢(奥氏体耐热钢),所选用的焊条主要应能满足焊缝金属的抗热裂性能和焊接接头的高温性能。
(1)对Cr/Ni≥1的奥氏体耐热钢,如1Cr18Ni9Ti等,一般均采用奥氏体-铁素体不锈钢焊条,以焊缝金属中含2-5%铁素体为宜。
铁素体含量过低时,焊缝金属抗裂性差;若过高,则在高温长期使用或热处理时AHA12GAGGAGAGGAFFFFAFAF易形成σ脆化相,造成裂纹。
如A002、A102、A137。
在某些特殊的应用场合,可能要求采用全奥氏体的焊缝金属时,可采用比如A402、A407焊条等。
(2)对Cr/Ni<1的稳定型奥氏体耐热钢,如Cr16Ni25Mo6等,一般应在保证焊缝金属具有与母材化学成分大致相近的同时,增加焊缝金属中Mo、W、Mn等元素的含量,使得在保证焊缝金属热强性的同时,提高焊缝的抗裂性。
如采用A502、A507。
5、对于在各种腐蚀介质中工作的耐蚀不锈钢,则应按介质和工作温度来选择焊条,并保证其耐腐蚀性能(做焊接接头的腐蚀性能试验)。
(1)对于工作温度在300℃以上、有较强腐蚀性的介质,须采用含有Ti或Nb稳定化元素或超低碳不锈钢焊条。
如A137或A002等。
AHA12GAGGAGAGGAFFFFAFAF(2)对于含有稀硫酸或盐酸的介质,常选用含Mo或含Mo和Cu的不锈钢焊条如:A032、A052等。
(3)工作,腐蚀性弱或仅为避免锈蚀污染的设备,方可采用不含Ti 或Nb的不锈钢焊条。
为保证焊缝金属的耐应力腐蚀能力,采用超合金化的焊材,即焊缝金属中的耐蚀合金元素(Cr、Mo、Ni等)含量高于母材。
如采用00Cr18Ni12Mo2类型的焊接材料(如A022)焊接00Cr19Ni10焊件。
6、对于在低温条件下工作的奥氏体不锈钢,应保证焊接接头在使用温度的低温冲击韧性,故采用纯奥氏体焊条。
如A402、A407。
7、也可选用镍基合金焊条。
如采用Mo达9%的镍基焊材焊接Mo6型超级奥氏体不锈钢。
8、焊条药皮类型的选择:(1)由于双相奥氏体钢焊缝金属本身含有一定量的铁素体,具有良好的塑性和韧性,从焊缝金属抗裂性角度进行比较,碱性药皮与钛钙型药皮焊条的差别不像碳钢焊条那样显著。
因此在实际应用中,从焊接工艺性能方面着眼较多,大都采用药皮类型代号为17或16的焊条(如A102A、A102、A132等)。
(2)只有在结构刚性很大或焊缝金属抗裂性较差(如某些马氏体铬AHA12GAGGAGAGGAFFFFAFAF不锈钢、纯奥氏体组织的铬镍不锈钢等)时,才考虑选用药皮代号为15的碱性药皮不锈钢焊条(如A107、A407等)。
上所述,奥氏体不锈钢的焊接是有其独特特点的,奥氏体不锈钢的焊接时焊条选用尤其值得注意,只有这样才能达到针对不同材料实施不同的焊接方法和不同材料的焊条,不锈钢焊条必须根据母材和工作条件(包括工作温度和接触介质等)来选用。
这样才有可能能达到所预期的焊接质量.不锈钢的物理性能AHA12GAGGAGAGGAFFFFAFAF不锈钢的物理性能不锈钢和碳钢的物理性能数据对比,碳钢的密度略高于铁素体和马氏体型不锈钢,而略低于奥氏体型不锈钢;电阻率按碳钢、铁素体型、马氏体型和奥氏体型不锈钢排序递增;线膨胀系数大小的排序也类似,奥氏体型不锈钢最高而碳钢最小;碳钢、铁素体型和马氏体型不锈钢有磁性,奥氏体型不锈钢无磁性,但其冷加工硬化生成马氏体相变时将会产生磁性,可用热处理方法来消除这种马氏体组织而恢复其无磁性。
奥氏体型不锈钢与碳钢相比,具有下列特点: 1)高的电阻率,约为碳钢的5倍。
2)大的线膨胀系数,比碳钢大40%,并随着温度的升高,线膨胀系数的数值也相应地提高。
3)低的热导率,约为碳钢的1/3。
不锈钢的力学性不论不锈钢板还是耐热钢板,奥氏体型的钢板的综合性能最好,既有足够的强度,又有极好的塑性同时硬度也不高,这也是它们被广泛采用的原因之一。
奥氏体型不锈钢同绝大多数的其它金属材料相似,其抗拉强度、屈服强度和硬度,随着温度的降低而提高;塑性则随着温度降低而减小。
其抗拉强度在温度15~80°C范围内增长是较为均匀的。
更重要的是:随着温度的降低,其冲击韧度减少缓慢,并不存在脆性转变温度。
所以不锈钢在低温时能保持足够的塑性和韧性。
不锈钢的耐热性能耐热性能是指高温下,既有抗氧化AHA12GAGGAGAGGAFFFFAFAF或耐气体介质腐蚀的性能即热稳定性,同时在高温时双有足够的强度即热强性。