2009年包头中考数学试卷及答案1

合集下载

2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]

2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]

2009年中考试题专题之16-三角形与全等三角形试题及答案一、选择题 1.(2009年江苏省)如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2.(2009年浙江省绍兴市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°3. (2009年义乌)如图,在ABC 中,90C ∠=。

,EF//AB,150∠=。

,则B ∠的度数为A .50。

B. 60。

C.30。

D. 40。

【关键词】三角形内角度数【答案】D4.(2009年济宁市)如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于A. 100°B. 120°C. 130°D. 150°A BD5、(2009年衡阳市)如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点6、(2009年海南省中考卷第5题)已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 7、(2009 黑龙江大兴安岭)如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( ) A .5米 B .10米 C . 15米 D .20米8、(2009年崇左)一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .12 D .9或12 9、(2009年湖北十堰市)下列命题中,错误的是( ). A .三角形两边之和大于第三边 B .三角形的外角和等于360° C .三角形的一条中线能将三角形面积分成相等的两部分 D .等边三角形既是轴对称图形,又是中心对称图形10、(09湖南怀化)如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( )A .30 B .40 C .50 D .6011、(2009年清远)如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠=( )A .20°B .60°C .30°D .45°A DB12、(2009年广西钦州)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对【形ADO13、(2009年甘肃定西)如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD于点E ,且四边形ABCD 的面积为8,则BE =( )A .2B .3C.D.14、(2009年广西钦州)如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分D .CD 平分∠ACBABCD15、(2009肇庆)如图,Rt ABC △中, 90ACB ∠=°,DE 过点C ,且DE AB ∥,若 55ACD ∠=°,则∠B 的度数是( ) A .35° B .45° C .55° D .65°CDB AEF12A B E21CDBA16、(2009年邵阳市)如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.180017、(2009年湘西自治州)一个角是80°,它的余角是( )A .10°B .100°C .80°D .120°18、(2009河池)如图,在Rt △ABC 中,90∠=A ,AB =AC= E 为AC 的中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C .D .19、(2009柳州)如图所示,图中三角形的个数共有( ) A .1个 B .2个 C .3 个 D .4个20、(2009年牡丹江)如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( ) ①1A ∠=∠,②CD DBAD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤ACBD AC CD =·· A .1 B .2 C .3 D .4 【21、(2009桂林百色)如图所示,在方格纸上建立的平面直角坐标系中, 将△ABO 绕点O 按顺时针方向旋转90°, 得A B O ''△ ,则点A '的坐标为( ).A .(3,1)B .(3,2)C .(2,3)D .(1,3)22、(2009年长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm 23、(2009年湖南长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长1C ACFAEC D BA可能是( ) A .4cm B .5cm C .6cm D .13cm24、(2009陕西省太原市)如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35°D .40°25、 (2009陕西省太原市)如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是( )A .4B .4.5C .5D .5.526、(2009年牡丹江)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS27、(2009年新疆)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15°28、(2009年牡丹江市)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS123C AB B 'A '【29、(2009年包头)已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .34【30、(2009年齐齐哈尔市)如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( ) A .20米 B .15米 C .10米 D .5米31、(2009年台湾)图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。

2009年中考数学试题分类之二次根式

2009年中考数学试题分类之二次根式

一、选择题1.(2009年绵阳市)已知n -12是正整数,则实数n 的最大值为( ) A .12 B .11 C .8 D .3 【答案】B2.(2009年黄石市)下列根式中,不是..最简二次根式的是( )ABCD 【答案】C3.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 4.(2009年广东省)4的算术平方根是( )A .2±B .2C .D 【答案】B5.(2009贺州)下列根式中不是最简二次根式的是( ).A .2B .6C .8D . 10【答案】C6.(2009年贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B7.(2009年淄博市) D )A .B -CD .8.(2009年湖北省荆门市)2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3解析:本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C . 【答案】C 9.(2009年湖北省荆门市)|-9|的平方根是( ) A .81 B .±3 C .3 D .-3解析:本题考查绝对值与平方根的运算,|-9|=9,9的平方根是±3,故选B . 【答案】B10.(2009年内蒙古包头)函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤【答案】B【解析】本题考查含二次根式的函数中中自变量的取值范围,a 的范围是0a ≥;∴y =x 的范围由20x +≥得2x ≥-。

11.(2009威海)实数a,b 在数轴上的位置如图所示,则下列结论正确的是( ) A. 0a b +> B. 0a b ->C. 0a b >D .0ab>【答案】 A12.(2009的绝对值是( ) A .3B .3-C .13D .13-【答案】A13.(2009年安顺)下列计算正确的是:A=B1= C=D.=【答案】A14.(2009年武汉)的值是( )A .3-B .3或3-C .9D .3【答案】D15.(2009年武汉)函数y x 的取值范围是( ) A .12x -≥B .12x ≥C .12x -≤D .12x ≤【答案】B16.(2009年眉山)2的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间【答案】C17.(2009年常德市)28-的结果是( ) A .6B .22C .2D .2【答案】C18.(2009年肇庆市)实数2-,0.3,17π-中,无理数的个数是( ) A .2 B .3 C .4 D .51b【答案】A 19.(2009 黑龙江大兴安岭)下列运算正确的是( )A .623a a a =⋅ B .1)14.3(0=-π C .2)21(1-=- D .39±=【答案】B20.(2009年黄石市)下列根式中,不是..最简二次根式的是( )ABCD 【答案】C21.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 22.(2009年广东省)4的算术平方根是( )A .2±B .2C .D 【答案】B23.(2009 ( )A.2 B. C .- D .± 【答案】B 24.(2009年湖北十堰市)下列运算正确的是( ). A .523=+ B .623=⨯C .13)13(2-=-D .353522-=- 【答案】B 25.(2009年茂名市)下列四个数中,其中最小..的数是( )A .0B .4-C .π-D【答案】26.(2009 ) A .0 B .2 C .4 D .5 【答案】B27.(2009年河北)在实数范围内,x 有意义,则x 的取值范围是( ) A .x ≥0 B .x ≤0C .x >0D .x <0【答案】A28.(2009年株洲市)...,则x 的取值范围是 A . 2x ≥ B .2x >C .2x <D .2x ≤【答案】A29.(2009年台湾)若a =1.071⨯106,则a 是下列哪一数的倍数? (A) 48 (B) 64 (C) 72 (D) 81。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

2010——2013内蒙古包头市中考数学真题汇总(第一部分:选择题)

2010——2013内蒙古包头市中考数学真题汇总(第一部分:选择题)

2010——2013内蒙古包头市中考数学真题汇总(第一部分:选择题) 〖1 — 12题〗 【2010年】一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内. 1.27的立方根是( ) A .3 B .3- C .9 D .9- 2.下列运算中,正确的是( ) A .2a a a += B .22a a a =C .22(2)4a a =D .325()a a =3.函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤4.国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( ) A .42610⨯平方米 B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米5.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .346.下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个7.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( ) A .0.1 B .0.17 C .0.33 D .0.48.将一个正方体沿某些棱展开后,能够得到的平面图形是( )A . B. C. D .9.化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x -C .82x -+ D .82x + 10.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( ) A .13B .16C .518D .5611.已知下列命题:①若00a b >>,,则0a b +>;②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个D .4个12.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12 C .13 D .25【2011年】一、选择题(本大题共12小题,每小题3分,满分36分)1.- 12的绝对值是【 】A .-2B . 1 2C .2D .- 122.3的平方根是【 】A .± 3B .9C . 3D .±93.一元二次方程x 2+x + 14=0根的情况是【 】A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定 4.函数32+-=x x y 中自变量x 的取值范围是【 】 A .x ≥2且x ≠-3 B .x ≥2 C .x >2 D .x ≥2且x ≠05.已知两圆的直径分别为2cm 和4cm ,圆心距为3cm ,则这两个圆的位置关系是【 】 A .相交 B .外切 C .外离 D .内含6.从2008年6月1日起,全国商品零售场所开始实行“塑料购物袋有偿使用制度”,截止到2011年5月底全国大约节约塑料购物袋6.984亿个,这个数用科学记数法表示(保留两个有效数字)约为【 】 A .6.9×108个 B .6.9×109个 C .7×108个 D .7.0×108个7.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同概率是【 】A . 3 4B . 1 5C . 3 5D . 258.下列几何体各自的三视图中,只有两个视图相同的是【 】A .①③B .②③C .③④D .②④ 9.菱形ABCD 的对角线AC 、BD 交于点O ,∠BAD =120º,AC =4,则它的面积是【 】 A .16 3 B .16 C .8 3 D .8 10.下列命题中,原命题与逆命题均为真命题的个数是【 】①若a =b ,则a 2=b 2; ②若x >0,则|x |=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形.A .1个B .2个C .3个D .4个11.已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,PC 切⊙O 于切点C ,∠APC 的平分线交AC于点D ,则∠CDP =【 】 A .30º B .60º C .45º D .50º12.已知二次函数y =ax 2+bx +c 同时满足下列条件:①对称轴是x =1;②最值是15;③图象与x 轴有两个交点,其横坐标的平方和为15-a ,则b 的值是【 】A .4或-30B .-30C .4D .6或-20【2012年】一、选择题(本大题共12 小题,每小题3 分,共36 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 9 的算术平方根是【 】A .土3 B.3 C..一2.联合国人口基金会的报告显示,世界人口总数在2011 年10 月31 日达到70 亿.将70 亿用科学记数法表示为【 】A .7×109B . 7×108C . 70×108D . 0.7×10103.下列运算中,正确的是【 】A .32x x =x -B . 623x x =x ÷ C4.在Rt △ ABC 中,∠C=900,若AB =2AC ,则sinA 的值是【 】125.下列调查中,调查方式选择正确的是【 】A .为了了解1000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量,选择抽样调查①正方体 ②圆锥体 ③球体④圆柱体C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查6.如图,过口ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的口AEMG 的面积S 1 与口HCFG 的面积S 2的大小关系是【 】A .S 1 > S 2 B.S 1 < S 2 C .S 1 = S 2 D.2S 1 = S 27.不等式组()5x 13x+113x 7x 22>⎧-⎪⎨-≤-⎪⎩的解集是【 】A .x > 2B .x ≤4 C.x < 2 或x ≥4 D .2 < x ≤48.圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是【 】 A .3200 B.400 C .1600 D.8009.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是【 】 A .16 B. 19 C. 118 D . 21510 .已知下列命题:① 若a ≤0 ,则lal =一a ; ② 若ma 2 > na 2 ,则m > n ;③ 两组对角分别相等的四边形是平行四边形; ④ 垂直于弦的直径平分弦.其中原命题与逆命题均为真命题的个数是【 】 A.1 个 B .2 个 C.3 个 D .4 个11.在矩形ABCD 中,点O 是BC 的中点,∠AOD=900,矩形ABCD 的周长为20cm ,则AB 的长为【 】A.1 cmB. 2 cmC.52cm D . 103cm 12.关于x 的一元二次方程()2x mx+5m 5=0--的两个正实数根分别为x 1,x 2,且2x 1+x 2=7,则m 的值是【 】A.2B. 6C. 2或6 D . 7【2013年】一、 选择题:本大题共有12小题,每小题3分,共36分。

2009中考数学题及答案

2009中考数学题及答案

2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

2009年145套中考试卷精品分类36.其他

2009年145套中考试卷精品分类36.其他

36.其他一.选择题1.(2009年内蒙古包头)已知下列命题: ①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个【答案】B【解析】本题考查命题的真假性,是易错题,本题要求的是原命题与逆例题的真假性,学生易出现只判断原命题的真假,也就是审题不认真。

①中0,0;a b >>则0a b +>显然原命题正确,但其逆命题不正确,如a=-1,b=2满足0a b +>,但不满足a>0,b>0.②中当1,1a b ==-满足条件a b ≠,但不满足22a b ≠,显然原命题不正确,③的原命题和逆命题是角平分线的性质和判定,④的原命题和逆命题是平行四边形的性质和判定。

所以符合条件的只有③和④,故选 B 。

2.(2009陕西省太原市)在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能...是下列数中的( )A .5B .4C .3D .1【关键词】几何体 【答案】D解析:本题考查几何体的翻转,第一种,当骰子向右翻滚一次1点朝下,6点朝上,继续向右翻滚一次2点朝下,5点朝上,继续向外翻滚一次,3点朝下,4点朝上,同理可以得到其它滚法得到的结论,所以骰子朝上的点数不可能是1,故选D .3.(2009年贵州黔东南州)下列图形中,面积最大的是( )学科网 A .对角线长为6和8的菱形; B .边长为6的正三角形;学科网 C .半径为3的圆; D .边长分别为6.8.10的三角形; 【关键词】面积问题 【答案】A4.(2009年贵州黔东南州)方程0|84|=--+-m y x x ,当0>y 时,m 的取值范围是( )A .10<<mB .2≥mC .2<mD .2≤m【关键词】方程.不等式.非负数的性质综合应用 【答案】C5.(2009年杭州市)某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当2k ≥时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点的坐标为( )A .(5,2009)B .(6,2010)C .(3,401)D (4,402) 【关键词】 【答案】D6.(2009年娄底)下列命题,正确的是 A .如果|a |=|b |,那么a=bB.等腰梯形的对角线互相垂直C .顺次连结四边形各边中点所得到的四边形是平行四边形D .相等的圆周角所对的弧相等【关键词】绝对值的概念.等腰梯形的性质.四边形的判定.等角对等弧 【答案】C7.(2009丽水市)如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是( ) A. π24 B. π12 C.π6 D. 12【关键词】立体几何,圆锥的侧面积 【答案】B8.(2009烟台)视力表对我们来说并不陌生。

包头中考数学试题及答案

包头中考数学试题及答案

包头中考数学试题及答案包头市2023年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2是偶数B. 3是质数C. 4是奇数D. 5是合数答案:A2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A3. 如果一个角的补角是120°,那么这个角的度数是:A. 60°B. 120°C. 180°D. 240°答案:A4. 计算下列哪个表达式的结果最大?A. 2^3B. 3^2C. 4^1D. 5^0答案:B5. 下列哪个方程是一元一次方程?A. x^2 + 3x - 4 = 0B. 2x + 3y = 5C. 3x - 5 = 0D. x/2 + 1 = 3答案:C6. 一个圆的半径是5厘米,那么它的周长是:A. 10π厘米B. 20π厘米C. 30π厘米D. 40π厘米答案:B7. 一个三角形的两边长分别为3和4,那么第三边的取值范围是:A. 1到7B. 1到7之间C. 大于1且小于7D. 大于1且小于或等于7答案:C8. 一个数列的前三项是1,2,4,那么第四项是:A. 8B. 6C. 7D. 5答案:A9. 一个函数y=f(x)的图像是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 指数函数答案:A10. 一个等腰三角形的底边长为6,腰长为5,那么它的面积是:A. 12B. 15C. 18D. 20答案:B二、填空题(每题4分,共20分)11. 一个数的绝对值是5,那么这个数可以是5或-5。

12. 一个正数的平方根有两个,它们互为相反数。

13. 一个等腰直角三角形的两条腰相等,且与底边垂直。

14. 一个数的立方根只有一个,且与原数的符号相同。

15. 一个数列的前四项是2,4,8,16,那么第五项是32。

三、解答题(每题10分,共50分)16. 解方程:3x - 5 = 14解:将方程两边同时加5,得到3x = 19,然后将两边同时除以3,得到x = 19/3。

数学中考分类试题(含答案)

数学中考分类试题(含答案)

1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。

2009年中考数学试题分类汇编之04 分式试题及答案

2009年中考数学试题分类汇编之04  分式试题及答案

2009年中考试题专题之4-分式试题及答案一、填空题1.(2009年滨州)化简:2222444m mn nm n-+-= .2. (2009年内江市)已知25350x x --=,则22152525x x x x ----=__________.。

3.(2009年成都)化简:22221369x y x yx yx xy y+--÷--+=_______4.(2009年成都)分式方程2131x x =+的解是_________5(2009年安顺)已知分式11x x +-的值为0,那么x 的值为______________。

6.(2009重庆綦江)在函数13y x =-中,自变量x 的取值范围是 .7.(2009年黔东南州)当x______时,11+x 有意义.【关键词】分式有无意义 【答案】1-≠ 8 .(2009年义乌)化简22a a a+的结果是样【关键词】化简分式 【答案】2a +9.(2009丽水市)当x ▲ 时,分式x1没有意义.【关键词】分式的概念 【答案】x =010.(2009烟台市)设0a b >>,2260a b ab +-=,则a b b a+-的值等于 .【关键词】分式计算【答案】11.(2009年天津市)若分式22221x x x x --++的值为0,则x 的值等于 .【关键词】分式的值为0 【答案】212.(2009年衢州)化简:2111x x x x -+=++ .【关键词】约分与通分,分式运算 【答案】113.(2009年舟山)化简:2111x x x x -+=++ .【关键词】约分与通分,分式运算 【答案】114.(2009年清远)当x = 时,分式12x -无意义.【关键词】分式 【答案】215.(2009年温州)某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含口的代数式表示). 【关键词】分式 【答案】a40162009年漳州)若分式12x -无意义,则实数x 的值是____________.【关键词】分式的概念 【答案】217.(2009年潍坊)方程3123xx =+的解是 .【关键词】分式方程的运算 【答案】9x =-18(09湖北宜昌)当x = 时,分式23x -没有意义.【关键词】分式 【答案】319(2009年)13.若实数x y 、满足0xy ≠,则y x m xy=+的最大值是 .【关键词】分式化简 【答案】20.(2009年新疆乌鲁木齐市)化简:224442x x x x x ++-=-- .【关键词】约分与通分,分式运算 【答案】22x -21(2009年枣庄市)15.a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”). 【关键词】分式的比较大小 【答案】=22.(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= 二、选择题1(2009年常德市)要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .1x ≠-C .0x ≠D .1x >【关键词】有意义 【答案】B2(2009年陕西省)8.化简ba a aba -⋅-)(2的结果是 【 】A .ba- B .ba+ C .ba -1D .ba +1【关键词】分式运算【答案】B3(2009年黄冈市)4.化简a a a a a a2422-⋅⎪⎭⎫ ⎝⎛+--的结果是( )A .-4B .4C .2aD .-2a【关键词】分式运算 【答案】A 4(2009威海)化简11y x x y ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .y x- B . x y-C .x yD .y x【关键词】分式的运算 【答案】D5(2009年湖南长沙)分式111(1)a a a +++的计算结果是( )A .11a + B .1a a + C .1aD .1a a+【答案】C【解析】本题考查了分式的加减运算。

内蒙古包头市2009年中考数学试题(答案含)

内蒙古包头市2009年中考数学试题(答案含)
在 Rt △ DCB 中, tan ∠DBC = tan 60 ° =
β
E

B
C
DC x + 36 , ∴ 3= , BC 3x
2009 年包头市高中招生考试试卷


注意事项: 1.本试卷 1~8 页,满分为 120 分,考试时间为 120 分钟. 2.考生必须用蓝、黑钢笔或圆珠笔直接答在试卷上. 3.答卷前务必将装订线内的项目填写清楚. 一、选择题:本大题共有 12 小题,每小题 3 分,共 36 分.每小题只有一个正确选项,请 把正确选项的字母代号填在题后的括号内. 1.27 的立方根是( ) A .3 B. −3 C.9 D. − 9 2.下列运算中,正确的是( ) A . a + a = a2 3.函数 y = B. a ia 2
4 3
B.
4 5
3 ,则 tan B 的值为( 5 5 C. 4

) D.
3 4
6.下列图形中,既是轴对称图形又是中心对称图形的有(
A .4 个 B.3 个 C.2 个 D.1 个 7.某校为了了解九年级学生的体能情况,随机抽查了其中的 30 名 人数 学生,测试了 1 分钟仰卧起座的次数,并绘制成如图所示的频 12 数分布直方图,请根据图示计算,仰卧起座次数在 15~20 次之 10 间的频率是( ) 5 A .0.1 B.0.17 C.0.33 D. 0.4 8.将一个正方体沿某些棱展开后,能够得到的平面图形是( ) 0 15 20 25 30 35 次数
D A

α β

B
C
23. (本小题满分 10 分) 某商场试销一种成本为每件 60 元的服装,规定试销期间销售单价不低于成本单价,且 获利不得高于 45%, 经试销发现, 销售量 y (件) 与销售单价 x(元) 符合一次函数 y = kx + b , 且 x = 65 时,

2009年 全国 117个地区中考试卷及答案

2009年 全国 117个地区中考试卷及答案

2009年全国各地中考试题及答案112份下载地址(截止到7月11日)(7月7日前的为红色)2009年安徽省初中毕业学业考试数学试题及答案2009年安徽省芜湖市初中毕业学业考试题及答案2009年北京高级中学中等学校招生考试数学试题及答案2009年福建省福州市课改实验区中考试卷及参考答案2009年福建省龙岩市初中毕业、升学考试试题及答案2009年福建省宁德市初中毕业、升学考试试题及答案2009年福建省莆田市初中毕业、升学考试试卷及答案2009年福建省泉州市初中毕业、升学考试试题及答案2009年福建省漳州市初中毕业暨高中阶段招生题及答案2009年甘肃省定西市中考数学试卷及答案2009年甘肃省兰州市初中毕业生学业考试试卷及答案2009年甘肃省庆阳市高中阶段学校招生考试题及答案2009年广东省佛山市高中阶段学校招生考试题及答案2009年广东省茂名市高中阶段招生考试试题及答案2009年广东省梅州市初中毕业生学业考试试题及答案2009年广东省清远市初中毕业生学业考试试题及答案2009年广东省深圳市初中毕业生学业考试试卷及答案2009年广东省肇庆市初中毕业生学业考试试题及答案2009年广西省崇左市初中毕业升学考试数学试题及答案2009年广西省桂林市百色市初中毕业暨升学试卷及答案2009年广西省河池市初中毕业暨升学统一考试卷及答案2009年广西省贺州市初中毕业升学考试试卷及答案2009年广西省柳州市初中毕业升学考试数学试卷及答案2009年广西省南宁市中等学校招生考试题及答案2009年广西省钦州市初中毕业升学考试试题卷及答案2009年广西省梧州市初中毕业升学考试卷及答案2009年贵州省安顺市初中毕业、升学招生考试题及答案2009年贵州省黔东南州初中毕业升学统一考试题及答案2009年河北省初中毕业生升学文化课考试试卷及答案2009年河南省初中学业水平暨高级中等学校招生卷及答2009年黑龙江省哈尔滨市初中升学考试题及答案2009年黑龙江省牡丹江市初中毕业学业考试题及答案2009年黑龙江省齐齐哈尔市初中毕业学业考试题及答案2009年黑龙江省绥化市初中毕业学业考试卷及答案(答案为扫描版)2009年湖北省鄂州市初中毕业及高中阶段招生题及答案2009年湖北省恩施自治州初中毕业生学业考试题及答案2009年湖北省黄冈市初中毕业生升学考试试卷及答案2009年湖北省黄石市初中毕业生学业考试联考卷及答案2009年湖北省黄石市初中毕业生学业考试试题及答案2009年湖北省十堰市初中毕业生学业考试试题及答案2009年湖北省武汉市初中毕业生学业考试试题及答案2009年湖北省襄樊市初中毕业、升学统一考试题及答案2009年湖北省孝感市初中毕业生学业考试试题及答案2009年湖北省宜昌市初中毕业生学业考试试题及答案2009年湖南省长沙市初中毕业学业考试试卷及答案2009年湖南省常德市初中毕业学业考试试题及答案2009年湖南省郴州市初中毕业考试数学试题及答案2009年湖南省衡阳市初中毕业学业考试试卷及参考答案2009年湖南省怀化市初中毕业学业考试卷及答案2009年湖南省娄底市初中毕业学业考试试题及答案2009年湖南省邵阳市初中毕业学业水平考试卷及答案2009年湖南省湘西自治州初中毕业学业考试卷及答案2009年湖南省益阳市普通初中毕业学业考试试卷及答2009年湖南省株洲市初中毕业学业考试数学试题及答案2009年吉林省长春市初中毕业生学业考试试题及答案2009年吉林省初中毕业生学业考试数学试题及答案2009年江苏省苏州市中考数学试题及答案(答案为扫描版)2009年江苏省中考数学试卷及参考答案2009年江西省中等学校招生考试数学试题及参考答案2009年辽宁省本溪市初中毕业生学业考试试题及答案2009年辽宁省朝阳市初中升学考试数学试题及答案2009年辽宁省抚顺市初中毕业生学业考试试卷及答案2009年辽宁省锦州市中考数学试题及答案2009年辽宁省铁岭市初中毕业生学业考试试题及答案2009年内蒙古赤峰市初中毕业、升学统一考试题及答案(答案为扫描版)2009年内蒙古自治区包头市高中招生考试试卷及答案2009年宁夏回族自治区初中毕业暨高中阶段招生题及答案2009年山东省德州市中等学校招生考试数学试题及答案2009年山东省东营市中等学校招生考试试题及答案2009年山东省济南市高中阶段学校招生考试试题及答案2009年山东省济宁市高中阶段学校招生考试试题及答案2009年山东省临沂市中考数学试题及参考答案2009年山东省日照市中等学校招生考试试题及参考答案2009年山东省泰安市高中段学校招生考试试题及答案2009年山东省威海市初中升学考试数学试卷及参考答案2009年山东省潍坊市初中学业水平考试数学试题及答案2009年山东省烟台市初中学生学业考试试题及答案2009年山东省枣庄市中等学校招生考试数学试题及答案2009年山东省中等学校招生考试数学试题及参考答案2009年山东省淄博市中等学校招生考试试题及答案2009年山西省初中毕业学业考试数学试卷及答案2009年山西省太原市初中毕业学业考试试卷及答案2009年陕西省初中毕业学业考试数学试题及答案2009年上海市初中毕业统一学业考试数学试卷及答案2009年四川省成都市高中学校统一招生考试试卷及答案2009年四川省达州市高中招生统一考试题及答案2009年四川省高中阶段教育学校招生统一考试题及答案2009年四川省泸州市高中阶段学校招生统一考试题及答(答案为扫描版)2009年四川省眉山市高中阶段教育学校招生试题及答案2009年四川省南充市高中阶段学校招生统一考试卷及答2009年四川省遂宁市初中毕业生学业考试试题及答案2009年台湾第一次中考数学科试题及答案2009年天津市初中毕业生学业考试数学试题及答案2009年新疆维吾尔自治区初中毕业生学业考试题及答案2009年云南省高中(中专)招生统一考试试题及答案2009年浙江省杭州市各类高中招生文化考试试题与答案2009年浙江省湖州市初中毕业生学业考试试题及答案2009年浙江省嘉兴市初中毕业生学业考试试卷及答案2009年浙江省金华市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试题及答案2009年浙江省宁波市初中毕业生学业考试试题及答案2009年浙江省衢州市初中毕业生学业考试数学卷及答案2009年浙江省台州市初中学业考试数学试题及参考答案2009年浙江省温州市初中毕业生学业考试试题及答案(答案为扫描版)2009年浙江省义乌市初中毕业生学业考试题及参考答案2009年浙江省舟山市初中毕业生学业考试数学卷及答案2009年重庆市初中毕业暨高中招生考试数学试题及答案2009年重庆市江津市初中毕业学业暨高中招生试题及答2009年重庆市綦江县初中毕业暨高中招生考试题及答案。

DA内蒙古包头市中考真题

DA内蒙古包头市中考真题

15 x 3x 2 10 , 4
80 秒. 3
80 3 80 厘米. 3 ∵ 80 2 28 24 ,
∴点 P 共运动了 ∴点 P 、点 Q 在 AB 边上相遇, ∴经过
80 秒点 P 与点 Q 第一次在边 AB 上相遇. ·················· ················· (12 分) ·········· ······· 3
y A O (F2)F1 C (x=m) E1 (E2) B D x
AO CO AO CO 或 , ED BD BD ED ∵ AO 1 CO 2,BD m 2 , , AO CO 1 2 当 时,得 , ED BD ED m 2 m2 ∴ ED , 2
得 ∵点 E 在第四象限,∴ E1 m, 当
(3)假设抛物线上存在一点 F ,使得四边形 ABEF 为平行四边形,则 EF AB 1 ,点 F 的横坐标为 m 1 , 当点 E1 的坐标为 m,

2m 2m 时,点 F1 的坐标为 m 1, , 2 2
∵点 F1 在抛物线的图象上, ∴
P
∴ △BPD ≌△CQP . ································· 分) ································ (4 ·········· ··········· ··········· ②∵ vP vQ , ∴ BP CQ , 又∵ △BPD ≌△CQP , B C ,则 BP PC 4,CQ BD 5 , ∴点 P ,点 Q 运动的时间 t ∴ vQ
COB CBO, BC OC, BC
(3)连接 MA MB , ,

2009年包头市高中招生考试数学试卷及答案(word版)

2009年包头市高中招生考试数学试卷及答案(word版)

2009年包头市高中招生考试试卷数 学注意事项:1.本试卷1~8页,满分为120分,考试时间为120分钟.2.考生必须用蓝、黑钢笔或圆珠笔直接答在试卷上.3.答卷前务必将装订线内的项目填写清楚.一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内.1.27的立方根是( )A .3B .3-C .9D .9-2.下列运算中,正确的是( )A .2a a a +=B .22a a a =C .22(2)4a a =D .325()a a = 3.函数y =中,自变量x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤4.国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米B .42.610⨯平方米 C .52.610⨯平方米 D .62.610⨯平方米 5.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43 B .45 C .54 D .346.下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个 7.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( )A .0.1B .0.17C .0.33D .0.48.将一个正方体沿某些棱展开后,能够得到的平面图形是( )9.化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x + 10.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A .13B .16C .518D .5611.已知下列命题:①若00a b >>,,则0a b +>;②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等;④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个12.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12 C .13 D .25二、填空题:本大题共有8小题,每小题3分,共24分.请把答案填在题中的横线上.13.不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 . 14.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是 件.15.线段CD 是由线段AB 平移得到的,点(14)A -,的对应点为(47)C ,,则点(41)B --,的对应点D 的坐标是 .16.如图,在ABC △中,120AB AC A BC =∠==,°,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).17.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周A . B. C. D .C长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.18.如图,已知一次函数1y x =+的图象与反比例函数k y x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保留根号). 19.如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.三、解答题:本大题共有6小题,共60分.解答时要求写出必要的文字说明、计算过程或推理过程.21.(本小题满分8分)某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.22.(本小题满分8分)如图,线段AB DC 、分别表示甲、乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米.xA E C (F ) DB 图(1) E A G BC (F )D 图(2)(1)求乙建筑物的高DC ;(2)求甲、乙两建筑物之间的距离BC (结果精确到0.01米).1.414 1.732)23.(本小题满分10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.24.(本小题满分10分)如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠.(1)求证:PC 是O ⊙的切线;(2)求证:12BC AB =; (3)点M 是AB 的中点,CM 交AB 于点N ,若4AB =,求MN MC 的值.α β D乙 C B A 甲 O N B PC A M25.(本小题满分12分)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD△与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?26.(本小题满分12分)已知二次函数2y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D .(1)求二次函数的解析式;(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.C2009年包头市高中招生考试数学参考答案及评分标准一、选择题:共12小题,每小题3分,共36分.二、填空题:共8小题,每小题3分,共24分.13.1x≤14.515.(12),16π317.252或12.518.19.220.4三、解答题:共6小题,共60分.21.(8分)解:(1)甲的平均成绩为:(857064)373++÷=,乙的平均成绩为:(737172)372++÷=,丙的平均成绩为:(736584)374++÷=,∴候选人丙将被录用. ··································································(4分)(2)甲的测试成绩为:(855703642)(532)76.3⨯+⨯+⨯÷++=,乙的测试成绩为:(735713722)(532)72.2⨯+⨯+⨯÷++=,丙的测试成绩为:(735653842)(532)72.8⨯+⨯+⨯÷++=,∴候选人甲将被录用. ·····································································(8分)22.(8分)解:(1)过点A作AE CD⊥于点E,根据题意,得6030DBC DAEαβ∠=∠=∠=∠=°,°,36AE BC EC AB===,米, ····························(2分)设DE x=,则36DC DE EC x=+=+,在Rt AED△中,tan tan30DEDAEAE∠==°,AE BC AE∴=∴==,,在Rt DCB△中,tan tan60DCDBCBC∠===°,,3361854x x x DC∴=+=∴=,,(米).····················································(6分)αβD乙CBA甲E(2)BC AE ==,18x =,1818 1.73231.18BC ∴==⨯≈(米). ················································ (8分)23.(10分)解:(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,. 所求一次函数的表达式为120y x =-+. ······················································ (2分)(2)(60)(120)W x x =--+21807200x x =-+-2(90)900x =--+, ····································································· (4分)抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤, ∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元. ············· (6分)(3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,. ···························· (7分) 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤. ···························· (10分)24.(10分)解:(1)OA OC A ACO =∴∠=∠,, 又22COB A COB PCB ∠=∠∠=∠,,A ACO PCB ∴∠=∠=∠. 又AB 是O ⊙的直径,90ACO OCB ∴∠+∠=°,90PCB OCB ∴∠+∠=°,即OC CP ⊥, 而OC 是O ⊙的半径,∴PC 是O ⊙的切线. ·············································································· (3分)(2)AC PC A P =∴∠=∠,,A ACO PCB P ∴∠=∠=∠=∠,又COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠,,12COB CBO BC OC BC AB ∴∠=∠∴=∴=,,. ·········································· (6分) (3)连接MA MB ,,点M 是AB 的中点,AM BM ∴=,ACM BCM ∴∠=∠,O N B P C A M而ACM ABM ∠=∠,BCM ABM ∴∠=∠,而BMN BMC ∠=∠,MBN MCB ∴△∽△,BM MN MC BM ∴=,2BM MN MC ∴=, 又AB 是O ⊙的直径,AM BM =,90AMB AM BM ∴∠==°,.4AB BM =∴=,28MN MC BM ∴==. ···································· (10分)25.(12分)解:(1)①∵1t =秒,∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB∴5BD =厘米.又∵8PC BC BP BC =-=,∴835PC =-=厘米, ∴PC BD =.又∵AB AC =,∴B C ∠=∠, ∴BPD CQP △≌△. ············································································· (4分)②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒. ·································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+, ∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) C26.(12分)解:(1)根据题意,得04202.a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,解得13a b c =-=,,232y x x ∴=-+-. ·············(2)当EDB △∽△得AO CO ED BD =或AO BD =∵12AO CO BD ==,,当AO CO ED BD =时,得122ED m =-, ∴22m ED -=, ∵点E 在第四象限,∴122m E m -⎛⎫ ⎪⎝⎭,.························································ (4分) 当AO CO BD ED =时,得122m ED=-,∴24ED m =-, ∵点E 在第四象限,∴2(42)E m m -,.························································ (6分)(3)假设抛物线上存在一点F ,使得四边形ABEF 为平行四边形,则1EF AB ==,点F 的横坐标为1m -,当点1E 的坐标为22m m -⎛⎫ ⎪⎝⎭,时,点1F 的坐标为212m m -⎛⎫- ⎪⎝⎭,, ∵点1F 在抛物线的图象上,∴22(1)3(1)22m m m -=--+--, ∴2211140m m -+=,∴(27)(2)0m m --=,∴722m m ==,(舍去), ∴15324F ⎛⎫- ⎪⎝⎭,, ∴33144ABEF S =⨯=. ············································································· (9分) 当点2E 的坐标为(42)m m -,时,点2F 的坐标为(142)m m --,,∵点2F 在抛物线的图象上,∴242(1)3(1)2m m m -=--+--,∴27100m m -+=,∴(2)(5)0m m --=,∴2m =(舍去),5m =, ∴2(46)F -,, ∴166ABEF S =⨯=. ············································································ (12分)注:各题的其它解法或证法可参照该评分标准给分.页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。

2009年中考数学试题分类汇编2 无理数及二次根式(含答案)

2009年中考数学试题分类汇编2 无理数及二次根式(含答案)

2009年中考数学试题分类汇编2无理数及二次根式一、选择题.(2009年绵阳市)已知n −12是正整数,则实数n 的最大值为()A .12B .11C .8D .3【答案】B.(2009年黄石市)下列根式中,不是..最简二次根式的是()A B C D 【答案】C.(2009年邵阳市)3最接近的整数是()A .0B .2C .4D .5【答案】B .(2009年广东省)4的算术平方根是()A .2±B .2C .D 【答案】B.(2009贺州)下列根式中不是最简二次根式的是().A .2B .6C .8D .10【答案】C.(2009年贵州黔东南州)下列运算正确的是(C )A、39±=B、33−=−C、39−=−D、932=−【答案】B.(2009年淄博市)计算D)A .B −CD ..(2009年湖北省荆门市)若2()x y =+,则x -y 的值为()A .-1B .1C .2D .3解析:本题考查二次根式的意义,由题意可知1x =,1y =−,∴x -y =2,故选C .【答案】C .(2009年湖北省荆门市)|-9|的平方根是()A .81B .±3C .3D .-3解析:本题考查绝对值与平方根的运算,|-9|=9,9的平方根是±3,故选B .【答案】B.(2009年内蒙古包头)函数y =x 的取值范围是()A .2x >−B .2x −≥C .2x ≠−D .2x −≤【答案】B【解析】a 的范围是0a ≥;∴y =中x 的范围由20x +≥得2x ≥−。

.(2009威海)实数a,b 在数轴上的位置如图所示,则下列结论正确的是()A.0a b +>B.0a b −>C.0a b > D.0ab>01【答案】A.(2009威海)的绝对值是()A.3B.3−C.13D.13−【答案】A.(2009年安顺)下列计算正确的是:A −=B 1=C =D .=【答案】A.(2009年武汉)二次根式)A.3−B.3或3−C.9D.3【答案】D.(2009年武汉)函数y =x 的取值范围是()A.12x −≥B.12x ≥C.12x −≤D.12x ≤【答案】B.(2009年眉山)估算2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【答案】C.(2009年常德市)28−的结果是()A .6B .22C .2D .2【答案】C.(2009年肇庆市)实数2−,0.3,17,,π−中,无理数的个数是()A .2B .3C .4D .5【答案】A .(2009黑龙江大兴安岭)下列运算正确的是()A .623a a a =⋅B .1)14.3(0=−πC .2)21(1−=−D .39±=【答案】B.(2009年黄石市)下列根式中,不是..最简二次根式的是()A B C D 【答案】C.(2009年邵阳市)3最接近的整数是()A .0B .2C .4D .5【答案】B .(2009年广东省)4的算术平方根是()A .2±B .2C .D 【答案】B.(2009化简的结果是()A.2B.C .−D .±【答案】B .(2009年湖北十堰市)下列运算正确的是().A .523=+B .623=×C .13)13(2−=−D .353522−=−.(2009年茂名市)下列四个数中,其中最小..的数是()A .0B .4−C .π−D 【答案】.(2009湖南邵阳))A .0B .2C .4D .5【答案】B .(2009年河北)在实数范围内,x 有意义,则x 的取值范围是()A .x ≥0B .x ≤0C .x >0D .x <0【答案】A.(2009年株洲市)若使二次根式在实数范围内有意义...,则x 的取值范围是A .2x ≥B .2x >C .2x <D .2x ≤【答案】A .(2009年台湾)若a =1.071×106,则a 是下列哪一数的倍数?(A)48(B)64(C)72(D)81。

2010——2013内蒙古包头市中考数学真题汇总(第二部分:填空题)

2010——2013内蒙古包头市中考数学真题汇总(第二部分:填空题)

2010——2013内蒙古包头市中考数学真题汇总(第二部分:填空题)〖13 — 20题〗【2010年】13.不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .14.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是 件.15.线段CD 是由线段AB 平移得到的,点(14)A -,的对应点为(47)C ,,则点(41)B --,的对应点D 的坐标是 .16.如图,在ABC △中,120AB AC A BC =∠==,°,,A⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是(保留π). 17.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2. 18.如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC的长为 (保留根号).19.如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.【2011年】13.不等式组⎩⎪⎨⎪⎧ x -3 2-1≥05-(x -3)>0的解集是 .14.如图1,边长为a 的大正方形中有一个边长为b 的小正方形,若将图1中的阴影部分拼成一个长方形如图2,比较图1与图2中的阴影部分的面积,你能得到的公式是 .DA EC (F ) B图(1)EA GBC (F ) D图(2)15.化简二次根式:27―12―3―12=.16.随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是.17.化简:a+2a2―1·a-1a2+4a+4÷1a+2+2a2―1=.18.如图,点A(-1,m)和B(2,m+33)在反比例函数y=kx的图象上,直线AB与x轴的交于点C,则点C的坐标是.19.如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是.①BE=CD;②∠BOD=60º;③△BOD∽△COE.20.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置.若点B的坐标为(1,2),则点D的横坐标是.【2012年】13.)01= ▲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年包头市高中招生考试试卷数 学注意事项:1.本试卷1~8页,满分为120分,考试时间为120分钟. 2.考生必须用蓝、黑钢笔或圆珠笔直接答在试卷上. 3.答卷前务必将装订线内的项目填写清楚.一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内. 1.27的立方根是( ) A .3 B .3- C .9 D .9- 2.下列运算中,正确的是( ) A .2a a a +=B .22a a a =C .22(2)4a a =D .325()a a =3.函数y x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤4.国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( ) A .42610⨯平方米 B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米5.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .346.下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个7.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( )A .0.1B .0.17C .0.33D .0.48.将一个正方体沿某些棱展开后,能够得到的平面图形是( )9.化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x -C .82x -+ D .82x + 10.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( ) A .13B .16C .518D .5611.已知下列命题:①若00a b >>,,则0a b +>;②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个D .4个12.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25二、填空题:本大题共有8小题,每小题3分,共24分.请把答案填在题中的横线上.13.不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .14.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是 件.15.线段CD 是由线段AB 平移得到的,点(14)A -,的对应点为(47)C ,,则点(41)B --,的对应点D 的坐标是 .16.如图,在ABC △中,120AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).17.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周A . B. C. D .长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.18.如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保留根号).19.如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.三、解答题:本大题共有6小题,共60分.解答时要求写出必要的文字说明、计算过程或推理过程. 21.(本小题满分8分)某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由. 22.(本小题满分8分)如图,线段AB DC 、分别表示甲、乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米.A E C (F )D B 图(1)E AGBC (F )D 图(2)(1)求乙建筑物的高DC ;(2)求甲、乙两建筑物之间的距离BC (结果精确到0.01米).1.414 1.732)23.(本小题满分10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围. 24.(本小题满分10分)如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠. (1)求证:PC 是O ⊙的切线; (2)求证:12BC AB =; (3)点M 是 AB 的中点,CM 交AB 于点N ,若4AB =,求MN MC 的值.αβD乙 CB A 甲O N B PCAM25.(本小题满分12分)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?26.(本小题满分12分)已知二次函数2y ax bx c =++(0a ≠)的图象经过点(10)A ,,(20)B ,,(02)C -,,直线x m =(2m >)与x 轴交于点D .(1)求二次函数的解析式;(2)在直线x m =(2m >)上有一点E (点E 在第四象限),使得E D B 、、为顶点的三角形与以A O C 、、为顶点的三角形相似,求E 点坐标(用含m 的代数式表示); (3)在(2)成立的条件下,抛物线上是否存在一点F ,使得四边形ABEF 为平行四边形?若存在,请求出m 的值及四边形ABEF 的面积;若不存在,请说明理由.2009年包头市高中招生考试数学参考答案及评分标准一、选择题:共12小题,每小题3分,共36分.二、填空题:共8小题,每小题3分,共24分.13.1x≤14.515.(12),16π317.252或12.5 18.1920.4三、解答题:共6小题,共60分.21.(8分)解:(1)甲的平均成绩为:(857064)373++÷=,乙的平均成绩为:(737172)372++÷=,丙的平均成绩为:(736584)374++÷=,∴候选人丙将被录用. ···················································································(4分)(2)甲的测试成绩为:(855703642)(532)76.3⨯+⨯+⨯÷++=,乙的测试成绩为:(735713722)(532)72.2⨯+⨯+⨯÷++=,丙的测试成绩为:(735653842)(532)72.8⨯+⨯+⨯÷++=,∴候选人甲将被录用. ·······················································································(8分)22.(8分)解:(1)过点A作AE CD⊥于点E,根据题意,得6030DBC DAEαβ∠=∠=∠=∠=°,°,36AE BC EC AB===,米, ····································(2分)设DE x=,则36DC DE EC x=+=+,在Rt AED△中,tan tan30DEDAEAE∠==°,AE BC AE∴∴==,,在Rt DCB△中,tan tan60DCDBCBC∠==°,,3361854x x x DC∴=+=∴=,,(米). ·································································(6分)αβD乙BA甲E(2)BC AE == ,18x =,1818 1.73231.18BC ∴==⨯≈(米). ···························································· (8分) 23.(10分)解:(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,.所求一次函数的表达式为120y x =-+. ···································································· (2分)(2)(60)(120)W x x =--+21807200x x =-+-2(90)900x =--+, ······················································································· (4分)抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元. ················· (6分) (3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,. ··································· (7分) 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤. ··································· (10分) 24.(10分)解:(1)OA OC A ACO =∴∠=∠ ,, 又22COB A COB PCB ∠=∠∠=∠ ,, A ACO PCB ∴∠=∠=∠.又AB 是O ⊙的直径,90ACO OCB ∴∠+∠=°,90PCB OCB ∴∠+∠=°,即OC CP ⊥,而OC 是O ⊙的半径,∴PC 是O ⊙的切线. ··································································································· (3分) (2)AC PC A P =∴∠=∠ ,, A ACO PCB P ∴∠=∠=∠=∠,又COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠ ,,12COB CBO BC OC BC AB ∴∠=∠∴=∴=,,. ····················································· (6分) (3)连接MA MB ,,点M 是AB 的中点, AM BM ∴=,ACM BCM ∴∠=∠, O N B P CAM而ACM ABM ∠=∠,BCM ABM ∴∠=∠,而BMN BMC ∠=∠,MBN MCB ∴△∽△,BM MN MC BM∴=,2BM MN MC ∴= , 又AB 是O ⊙的直径, AM BM=, 90AMB AM BM ∴∠==°,.4AB BM =∴= ,28MN MC BM ∴== . ·············································· (10分)25.(12分) 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒. ··················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇. ···················································· (12分)26.(12分)解:(1)根据题意,得04202.a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,解得132a b c =-==-,,. 232y x x ∴=-+-. ·································· (2分) (2)当EDB AOC △∽△时,得AO CO ED BD =或AO CO BD ED=, ∵122AO CO BD m ===-,,, 当AO CO ED BD =时,得122ED m =-, ∴22m ED -=,∵点E 在第四象限,∴122m E m -⎛⎫⎪⎝⎭,. ······································································ (4分) 当AO CO BD ED =时,得122m ED=-,∴24ED m =-, ∵点E 在第四象限,∴2(42)E m m -,. ······································································ (6分) (3)假设抛物线上存在一点F ,使得四边形ABEF 为平行四边形,则 1EF AB ==,点F 的横坐标为1m -, 当点1E 的坐标为22m m -⎛⎫ ⎪⎝⎭,时,点1F 的坐标为212m m -⎛⎫- ⎪⎝⎭,, ∵点1F 在抛物线的图象上, ∴22(1)3(1)22mm m -=--+--, ∴2211140m m -+=, ∴(27)(2)0m m --=, ∴722m m ==,(舍去), ∴15324F ⎛⎫-⎪⎝⎭,, ∴33144ABEF S =⨯= . ································································································· (9分) 当点2E 的坐标为(42)m m -,时,点2F 的坐标为(142)m m --,,∵点2F 在抛物线的图象上,∴242(1)3(1)2m m m -=--+--, ∴27100m m -+=,∴(2)(5)0m m --=,∴2m =(舍去),5m =, ∴2(46)F -,,∴166ABEF S =⨯= .································································································· (12分) 注:各题的其它解法或证法可参照该评分标准给分.。

相关文档
最新文档