新人教数学 7年级下:作业30 §8.3 再探究实际问题与二元一次方程组(一)

合集下载

人教版七年级数学下册8.3实际问题与二元一次方程组(教案)

人教版七年级数学下册8.3实际问题与二元一次方程组(教案)
五、教学反思
在今天的教学过程中,我发现学生们对于二元一次方程组的概念和应用有着不错的接受度。通过引入日常生活中的实际问题,他们能够较快地理解并建立起方程组。在讲授理论时,我注意到了几个关键点:首先是让学生明白方程组是由两个方程构成的,每个方程都有其特定的意义;其次是引导他们理解方程组的解是两个未知数的值同时满足的结果。
另外,我也注意到了教学难点中的问题,学生们在将实际问题抽象成方程组时,确实存在一些困难。这可能是因为他们在处理信息时,还不太擅长抓住关键的数量关系。为了帮助学生克服这个难点,我计划在下一节课中,通过更多的例题和练习,引导他们逐步学会如何从问题中提取有效信息。
总体来说,今天的课程达到了预期的教学目标,但我也清楚地看到了学生们在理解和解题过程中的一些不足。我会根据今天的反思,调整教学方法,以期在下一节课中能够更好地帮助学生掌握二元一次方程组的解题技巧,并提高他们解决实际问题的能力。同时,我也会继续鼓励学生们积极参与,培养他们的逻辑思维和数学交流能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二元一次方程组在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在案例分析环节,我尽量选择了贴近学生生活的例子,这样他们能够更加直观地看到数学知识的实际应用。我发现,通过具体的案例,学生们对于代入法和消元法的理解有所加深,但在实际操作中,还是有一些同学在步骤上出现了混淆。这让我意识到,在接下来的教学中,需要增加一些针对性的练习,帮助他们巩固这些解法。

新人教数学 7年级下:作业30 §8.3 再探究实际问题与2元1次方程组(1)

新人教数学 7年级下:作业30 §8.3 再探究实际问题与2元1次方程组(1)

作业30 §8.3 再探究实际问题与二元一次方程组(一) 典型例题【例1】 (2010湖南)今年5月27日,印尼中爪哇省发生强烈地震,给当地人民造成巨大的经济损失.某学校积极组织捐款支援灾区,初三(1)班55名同学共捐款274元,捐款情况如右表.表中捐款2元和5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.捐款 1 2 5 10 人数67【解析】 可直接设未知数表示出捐款2元和5元的人数,根据题中初三(1)班共55名同学可列出一个方程,再根据共捐款274元列出第一个方程,然后解方程组. 【答案】设初三(1)班捐款2元的有x 人,捐款5元的有y 人,则有⎩⎨⎧=+++=+++274706525576y x y x解得⎩⎨⎧==384y x 答:捐款2元的是4人,捐款5元的是38人.【例2】 某纸品厂要制作如图8-1所示的甲、乙两种无盖的长方体小盒,该厂利用边角材料裁出长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等,现将150张正方形纸片和300张长方形纸片用来制作这两种小盒(不计连接部分).可以做成甲、乙两种小盒各多少个?图8-1【解析】 先认真观察图形,弄清一个甲、乙两种小盒各需长方形纸片、正方形纸片的张数(甲种小盒需4张长方形纸片、1张正方形纸片;乙种小盒需3张长方形纸片,2张正方形纸片),根据正方形纸片150张和长方形纸片300张这两个条件采用直接设未知数的方法列方程组解题.【答案】 设可以做成甲种小盒x 个,乙种小盒y 个,则有⎩⎨⎧=+=+300341502y x y x解得⎩⎨⎧==.60,30y x答:可以做成甲种小盒30个,乙种小盒60个.【例3】 甲、乙两厂计划在上月共生产机床360台.小明、小涵、小颖三个同学进行了实地调查.小明:两厂生产了机床400台; 小涵:甲厂完成了计划的112%; 小颖:乙厂完成了计划的110%;试问上月两个厂各超额生产了机床多少台?【解析】根据小明、小涵、小颖三位同学调查得到的信息列方程组求解.【答案】解法一 设上月甲厂超额生产了机床x 台,乙厂超额生产了机床y 台,则有⎪⎩⎪⎨⎧=-+--=+3601%11071%112300400x y x 解得⎩⎨⎧==1624y x因此上个月甲厂超额牛产机床24台,乙厂超额生产机床16台. 解法二 间接设未知数.设上月甲厂计划生产机床x 台,乙厂生产机床y 台,根据题量,得⎩⎨⎧=•+•=+400%110%112360y x y x 解得⎩⎨⎧==160200y x从而200×(112%-1)=24,160×(110%-1)=16. 答:上月两个分别超额生产机床24台和16台.总分100分 时间60分钟 成绩评定___________ 一、填空题(每题5分,共50分) 课前热身1.有甲、乙两数,甲数的3倍与乙数的2倍之和等于47,甲数的5倍比乙数的6倍小1,这两个数分别为___________. 答案:10217 2.鸡兔同笼,共有12个头,36条腿,则笼中有___________只鸡,___________只免. 答案:6;6 课上作业3.某年级共有246人,其中男生人数y 比女生人数x 的2倍少2人,根据题意列方程组_______. 答案:⎩⎨⎧=-=+22246y x y x4.(2010山东)图8-2是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a ,则六边形的周长是___________.图8-2答案:3a5.甲、乙两店共有练习本200本,某月甲店售出19本,乙店售出97本后,甲、乙两店所剩的练习本数相等,则甲店原有练习本___________本,乙店原有练习本___________本. 答案:61;1396.某船顺流航行36km 用3h ,逆流航行24km 用3 h ,则水流速度为___________,船在静水中的速度为___________. 答案:2 km/h ; 10km/h 课下作业7.某车间有28名工人生产某种螺栓和螺母,每人每天能生产螺栓12个或螺母18个,为了合理分配劳力,使生产的螺栓和螺母配套(一个螺栓套两个螺母),则应分配___________人生产螺栓,___________人生产螺母. 答案:12;168.小明购买5角和8角的邮票共11张,共有了6.40元,若设购买5角和8角的邮票张数分别为x 和y ,则x=___________,y=___________. 答案:8;39.通讯员从距1880m 的总部骑马到前线,其中有一段泥泞路.已知马在干爽的道路上奔跑的速度为12km/h ,在泥泞的道路上的平均速度为4.8 km/h ,若通讯员从总部到前线共用16min ,则他在干爽的道路上骑马的时间为___________. 答案:5min10.在足球甲级A 组的前11轮(场)比赛中,万达队连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队胜与平的场次之比为___________. 答案:6∶5二、选择题(每题5分,共10分) 模拟在线11.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x 桶,买乙种水y 桶,则所列方程组中正确的是( )A.⎩⎨⎧•==+x y y x %7525068B.⎩⎨⎧•==+y y y x %7525068C.⎩⎨⎧•==+x y y x %7525086 D.⎩⎨⎧•==+yy y x %7525086答案:C12.(2010河北)《九章算术》是我国东汉初年编订的一部数学经曲著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图8-3、图8-4.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图8-3所示的算筹图用我们现在所熟悉的方程组形式表达出来,就是⎩⎨⎧=+=+2341923y x y x 类似地,图8-4所示的算筹图我们可以表述为( )图8-3图 8-4A.⎩⎨⎧=+=+2734112y x y x B.⎩⎨⎧=+=+2234112y x y xC.⎩⎨⎧=+=+2341923y x y x D.⎩⎨⎧=+=+273462y x y x答案:A三、解答题(每题20分,共40分)13.(潍坊)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元? 答案:300元,200元14.(乌鲁木齐)为满足市民对素质教育的需求,某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元.计划在年内拆除旧校舍与建造新校舍共7200 m 2,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,而拆除校舍则超过了10%,结果恰好完成了原计划的拆、建的总面积. (1)求原计划拆建面积各多少平方米?(2)若绿化1 m 2需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:设拆旧校舍x m 2, 建新校舍y m 2, 则⎩⎨⎧==⎩⎨⎧=•++=+240048007200%80%)101(7200y x y x y x 解得 (2)节约资金:(4800×80-2400×700)-[4800×(1-10%)×80+2400×80%×700]=297600(元),用此资金可绿化面积是:297600÷200=1488(m 2).即建新校舍2400m 2.拆早校舍4800m 2,实际用节约的资金用来绿化大约是1488m 2.作业30 §8.3 再探究实际问题与二元一次方程组(二) 典型例题【例1】 如图8-5所示,长方形ABCD 中,AB=8cm ,BC=6 cm ,且△BEC 的面积比△DEF 的面积大5 cm 2,求DF 的长.图8-5【解析】 本题是数形结合题,未知数只有1个,若直接设DF 的长为x cm ,不易找到等量关系.可以分步来解,如没△BEC 的面积为x cm 2,△DEF 的面积为y cm 2,梯形ABED 的面积为z cm 2,求出△ABF 的面积的y+2,再求DF 就容易了. 【答案】 设△BEC 的面积是x cm 2,△DEF 的面积是y cm 2,四边形ABED 的面积足2 cm 2,则有⎩⎨⎧⨯=+=+)2(86)1(5z x y x②-①,得y+z=43,即△ABF 的面积为43 cm 2. 设DF 的长为acm ,则有S △ABF =21AB ×(AD+DF), 即43=21×8×(6+a),所以a=419. 答:DF 的长为419cm.【例2】 一批货物要运往A 地,货主准备租用汽车运输公司的甲、乙两种货车,乙知过去两次租用这两种货车的情况好下表:第一次 第二次 甲种货车辆数(单位:辆) 2 3 乙种货车辆数(单位:辆) 3 6 累计运货吨数(单位:t )15.527现租用该公司4辆甲种货车和1辆乙种货车,一次刚好运完这批货,如果按每吨付运费30元计算,问货主携带1000元是否够用?(不考虑其他费用)【解析】 由表格中的信息求出甲、乙两种货车每次运货的吨数,再求出这批货物总吨数,算出需要的总费用,最后比较大小.【答案】 设甲种货车每次运货x t ,乙种货车每次运货y t ,则有⎩⎨⎧=+=+.2763,5.1532y x y x解得⎩⎨⎧==.5.2,4y x因此这批货物的总吨数为:4x+8y=4×4+8×2.5=36(t) 总费用为30×36=1080(元)因为1080>1000,所以货主携带的钱不够用.【例3】 有三块牧场,牧场里的草长得同样的密,同样的快,面积分别为3公顷、9公顷和21公顷;第一块牧场可借12头牛吃4个星期,第二块牧场可供20头牛吃9个星期,问第三块牧场可供多少头牛吃18个星期?【解析】 本题等量关系不很明显,所以我们要充分挖掘和分析题目,确定以草量为等量关系列方程组.要知道可供多少头牛吃18个早期,要弄清草量由两部分组成的:一是原有草量,二是每周生出草量,显然每头牛每周吃的草量都是定值.关键是要找出这种供(原有草量和生长草量)与销(牛的吃草量)的关系.我们可用设而不求的方法解题.【答案】 设每公顷原有草x t ,每公顷每周生出新草y t ,每头牛每周吃草 a t ,则有⎩⎨⎧⨯=⨯+⨯=⨯+a y x a y x 209999124433整理,得⎩⎨⎧=+=+a y x a y x 209164解得⎩⎨⎧==ay ax 8.08.12 所以第三块牧场18个星期的总草量,可供牛吃6头数为:aa a a y x 18)8.0188.12(2118182121⨯+=⨯+≈31.7≈31答:第三块牧场可供31头牛吃18个星期.总分100分 时间60分钟 成绩评定__________ 一、填空题(每题5分,共50分) 课前热身1.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,则甲现在的年龄是__________,乙现在的年龄是__________. 答案:24岁;12岁2.某铁路桥长为y m ,一列长为x m 的火车以上桥到过完桥共用30s ,而整列火车在桥上的时间为20 s ,若火车的速度为20m/s ,则可列方程组为__________. 答案:⎩⎨⎧=-=+400600y x y x课上作业3.甲、乙二人按2∶5的比例投资开了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙分别分得__________. 答案:4000元,10000元4.某单位买了35张戏票共用250元,其中甲种票每张8元,乙种票每张6元,则购买甲种票__________张,乙种票__________张. 答案:20;155.学校的篮球数比排球数的2倍少3个,足球数与排球数之比为2∶3,三种球共41个,则篮球有__________个,排球有__________个,足球有__________个. 答案:21;12;86.今年我省荔枝又喜获丰收.目前市场价格稳定,荔枝种植户普遍获利.据估计,今年全省荔枝总产量为50000t ,销售收入为61000万元.已知“妃子笑”品种售价为1.5万元/t ,其它品种平均售价为0.8万元/t ,求“妃子笑”和其它品种的荔枝产量各多少吨.如果设“妃子笑”荔枝产量为x t ,其它品种荔枝产量为y t ,那么可列出方程组为__________. 答案:⎩⎨⎧=+=+610008.05.150000y x y x课下作业7.某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的每间可住5人,该校198个住宿生恰好住满这30间宿舍.则大宿舍有__________间,小宿舍有__________间. 答案:16;148.根据图8-6给出的信息,可知每件T 恤衫和每瓶矿泉水的价格分别为__________.图8-6答案:20元/件,2元/瓶9.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40 kg 到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:品名西红柿 豆角 批发价(单元:元/kg ) 1.2 1.6 零售价(单元:元/kg )1.82.5答案:33元10.某校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢得一场得2分,输一场得1分.小谭根据上面提供的信息分别求出校队输__________场,赢________场.答案:4;12二、选择题(每题5分,共10分)模拟在线11.(2010浙江)中央电视台2套“开心辞典”栏目中,有一期的题目如图8-7所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.图8-7A.2B.3C.4D.5答案:D12.(湖南)为了贫困家庭子女能完成初中学业,国家给他们免费提供教科书,下表是某中学免年级项目七八九合计每人免费补助金额/元109 94 47.5 ____ 人数/人40 120 免费补助总总额/元1900 10095若设获得免费提供教科书补助的七年级为x人,八年级为y人,根据题意列出方程组为( )A.⎩⎨⎧=++=++1009519009410912040yxyxB.⎩⎨⎧=+=+1009594109120yxyxC.⎩⎨⎧=+=+19009410940yxyxD.⎩⎨⎧=++=++1009519001204094109yxyx答案:A三、解答题(每题20分,共40分)13.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的52,问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?答案:(1)设改装了y辆车,改装后平均每辆车每天的燃料费下降的百分数为x,则⎪⎪⎩⎪⎪⎨⎧⨯-⨯=⨯-•⨯-⨯=⨯-•80)2100(5280)1(280)100(20380)1(yxyxxy解得⎩⎨⎧==20%40y x即公司改装了20辆车,改装后每辆出租车 每天的燃料费比改装前的燃料费下降了40%. (2)125天14.(益阳)请你用方程组⎩⎨⎧=-=+1238y x y x 编一道具有实际背景的题,使列出的方程组为上述方程组.答案:有甲、乙两个数,它们的和是38,甲数的2倍比乙数大1,求这两个数(或一个长方形的周长是76 cm ,宽的2倍比长长1 cm ,求这个长方形的宽与长;或某校七年级二班共有学生38人,其中男生人数的2倍比女生的人数多1人,求这个班男女生各有多少人).(答案合理即可)。

人教版七(下)8.3实际问题与二元一次方程组作业导学案

人教版七(下)8.3实际问题与二元一次方程组作业导学案

人教版七(下)8.3实际问题与二元一次方程组
导学案
一、目标
(1)通过对实际问题的分析,能够建立二元一次方程组的数学模型,并利用二元一次方程组的知识求解;能根据具体的实际意义对结果进行检验.
(2)经历利用二元一次方程组解决实际问题的过程,学会用数学建模的思想方法去观察、研究和解决日常生活中所遇到的问题,体验数学建模的思想.
(3)通过将二元一次方程组的有关知识灵活用于实际问题,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感.
二、课前完成的任务
1、把一块长为10m,宽为5m的长方形土地分为两块小长方形土地,使得其中一块小长方形土地的面积为30m2,你是怎么分的?请画出分割线.
分割方法:过长方形土地的______边上离一端______m处,作这条边的垂线,把这块地分为两块小长方形土地.
2、甲、乙两种作物的单位面积产量分别为10kg/m2,20 kg/m2,甲的种植面积为30m2,乙的种植面积为20m2,则甲种作物的总产量是______kg ,乙种作物的总产量是______kg.
变式:甲、乙两种作物的单位面积产量的比是1:2 ,甲的种植面积为30 m2,乙的种植面积为20 m2,则甲、乙两种作物的总产量的比是________.
3、据统计资料,茄子、西红柿的单位面积产量的比是1:2.把一块长为20m,宽为10m的长方形土地分为两块小长方形土地,分别种植茄子和西红柿.怎样划分这块土地,•才能使茄子、西红柿的总产量的比是3:4?。

人教版初一数学下册8.3 再探实际问题与二元一次方程组

人教版初一数学下册8.3 再探实际问题与二元一次方程组

8.3 再探实际问题与二元一次方程组教学目标:1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2体会列方程组比列一元一次方程容易3进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力 重点与难点:重点:能根据题意列二元一次方程组;根据题意找出等量关系;难点:正确发找出问题中的两个等量关系教学过程:一、复习列方程解应用题的步骤是什么?审题、设未知数、列方程、解方程、检验并答新课:二、问题探究课本99页探究1问题:1 题中有哪些已知量?哪些未知量?2 题中等量关系有哪些?3如何解这个应用题?本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940 解:设平均每只母牛和每只小牛1天各需用饲料为xkg 和ykg根据题意列方程,得⎩⎨⎧=+=+)2(9402042)1(6751530y x y x解这个方程组得 ⎩⎨⎧==520y x 答:每只母牛和每只小牛1天各需用饲料为20kg 和5kg ,饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算有一定的出入。

三、练习:1、某所中学现在有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?解:设现在初中在校学生有x 人,高中在校生有y 人根据题意,列方程得⎩⎨⎧+=+++=+%)101(4200%)111(%)81(4200y x y x 解这个方程组得⎩⎨⎧==28001400y x2、有大小两辆货车,两辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,求3辆大车与5辆小车一次可以运货多少吨? 解:设每辆大车和每辆小车一次运货量分别为x 吨,y 吨,根据题意,得⎩⎨⎧=+=+35655.1532y x y x 解得⎩⎨⎧==5.24y x答:3辆大车与5辆小车一次可以运货24.5吨3、某工厂第一车间比第二车间人数的54少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的43,问这两车间原有多少人? 解:设第一、第二车间原来分别有 x,y 人⎪⎪⎩⎪⎪⎨⎧-=+-=)10(43103054y x y x⎩⎨⎧==250170y x 4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?四、作业 课本P102 4题 5.2453=+y x。

数学人教版七年级下册8.3实际问题与二元一次方程组(1)

数学人教版七年级下册8.3实际问题与二元一次方程组(1)

8.3实际问题与二元一次方程组(1)教学目标:1.经历用方程组解决实际问题的过程,能够找出实际问题中的已知数与未知数,分析它们之间的数量关系,列出方程组。

2.培养学生分析、解决问题能力的同时,体会二元一次方程组的应用价值,从而感受数学文化及其实用性,提高学生学习数学的兴趣和热情。

重难点、问题预测及对策重点:让学生经历和体验把实际问题转化为二元一次方程组的过程,以方程组为工具分析解决含有多个未知数的实际问题难点:把实际问题转化为二元一次方程组,确定解题的策略主要程序(教学模式主要环节)探究问题—合作解决—体验收获—巩固练习—布置作业教学过程探究1:养牛场原有30只母牛和15只小牛,1天约需要用饲料675Kg,一周后又购进12只母牛和5只小牛,这时1天约需用饲料940 Kg,饲养员李大叔估计平均每只母牛1天约需饲料18--20 Kg,每只小牛1天约需饲料7--8 Kg,你能通过计算检验他的估计吗?问题1:如何理解“通过计算检验他的估计”这句话?师生活动:学生自由发言,体会对于估计的结果要通过精确求值来检验,理解要想检验估计是否准确,需要求出大牛、小牛1天所需要的饲料。

设计意图:使学生明确估算的值不是题目中的已知量,是需要检验的量,也就是要求的未知数。

问题2题目中哪些是已知量,哪些是未知量?有几个等量关系?师生活动:学生读题,适当讨论。

教师引导学生关注有两个未知数,两个等量关系。

设计意图:引导学生发现未知数和等量关系,运用二元一次方程组解决。

问题3如何解决这一问题?师生活动:学生依据发现的等量关系,建立方程组,黑板展示,并寻求列出不同的方程组。

问题4饲养员李大叔的估计正确吗?师生活动:学生对比计算结果和李大叔的估计,得到结论。

设计意图:引导学生用方程组的解去分析、解释实际问题。

“探究1”小结(1)在列方程组之前我们先做了哪些工作?(2)列方程组解决实际问题的一般步骤是什么?师生活动:教师引导学生回顾如何分析数量关系,发现等量关系,选择适当的未知数和列出方程组,并用框图说明列方程组解决实际问题的一般步骤。

七年级数学下册8.3实际问题与二元一次方程组教案1(新版)新人教版

七年级数学下册8.3实际问题与二元一次方程组教案1(新版)新人教版

创 设 总 结 归 纳 提 升 意 义 2分 钟 反 思 情 境
1.如何分析问题?第一,分析题目要求; 第二, 找出题目中的已知量和未知量; (在 这过程中可以列表帮助分析)第三,根据 已知条件找到量与量之间的关系;第四, 设元,用数学式子表示出上述关系,列方 程(组)解决问题。 2.这节课我们经历和体验了列方程组解 决实际问题的过程,•体会到方程组是刻 画现实世界的有效模型,从而更进一步提 高了我们应用数学的意识及解方程组的 技能。 作业:长江作业 学生谈收获和感受,互相 交流。
序 ( 要 素)
设 情 景
知识回顾 1 复习解二元一次方程组及练习解简单的 实际问题。 2. 前面我们已经学习了二元一次方程组 创 设 情 境 引 入 新 课 8 分 钟 创 设 问 题 情 境 的解法,也初步接触了列二元一次方程组 解应用题.列二元一次方程组解应用题的 一般步骤是什么? 学生独立完成后互相交 流, 教师给予明确的答案。 教师关注:
序。
1、放手让学生完成,给学 生自我展示的空间 2、 关注学生在解题时是否 能够正确运用数学语言分 析数量关系,列出方程组 并解方程组。
让学生分析问题的过程 中,通过找出问题中的等 量关系列出相应的方程 组,体会方程的实际应用 性。 本环节教师关注: 学生的积极性是否充分地

调动起来,学生的思维是 否活跃,学生对问题中数 量关系的理解是否正确有 效。
正确,我们想怎么办呢?(也就是说问题 转化为求大牛和小牛 1 天约用饲料多少 kg) ⑵题目中谈论的对象是什么?出现了哪 些量?哪些是未知量?哪些是已知量? ⑶根据已知条件,以上这些量和量之间存 在什么关系? ⑷以上关系能用数学式子表示出来吗? 你打算如何解决题目中所提出的问题? 列方程还是方程组? 好,请同学们先思考,后动手. 1. 某学校共有 5 个大餐厅和 2 个小餐 巩 厅.经过测试:同时开放 1 个大餐厅、2 固 创 技 设 能 10 全 分钟 班 情 展 境 示 多少名学生就餐) 讲 2.学生独立完成习题的第 5 题。 解 创 巩 设 固 练 提 高 训 价 练 情 10 习 分钟 评 3.完成习题的第 9 题。 2.练习解决有关数字问题的应用题。 生分析解决。 1.出示有关数字的应用问题 2 道,引导学 (问题转化为求大餐厅和小餐厅各能供 由.(用对话的方式出现) 维 供全校的 5300 名学生就餐?请说明理 思 名学生就餐.若 7 个餐厅同时开放,能否 开放 2 个大餐厅、1 个小餐厅,可供 2280 个小餐厅,可供 1680 名学生就餐;同时

七年级数学下册 8.3 实际问题与二元一次方程组1 (新版)新人教版

七年级数学下册 8.3 实际问题与二元一次方程组1 (新版)新人教版
2、能够找出实际问题中的已知 数和未知数,分析它们之间的 数量关系,列出方程组.
三、研读课文
认真阅读课本第99页的内容,完成下
列 面练习并体验知识点的形成过程.

二 元
探究1 养牛场原有30头大牛和15头
识 点
一 次 方

程 组

小牛,一天约用饲料675 kg;一周 后又购进12头大牛和5头小牛,这 时一天约用饲料940 kg.饲养员李
饲料xkg和ykg.根据两种情况的饲料用量,
找出相等关系,列方程组:
3__0_x_ 1__5_y 675
_4_2__x
2__0_y
940
解得:
x _2_0_
y
5___
这因就此是,说饲,养每员头李大大牛叔1对天大约牛需的饲食料量_2_估0_计kg,每 头_正_小确__牛,1对天小约牛需的饲食料量__5估__计kg_._错__误___.
五、强化训练
6天2帽、44程(5的数平,个、A1)、3某.3为均应既x3,x xx+y甲倍车是x4能如y要5,y、等间1y方2=1生何使6 1乙乙于有程0产分一的数两乙92螺配x个0解为数数-(名y栓工螺2是=)y这的工3,人15(x栓B的x和55人.则才y倍配个解3xy为B,y 1方能,6,套或11每2又程使)6若两螺,人是组螺设个帽甲每方栓甲螺数
实 大叔估计每头大牛1天约需饲料

问 18~20 kg,每头小牛1天约需饲料
题 7~8 kg.你能通过计算检验他的估
计吗?
三、研读课文
认真阅读课本第99页的内容,完成下
列 面练习并体验知识点的形成过程.

二 元
分(析1):先假设李大叔的估计正确,再根据

七年级数学人教版下册8.3实际问题与二元一次方程组(1)

七年级数学人教版下册8.3实际问题与二元一次方程组(1)

学科数学年级/册七年级(下)教材版本九年义务教育人教版课题名称8.3 实际问题与二元一次方程组难点名称列二元一次方程组解决几何图形问题难点分析从知识角度分析为什么难列二元一次方程组解决几何图形问题,就是建立方程的模型,学生难点在于找不到等量关系。

从学生角度分析为什么难1.从文字信息中找到数学信息能力弱。

关键是阅读理解能力有待提高。

2.不愿意动手尝试,欠缺实践意识。

难点教学方法1.细致读题,培养阅读理解能力,学会把文字语言转化为数学语言。

2.启发学生,鼓励学生动手去标注条件,参与到探究中去,体会数形结合数学思想。

教学环节教学过程导入回忆上节课内容,利用“二元一次方程组”解决实际问题的一般步骤:1审:认真仔细读题目,根据关键的字眼,寻找等量关系式。

2设:考虑设直接未知数还是间接未知数。

3列:根据等量关系式列出方程组。

4解:用适当的方法解方程组。

5答:写出问题的答案,记得满足实际问题。

知识讲解(难点突破)1、如图,用12块相同的小长方形瓷砖拼成一个大的长方形,设小长方形的长和宽分别为xcm和ycm,可列出方程组为:__________.分析:本题不光有文字叙述,配有几何图形,就是我们今天要研究的“几何图形问题”。

问:大长方形在哪里?(红色凸显出来)题中主角是小长方形,拼成一个长方形,根据长方形的长相等,一条长是3个小长方形的长,一条是小长方形的2长和3宽,大长方形的宽是小长方形的长和宽之和。

问:本题的未知量是什么?可以怎样设元?你能找到哪些和未知量有关的等量关系?所以,不难得出两个方程:x+y=40,x=3y组成方程组。

得出答案。

2、如图,一个周长为34cm的大长方形,由7个大小相等的小长方形拼成,求小长方形的长和宽。

分析:观察图形,用字母标注图形。

(采取与第一道例题不一样的方式,目的让学生掌握多种方法。

)重点分析根据“大长方形的性质—--两条对边长相等,周长等于34厘米”找出等量关系。

先设“小长方形”的边长,用x、y表示图中的“长”得到方程1,再表示“宽”,发现方程不成立,接着根据“周长”等量关系式得到方程2,组合成方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业30 §8.3 再探究实际问题与二元一次方程组(一) 典型例题【例1】 (2010湖南)今年5月27日,印尼中爪哇省发生强烈地震,给当地人民造成巨大的经济损失.某学校积极组织捐款支援灾区,初三(1)班55名同学共捐款274元,捐款情况如右表.表中捐款2元和5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.【解析】 可直接设未知数表示出捐款2元和5元的人数,根据题中初三(1)班共55名同学可列出一个方程,再根据共捐款274元列出第一个方程,然后解方程组. 【答案】设初三(1)班捐款2元的有x 人,捐款5元的有y 人,则有⎩⎨⎧=+++=+++274706525576y x y x解得⎩⎨⎧==384y x 答:捐款2元的是4人,捐款5元的是38人.【例2】 某纸品厂要制作如图8-1所示的甲、乙两种无盖的长方体小盒,该厂利用边角材料裁出长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等,现将150张正方形纸片和300张长方形纸片用来制作这两种小盒(不计连接部分).可以做成甲、乙两种小盒各多少个?图8-1【解析】 先认真观察图形,弄清一个甲、乙两种小盒各需长方形纸片、正方形纸片的张数(甲种小盒需4张长方形纸片、1张正方形纸片;乙种小盒需3张长方形纸片,2张正方形纸片),根据正方形纸片150张和长方形纸片300张这两个条件采用直接设未知数的方法列方程组解题.【答案】 设可以做成甲种小盒x 个,乙种小盒y 个,则有⎩⎨⎧=+=+300341502y x y x解得⎩⎨⎧==.60,30y x答:可以做成甲种小盒30个,乙种小盒60个.【例3】 甲、乙两厂计划在上月共生产机床360台.小明、小涵、小颖三个同学进行了实地调查.小明:两厂生产了机床400台; 小涵:甲厂完成了计划的112%; 小颖:乙厂完成了计划的110%;试问上月两个厂各超额生产了机床多少台?【解析】 根据小明、小涵、小颖三位同学调查得到的信息列方程组求解.【答案】解法一 设上月甲厂超额生产了机床x 台,乙厂超额生产了机床y 台,则有⎪⎩⎪⎨⎧=-+--=+3601%11071%112300400x y x 解得⎩⎨⎧==1624y x因此上个月甲厂超额牛产机床24台,乙厂超额生产机床16台. 解法二 间接设未知数.设上月甲厂计划生产机床x 台,乙厂生产机床y 台,根据题量,得⎩⎨⎧=∙+∙=+400%110%112360y x y x 解得⎩⎨⎧==160200y x [来源:学,科,网]从而200×(112%-1)=24,160×(110%-1)=16. 答:上月两个分别超额生产机床24台和16台.总分100分 时间60分钟 成绩评定___________ 一、填空题(每题5分,共50分) 课前热身1.有甲、乙两数,甲数的3倍与乙数的2倍之和等于47,甲数的5倍比乙数的6倍小1,这两个数分别为___________. 答案:10217[来源:学*科*网] 2.鸡兔同笼,共有12个头,36条腿,则笼中有___________只鸡,___________只免. 答案:6;6 课上作业3.某年级共有246人,其中男生人数y 比女生人数x 的2倍少2人,根据题意列方程组_______.答案:⎩⎨⎧=-=+22246y x y x4.(2010山东)图8-2是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a ,则六边形的周长是___________.图8-2[来源:]答案:3a5.甲、乙两店共有练习本200本,某月甲店售出19本,乙店售出97本后,甲、乙两店所剩的练习本数相等,则甲店原有练习本___________本,乙店原有练习本___________本. 答案:61;1396.某船顺流航行36km 用3h ,逆流航行24km 用3 h ,则水流速度为___________,船在静水中的速度为___________. 答案:2 km/h ; 10km/h 课下作业7.某车间有28名工人生产某种螺栓和螺母,每人每天能生产螺栓12个或螺母18个,为了合理分配劳力,使生产的螺栓和螺母配套(一个螺栓套两个螺母),则应分配___________人生产螺栓,___________人生产螺母. 答案:12;168.小明购买5角和8角的邮票共11张,共有了6.40元,若设购买5角和8角的邮票张数分别为x 和y ,则x=___________,y=___________. 答案:8;39.通讯员从距1880m 的总部骑马到前线,其中有一段泥泞路.已知马在干爽的道路上奔跑的速度为12km/h ,在泥泞的道路上的平均速度为4.8 km/h ,若通讯员从总部到前线共用16min ,则他在干爽的道路上骑马的时间为___________. 答案:5min[来源:学*科*网Z*X*X*K]10.在足球甲级A 组的前11轮(场)比赛中,万达队连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队胜与平的场次之比为___________.[来源:学科网] 答案:6∶5二、选择题(每题5分,共10分) 模拟在线11.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x 桶,买乙种水y 桶,则所列方程组中正确的是( ) A.⎩⎨⎧∙==+x y y x %7525068 B.⎩⎨⎧∙==+yy y x %7525068C.⎩⎨⎧∙==+x y y x %7525086 D.⎩⎨⎧∙==+y y y x %7525086答案:C12.(2010河北)《九章算术》是我国东汉初年编订的一部数学经曲著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图8-3、图8-4.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图8-3所示的算筹图用我们现在所熟悉的方程组形式表达出来,就是⎩⎨⎧=+=+2341923y x y x 类似地,图8-4所示的算筹图我们可以表述为( )图8-3图 8-4A.⎩⎨⎧=+=+2734112y x y x B.⎩⎨⎧=+=+2234112y x y xC.⎩⎨⎧=+=+2341923y x y x D.⎩⎨⎧=+=+273462y x y x答案:A三、解答题(每题20分,共40分)13.(潍坊)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元? 答案:300元,200元14.(乌鲁木齐)为满足市民对素质教育的需求,某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元.计划在年内拆除旧校舍与建造新校舍共7200 m 2,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,而拆除校舍则超过了10%,结果恰好完成了原计划的拆、建的总面积. (1)求原计划拆建面积各多少平方米?(2)若绿化1 m 2需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:设拆旧校舍x m 2, 建新校舍y m 2, 则⎩⎨⎧==⎩⎨⎧=∙++=+240048007200%80%)101(7200y x y x y x 解得 (2)节约资金:(4800×80-2400×700)-[4800×(1-10%)×80+2400×80%×700]=297600(元),用此资金可绿化面积是:297600÷200=1488(m 2).即建新校舍2400m 2.拆早校舍4800m 2,实际用节约的资金用来绿化大约是1488m 2.作业30 §8.3 再探究实际问题与二元一次方程组(二) 典型例题【例1】 如图8-5所示,长方形ABCD 中,AB=8cm ,BC=6 cm ,且△BEC 的面积比△DEF 的面积大5 cm 2,求DF 的长.图8-5【解析】 本题是数形结合题,未知数只有1个,若直接设DF 的长为x cm ,不易找到等量关系.可以分步来解,如没△BEC 的面积为x cm 2,△DEF 的面积为y cm 2,梯形ABED 的面积为z cm 2,求出△ABF 的面积的y+2,再求DF 就容易了. 【答案】 设△BEC 的面积是x cm 2,△DEF 的面积是y cm 2,四边形ABED 的面积足2 cm 2,则有⎩⎨⎧⨯=+=+)2(86)1(5z x y x②-①,得y+z=43,即△ABF 的面积为43 cm 2. 设DF 的长为acm ,则有S △ABF =21AB ×(AD+DF), 即43=21×8×(6+a),所以a=419. 答:DF 的长为419cm.【例2】 一批货物要运往A 地,货主准备租用汽车运输公司的甲、乙两种货车,乙知过去两次租用这两种货车的情况好下表:第二次 现租用该公司4辆甲种货车和1辆乙种货车,一次刚好运完这批货,如果按每吨付运费30元计算,问货主携带1000元是否够用?(不考虑其他费用)【解析】 由表格中的信息求出甲、乙两种货车每次运货的吨数,再求出这批货物总吨数,算出需要的总费用,最后比较大小.[来源:学*科*网Z*X*X*K] 【答案】 设甲种货车每次运货x t ,乙种货车每次运货y t ,则有⎩⎨⎧=+=+.2763,5.1532y x y x解得⎩⎨⎧==.5.2,4y x因此这批货物的总吨数为:4x+8y=4×4+8×2.5=36(t) 总费用为30×36=1080(元)因为1080>1000,所以货主携带的钱不够用.【例3】 有三块牧场,牧场里的草长得同样的密,同样的快,面积分别为3公顷、9公顷和21公顷;第一块牧场可借12头牛吃4个星期,第二块牧场可供20头牛吃9个星期,问第三块牧场可供多少头牛吃18个星期?【解析】 本题等量关系不很明显,所以我们要充分挖掘和分析题目,确定以草量为等量关系列方程组.要知道可供多少头牛吃18个早期,要弄清草量由两部分组成的:一是原有草量,二是每周生出草量,显然每头牛每周吃的草量都是定值.关键是要找出这种供(原有草量和生长草量)与销(牛的吃草量)的关系.我们可用设而不求的方法解题.【答案】 设每公顷原有草x t ,每公顷每周生出新草y t ,每头牛每周吃草 a t ,则有⎩⎨⎧⨯=⨯+⨯=⨯+a y x a y x 209999124433整理,得⎩⎨⎧=+=+a y x a y x 209164解得⎩⎨⎧==ay ax 8.08.12 所以第三块牧场18个星期的总草量,可供牛吃6头数为:aa a a y x 18)8.0188.12(2118182121⨯+=⨯+≈31.7≈31答:第三块牧场可供31头牛吃18个星期.总分100分 时间60分钟 成绩评定__________ 一、填空题(每题5分,共50分) 课前热身1.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,则甲现在的年龄是__________,乙现在的年龄是__________. 答案:24岁;12岁2.某铁路桥长为y m ,一列长为x m 的火车以上桥到过完桥共用30s ,而整列火车在桥上的时间为20 s ,若火车的速度为20m/s ,则可列方程组为__________. 答案:⎩⎨⎧=-=+400600y x y x课上作业3.甲、乙二人按2∶5的比例投资开了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙分别分得__________. 答案:4000元,10000元4.某单位买了35张戏票共用250元,其中甲种票每张8元,乙种票每张6元,则购买甲种票__________张,乙种票__________张. 答案:20;155.学校的篮球数比排球数的2倍少3个,足球数与排球数之比为2∶3,三种球共41个,则篮球有__________个,排球有__________个,足球有__________个. 答案:21;12;86.今年我省荔枝又喜获丰收.目前市场价格稳定,荔枝种植户普遍获利.据估计,今年全省荔枝总产量为50000t ,销售收入为61000万元.已知“妃子笑”品种售价为1.5万元/t ,其它品种平均售价为0.8万元/t ,求“妃子笑”和其它品种的荔枝产量各多少吨.如果设“妃子笑”荔枝产量为x t ,其它品种荔枝产量为y t ,那么可列出方程组为__________. 答案:⎩⎨⎧=+=+610008.05.150000y x y x课下作业7.某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的每间可住5人,该校198个住宿生恰好住满这30间宿舍.则大宿舍有__________间,小宿舍有__________间. 答案:16;148.根据图8-6给出的信息,可知每件T 恤衫和每瓶矿泉水的价格分别为__________.图8-6答案:20元/件,2元/瓶9.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40 kg 到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:答案:33元10.某校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢得一场得2分,输一场得1分.小谭根据上面提供的信息分别求出校队输__________场,赢________场. 答案:4;12二、选择题(每题5分,共10分) 模拟在线11.(2010浙江)中央电视台2套“开心辞典”栏目中,有一期的题目如图8-7所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.图8-7A.2B.3C.4D.5 答案:D12.(湖南)为了贫困家庭子女能完成初中学业,国家给他们免费提供教科书,下表是某中学免若设获得免费提供教科书补助的七年级为x 人,八年级为y 人,根据题意列出方程组为( ) A.⎩⎨⎧=++=++1009519009410912040y x y x B.⎩⎨⎧=+=+1009594109120y x y xC.⎩⎨⎧=+=+19009410940y x y x D.⎩⎨⎧=++=++1009519001204094109y x y x答案:A[来源:]三、解答题(每题20分,共40分)13.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG ”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的52,问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本? 答案:(1)设改装了y 辆车,改装后平均每辆车每天的燃料费下降的百分数为x ,则⎪⎪⎩⎪⎪⎨⎧⨯-⨯=⨯-∙⨯-⨯=⨯-∙80)2100(5280)1(280)100(20380)1(y x y x x y解得⎩⎨⎧==20%40y x即公司改装了20辆车,改装后每辆出租车 每天的燃料费比改装前的燃料费下降了40%. (2)125天14.(益阳)请你用方程组⎩⎨⎧=-=+1238y x y x 编一道具有实际背景的题,使列出的方程组为上述方程组.答案:有甲、乙两个数,它们的和是38,甲数的2倍比乙数大1,求这两个数(或一个长方形的周长是76 cm ,宽的2倍比长长1 cm ,求这个长方形的宽与长;或某校七年级二班共有学生38人,其中男生人数的2倍比女生的人数多1人,求这个班男女生各有多少人).(答案合理即可)。

相关文档
最新文档