新人教七年级数学上册线段的计算测试题

合集下载

人教版七年级上册数学-第4章 几何图形初步 专题训练(十三) 线段与角的计算中的思想方法

人教版七年级上册数学-第4章 几何图形初步 专题训练(十三) 线段与角的计算中的思想方法
专题训练(十三) 线段与角的 计算中的思想方法
专题训练(十三) 线段与角的计算中的思想方法
思想方法一 方程的思想 1.如 图,已 知 OB 平 分 ∠AOC,OD 平 分 ∠COE, ∠AOD=110°,∠BOE=100°,求∠AOE 的度数. 解:∵OB 平分∠AOC,OD 平分 ∠COE,∴设∠EOD=∠DOC= x,∠AOB=∠COB,∵∠AOD= 110°,∠BOE=100°,∴∠AOB= ∠BOC=100°-2x,∵ ∠COD + ∠COB+ ∠AOB =110°,∴x+100°-2x+100°-2x=110°,x= 30°,即 ∠EOD=∠DOC=30°,∴∠AOE=∠AOD +∠DOE=110°+30°=140°.
10.点O 是直线AB 上的一点,∠COD =90°,射 线 OE 平分∠BOC. (1)如图①,如 果∠AOC=50°,依题意补全图形, 写出求∠DOE 度数的思路(不需要写出完整 的 推理过程); (2)将OD 绕点O 顺时针旋转一定的角度得到图 ②,使得 直 角 边 OC 在 直 线 AB 的 上 方,若 ∠AOC=α,其他条件不变,依题意补全图形, 并求 出 ∠DOE 的 度 数 (用 含α 的 代 数 式 表 示); (3)将OD 绕点O 继续顺时 针旋转一周,回到图 ①的位置.在旋转过程中,你发现 ∠AOC 与 ∠DOE(0°≤ ∠AOC ≤180°,0°≤ ∠DOE ≤ 180°)之间有怎样的数量 关 系? 请 直 接 写 出 你的发现.
解:(1) 当 DP =2PE 时,DP = 2/ 3 DE =10 cm;当 2DP=PE 时, DP= 1/ 3 DE=5cm.综 上 所述,DP 的长为5cm或10cm; (2)①根据题意,得(1+2)t=15,解得t=5.所以当t =5秒时,点P 与点Q 重合;②(Ⅰ)点P,Q 重合前: 当2AP=PQ 时,有t+1/2t+2t=15,解得t=3;当 AP=2PQ 时,有t+ 1 2 t+2t=15,解得 t= 30/ 7 ;(Ⅱ)点 P,Q 重合后:当AP=2PQ 时,有t=2(t-5),解得t =10;当2AP=PQ 时,有 2t=(t-5),解得t=-5 (不合题意,舍去).综上所述,当t=3秒, 30 /7 秒或10 秒时,点P 是 线段AQ 的三等分点.

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

人教版数学七年级上册4.2直线 射线 线段测试带答案解析

4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。

人教版数学七年级上册 第4章 4.2---4.3测试题含答案

人教版数学七年级上册 第4章 4.2---4.3测试题含答案

4.2直线、射线、线段一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2 B.3 C.4 D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6 B.7 C.8 D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB4.3 角学校:___________姓名:___________班级:___________分数:___________一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。

2016新人教七年级数学(上册)线段的计算检测试题

2016新人教七年级数学(上册)线段的计算检测试题

新人教七年级数学上册线段的计算测试题姓名:分数:一.选择题(共12小题,每题3分,共36分)1.(5分)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离2.(5分)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC 的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=23.(5分)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB4.(5分)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个5.(5分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm6.(5分)已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上7.(5分)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b8.(5分)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5e D.10a+16b+18c+16d+10e9.(5分)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC10.(5分)点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cm B.70cm C.75cm D.80cm11.(5分)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在()A.线段AB的延长线上B.线段AB的反向延长线上C.直线l上D.线段AB上12.(5分)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为()A.10cm B.16cm C.20cm D.3cm二.填空题(共8小题,每题3分,共24分)13.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.14.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.15.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有.(填序号)16.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.17.如图,图中有条直线,有条射线,有条线段.18.如图,A,B,C,D是一直线上的四点,则+ =AD﹣AB,AB+CD=﹣.19.已知A、B、C三点在同一直线上,其中点A与点B的距离等于2.4千米,点B与点C 的距离等于3.5千米,那么点A与点C的距离等于千米.20.如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:楼号 A B C D E桶装水数量/桶38 55 50 72 85他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在楼.三.解答题(共7小题)21.(6分)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.22.(7分)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.23.(8分)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.24.(10分)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC 的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.25.(9分)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.26.(9分)线段AD上两点B、C将AD分成2:3:4三部分,M是AD的中点,若MC=2,求线段AD的长.27.(12分)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.新人教七年级数学上册线段的计算测试题参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2016春•威海期中)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离【分析】根据直线的定义、线段中点的性质、点到点的距离的概念利用排除法求解.【解答】解:A、两点之间的连线中,线段最短,错误;B、根据中点的定义可知若P是线段AB的中点,则AP=BP,正确;C、只有当点P在线段AB上,且AP=BP时,点P才是线段AB的中点,错误;D、连接两点的线段的长度叫做两点的距离,错误.故选B.【点评】本题主要考点有:线段的定义及性质,两点间的距离,直线的定义.根据各知识点的定义及性质进行判断.2.(5分)(2015•黄冈中学自主招生)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=2【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,继而即可得出答案.【解答】解:根据点M是线段AC的中点,点N是线段BC的中点,可知:,∴只要已知AB即可.故选A.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.3.(5分)(2015秋•高新区期末)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、C、D都可以确定点C是线段AB中点.【解答】解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.【点评】根据线段的中点能够写出正确的表达式.反过来,也要会根据线段的表达式来判断是否为线段的中点.4.(5分)(2015秋•太康县期末)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个【分析】根据题意,画出图形,观察图形,一一分析选项,排除错误答案.【解答】解:如图,若B是线段AC的中点,则AB=AC,AB=BC,AC=2AB,而AB+BC=AC,B可是线段AC上的任意一点,∴表示B是线段AC的中点的有①②③3个.故选C.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.(5分)(2015秋•太康县期末)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【解答】解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.【点评】本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.6.(5分)(2015秋•平武县期末)已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上【分析】根据线段的和、差定义进行分析.【解答】解:如图:∵PA+PB=AB,∴点P在线段AB上.故选B.【点评】此题考查了线段的和的概念.7.(5分)(2015秋•嘉祥县期末)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.(5分)(2015•合肥校级自主招生)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5e D.10a+16b+18c+16d+10e【分析】首先求出以A为端点线段的长度,类比依次求出B、C、D、E为端点的线段的长度,然后求出这些线段的长度总和.【解答】解:以A为端点线段有AB、AC、AD、AE、AF,这些线段长度之和为5a+4b+3c+2d+e,以B为端点线段有BC、BD、BE、BF,这些线段长度之和为4b+3c+2d+e,以C为端点线段有CD、CE、CF,这些线段长度之和为3c+2d+e,以D为端点线段有DE、DF,这些线段长度之和为2d+e,以E为端点线段有EF,线段的长度为e,故这些线段的长度之和为5a+8b+9c+8d+5e,故选A.【点评】本题主要考查比较线段的长短的知识点,解答本题的关键是求出A,B,C,D,E,F为端点的所有线段的条数,本题不是很难.9.(5分)(2014秋•温州期末)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC【分析】熟练掌握线段的概念和定义,进行分析.【解答】解:A、根据线段的延长线的概念,则BA=BC﹣AC,故错误;B、根据线段的和的计算,正确;C、根据两点之间,线段最短,显然正确;D、根据两点之间,线段最短,显然正确.故选A.【点评】考查了线段的延长线的概念,同时注意线段公理:两点之间,线段最短.10.(5分)(2014秋•林甸县期末)点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cm B.70cm C.75cm D.80cm【分析】由题意可知,M分AB为2:3两部分,则AM为AB,N分AB为3:4两部分,则AN为AB,MN=2cm,故MN=AN﹣AM,从而求得AB的值.【解答】解:如图所示,假设AB=a,则AM=a,AN=a,∵MN=a﹣a=2,∴a=70.故选B.【点评】在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.11.(5分)(2014秋•成县期末)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在()A.线段AB的延长线上B.线段AB的反向延长线上C.直线l上D.线段AB上【分析】分类讨论:当P点在线段AB的延长线上,则PA+PB=AB+2PB;当P点在线段AB 的反向延长线上,则PA+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,然后比较线段的大小即可得到结论.【解答】解:当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.12.(5分)(2014秋•阜南县校级期末)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为()A.10cm B.16cm C.20cm D.3cm【分析】结合图形表示出PM与AB的关系为PM=AB﹣AB,再代入数据求解即可.【解答】解:如图,∵M是AB的中点,∴AM=AB,∴PM=AM﹣AP=AB﹣AB=AB,∵PM=2cm,∴AB=10PM=20cm.故选C.【点评】作出图形,整理出AB与PM的关系是解本题的关键.二.填空题(共8小题)13.(2015秋•甘谷县期末)如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于11 .【分析】AD和AC已知,所以可以得出CD的长度,点C是BD的中点,所以CD的长度等于BD长度的一半,从而可求出BD的长度,进而可求出AB的长度.【解答】解:∵AD=3,AC=7∴CD=4.∵点C是线段BD的中点∴BD=2CD=8AB=BD+AD=3+8=11.故应填11.【点评】本题考点:线段中点的性质,根据题干图形得出各线段之间的关系,然后结合已知条件即可求出AB的长度.14.(2015秋•邢台期末)长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm .【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【解答】解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.(2015秋•淮安期末)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有③④.(填序号)【分析】由题意,认真分析题干,运用线段的性质直接做出判断即可.【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故答案为:③④.【点评】本题主要考查两点之间线段最短和两点确定一条直线的性质,应注意理解区分.16.(2016春•通化校级月考)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是两点确定一条直线.【分析】根据直线的性质:两点确定一条直线即可得.【解答】解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.【点评】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.17.(2016•綦江区校级模拟)如图,图中有 1 条直线,有9 条射线,有12 条线段,以E为顶点的角有 4 个.【分析】直线:过两点有且只有一条直线(两点确定一条直线),无端点.射线:直线上的一点,可向一方无限延伸,有一个端点.线段:直线的一部分,有限长,有2个端点再根据角的定义数出角的个数即可求解.【解答】解:如图,图中有直线AC,共1条直线,有A为端点的2条射线,B为端点的1条射线,C为端点的2条射线,E为端点的3条射线,F为端点的1条射线共2+1+2+3+1=9条射线,有线段AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,DF,EF,共12条线段,以E为顶点的角有∠AEB,∠AEF,∠BEC,∠CEF,共4个.故答案为:1,9,12,4.【点评】本题主要考查直线、线段、射线的知识点,还考查角的概念的知识点,不是很难,不过做题要仔细.18.(2016秋•高密市校级月考)如图,A,B,C,D是一直线上的四点,则BC + CD =AD﹣AB,AB+CD= AD ﹣BC .【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC,CD,AD,BC.【点评】题考查了两点间距离的计算,本题属基础题,熟练求线段长度是解题关键.19.(2016春•浦东新区期末)已知A、B、C三点在同一直线上,其中点A与点B的距离等于2.4千米,点B与点C的距离等于3.5千米,那么点A与点C的距离等于 5.9或1.1 千米.【分析】根据线段的和差,可得答案.【解答】解:A在线段BC上,由线段和差,得AC=BC﹣AB=3.5﹣2.4=1.1km,A点线段BC的反向延长线上,由线段和差,得AC=AB+BC=2.4+3.4=5.9km,故答案为:5.9或1.1.【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.20.(2013秋•惠山区校级月考)如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:楼号 A B C D E桶装水数量/桶38 55 50 72 85他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在 D 楼.【分析】根据图形近似设AB=a,BC=2a,CD=a,DE=2a,再根据各楼所需的数量和距离分别计算出当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=779a;当桶装水供应点在C楼时,这五幢楼内居民取水所走的路程之和=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=477a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=797a,于是可得判断桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.【解答】解:设AB=a,BC=2a,CD=a,DE=2a,当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=55a+50(a+2a)+72(a+2a+a)+85(a+2a+a+2a)=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=38a+50×2a+72(a+2a)+85(2a+a+2a)=779a;当桶装水供应点在C楼时,这五幢楼内居民取水所走的路程之和=38(a+2a)+55×2a+72×a+85(a+2a)=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=38(a+2a+a)+55×(a+2a)+50a+85×2a=537a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=55(2a+a+2a)+50(a+2a)+72×2a+38(a+2a+a+2a)=797a,所以桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.故答案为D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.三.解答题(共7小题)21.(2015秋•连州市期末)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.【分析】根据直线、线段和射线的定义作出即可.【解答】解:如图所示.【点评】本题考查了直线、射线、线段,主要是对文字语言转化为图形语言的能力的培养.22.(2013秋•金平区期末)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.【解答】解:点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短.【点评】本题考查了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵活运用.23.(2016春•郴州期末)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.【分析】(1)根据M是AC的中点得MC=3cm,由MB=10cm可得BC=7cm,再根据N为BC的中点可得CN的长,继而可得答案;(2)由M是AC中点,N是BC中点可得MC=AC、NC=BC,再根据MN=MC﹣NC 即可得.【解答】解:(1)∵AC=6cm,M是AC的中点,∴AM=MC=AC=3cm,∵MB=10cm,∴BC=MB﹣MC=7cm,∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+CN=6.5cm;(2)如图,∵M是AC中点,N是BC中点,∴MC=AC,NC=BC,∵AC﹣BC=bcm,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=b(cm).【点评】本题主要考查两点间的距离,熟练掌握中点的性质是解题的关键.24.(2015秋•祁阳县期末)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.【分析】根据题目已知条件结合图形可知,要求DE的长可以用AC长减去AD长再减去EC 长或者用DB长加上BE长.【解答】解:由于BE=AC=2cm,则AC=10cm,∵E是BC的中点,∴BE=EC=2cm,BC=2BE=2×2=4cm,则AB=AC﹣BC=10﹣4=6cm,又∵AD=DB,则AB=AD+DB=AD+2AD=3AD=6cm,AD=2cm,DB=4cm,所以,DE=AC﹣AD﹣EC=10﹣2﹣2=6cm,或DE=DB+BE=4+2=6cm.故答案为6cm.【点评】本题考查求线段及线段中点的知识,解这列题要结合图形根据题目所给的条件,寻找所求与已知线段之间的关系,最后求解.25.(2015秋•偃师市期末)如图,已知B、C两点把线段AD分成2:4:3的三部分,M 是AD的中点,若CD=6,求线段MC的长.【分析】首先由B、C两点把线段AD分成2:4:3的三部分,知CD=AD,即AD=3CD,求出AD的长,再根据M是AD的中点,得出MD=AD,求出MD的长,最后由MC=MD ﹣CD,求出线段MC的长.【解答】解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,∴AB=AD,BC=AD,CD=AD,又∵CD=6,∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=9﹣6=3.【点评】利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.本题中B、C是线段AD的九等分点中的两个.26.(2013秋•天柱县期末)线段AD上两点B、C将AD分成2:3:4三部分,M是AD 的中点,若MC=2,求线段AD的长.【分析】根据题意,设三条线段的长分别为2k、3k、4k,再根据“M是AD的中点”得到MD 等于4.5k,所以MC的长是0.5k,代入即可求出x的值,再求线段AD的长也就容易了.【解答】解:如图,根据题意,设AB、BC、CD的长分别为2k、3k、4k,∴AD=2k+3k+4k=9k,∵M是AD的中点,∴MD=AD=4.5k,∴MC=MD﹣CD=4.5k﹣4k=0.5k=2,解得k=4,∴AD=9k=9×4=36.【点评】本题主要考查根据设“k”法的思想,根据比例关系利用设“k”法是中学阶段重要的方法,需要熟练掌握.27.(2014秋•靖江市期末)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.【分析】此题较为复杂,但仔细阅读,读懂题意根据速度公式就可求解.(1)从题中我们可以看出点P及Q是运动的,不是静止的,当PA=2PB时实际上是P正好到了AB的三等分点上,而且PA=40,PB=20.由速度公式就可求出它的运动时间,即是点Q的运动时间,点Q运动到的位置恰好是线段AB的三等分点,这里的三等分点是二个点,因此此题就有二种情况,分别是AQ=时,BQ=时,由此就可求出它的速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm,这也有两种情况即当它们相向而行时,和它们直背而行时,此题可设运动时间为t秒,按速度公式就可解了.(3)此题就可把它当成一个静止的线段问题来解决了,但必须借助图形.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P 运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.如图2,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.【点评】做这类题时学生一定要认真仔细地阅读,利用已知条件求出未知值.学生平时就要培养自己的思维能力.而且要图形结合,与生活实际联系起来,也可以把此题当成一道路程题来对待.。

考点解析-人教版七年级数学上册第四章几何图形初步专项测试试题(含解析)

考点解析-人教版七年级数学上册第四章几何图形初步专项测试试题(含解析)

人教版七年级数学上册第四章几何图形初步专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒2、如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC =50°,∠ABC =60°,则∠EAD +∠ACD =( )A.75°B.80°C.85°D.90°3、粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线4、下图是由六个相同的小正方体搭成的几何体,这个几何体从正面看到的图形是( )A.A B.B C.C D.D5、互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=3a,这三点的位置关系是()A.点A在B、C两点之间B.点B在A、C两点之间C.点C在A、B两点之间D.无法确定6、下列判断正确的有()(1)正方体是棱柱,长方体不是棱柱;(2)正方体是棱柱,长方体也是棱柱;(3)正方体是柱体,圆柱也是柱体;(4)正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个7、下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.8、如图所示,正方体的展开图为()A.B.C.D.9、一个几何体由大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则从正面看该几何体的形状图为()A.B.C.D.10、永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A,B两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是()A.两点确定一条直线B.垂线段最短C.过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为_____cm.2、甲从A出发向北偏东45°走到点B,乙从点A出发向北偏西30°走到点C,则∠BAC=______.3、如图①是一个小正方体的侧面展开图,小正方体从如图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是__________.4、如图所示,从O点出发的五条射线,可以组成________个小于平角的角.===,则AB=______AD,AE=_____AC,BE=______AE,BE=5、如图,若AB BC CD DE_______CD.三、解答题(5小题,每小题10分,共计50分)1、(1)如图所示的长方体,长、宽、高分别为4,3,6.若将它的表面沿某些棱剪开,展成一个平面图形,则下列图形中,可能是该长方体表面展开图的有________(填序号).(2)图A,B分别是题(1)中长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B 的外围周长.(3)第(1)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.2、如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:=a ______,b =_________;(2)先化简,再求值:()()2223252ab a b ab a ab ⎡⎤------⎣⎦.3、下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应连线.4、已知:如图①所示,OC 是AOB ∠内部一条射线,且OD 平分AOC ∠,OE 平分BOC ∠.(1)若80AOC ∠=︒,50BOC ∠=︒,则EOD ∠的度数是______.(2)若AOC α∠=,BOC β∠=,求EOD ∠的度数,并根据计算结果直接写出EOD ∠与AOB ∠之间的数量关系.(写出计算过程)(3)如图③所示,射线OC 在AOB ∠的外部,且OD 平分AOC ∠,OE 平分BOC ∠.试着探究EOD ∠与AOB ∠之间的数量关系.(写出详细推理过程)5、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数-参考答案-一、单选题1、B【解析】【分析】根据OC 平分AOD ∠且15COD ∠=︒可得30AOD ∠=︒,再结合68AOB ∠=︒即可求得答案.【详解】解:∵OC 平分AOD ∠且15COD ∠=︒,∴230AOD COD ∠=∠=︒,又∵68AOB ∠=︒,∴38BOD AOB AOD ∠=∠-∠=︒,故选:B.【考点】本题考查了角的计算,熟练掌握角平分线的定义是解决本题的关键.2、A【解析】【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【详解】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.【考点】本题考查了角平分线的定义和三角形内角和定理,解决问题的关键是三角形外角性质以及角平分线的定义的运用.3、B【解析】【分析】点动线,线动成面,将滚筒看做线,在运动过程中形成面.【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B .【考点】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.4、B【解析】【分析】主视图就是从正面看到的视图.【详解】从正面看,一层三个正方形,左侧由三层正方形.故选B【考点】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5、A【解析】【分析】分别对每种情况进行讨论,看a 的值是否满足条件再进行判断.【详解】解:①当点A 在B 、C 两点之间,则满足BC AC AB =+,即4213a a a +=++,解得:34a =,符合题意,故选项A 正确; ②点B 在A 、C 两点之间,则满足AC BC AB =+,即2143a a a +=++, 解得:32a =-,不符合题意,故选项B 错误;③点C 在A 、B 两点之间,则满足AB BC AC =+,即3421a a a =+++,解得:a 无解,不符合题意,故选项C 错误;故选项D 错误;故选:A .【考点】本题主要考查了线段的和与差及一元一次方程的解法,分类讨论并列出对应的式子是解本题的关键.6、B【解析】【分析】根据棱柱的定义:有两个面平行,其余面都是四边形,并且相邻的两个四边形的公共边都互相平行;柱体的定义:一个多面体有两个面互相平行且相同,余下的每个相邻两个面的交线互相平行,进行判断即可.【详解】解:(1)正方体是棱柱,长方体是棱柱,故此说法错误;(2)正方体是棱柱,长方体也是棱柱,故此说法正确;(3)正方体是柱体,圆柱也是柱体,故此说法正确;(4)正方体是柱体,圆柱是柱体,故此说法错误.故选B.【考点】本题主要考查了棱柱和柱体的定义,解题的关键在于能够熟练掌握相关定义.7、B【解析】【分析】根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.【详解】三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.故选B.【考点】此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.8、A【解析】【分析】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.【考点】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.9、A【解析】【分析】由已知条件可知,从正面看有3列,每列小正方形数目分别为4,2,3,据此可得出图形.【详解】解:根据所给出的图形和数字可得:从正面看有3列,每列小正方形数目分别为4,3,2,则符合题意的是:故选:A.【考点】本题考查了从不同方向看几何体等知识,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.10、D【解析】【分析】根据线段的性质分析得出答案.由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D.【考点】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.二、填空题1、1【解析】【分析】先根据中点定义求BC的长,再利用线段的差求CD的长.【详解】解:∵C为AB的中点,AB=8cm,∴BC=12AB=12×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为1.【点睛】此题主要考查线段的长度,解题的关键是熟知线段长度的运算关系.2、75°##75度【解析】先根据题意正确画出方向角,再利用∠CAB=∠CAD+∠BAD解答即可.【详解】解:如图所示,∠CAD=30°,∠BAD=45°,故∠BAC=∠CAD+∠BAD=30°+45°=75°.故答案为:75°.【点睛】本题考查的是方向角,解答此题时要熟知用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.3、路【解析】【分析】先由图1分析出:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面,再由图2结合空间想象得出答案.【详解】解:由图1可知:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面,再由图2可知,1、2、3、4、5分别对应的面是“兴”、“梦”、“中”、“兴”、“复”,所以第5格朝上的字是“路”.所以答案是路.【点睛】本题考查了正方体的展开图,用空间想象去解决正方体的滚动是解题的关键.4、10【解析】【分析】由一条射线OA为边可以得到4个角,然后求4+3+2+1和即可.【详解】解:由一条射线OA为边可以得到4个角,5条射线所成小于平角的角个数=4+3+2+1=10个.故答案为:10【点睛】本题考查了如何求角的数量问题,按照顺序求出一射线为边最多的角,然后求从1到最大数所有数的和是解题关键.5、132343【解析】【分析】根据AB=BC=CD=DE得到线段之间的数量关系即可推出结论.【详解】∵AB=BC=CD=DE,∴AD=3AB,AE=4AB,AC=2AB,BE=3AB,∴13AB AD=,2AE AC=,34BE AE=,3BE CD=.故答案为:13,2,34,3.【点睛】本题考查了线段,弄清线段之间的数量关系是解题的关键.三、解答题1、(1)①②③;(2)28;(3)能,70【解析】【分析】(1)根据长方体展开图的特征可得解;(2)给图B标上尺寸,然后根据周长意义可得解;(3)为了使外围周长最大,可以沿着长方体长度为6的4条棱和长度为4的2条棱剪开即可得到解答.【详解】解:(1)根据长方体展开图的特征可得答案为:①②③;(2)由已知可以给图B标上尺寸如下:∴图B的外围周长为6×3+4×4+4×6=58.(3)能.如图所示.外围周长为6×8+4×4+3×2=48+16+6=70.【考点】本题考查长方体的应用,熟练掌握长方体的各种展开图是解题关键.2、(1)1-,13-;(2)22242a ab b +-,289 【解析】【分析】(1)先根据正方体的平面展开图确定a 、b 、c 所对的面的数字,再根据相对的两个面上的数互为倒数,确定a 、b 、c 的值;(2)先去括号,再合并同类项化简代数式后代入求值即可.【详解】解:(1)由长方体纸盒的平面展开图知,a 与-1、b 与-3、c 与2是相对的两个面上的数字或字母, 因为相对的两个面上的数互为倒数, 所以111,,32a b c =-=-=.故答案为:1-,13-. (2)()()2223252ab a b ab a ab ⎡⎤------⎣⎦ 22233252ab a b ab a ab =-+-+-+22242a ab b =+-将11,,3a b =-=-代入, 原式()()22112141233⎛⎫⎛⎫=⨯-+⨯-⨯--⨯- ⎪ ⎪⎝⎭⎝⎭ 42239=+- 289=. 【考点】本题考查了正方体的平面展开图、倒数及整式的加减化简求值,解决本题的关键是根据平面展开图确定a 、b 、c 的值.3、见解析.【解析】【分析】根据几何体的平面展开图的特征可知:(1)是五棱柱的展开图;(2)是圆锥的展开图;(3)是圆柱的展开图;(4)是正方体的展开图;(5)是两个四棱锥的展开图.【详解】连线如下:【考点】本题考查了几何体的展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.4、(1)65°;(2)12EOD AOB ∠=∠(或2AOB EOD ∠=∠),见解析;(3)12EOD AOB ∠=∠.见解析 【解析】【分析】(1)根据角平分线的性质计算即可;(2)根据角平分线的性质进行表示即可;(3)根据角平分线的性质分析判断即可;【详解】(1)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12EOC BOC ∠=∠,12DOC AOC ∠=∠,又∵80AOC ∠=︒,50BOC ∠=︒,∴402565EOF ∠=︒+︒=︒;故答案是:65︒.(2)方法1:∵OE 平分AOC ∠,AOC a ∠=, ∴12COE a ∠=, ∵OD 平分BOC ∠,AOC β∠=, ∴12COD β∠=, ∴1122EOD COE COD a β∠=∠+∠=+, EOD ∠与AOB ∠之间的关系为:12EOD AOB ∠=∠(或2AOB EOD ∠=∠); 方法2:∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12EOA AOC ∠=∠,12BOE BOC ∠=∠, ∴()EOD AOB DOA BOE ∠=∠-∠+∠,1122AOB AOC BOC ⎛⎫=∠-∠+∠ ⎪⎝⎭, ()12AOB AOC BOC =∠-∠+∠, 12AOB AOB =∠-∠, 12AOB =∠, ∵AOC α∠=,BOC β∠=, ∴()12EOD αβ∠=+, EOD ∠与AOB ∠之间的关系为:12EOD AOB ∠=∠(或2AOB EOD ∠=∠); (3)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴12COD AOC ∠=∠,12COE BOC ∠=∠, ∴111222EOD COD COE AOC BOC AOB ∠=∠-∠=∠-∠=∠. 【考点】本题主要考查了角平分线的综合应用,准确分析计算是解题的关键.5、(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【解析】【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC ∠(2)设AOD x ∠=︒.∵AOD x ∠=︒,∴180180BOD AOD x ∠=︒-∠=︒-︒,BOC AOD x ∠=∠=︒.∵OE CD ⊥,∴90EOC EOD ∠=∠=︒.又∵EOB DOB ∠=∠,∴90180x x ︒+︒=︒-︒,即45x =.∴904545AOE EOD AOD ∠=∠-∠=︒-︒=︒.(3)设∠AOE =α,且0°<α<90°由(1)可知,∠AOD =∠BOC =90°-α,∠BOE =180°-α, ∴∠BOD =180°-∠AOD =180°-(90°-α)=90°+α,∵OF 平分∠BOD ,∴∠BOF =∠DOF =45°+2α, ∴∠AOF =∠AOD +∠DOF =90°-α+45°+2α=135°-2α, ∠EOF =∠AOF +∠AOE =135°+2α, ∠COF =∠BOC +∠BOF =90°-α+45°+2α=135°-2α=∠AOF ,①当∠AOF +∠AOE =180°时,即135°-2α+α=180°,解得α=90°,不符合题意; ②当∠EOF +∠AOE =180°时,即135°+2α+α=180°,解得α=30°,符合题意; ③当∠BOD +∠AOE =180°时,即90°+α+α=180°,解得α=45°,符合题意; 综上可知,当锐角30AOE ∠=︒时,互补角有2个,为EOB ∠、EOF ∠.当锐角45AOE ∠=︒时,互补角有3个,为EOB ∠、AOC ∠、DOB ∠.当锐角AOE ∠不等于45︒和30时,互补角有1个,为EOB ∠.【考点】本题主要考查补角的定义,角平分线的定义,熟练掌握补角的定义是解题关键.。

人教版数学七年级上册:4.2 第2课时《线段的长短比较与计算》习题课件(附答案)

人教版数学七年级上册:4.2 第2课时《线段的长短比较与计算》习题课件(附答案)

15.如图,已知 B、C 两点把线段 AD 分成 2:4:3 三 部分,M 是 AD 的中点,CD=6 cm,求线段 MC 的 长. 解:设 AB=2k cm, 则 BC=4k cm,CD=3k cm,AD=2k+4k+3k=
9k(cm). ∵CD=6 cm,即 3k=6, ∴k=2. 则 AD=18 cm.
∴4x=60 cm. 解得 x=15 cm. ∴绳子的原长=4x+3x+3x=10x=150 cm. 综上所述,绳子的原长为 100 cm 或 150 cm.
第13题变式题没有给图形,点C的位置 不确定,应注意分类讨论思想的运用. 第15题应根据线段比设参数,然后运用 方程思想求解.
10.如图是一张三角形纸片,你能准确地比较线段 AB 与 AC+BC 的长短吗? 解:能. AB<AC+BC.
知识点四 尺规作图 11.如图,已知线段 a,b,作线段 AB,使 AB=2a- b(注明作图步骤). 解:如图.(1)作射线 AE. (2)在射线 AE 上顺次截取 AC=CD=a. (3)在线段 AD 上截取 DB=b. 线段 AB 即为所求作的线段.
知识点一 线段长短的比较 1.要比较线段 AB 与 CD 的大小,小明将点 A 与点 C 重合使两条线段在一条直线上,结果点 B 在 CD 的 延长线上.则有( B ) A.AB<CD B.AB>CD C.AB=CD D.以上都不对
2.观察图中的线段 AB,CD,它们的大小关系是 AB = CD(填“>”“<”或“=”).
∴MC= 1 AC,NC= 1 BC.
2
2
∵AB=m,BC=n,
∴AC=AB-BC=m-n.
∵m=8,n=2,
∴MC= 1 AC=3,NC= 1 BC=1.

初一难点突破“线段的计算”50道(含详细解析)

初一难点突破“线段的计算”50道(含详细解析)

试卷第1页,总10页初一难点突破“线段的计算”50道(含详细解析)一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM . (1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点.4.已知:点C 在直线AB 上.(1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs .(1)AC= cm ;(2)当x= s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.7.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.8.已知m,n满足算式(m﹣6)2+|n﹣2|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB 的中点,求线段AQ的长.9.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N 分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.试卷第3页,总10页11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?并说明理由;12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点 这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm ,点C 是线段AB 的巧点,则AC= cm ;【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q 三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD的中点,BM=9cm ,求CM 和AD 的长15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长.16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 条;(2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来.18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB . (1)用含x 的代数式表示线段BC 的长和AC 的长;(2)取线段AC 的中点D ,若DB=3,求x 的值.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值.(2)在(1)的条件下,求线段CD 的长.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB的试卷第5页,总10页中点.(1)若AB=12cm ,则MN 的长度是 ;(2)若AC=3cm ,CP=1cm ,求线段PN 的长度.23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒.(1)当t=2时,①AB= cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.30.如图,已知点C 为AB 上一点,AC=15cm ,CB=35AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.31.已知如图:线段AB=16cm ,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长.32.已知C 为线段AB 的中点,E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长;(3)如图2,若AB=15,AD=2BE ,求线段CE 的长.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8.(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.试卷第7页,总10页34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ,点B 表示的数为(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.37.如图,C 是线段AB 的中点.(1)若点D 在CB 上,且DB=2cm ,AD=8cm ,求线段CD 的长度;(2)若将(1)中的“点D 在CB 上”改为“点D 在CB 的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD 的长度.38.如图,已知AB=24cm ,CD=10cm ,E ,F 分别为AC ,BD 的中点,求EF的长.39.如图,已知线段AB 上有两点C 、D ,且AC=BD ,M ,N 分别是线段AC ,AD 的中点,若AB=acm ,AC=BD=bcm ,且a 、b满足(a ﹣10)2+|b 2﹣4|=0.(1)求a 、b 的值;(2)求线段MN 的长度.40.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度).慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b ,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以4个单位长度/秒的速度向左匀速继续行驶,且|a +6|与(b ﹣18)2互为相反数. (1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒两列火车行驶到车头A 、C 相距8个单位长度?(3)此时在快车AB 上有一位爱到脑筋的七年级学生乘客P ,他发现行驶中有一段时间,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA +PC +PB +PD 为定值),你认为学生P 发现的这一结论是否正确?若正确,求出定值及所持续的时间;若不正确,请说明理由.41.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变,选择一个正确的结论,并求出其值.42.如图,已知直线l 有两条可以左右移动的线段:AB=m ,CD=n ,且m ,n满足|m ﹣4|+(n ﹣8)2=0.(1)求线段AB ,CD 的长;(2)线段AB 的中点为M ,线段CD 中点为N ,线段AB 以每秒4个单位长度试卷第9页,总10页向右运动,线段CD 以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC 的长;(3)将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,M 、N分别为AB 、CD 中点,BC=24,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值.求出这个定值,并直接写出t 在那一个时间段内.43.如图,点C 在线段AB 上,线段AC=8,BC=6,点M 、N 分别是AC 、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC +BC=a ,其它条件不变,你能猜想出MN 的长度吗?(3)若把(1)中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上,且满足AC ﹣BC=b ,你能猜想出MN 的长度吗?写出你的结论,并说明理由.44.如图,已知线段AB=6cm ,延长线段AB 到C ,使BC=2AB ,若点D 是AC上一点,且AD 比DC 短4cm ,点E 是BC 的中点,求线段DE 的长.45.如图,M 是线段AB 的中点,点C 在线段AB 上,且AC=8cm ,N 是AC的中点,MN=6cm ,求线段AB 的长. 46.已知B 是线段AC 上不同于A 或C 的任意一点,M 、N 、P 分别是AB 、BC 、AC 的中点,问:(1)MP=12BC 是否成立?为什么? (2)是否还有与(1)类似的结论?47.如图,已知线段AB 的长为12,点C 在线段AB 上,AC=12BC ,D 是AC 的中点,求线段BD 的长.48.如图,C 是AB 中点,D 是BC 上一点,E 是BD 的中点,AB=20,CD=2,求EB ,CE 的长.49.已知A 、B 两点在数轴上表示的数为a 和b ,M 、N均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a |﹣|b |+|a +b |+|a ﹣b |.(2)如图,若|a |+|b |=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB ﹣15,a=﹣3,若点P为数轴上一点,且PA=23AB ,试求点P 所对应的数为多少?50.如图,点P 是定长线段AB 上一定点,C 点从P 点、D 点从B 点同时出发分别以每秒a 、b 厘米的速度沿直线AB 向左运动,并满足下列条件: ①关于m 、n 的单项式2m 2n a 与﹣3m b n 的和仍为单项式.②当C 在线段AP 上,D 在线段BP 上时,C 、D 运动到任一时刻时,总有PD=2AC .(1)直接写出:a= ,b= .(2)判断ABAP = ,并说明理由.(3)在C 、D 运动过程中,M 、N 分别是CD 、PB 的中点,运动t 秒时,恰好t 秒时,恰好3AC=2MN ,求此时AB CD的值.1初一难点突破“线段的计算”50道(含详细解析)答案一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.【解答】解:∵点D 是线段BC 的中点,CD=3, ∴BC=2CD=6,∵AC=12AB ,AC +AB=CB ,∴AC=2,AB=4, ∴AD=CD ﹣AC=3﹣2=1, 即线段AD 的长是1.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:如图1所示,∵AP=2PB ,AB=6,∴PB=13AB=13×6=2,AP=23AB=23×6=4;∵点Q 为PB 的中点,∴PQ=QB=12PB=12×2=1;∴AQ=AP +PQ=4+1=5.如图2所示,∵AP=2PB ,AB=6, ∴AB=BP=6,∵点Q 为PB 的中点, ∴BQ=3,∴AQ=AB +BQ=6+3=9. 故AQ 的长度为5或9.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM .(1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点. 【解答】解:(1)如图所示:(2)∵MN=3cm ,AN=12MN ,∴AN=1.5cm , ∵BN=3BM ,∴BM=12MN=1.5cm ,∴AB=BM +MN +AN=6cm ;(3)∵点P 在线段MN 上,PM=PN , ∴点P 是线段MN 的中点, ∵BM=AN=1.5cm ,PM=PN=1.5cm , ∴BP=AP=3cm ,∴点P 是线段AB 的中点. 4.已知:点C 在直线AB 上. (1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)【解答】解:(1)若C 在A 的左边,则 BC=AB +AC=5; 若C 在A 的右边,则 BC=AC ﹣AB=1. 故BC 的长为5或1; (2)如图所示:∵点C 在射线AB 上,且BC=2AB ,D 是AC 的中点,∴AD=32AB ,∴BD=12AB ,3∵线段BD 的长为1.5, ∴线段AB 的长为3.5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.【解答】解:∵AC=16cm ,AB=13BC ,∴AB=14AC=4cm ,BC=16cm ﹣4cm=12cm ,∵点C 是BD 的中点, ∴CD=BC=12cm ,∴AD=AB +BC +CD=4cm +12cm +12cm=28cm .6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs . (1)AC= 12 cm ;(2)当x= 203s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.【解答】解:(1)AC=AB ﹣BC=20﹣8=12(cm ),(2)20÷(2+1)=203(s ).故当x=203s 时,P 、Q 重合;(3)存在,①C 是线段PQ 的中点,得 2x +20﹣x=2×12,解得x=4; ②P 为线段CQ 的中点,得12+20﹣x=2×2x ,解得x=325;③Q 为线段PC 的中点,得 2x +10=2×(20﹣x ),解得x=7;综上所述:x=4或x=325或x=7. 故答案为:12;203.7.如图,线段AC=20cm ,BC=3AB ,N 线段BC 的中点,M 是线段BN 上的一点,且BM :MN=2:3.求线段MN 的长度.【解答】解:∵AC=20cm ,BC=3AB ,∴BC=34×20=15cm ,∴AB=5cm , ∵N 为BC 的中点, ∴BN=CN=7.5cm , ∵BM :MN=2:3,∴MN=35×7.5=4.5cm .8.已知m ,n 满足算式(m ﹣6)2+|n ﹣2|=0. (1)求m ,n 的值;(2)已知线段AB=m ,在直线AB 上取一点P ,恰好使AP=nPB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:(1)由条件可得(m ﹣6)2=0,|n ﹣2|=0, 所以m=6,n=2.(2)当点P 在线段AB 之间时,AP=2PB , 所以AP=4,PB=2,而Q 为PB 的中点, 所以PQ=1,故AQ=AP +PQ=5. 当点P 在线段AB 的延长线上时, AP ﹣PB=AB , 即2PB ﹣PB=6, 所以PB=6, 而Q 为PB 的中点,所以BQ=3,AQ=AB +BQ=6+3=9. 故线段AQ 的长为5或9.9.如图1,已知点C 在线段AB 上,线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点.5(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC +BC=a ,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2cm/s 的速度沿AB 向右运动,终点为B ,点Q 以1cm/s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点,∴CM=12AC=5厘米,CN=12BC=3厘米,∴MN=CM +CN=8厘米;(2)∵点M ,N 分别是AC ,BC 的中点,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12a ;(3)①当0<t ≤5时,C 是线段PQ 的中点,得 10﹣2t=6﹣t ,解得t=4;②当5<t ≤163时,P 为线段CQ 的中点,2t ﹣10=16﹣3t ,解得t=265;③当163<t ≤6时,Q 为线段PC 的中点,6﹣t=3t ﹣16,解得t=112;④当6<t ≤8时,C 为线段PQ 的中点,2t ﹣10=t ﹣6,解得t=4(舍),综上所述:t=4或265或112.10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB=2:1,则点C 是线段AB 的一个三等分点,显然,一条线段的三等分点有两个. (1)已知:如图2,DE=15cm ,点P 是DE 的三等分点,求DP 的长. (2)已知,线段AB=15cm ,如图3,点P 从点A 出发以每秒1cm 的速度在射线AB 上向点B 方向运动;点Q 从点B 出发,先向点A 方向运动,当与点P 重合后立马改变方向与点P 同向而行且速度始终为每秒2cm ,设运动时间为t 秒.①若点P 点Q 同时出发,且当点P 与点Q 重合时,求t 的值.②若点P 点Q 同时出发,且当点P 是线段AQ 的三等分点时,求t 的值.【解答】解:(1)当DP=2PE 时,DP=23DE=10cm ;当2DP=PE 时,DP=13DE=5cm .综上所述:DP 的长为5cm 或10cm . (2)①根据题意得:(1+2)t=15, 解得:t=5.答:当t=5秒时,点P 与点Q 重合. ②(I )点P 、Q 重合前: 当2AP=PQ 时,有t +2t +2t=15, 解得:t=3;当AP=2PQ 时,有t +12t +2t=15,解得:t=307;(II )点P 、Q 重合后,当AP=2PQ 时,有t=2(t ﹣5), 解得:t=10;当2AP=PQ 时,有2t=(t ﹣5), 解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、307秒或10秒时,点P 是线段AQ 的三等分点.11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、7BC 的中点,你能猜想MN 的长度吗?并说明理由;【解答】解:(1)∵点M 、N 分别是AC 、BC 的中点,AC=8cm ,CB=6cm ,∴CM=12AC=4cm ,CN=12BC=3cm ,∴MN=CM +CN=4+3=7cm , 即线段MN 的长是7cm ;(2)∵点M 、N 分别是AC 、BC 的中点,AC +CB=acm ,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12(AC +BC )=12acm ,即线段MN 的长是12acm ;(3)如图:MN=12b ,理由是:∵点M 、N 分别是AC 、BC 的中点,AC ﹣CB=bcm ,∴CM=12AC ,CN=12BC ,∴MN=CM ﹣CN=12AC ﹣12BC=12(AC ﹣BC )=12bcm ,即线段MN 的长是12bcm .12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”. (1)线段的中点 是 这条线段的“巧点”;(填“是”或“不是”). (2)若AB=12cm ,点C 是线段AB 的巧点,则AC= 4或6或8 cm ; 【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解答】解:(1)∵线段的长是线段中线长度的2倍, ∴线段的中点是这条线段的“巧点”. 故答案为:是;(2)∵AB=12cm ,点C 是线段AB 的巧点,∴AC=12×13=4cm 或AC=12×12=6cm 或AC=12×23=8cm ;故答案为:4或6或8;(3)t 秒后,AP=2t ,AQ=12﹣t (0≤t ≤6)①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除. ②当P 为A 、Q 的巧点时,Ⅰ.AP=13AQ ,即2t =13(12−t),解得t =127s ;Ⅱ.AP=12AQ ,即2t =12(12−t),解得t =125s ;Ⅲ.AP=23AQ ,即2t =23(12−t),解得t=3s ;③当Q 为A 、P 的巧点时,Ⅰ.AQ=13AP ,即(12−t)=2t ×13,解得t =365s (舍去);Ⅱ.AQ=12AP ,即(12−t)=2t ×12,解得t=6s ;Ⅲ.AQ=23AP ,即(12−t)=2t ×23,解得t =367s .13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.【解答】解:∵点C 是线段AB 的中点,AC=6, ∴AB=2AC=12,①如图,若点D 在线段AC 上,∵AD=12BD ,∴AD=13AB=4,9∴CD=AC ﹣AD=6﹣4=2.②如图,若点D 在线段AC 的反向延长线上,∵AD=12BD ,∴AD=AB=12,∴CD=AC +AD=6+12=18.综上所述,CD 的长为2或18.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD 的中点,BM=9cm ,求CM 和AD 的长【解答】解:设AB=3xcm ,BC=5xcm ,CD=4xcm , ∴AD=AB +BC +CD=12xcm , ∵M 是AD 的中点,∴AM=MD=12AD=6xcm ,∴BM=AM ﹣AB=6x ﹣3x=3xcm , ∵BM=9 cm , ∴3x=9, 解得,x=3,∴CM=MD ﹣CD=6x ﹣4x=2x=2×3=6(cm ), AD=12x=12×3=36(cm ).15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长. 【解答】解:分两种情况:①如图1,当点C 在线段 AB 上时,AC=AB ﹣BC=10﹣4=6cm . ∵点D 是AC 的中点,∴AD=12AC=3cm .②如图2,当点C 在线段 AB 的延长线上时,AC=AB +BC=10+4=14cm . ∵点D 是AC 的中点,∴AD=12AC=7cm .16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.【解答】解:设BC=x ,则AB=4x , ∵D 为AC 中点, ∴AD=CD=2.5x , ∵BD=CD ﹣BC=6cm , ∴2.5x ﹣x=6, 解得x=4, ∴AB=16cm .17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 10 条; (2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来. 【解答】解:(1)图中共有线段1+2+3+4=10条; 故答案为:10;(2)∵AB=6,点M 是线段AB 的中点,∴BM=12AB=3,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣3=4,∴BN=BC ﹣NC=4﹣3.5=0.5;(3)∵AB=a ,点M 是线段AB 的中点,11∴BM=12AB=12a ,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣12a ,∴BN=BC ﹣NC=7﹣12a ﹣3.5=3.5﹣12a .18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB .(1)用含x 的代数式表示线段BC 的长和AC 的长; (2)取线段AC 的中点D ,若DB=3,求x 的值.【解答】解:(1)∵AB=x ,BC=12AB ,∴BC=12x ,∵AC=AB +BC ,∴AC=x +12x=32x .(2)∵AD=DC=12AC ,AC=32x ,∴DC=34x ,∵DB=3,BC=12x ,∵DB=DC ﹣BC ,∴3=34x ﹣12x ,∴x=12.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.【解答】解:设EA=xcm ,则AB=2xcm ,BF=3xcm ,EF=6xcm . ∵点M ,N 分别是线段EA ,BF 的中点,∴EM=MA=12xcm ,BN=NF=32xcm .∵AB=2xcm ,∴MN=MA +AB +BN=4xcm . ∵EF=18cm ,∴6x=18, 解得:x=3, ∴MN=4x=12cm .20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.【解答】解:设BD=x ,则AB=3x ,CD=4x . ∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5x ,CF=12CD=2x ,AC=AB +CD ﹣BD=3x +4x ﹣x=6x .∴EF=AC ﹣AE ﹣CF=6x ﹣1.5x ﹣2x=2.5x . ∵EF=20, ∴2.5x=20, 解得:x=8.∴AB=3x=24,CD=4x=32.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值. (2)在(1)的条件下,求线段CD 的长.【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,13∴CD=DE ﹣CE=6﹣4.5=1.5.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.(1)若AB=12cm ,则MN 的长度是 6cm ; (2)若AC=3cm ,CP=1cm ,求线段PN 的长度.【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∴MN=MC +CN=12AC +12BC=12(AC +BC )=12AB=6cm .故答案为6cm ;(2)∵AC=3cm ,CP=1cm , ∴AP=AC +CP=4cm , ∵P 是线段AB 的中点, ∴AB=2AP=8cm . ∴CB=AB ﹣AC=5cm ,∵N 是线段CB 的中点,CN=12CB=2.5cm ,∴PN=CN ﹣CP=1.5cm .23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒. (1)当t=2时,①AB= 4 cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动, ∴当t=2时,AB=2×2=4cm . 故答案为:4;②∵AD=10cm ,AB=4cm , ∴BD=10﹣4=6cm , ∵C 是线段BD 的中点,∴CD=12BD=12×6=3cm ;(2)不变;∵AB 中点为E ,C 是线段BD 的中点,∴EB=12AB ,BC=12BD ,∴EC=EB +BC=12(AB +BD )=12AD=12×10=5cm . 24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∵MN=MC +CN ,AB=AC +BC ,∴MN=12AB=7cm ;(2)MN=a2,∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,又∵MN=MC +CN ,AB=AC +BC ,∴MN=12(AC +BC )=a2;15(3)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,NC=12BC ,又∵AB=AC ﹣BC ,NM=MC ﹣NC ,∴MN=12(AC ﹣BC )=b2;(4)如图,只要满足点C 在线段AB 所在直线上,点M 、N 分别是AC 、BC 的中点.那么MN 就等于AB 的一半.25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.【解答】解:(1)∵AC=6cm ,M 是AC 的中点,∴AM=MC=12AC=3cm ,∵MB=10cm , ∴BC=MB ﹣MC=7cm , ∵N 为BC 的中点,∴CN=12BC=3.5cm ,∴MN=MC +CN=6.5cm ;(2)如图,∵M 是AC 中点,N 是BC 中点,∴MC=12AC ,NC=12BC ,∵AC ﹣BC=bcm , ∴MN=MC ﹣NC=12AC ﹣12BC =12(AC ﹣BC )=12×6 =3(cm ).26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.【解答】解:(1)①当点C 在线段AB 上时,∵AB=8cm ,BC=4cm , ∴AC=AB ﹣BC=8﹣4=4cm , ∵M 是AC 中点,∴AM=12AC=2cm .②当点C 在线段AB 的延长线上时,∵AB=8cm ,BC=4cm , ∴AC=AB +BC=8+4=12cm , ∵M 是AC 中点,∴AM=12AC=6cm .(2)∵BE=15AC=2cm ,∴AC=10cm , ∵E 是BC 中点, ∴BC=2BE=4cm ,∴AB=AC ﹣BC=10﹣4=6cm ,∵AD=12BD ,AD +BD=AB ,∴12BD +BD=AB=6cm ,17∴BD=4cm ,∴DE=BD +BE=4+2=6cm .27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.【解答】解:∵D 为AC 的中点,DC=3cm , ∴AC=2DC=6cm ,∵BC=12AB ,∴BC=13AC=2cm ,∴BD=CD ﹣BC=1cm .28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC 的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.【解答】解:(1)∵AB=5cm ,BC=3cm , ∴AC=AB +BC=8cm ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=4cm ,NC=12BC=1.5cm ,∴MN=MC ﹣NC=4cm ﹣1.5cm=2.5cm ;(2)∵AB=a ,BC=b , ∴AC=AB +BC=a +b ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=12(a +b ),NC=12BC=12b ,∴MN=MC ﹣NC=12(a +b )﹣12b=12a ;规律是:MN=12AB .29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).30.如图,已知点C为AB上一点,AC=15cm,CB=35AC,D,E分别为AC,AB的中点,求DE的长.【解答】解:∵AC=15cm,CB=35 AC,∴CB=35×15=9cm,∴AB=15+9=24cm.∵D,E分别为AC,AB的中点,∴AE=BE=12AB=12cm,DC=AD=12AC=7.5cm,∴DE=AE﹣AD=12﹣7.5=4.5cm.31.已知如图:线段AB=16cm,点C是AB的中点,点D在AC的中点,求线段BD的长.【解答】解:∵AB=16cm,点C是AB的中点,∴AC=BC=16÷2=8(cm);∵点D在AC的中点,∴CD=8÷2=4(cm),∴BD=BC+CD=8+4=12(cm).32.已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.19(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长; (3)如图2,若AB=15,AD=2BE ,求线段CE 的长. 【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,(3)设EB=x ,则AD=2BE=2x , ∵点D 为线段AE 的中点, ∴AD=DE=2x , ∵AB=15, ∴AD +DE +BE=15, ∴x +2x +2x=15,解方程得:x=3,即BE=3, ∵AB=15,C 为AB 中点,∴BC=12AB=7.5,∴CE=BC ﹣BE=7.5﹣3=4.5.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8. (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.【解答】解:(1)∵A ,B 两点所表示的数分别为﹣2和8, ∴OA=2,OB=8, ∴AB=OA +OB=10.(2)如图,线段MN 的长度不发生变化,其值为5.理由如下: ∵M 为PA 的中点,N 为PB 的中点,∴NP=12BP ,MP=12AP ,∴MN =NP −MP =12BP −12AP =12AB=5.34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ﹣8 ,点B 表示的数为 4(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q 从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.【解答】解:(1)∵在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,a 、b 满足|a +8|+|b ﹣4|=0, ∴a +8=0,b ﹣4=0, 解得:a=﹣8,b=4,则点A 表示的数为:﹣8,点B 表示的数为:4;(2)设x 秒时两点相遇, 则3x +x=4﹣(﹣8),21解得:x=3,即3秒时,两点相遇,此时点C 所表示的数为:﹣8+3×3=1;(3)当两点相遇前的距离为2个单位长度时, 3x +x=10,解得:x=52,此时此时点Q 所表示的数为:4﹣1×52=1.5;当两点相遇后的距离为2个单位长度时, 3x +x=14,解得:x=72,此时此时点Q 所表示的数为:4﹣1×72=0.5;综上所述:点Q 表示的数为:1.5或0.5.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.【解答】解:∵AB=16cm ,AM :BM=1:3, ∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm ,∴PQ=AQ ﹣AP=6cm .36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.【解答】解:因为BC=2AB ,且AB=60cm , 所以BC=120cm .所以AC=AB +BC=120+60=180cm . 因为D 为AC 中点,所以 AD=12AC=90cm .。

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

2019年七年级数学上册线段的计算专题练习一、解答题:1、如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.2、如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.3、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.4、点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.5、如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.6、如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB的中点,求线段EF的长.7、如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.8、如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.9、如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.10、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.11、如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.12、A、B、C、D四个车站的位置如图所示,B、C两站之间的距离BC=2a+b,B、D两站之间的距离BD=4a +3b.求:⑴ C、D两站之间的距离CD;⑵若C站到A、D两站的距离相等,则A、B两站之间的距离AB是多少?13、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.14、如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.15、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;(2)当t=2时,求PQ的值;(3)当AB=2PQ时,求t的值.16、如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=6 ,CB=4 ,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,你能猜想线段MN与AB的数量关系吗?并说明你的理由;(3)若点C在线段AB的延长线上,其它条件不变,你上述猜想的结论是否仍然成立?请画出图形,写出你的结论,并说明你的理由;17、如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.18、已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A.①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.19、如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.20、探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a= ,b= ,c= ;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1、解:(1)∵M是AB的中点∴MB=40(2)∵N为PB的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=122、解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.3、解:(1)∵DE=9cm,∴DC+CE=9cm.∵点D是线段AC的中点,点E是线段BC的中点,∴AC=2CD,BC=2CE.∵AB=AC+BC=2(CD+CE)=2DE=18cm;(2)点C是线段AB的中点,∴AB=ACB.∵点E是线段BC的中点,∴BC=2CE=10cm.∵点D是线段AC的中点,∴DC=AC=BC=5cm.∴DB=DC+CB=5+10=15cm.4、解:由于AC:BC=3:1,设BC=x,则AC=3x第一种情况:当点C在线段AB上时,AC+BC=AB.因为 AB=8,所以3x+x=8解得 x=2所以 BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为 AB=8,所以3x﹣x=8解得 x=4所以 BC=4综上,BC的长为2或4.5、解:∵线段AB=8cm,E为线段AB的中点,∴BE4cm,∴BC=BE﹣EC=4﹣3=1cm,∴AC=AB﹣BC=8﹣1=7cm,∵点D为线段AC的中点,∴CD=3.5cm,∴DE=CD﹣EC=3.5﹣3=0.5cm.6、解:∵F为线段AB的中点,∴BF=AB=16,∵AC=BC,∴BC=AB=24,∵E为线段BC的中点,∴BE=12,∴EF=BF﹣BE=16﹣12=4.7、解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.8、解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm9、解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.10、解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.11、解:12、解:⑴ CD=(4a+3b)-(2a+b)=2a+2b 答:C、D两站之间的距离CD为(2a+2b)⑵ AB=AC-BC=CD-BC=(2a+2b)-(2a+b)=b 答:A、B两站之间的距离AB是b.13、解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.14、解:∵M是AC的中点,AC=6,∴MC=3,又因为CN∶NB=1∶2,BC=15,∴CN=5,∴MN=MC+CN=3+5=8,∴MN的长为8 cm15、解:16、解:17、解:18、解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.19、解:20、解:。

新人教版七年级数学上册专题训练:线段的计算(含答案)

新人教版七年级数学上册专题训练:线段的计算(含答案)

新人教版七年级数学上册专题训练:线段的计算(含答案)一、选择题1. 已知线段AB的长度为5cm,线段BC的长度为9cm,求线段AC的长度是多少?A) 4cmB) 6cmC) 10cmD) 14cm答案: B) 6cm2. 已知线段DE的长度为7cm,线段EF的长度为3cm,求线段DF的长度是多少?A) 4cmB) 7cmC) 10cmD) 14cm答案: A) 4cm3. 正方形ABCD的一条边长为10cm,求它的对角线的长度是多少?A) 5cmB) 10cmC) 14cmD) 20cm答案: C) 14cm二、填空题1. 直线段AB的长度为15cm,点P在AB上,且AP与PB的比例为2:3,则AP的长度为__ cm。

答案: 6 cm2. 直线段CD的长度为12cm,点P在CD上,且CP与PD的比例为1:4,则PD的长度为__ cm。

答案: 9 cm三、解答题1. 三角形ABC中,线段AB的长度为8cm,线段AC的长度为10cm,求线段BC的长度。

答案: 使用勾股定理计算,BC = √(AB² + AC²) = √(8² + 10²) = √(64 + 100) = √(164) ≈ 12.81cm2. 线段EF的长度为15cm,点P在EF上,且PE与PF的比例为3:4,求PE和PF的长度。

答案: 根据比例关系,PE = (3/7) * EF = (3/7) * 15 = 6.43cm,PF = (4/7) * EF = (4/7) * 15 = 8.57cm以上为新人教版七年级数学上册专题训练中关于线段的计算的题目及答案。

希望能够帮助到你!。

专题08 线段的有关计算(解析版)-2020-2021学年七年级数学上册期末综合复习专题提优训练

专题08 线段的有关计算(解析版)-2020-2021学年七年级数学上册期末综合复习专题提优训练

2020-2021学年七年级数学上册期末综合复习专题提优训练(人教版)专题08 线段的有关计算【典型例题】1.(2019·武汉七一华源中学七年级月考)如图,已知线段AB ,点C 在线段AB 的延长线上,且52AC AB =,点D 在线段AB 的反向延长线上,且23AD BD =. (1)请画出图形,并求DABC的值; (2)若线段AB =2,点R 在直线AB 上,线段CR =4,请求出线段DR 的长.【答案】解:(1)如图,设3,BD m =23AD BD =, 2,AD m ∴=32,AB BD AD m m m ∴=-=-=52AC AB =, 5,2AC m ∴=53,22BC AC AB m m m ∴=-=-= 232422.32332AD m BC m ∴==÷=⨯=(2)如图,当R 在C 的左边时,由(1)得:AB =2 m24,AD m ∴==5=5,2AC m =4CR =,541AR AC CR ∴=-=-=, 415DR AR AD ∴=+=+=,当R 在C 的右边时,如图,45413.DR AD AC CR =++=++=综上:DR 的长为:5或13.【点睛】本题考查的是线段的和差,简单的作图,掌握线段的和差关系是解题的关键.【专题训练】一、选择题1.(2020·甘州中学七年级月考)点A,B,P在同一直线上,下列说法正确的是()A.若AB=2P A,则P是AB的中点B.若AB=PB,则P是AB的中点C.若AB=2PB,则P是AB的中点D.若AB=2P A=2PB,则P是AB的中点【答案】D2.(2020·重庆九十五中佳兆业中学七年级期中)已知线段AB=10,C是AB上一点,D、E分别是AC、BC的中点,则线段DE的长为()A.4B.5C.8D.6【答案】B3.(2020·辽宁)已知线段AB=9,点C是AB的中点,点D是AB的三等分点,则C,D两点间距离为()A.3B.1.5C.1.2D.1【答案】B4.(2020·明光市明湖学校七年级期末)如图,长度为12的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为()A.2B.5C.6D.8【答案】D5.(2019·浙江七年级月考)如图,在线段AB上有C、D两点,CD长度为1,AB长为整数,则以A、B、C、D为端点的所有线段长度和不可能为()A.21B.22C.25D.31【答案】A6.(2019·武汉七一华源中学七年级月考)如图:点C是线段AB上的点,若AC=3cm,AB=15cm,点D为线段CB的中点,则线段CD的长为()A.3cm B.6cm C.9cm D.7.5cm【答案】B7.(2020·全国七年级课时练习)如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.1【答案】C二、填空题8.(2020·湖北七年级期中)在数轴上,点B表示-1,点C表示5,若点B为线段AC的中点,则点A表示的数是_____.【答案】-79.(2020·甘州中学七年级月考)线段AB上有点C,点C使AC:CB=2:3,点M和点N分别是线段AC和线段CB的中点,若MN=4,则AB的长是_____.【答案】810.(2019·陕西师范大学附属中学分校七年级月考)已知在一直线上顺次有A、B、C三个点,且线段AB=8cm,BC=6cm BC ,点M是线段AC的中点,则线段AM的长为___cm.6cm【答案】711.(2020·吉林农安县第三中学、农安三中七年级月考)如图,C是线段BD的中点,AD=3,AC=7,则线段AB的长等于________.【答案】1112.(2019·武汉七一华源中学七年级月考)已知线段AB的长度为12,点P为线段AB的四等分点,则线段AP的长为_______.【答案】3,6,913.(2020·辽宁)已知点C,D在直线AB上,且AC=BD=1.5,若AB=7,则CD的长为_______.【答案】4或7或1014.(2018·浙江七年级月考)如图,将一根绳子对折以后用线段AB表示,点P是AB的四等分点,现从P处将绳子剪断,剪断后的各段绳子中的一段长为30cm,则这条绳子的原长为_____cm.【答案】40或80或120或240.三、解答题15.(2020·吉林农安县第三中学、农安三中七年级月考)如图,D是AB的中点,E是BC的中点,13cm6BE AC==,求DE的长.【答案】∵13cm6BE AC==∴AC=6BE=18cm ∵E是BC的中点∴BC =2BE =6cm∴AB =AC -BC =12cm又∵AB =2AD∴BD =6cm∴DE =DB +BE =6+3=9cm【点睛】本题考查了两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.16.(2020·辽宁)如图,已知点C ,D 在线段AB 上,且::2:5:3AC CD DB =,AC =4 cm ,若点M 是线段AD 的中点,求线段BM 的长.【答案】解:设2AC x =,5CD x =,3DB x =由题意:24=x , 解得2x=,224AC cm ∴=⨯=,5210CD cm =⨯=,326DB cm =⨯=, 41014AD AC CD cm ∴=+=+=.M 是线段AD 中点, 1114722DM AD cm ∴==⨯=. 6713BM BD DM cm ∴=+=+=.【点睛】本题考查线段的中点,线段的和差,掌握中点的性质和线段的和差关系为解题关键.17.(2019·西安交通大学附属中学雁塔校区七年级月考)如图,已知线段AB=20cm,C是线段AB延长线上一点,点D是BC 中点.当AC=6CD时,求AC的长.【答案】解:∵点D是BC的中点,∴BC=2CD,∵AC=6CD,∴AB=4CD,∵AB=20cm,∴CD=5cm,∴AC=30cm.【点睛】本题考查的是两点间的距离,熟知中点的定义是解答此题的关键.18.(2020·甘肃临泽二中七年级月考)如图所示,已知D是AB上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长.【答案】解:∵M、N分别是AD、DB的中点,AB=16∴MD=12AD,DN=12BD,AD+BD=AB=16.∴MN=MD+DN=12(AD+BD)=8.【点睛】此题主要考查与线段中点有关的线段计算问题,解题的关键是学生的读图能力及建立线段之间的数量关系.19.(2020·甘州中学七年级月考)点A,B,C三点在同一直线上,AB的中点是点E,BC的中点是点F,EF=12,求AC的长度.【答案】解:当如图1所示时,∵AB的中点是点E,BC的中点是点F,EF=12,∴EF=12AB﹣12BC=12(AB﹣BC)=12AC=12,解得AC=24;当如图2所示时,∵AB的中点是点E,BC的中点是点F,EF=12,∴EF=12AB+12BC=12(AB+BC)=12AC=12,解得AC=24;当如图3所示时,∵AB的中点是点E,BC的中点是点F,EF=12,∴EF=12BC-12AB=12(BC-AB)=12AC=12,解得AC=24;综上所述:AC的长为24故AC 的长为24.【点睛】本题主要考查两点之间的距离,熟知各线段之间的和差倍数关系是解题的关键.20.(2019·浙江七年级月考)线段AB 和CD 在同一直线上,M ,N 分别是线段AB ,CD 的中点,已知AB =6 cm ,CD =8 cm .(1)当A ,C 两点重合时,如图1,求MN 的长;(2)当C 点在线段AB 上时,如图2,如果线段AB ,CD 的公共部分CB =2 cm ,求MN 的长;(3)在(2)的情况下,MN 与AB ,CD ,BC 有怎样的数量关系?(直接写出结果)【答案】解:(1)M ,N 分别是线段AB ,CD 的中点,6AB cm =,8CD cm =,3AM cm ∴=,4AN CN cm ==, 1MN AN AM cm ∴===;(2)M ,N 分别是线段AB ,CD 的中点,6AB cm =,8CD cm =,3AM cm ∴=,4DN cm =,线段AB ,CD 的公共部分2BC cm =,68212AD AB CD BC cm ∴=+-=+-=.故12345MN AD AM DN cm =--=--=;(3)M ,N 分别是线段AB ,CD 的中点,12AM AB ∴=,12DN CD =, AD AB CD BC ∴=+-,故11112222MN AD AM DN AB CD BC AM DN AB CD BC AB CD AB CD BC =--=+---=+---=+-. 【点睛】本题考查了线段中点的相关计算,利用线段中点的性质得出MC ,NC 的长是解题关键.。

部编数学七年级上册专题28和线段有关的计算(解析版)含答案

部编数学七年级上册专题28和线段有关的计算(解析版)含答案

专题28 和线段有关的计算1.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1/cm s 、3/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若11AB cm =,当点C 、D 运动了1s ,求AC MD +的值.(2)若点C 、D 运动时,总有3MD AC =,直接填空:AM =.(3)在(2)的条件下,N 是直线AB 上一点,且AN BN MN -=,求23MN AB的值.【解答】解:(1)当点C 、D 运动了1s 时,1CM cm =,3BD cm=11AB cm =Q ,1CM cm =,3BD cm=11137AC MD AB CM BD cm \+=--=--=;(2)设运动时间为t ,则CM t =,3BD t =,AC AM t =-Q ,3MD BM t =-,又3MD AC =,333BM t AM t \-=-,即3BM AM =,BM AB AM=-Q 3AB AM AM \-=,14AM AB \=,13AM BM \=,故答案为:13;(3)当点N 在线段AB 上时,如图14BN AM AB \==,12MN AB \=,即2133MN AB =.当点N 在线段AB 的延长线上时,如图AN BN MN -=Q ,AN BN AB-=MN AB \=,\1MN AB=,即2233MN AB =.综上所述2133MN AB =或23.2.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧,(1)若18AB =,8DE =,线段DE 在线段AB 上移动,①如图1,当E 为BC 中点时,求AD 的长;②当点C 是线段DE 的三等分点时,求AD 的长;(2)若2AB DE =,线段DE 在直线上移动,且满足关系式32AD EC BE +=,则CD AB【解答】解:(1)2AC BC =Q ,18AB =,6BC \=,12AC =,①E Q 为BC 中点,3CE \=,8DE =Q ,5CD \=,1257AD AC CD \=-=-=;②Q 点C 是线段DE 的三等分点,8DE =,18163CD \=,16201233AD AC CD \=-=-=;当点C 靠近点D 时,1833DC DE ==,8281233AD AC CD \=-=-=;(2)当点E 在线段BC 之间时,如图,设BC x =,则22AC BC x ==,3AB x \=,2AB DE =Q ,1.5DE x \=,设CE y =,2AE x y \=+,BE x y =-,2 1.50.5AD AE DE x y x x y \=-=+-=+,Q32AD EC BE +=,\0.532x y y x y ++=-,27y x \=,2171.5714CD x x x \=-=,\171714342x CD AB x ==;当点E 在点A 的左侧,如图,设BC x =,则 1.5DE x =,设CE y =,1.5DC EC DE y x \=+=+,1.520.5AD DC AC y x x y x \=-=+-=-,Q32AD EC BE +=,BE EC BC x y =+=+,\0.532y x y x y -+=+,4y x \=,1.54 1.5 5.5CD y x x x x \=+=+=, 1.5 6.5BD DC BC y x x x =+=++=,6.50.5 6.540.53AB BD AD x y x x x x x \=-=-+=-+=,\ 5.51136CD x AB x ==,当点E 在线段AC 上及点E 在点B 右侧时,无解,综上所述CD AB 的值为1742或116.另一解法:可设6AB =,则4AC =,2CB =,3DE =,以A 为原点,以AB 的方向为正方向建立数轴,则A 表示0,C 表示4,B 表示6,如图,设D 表示的数为x ,则E 表示3x +,可得||AD x =,|34||1|EC x x =+-=-,|36||3|BE x x =+-=-,|4|CD x =-,|||1|3|3|2AD EC x x BE x ++-==-,①当0x <或3x …时,上式可化为:1332x x x +-=-,解得7x =-,则|74|1166CD AB --==;②13x <…时,上式化为:1332x x x +-=-,解得:117x =,则11|4|177642CD AB -==;③01x <…时,上式化为:1332x x x +-=-,解得:73x =(舍去).综上所述CD AB 的值为1742或116.故答案为:1742或116.3.已知点C 在线段AB 上,2AC BC =,点D ,E 在直线AB 上,点D 在点E 的左侧.(1)若15AB =,6DE =,线段DE 在线段AB 上移动.①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CF =,求AD 的长;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,求CD BD的值.【解答】解:(1)2AC BC =Q ,15AB =,5BC \=,10AC =,①E Q 为BC 中点,2.5CE \=,6DE =Q ,3.5CD \=,10 3.5 6.5AD AC CD \=-=-=;②如图1,当点F 在点C 的右侧时,3CF =Q ,5BC =,13AF AC CF \=+=,11333AD AF \==;当点F 在点C 的左侧时,10AC =Q ,3CF =,7AF AC CF \=-=,37AF AD \==,73AD \=;综上所述,AD 的长为133或73;(2)当点E 在线段BC 之间时,如图3,设BC x =,则22AC BC x ==,2AB DE =Q ,1.5DE x \=,设CE y =,2AE x y \=+,BE x y =-,2 1.50.5AD AE DE x y x x y \=-=+-=+,Q32AD EC BE +=,\0.532x y y x y ++=-,27y x \=,2171.5714CD x x x \=-=,313(0.5)14BD x x y x =-+=,\171714313114x CD BD x ==;当点E 在点A 的左侧,如图4,设BC x =,则 1.5DE x =,设CE y =,1.5DC EC DE y x \=+=+,1.520.5AD DC AC y x x y x \=-=+-=-,Q32AD EC BE +=,BE EC BC x y =+=+,\0.532y x y x y -+=+,4y x \=,1.54 1.5 5.5CD y x x x x \=+=+=, 1.5 6.5BD DC BC y x x x =+=++=,\ 5.5116.513CD x BD x ==,点D 在C 点右侧,及点D 在B 点右侧,无解,不符合题意;当是D 在A 右侧,E 在C 左侧时,如图5,则22AC BC x ==,3AB x \=,2AB DE =Q ,1.5DE x \=,设CE y =,12AD x y \=-,Q 32AD EC BE +=,\1322x y y x y -+=+,33x x y \=+(不合题意),当点E 在线段AC 上及点E 在点B 右侧时,无解,当D 在B 的右侧,其他情况不存在,舍去.综上所述CD BD 的值为1731或1113.4.已知:如图1,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 同时出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若4AM cm =,当点C 、D 运动了2s ,此时AC = 2cm ,DM = ;(直接填空)(2)当点C 、D 运动了2s ,求AC MD +的值;(3)若点C 、D 运动时,总有2MD AC =,则AM = (填空);(4)在(3)的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【解答】解:(1)根据题意知,2CM cm =,4BD cm =,12AB cm =Q ,4AM cm =,8BM cm \=,2AC AM CM cm \=-=,4DM BM BD cm =-=,故答案为:2cm ,4cm ;(2)当点C 、D 运动了2s 时,2CM cm =,4BD cm =,12246()AC MD AM CM BM BD AB CM BD cm \+=-+-=--=--=;(3)根据C 、D 的运动速度知:2BD MC =,2MD AC =Q ,2()BD MD MC AC \+=+,即2MB AM =,AM BM AB +=Q ,2AM AM AB \+=,143AM AB cm \==,故答案为:4cm ;(4)①当点N 在线段AB 上时,如图1,AN BN MN -=Q ,又AN AM MN -=Q ,4BN AM \==,12444MN AB AM BN \=--=--=,\41123MN AB ==;②当点N 在线段AB 的延长线上时,如图2,AN BN MN -=Q ,又AN BN AB -=Q ,12MN AB \==,\12112MN AB ==;综上所述13MN AB =或1.5.如图,已知P 是线段AB 上一点,23AP AB =,C ,D 两点从A ,P 同时出发,分别以每秒2厘米,每秒1厘米的速度沿AB 方向运动,当点D 到达终点B 时,点C 也停止运动,设AB a =(厘(1)用含a 和t 的代数式表示线段CP 的长度;(2)当5t =时,12CD AB =,求线段AB 的长;(3)当CB AC PC -=时,求PD AB 的值.【解答】解:(1)AB a =Q ,23AP AB =,23AP a \=,2AC t =Q ,223CP AP AC a t \=-=-;(2)12CD AB =Q ,1()2PC PD AP PB \+=+,223AP PC AB \==,\222(2)33a a t =-,当5t =时,解得30a =,30AB cm \=;(3)CB AC PC -=Q ,AC PB \=,23AP AB =Q ,13PB AB \=,2AC PC PB t \===,6AB t \=,PD t =Q ,\16PD AB =.6.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1/cm s 、3/cm s(1)若10AB cm =,当点C 、D 运动了2s ,求AC MD +的值.(2)若点C 、D 运动时,总有3MD AC =,直接填空:AM =AB .(3)在(2)的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB 的值.【解答】解:(1)当点C 、D 运动了2s 时,2CM cm =,6BD cm =10AB cm =Q ,2CM cm =,6BD cm=10262AC MD AB CM BD cm \+=--=--=.(2)设运动时间为t ,则CM t =,3BD t =,AC AM t =-Q ,3MD BM t =-,又3MD AC =,333BM t AM t \-=-,即3BM AM =,BM AB AM=-Q 3AB AM AM \-=,14AM AB \=,故答案为:14.(3)当点N 在线段AB 上时,如图AN BN MN -=Q ,又AN AM MN -=Q 14BN AM AB \==,12MN AB \=,即12MN AB =.当点N 在线段AB 的延长线上时,如图AN BN MN -=Q ,又AN BN AB -=QMN AB \=,即1MN AB =.综上所述112MN AB =或7.如果一点在由两条公共端点的线段组成的一条折线上且把这条折线分成长度相等的两部分,这点叫做这条折线的“折中点”.如果点D 是折线A C B --的“折中点”,请解答以下问题:(1)已知AC m =,BC n =.当m n >时,点D 在线段 AC 上;当m n =时,点D 与 重合;当m n <时,点D 在线段 上;(2)若E 为线段AC 中点,4EC =,3CD =,求CB 的长度.【解答】解:(1)已知AC m =,BC n =.当m n >时,点D 在线段AC 上;当m n =时,点D 与C 重合;当m n <时,点D 在线段BC 上.故答案为:AC ,C ,BC ;(2)点D 在线段AC 上,E Q 为线段AC 中点,4EC =,28AC CE \==,3CD =Q ,5AD AC CD \=-=,5BD AD ==Q ,532BC \=-=;点D 在线段BC 上,E Q 为线段AC 中点,4EC =,28AC CE \==,3CD =Q ,11AD AC CD \=+=,11BD AD ==Q ,11314BC \=+=.8.如图,B 是线段AD 上一动点,沿A D A ®®以2/cm s 的速度往返运动1次,C 是线段BD 的中点,10AD cm =,设点B 运动时间为t 秒(010)t …….(1)当2t =时,①AB = 4 cm .②求线段CD 的长度.(2)①点B 沿点A D ®运动时,AB = cm ;②点B 沿点D A ®运动时,AB = cm .(用含t 的代数式表示AB 的长)(3)在运动过程中,若AB 中点为E ,则EC 的长是否变化,若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)当2t =时,①224AB cm =´=;②1046BD AD AB cm =-=-=,由C 是线段BD 的中点,得116322CD BD cm ==´=;(2))①点B 沿点A D ®运动时,2AB tcm =;②点B 沿点D A ®运动时,202AB tcm =-;(3)在运动过程中,若AB 中点为E ,则EC 的长不变,由AB 中点为E ,C 是线段BD 的中点,得12BE AB =,12BC BD =.11()10522EC BE BC AB BD cm =+=+=´=.9.如图,点B 、C 在线段AD 上,23CD AB =+.(1)若点C 是线段AD 的中点,求BC AB -的值;(2)若14BC AD =,求BC AB -的值;(3)若线段AC 上有一点P (不与点B 重合),AP AC DP +=,求BP 的长.【解答】解:设AB x =,BC y =,则23CD x =+.(1)C Q 是AD 中点,AC CD \=,23x y x \+=+3y x \-=,即3BC AB -=.(2)14BC AD =Q ,即3AB CD BC +=,233x x y \++=,1y x \-=,即1BC AB -=.(3)设AP m =,AP AC DP +=Q ,23m x y x x y m \++=+++-,32m x \-=,即32BP m x =-=.10.如图,点B 、C 是线段AD 上的两点,点M 和点N 分别在线段AB 和线段CD 上.(1)当8AD =,6MN =,AM BM =,CN DN =时,BC = 4 ;(2)若AD a =,MN b=①当2AM BM =,2DN CN =时,求BC 的长度(用含a 和b 的代数式表示)②当AM nBM =,(DN nCN n =是正整数)时,直接写出BC = .(用含a 、b 、n 的代数式表示)【解答】解:(1)8AD =Q ,6MN =,862AM DN AD MN \+=-=-=,AM BM =Q ,CN DN =,224AB CD AM DN \+=+=,()844BC AD AB CD \=-+=-=,故答案为4.(2)①AD a =Q ,MN b =,AM DN AD MN a b \+=-=-,2AM BM =Q ,2DN CN =,33()()22AB CD AM DN a b \+=+=-,331()()222BC AD AB CD a a b b a \=-+=--=-.②AD a =Q ,MN b =,AM DN AD MN a b \+=-=-,AM nBM =Q ,DN nCN =,11()()n n AB CD AM DN a b n n++\+=+=-,111()()n n BC AD AB CD a a b b a n n n ++\=-+=--=-.故答案为11n b a n n+-.11.如图,C 为线段AB 延长线上一点,D 为线段BC 上一点,2CD BD =,E 为线段AC 上一点,2CE AE=(1)若18AB =,21BC =,求DE 的长;(2)若AB a =,求DE 的长;(用含a 的代数式表示)(3)若图中所有线段的长度之和是线段AD 长度的7倍,则AD AC 【解答】解:(1)2CD BD =Q ,21BC =,173BD BC \==,2CE AE =Q ,18AB =,111()(1821)13333AE AC AB BC \==+=´+=,18135BE AB AE \=-=-=,5712DE BE BD \=+=+=;(2)2CD BD =Q ,13BD BC \=,2CE AE =Q ,AB a =,13AE AC \=,13BE AB AE AB AC \=-=-,11112()33333DE BE BD AB AC BC AB AC BC AB AB AB \=+=-+=--=-=,AB a =Q ,23DE a \=;(3)设22CD BD x ==,22CE AE y ==,则BD x =,AE y =,所有线段和43(23)223(23)222227(23)AE AB AD AC EB ED EC BD BC DC y y x x x y x x x x x x y y x x +++++++++=+-+++-+++++=+-+,2y x =,则23324AD y y x x y x x =+-+=-=,36AC y x ==,\23AD AC =,故答案为:23.12.如图,C 是线段AB 上一点,16AB cm =,6BC cm =.(1)AC = 10 cm ;(2)动点P 、Q 分别从A 、B 同时出发,点P 以2/cm s 的速度沿AB 向右运动,终点为B ;点Q 以1/cm s 的速度沿BA 向左运动,终点为A .当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C 、P 、Q 三点,有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)16610AC AB BC cm =-=-=,故答案为:10;(2)①当05t <…时,C 是线段PQ 的中点,得1026t t -=-,解得4t =;②当1653t <…时,P 为线段CQ 的中点,210163t t -=-,解得265t =;③当1663t <…时,Q 为线段PC 的中点,6316t t -=-,解得112t =;④当68t <…时,C 为线段PQ 的中点,2106t t -=-,解得4t =(舍),综上所述:4t =或265或112.13.如图1,点A ,B 都在线段EF 上(点A 在点E 和点B 之间),点M ,N 分别是线段EA ,BF 的中点.(1)若::1:2:3EA AB BF =,且12EF cm =,求线段MN 的长;(2)若MN a =,AB b =,求线段EF 的长(用含a ,b 的代数式表示);(3)如图2,延长线段EF 至点1A ,使1FA EA =,请探究线段1BA 与EM NF +应满足的数量关系(直接写出结论)【解答】解:(1)设EA xcm =,则2AB xcm =,3BF cm =,6EF xcm =.Q 点M ,N 分别是线段EA ,BF 的中点,12EM MA xcm \==,32BN NF xcm ==.2AB xcm =Q ,4MN MA AB BN xcm \=++=.12EF cm =Q ,612x \=,解得:2x =,48MN x cm \==.(2)Q 点M ,N 分别是线段EA ,BF 的中点,EM MA \=,BN NF =.MN a =Q ,AB b =,MA BN MN AB a b \+=-=-,EM NF a b \+=-,2EF EM MN NF a b a a b \=++=-+=-.(3)Q 点M ,N 分别是线段EA ,BF 的中点,2EA EM \=,2BF NF =.1FA EA =Q ,112()BA BF FA BF EA EM NF \=+=+=+.14.在射线OM 上有三点A ,B ,C ,满足15OA cm =,30AB cm =,10BC cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动;点Q 从点C 出发,沿线段CO 匀速向点O 运动(点Q 运动到点O 时停止运动).如果两点同时出发,请你回答下列问题:(1)已知点P 和点Q 重合时23PA AB =,求OP 的长度;(2)在(1)题的条件下,求点Q 的运动速度.【解答】解:(1)23PA AB =Q ,30AB cm =,230203PA cm \=´=,15OA cm =Q ,35OP OA AP cm \=+=,(2)OC OA AB BC =++Q ,15OA cm =,30AB cm =,10BC cm =,15301055OC cm \=++=,553520CP OC OP cm =-=-=Q ,P Q 以1/cm s 的速度匀速运动,\点P 运动的时间为35s ,点Q 运动的时间为35s ,\点Q 的速度204/357cm s ==.15.如图,有两段线段2AB =(单位长度),1CD =(单位长度)在数轴上运动.点A 在数轴上表示的数是12-,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是 10- ,点C 在数轴上表示的数是 ,线段BC = (2)若线段AB 以1个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.设运动时间为t 秒,若6BC =(单位长度),求t 的值(3)若线段AB 以1个单位长度/秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左运动.设运动时间为t 秒,当024t <<时,设M 为AC 中点,N 为BD 中点,则线段MN 的长为 .【解答】解:(1)2AB =Q ,点A 在数轴上表示的数是12-,\点B 在数轴上表示的数是10-;1CD =Q ,点D 在数轴上表示的数是15,\点C 在数轴上表示的数是14.14(10)24BC \=--=.故答案为:10-;14;24.(2)当运动时间为t 秒时,点B 在数轴上表示的数为10t -,点C 在数轴上表示的数为142t -,|10(142)||324|BC t t t \=---=-.6BC =Q ,|324|6t \-=,解得:16t =,210t =.答:当6BC =(单位长度)时,t 的值为6或10.(3)当运动时间为t 秒时,点A 在数轴上表示的数为12t --,点B 在数轴上表示的数为10t --,点C 在数轴上表示的数为142t -,点D 在数轴上表示的数为152t -,024t <<Q ,\点C 一直在点B 的右侧.M Q 为AC 中点,N 为BD 中点,\点M 在数轴上表示的数为232t -,点N 在数轴上表示的数为532t -,53233222t t MN --\=-=.故答案为:32.16.(1)如图,点C 在线段AB 上,线段6AC cm =,10BC cm =,点D 、E 分别是AC 和BC 的中点.求线段DE 的长;(2)若线段AB acm =,其他条件不变,则线段DE (直接写出答案).(3)对于(1),如果叙述为:“点C 在直线AB 上,线段6AC cm =,10BC cm =,点D 、E 分别是AC 和BC 的中点,求线段DE 的长?”结果会有变化吗?如果有,直接写出结果.【解答】解:(1)6AC cm =Q ,10BC cm =,点D 、E 分别是AC 和BC 的中点,132DC AC cm \==,152CE CB cm ==,8DE DC EC cm \=+=;(2)Q 点D 、E 分别是AC 和BC 的中点,12DC AC \=,12CE CB =,11()22DE DC EC AC CB acm \=+=+=;故答案为:12acm ;(3)结果会有变化,如图,点D 、E 分别是AC 和BC 的中点,132DC AC cm \==,152CE CB cm ==,2DE EC CD cm \=-=,\线段DE 的长为8cm 或2cm .17.(1)如图,点C 在线段AB 上,线段6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?(2)根据(1)的计算过程和结果,设AC BC a +=,其他条件不变,你能猜出MN 的长度吗?用一句话表述你发现的规律?(3)对于(1),如果叙述为:“已知线段6AC cm =,4BC cm =,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?”结果会有变化吗?如果有,求出结果.【解答】解:(1)点M 、N 分别是AC 、BC 的中点,6AC cm =,4BC cm =,2623MC AC cm =¸=¸=,2422NC CB cm =¸=¸=,由线段的和差,得325()MN MC NC cm =+=+=.答:线段MN 的长是5cm .(2)12MN a =,MN 的长度等于1()2AC BC +;(3)会有变化.当C 点在线段AB 上时,5MN cm =;当C 点在线段AB 的延长线上时,1MN cm =.18.如图,点B 在线段AC 上,点M 、N 分别是AC 、BC 的中点.(1)若线段15AC =,25BC AC =,则线段MN (2)若B 为线段AC 上任一点,满足AC BC m -=,其它条件不变,求MN 的长;(3)若原题中改为点B 在直线AC 上,满足AC a =,BC b =,()a b ¹,其它条件不变,求MN 的长.【解答】解:(1)15AC =Q ,25BC AC =,6BC \=,又Q 点M 、N 分别是AC 、BC 的中点,11522CM AC \==,132CN BC ==,159322MN CM CN \=-=-=;故答案为:92;(2)Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()2222MN CM CN AC BC AC BC m \=-=-=-=;(3)当点B 在线段AC 上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CM CN AC BC AC BC a b \=-=-=-=-;当点B 在AC 的延长线上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CM CN AC BC AC BC a b \=+=+=+=+;当点B 在CA 的延长线上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CN CM BC AC BC AC b a \=-=-=-=-.19.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.(1)若18AB =,8DE =,线段DE 在线段AB 上移动.①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,则CD AB【解答】解:(1)2AC BC =,18AB =,8DE =,6BC \=,12AC =,①如图,E Q 为BC 中点,3CE \=,5CD \=,18117AD AB DB \=-=-=;②如图,Ⅰ、当点E 在点F 的左侧,3CE EF +=Q ,6BC =,\点F 是BC 的中点,3CF BF \==,18315AF AB BF \=-=-=,153AD AF \==;Ⅱ、当点E 在点F 的右侧,12AC =Q ,3CE EF CF +==,9AF AC CF \=-=,39AF AD \==,3AD \=.其他情况不存在,舍去.综上所述:AD 的长为3或5;(2)2AC BC =Q ,2AB DE =,满足关系式32AD EC BE +=,Ⅰ、当点E 在点C 右侧时,如图,设CE x =,DC y =,则DE x y =+,2()AB x y \=+24()33AC AB x y ==+4133AD AC DC x y \=-=+12()33BC AB x y ==+2133BE BC CE y x \=-=-7133AD EC x y \+=+2()3AD EC BE+=Q 71212()3()3333x y y x \+=-解得,174x y =,\1742()422()17CD y y AB x y y y ===++.Ⅱ、当点E 在点A 左侧时,如图,设CE x =,DC y =,则DE y x =-,2()AB y x \=-24()33AC AB y x ==-4133AD DC AC x y \=-=-12()33BC AB y x ==-2133BE BC CE y x \=+=+7133AD EC x y \+=-2()3AD EC BE+=Q 71212()3()3333x y y x \-=+解得,118x y =,\112()6CD y AB y x ==-.点D 在C 点右侧,及点D 在B 点右侧,无解,不符合题意;当DE 在线段AC 内部时,如图,设CE x =,DC y =,则DE y x =-,2()AB y x \=-,24()33AC AB y x ==-,1433AD AC DC y x \=-=-,12()33BC AB y x ==-,2133BE BC CE y x \=+=+,1133AD EC x y \+=-+,2()3AD EC BE+=Q 11212()3()3333x y y x \-+=+,解得,54x y -=(不符合题意,舍去),\512()182CD y AB y x ==<-,不符合题意,舍去.其他情况不存在,舍去.故答案为1742或116.20.如图,C 是线段AB 上一点,20AB cm =,8BC cm =,点P 从A 出发,以2/cm s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1/cm s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运动.设点P 运动时间为xs .(1)AC= 12 cm;(2)当x= s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.【解答】解:(1)20812()AC AB BC cm=-=-=.故答案为:12;(2)2020(21)()3s¸+=.故当203x s=时,P、Q重合.故答案为:203;(3)存在,①C是线段PQ的中点,得220212x x+-=´,解得4x=;②P为线段CQ的中点,得122022x x+-=´,解得325x=;③Q为线段PC的中点,得2122(20)x x+=´-,解得7x=;综上所述:4x=或325x=或7x=.。

初一数学试题]]新人教版初一数学上册练习题(含答案)

初一数学试题]]新人教版初一数学上册练习题(含答案)

七年级数学练习题(一)一、填空:(每小题2分,共20分)1. 21-的倒数是 2.2007年12月21日中央气象台的天气预报,22日(冬至)北京市的最低气温为-4℃,南平市的最低气温为6℃,这一天北京市的最低气温比南平市的最低气温低 ℃ 3.用四舍五入法对下列各数取近似数:(1)≈ (保留两个有效数字) (2)≈ (精确到4.建瓯市约万人口,用科学记数法表示为 人5.一件衣服的进价为50元,若要利润率是20%,应该把售价定为 元6.关于x 的方程132-=-m x 解为1-=x ,则=m7.某校的早读时间是7:30-7:50,在这个时间中,分针旋转的角度为 度8.若25y x n -与m y x 2312是同类项,则=m ,=n9.若某三位数的个位数字为a ,十位数字为b ,百位数字为c ,则此三位数可表示为 10.写出一个满足“①未知数的系数是21-,②方程的解是3”的一元一次方程为二、选择题(每小题2分,共12分)11.下列各组数中,互为相反数的是( )A .1-与2)1(- B. 2)1(-与 1 与21与2-12.若a 是有理数,则4a 与3a 的大小关系是( )A. 4a >3aB. 4a =3aC. 4a <3aD.不能确定13.如图,OC 是平角∠AOB 的平分线,OD 、OE 分别是∠AOC 和∠BOC 的平分线, 图中和∠COD 互余的角有( )个14.如果an am =,那么下列等式不.一定成立的是( ) A. 33-=-an am B. an am +=+55 C. n m = D. an am 2121-=-15.下列判断正确的是( )A.锐角的补角不一定是钝角;B.一个角的补角一定大于这个角C.如果两个角是同一个角的补角,那么它们相等;D.锐角和钝角互补16.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏损20%,则本次出售中商场( )A.不赔不赚B.赚160元C.赚80元D.赔80元 三、解答题(共68分)17.按下列语句画出图形(5分) (1)作线段AB=3cm(2)过线段AB 中点C 作射线CDABC E O E(3)作∠ACD 的平分线CE(4)量出∠BCD 的度数,求∠DCE 的大小。

易错15 线段的有关计算(解析版)-七年级数学上册期末突破易错挑战满分(人教版)

易错15 线段的有关计算(解析版)-七年级数学上册期末突破易错挑战满分(人教版)

【突破易错·冲刺满分】2021-2022学年七年级数学上册期末突破易错挑战满分(人教版)易错15 线段的有关计算【易错1例题】线段的有关计算1.(2021·河北滦州·七年级期中)如图,C 为线段AD 上一点,点B 为CD 的中点,且9AD =cm ,2BC =cm .(1)图中共有______条线段?(2)求AC 的长;(3)若点E 在直线AD 上,且3EA =cm ,求BE 的长.【答案】(1)6;(2)5cm ;(3)4cm 或10cm .【分析】(1)固定A 为端点,数线段,依次类推,最后求和即可;(2)根据AC =AD -CD =AC -2BC ,计算即可;(3)分点E 在点A 左边和右边两种情形求解.【详解】(1)以A 为端点的线段为:AC ,AB ,AD ;以C 为端点的线段为:CB ,CD ;以B 为端点的线段为:BD ;共有3+2+1=6(条);故答案为:6.(2)解:∵B 为CD 中点,2BC =cm∵24CD BC ==cm∵9AD =cm∵945AC AD CD =-=-=cm(3)7AB AC BC =+=cm ,3AE =cm第一种情况:点E 在线段AD 上(点E 在点A 右侧).734BE AB AE =-=-=cm第二种情况:点E 在线段DA 延长线上(点E 在点A 左侧).7310BE AB AE =+=+=cm .【点睛】本题考查了数线段,线段的中点,线段的和(差),熟练掌握线段的中点,灵活运用线段的和,差是解题的关键.【专题训练】一、选择题1.(2021·全国·七年级课时练习)下列说法正确的是( )A .若AC BC =,则点C 为线段AB 中点B .用两个钉子把木条固定在墙上,数学原理是“两点之间,线段最短”C .已知A ,B ,C 三点在一条直线上,若5AB =,3BC =,则8AC =D .已知C ,D 为线段AB 上两点,若AC BD =,则AD BC =【答案】D【分析】根据线段中点的定义,两点确定一条直线,线段之间的数量关系求解即可.【详解】解:A 、当点A ,B ,C 不在一条直线上时,点C 不是线段AB 中点,∵选项错误,不符合题意;B 、用两个钉子把木条固定在墙上,数学原理是“两点确定一条直线”,∵选项错误,不符合题意;C 、当点C 在AB 之间时,AC =AB -BC =5-3=2,∵选项错误,不符合题意;D 、已知C ,D 为线段AB 上两点,若AC BD =,则AD BC =,∵选项正确,符合题意.故选:D .【点睛】此题考查了线段中点的概念,两点确定一条直线,线段之间的数量关系等知识,解题的关键是熟练掌握线段中点的概念,两点确定一条直线,线段之间的数量关系.2.(2021·全国·七年级课时练习)如图,点C 是线段AB 的中点,CD =13AC ,若AD =1cm ,则AB =( )A .3cmB .2.5cmC .4cmD .6cm 【答案】A【分析】根据线段中点的性质及线段间的比例关系,可得AC 的长,从而得到AB 的长.【详解】解:∵点C 是线段AB 的中点, ∵12AC BC AB ==, ∵13CD AC =,1AD =cm , ∵2213AD AC CD ===cm , ∵12CD =cm , ∵32AC =cm , ∵23AB AC ==(cm ),故选:A .【点睛】题目主要考查线段中点的性质及通过线段的比例求线段长度,找准线段间的关系是解题关键.3.(2021·安徽·合肥38中七年级月考)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2021厘米的线段AB ,则线段AB 盖住的整点的个数是( )A .2021B .2022C .2021或2022D .2020或2019【答案】C【分析】分线段AB 的端点与整点重合和线段AB 的端点与整点不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】解:依题意得:①当线段AB起点在整点时,则1厘米长的线段盖住2个整点,2021厘米长的线段盖住2022个整点,②当线段AB起点不在整点时,则1厘米长的线段盖住1个整点,2021厘米长的线段盖住2021个整点.故选C.【点睛】本题考查了数轴,分类讨论和数形结合的思想方法,注意分类讨论不要遗漏是关键.4.(2021·山东·青岛市崂山区第三中学七年级开学考试)已知线段AB=5cm,BC=3cm,且A,B,C在同一直线上,则AC的长为()A.2cm B.8cm C.2cm或8cm D.以上答案都不对【答案】C【分析】分C在B的左侧和右侧进行求解即可得到答案.【详解】解:如图:当C在B的左侧时:∵AB=5cm,BC=3cm,∵AC=AB-BC=2cm,如图:当C在B的右侧时:∵AB=5cm,BC=3cm,∵AC=AB+BC=8cm,∵AC=2cm或8cm,故选C.【点睛】本题主要考查了线段的和差,解题的关键在于能够弄清C点的位置.二、填空题5.(2021·全国·七年级专题练习)如图,线段AB=6,AC=2BC,则BC=__.【答案】2【分析】根据线段的性质计算,即可得到答案.【详解】∵AB=6,AC=2BC∵BC=AB-AC=AB-2BC∵BC=13AB=13×6=2故答案为:2.【点睛】本题考查了线段的性质;解题的关键是熟练掌握线段和与差、代数式的性质,从而完成求解.6.(2021·福建省福州延安中学七年级期末)线段AB=3,延长AB到C,使BC=AB,再延长BA到D,使AD=2AB,则线段CD的长等于____【答案】12【分析】根据已知作图、分别得出BC,AD的长,即可得出线段CD的长.【详解】解:∵线段AB=3,延长AB到C,使BC=AB,再延长BA至D,使AD=2AB,如图:∵BC=3,AD=6,∵CD=6+3+3=12.故答案为:12.【点睛】此题主要考查了两点之间距离的求法,根据已知得出BC与AD的长是解题关键.7.(2021·重庆实验外国语学校七年级月考)如图,已知点C为AB上一点,AC=12cm,CB=23AC,D、E分别为AC、AB的中点;则DE的长为_____cm.【答案】4【分析】根据AC =12cm ,CB =23AC ,求出CB 的长度,从而得到AB 的长度,根据D 、E 分别为AC 、AB 的中点,分别求出AD ,AE ,最后根据DE =AE −AD 即可求出DE 的长.【详解】解:∵AC =12cm ,CB =23AC , ∵CB =12×23=8(cm ), ∵AB =AC +CB =12+8=20(cm ),∵D 、E 分别为AC 、AB 的中点,∵AD =12AC =12×12=6(cm ),AE =12AB =12×20=10(cm ),∵DE =AE −AD =10−6=4(cm ),故答案为:4.【点睛】本题考查了两点间的距离,线段中点的定义,解题的关键是:根据D 、E 分别为AC 、AB 的中点,求出AD ,AE 的长.8.(2021·黑龙江·哈尔滨市第四十九中学校期中)如图,线段AB 和线段CD 的公共部分是线段BD ,且1134BD AB CD ==,点E 、F 分别是AB 、CD 的中点,若20EF =,则BD 的长为______【答案】8【分析】设BD x =,由线段中点的性质得到131,2222AE EB AB x DF FC CD x ======,再根据线段的和差得到AC AB CD BD =+-=AE EF FC ++,转化为解一元一次方程即可.【详解】解:设BD x =,3,4AB x CD x ∴==点E 、F 分别是AB 、CD 的中点,131,2222AE EB AB x DF FC CD x ∴====== 346AC AB CD BD x x x x =+-=+-=6AE EF FC AC x ∴++==320262x x x ∴++= 解得5202x = 8x ∴=8BD ∴=,故答案为:8.【点睛】本题考查线段的和差,涉及线段的中点、一元一次方程的解法等知识,是重要考点,掌握相关知识是解题关键.三、解答题9.(2020·福建·三明市第三中学七年级月考)已知:线段AB =20cm ,点C 为线段AB 上一点,BC =4cm ,点D 、点E 分别为AC 和AB 的中点,求线段DE 的长.【答案】2cm【分析】先根据线段的和差,可得AC 的长,再根据线段中点的性质,可得AD 、AE 的长,最后根据线段的和差,可得DE 的长.【详解】解:由线段的和差,得AC =AB ﹣BC =20﹣4=16cm ,由点D 是AC 的中点, 所以1116822AD AC ==⨯=cm ; 由点E 是AB 的中点,得11201022AE AB ==⨯=cm ,由线段的和差,得DE=AE﹣AD=10﹣8=2cm.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.10.(2021·浙江衢州·七年级期末)如图,已知线段AB.(1)利用刻度尺画图:延长线段AB至C,使BC=12AB,取线段AC的中点D.(2)若CD=6,求线段BD的长.【答案】(1)见解析;(2)2【分析】(1)根据要求作出图形即可.(2)利用线段的中点的定义求出AC,再求出BC,可得结论.【详解】解:(1)如图,线段BC,中点D即为所求作.(2)∵D是AC的中点,∵AD=CD=6,∵AC=12,∵BC=12AB,∵BC=13AC=4,∵BD=CD-CB=6-4=2.【点睛】本题考查了线段的和差定义和线段的中点等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.(2021·广东海珠·七年级期末)如图,已知线段AB,点C在AB的延长线上,AC=53BC,D在AB的反向延长线上,BD=35 DC.(1)设线段AB长为x,用含x的代数式表示BC和AD的长度.(2)若AB=12cm,求线段CD的长.【答案】(1)35,24BC x AD x ==;(2)45CD =cm . 【分析】(1)由已知条件可知线段之间的关系,用x 表示即可;(2)根据CD AD AB BC =++,求得CD 与AB 即x 的关系式,将AB 的值代入即可求得.【详解】(1)如图,设线段AB 长为x ,53AC AB BC BC =+=, 23AB BC ∴=, 即3322BC AB x ==. BD DA AB =+,BD =35DC , 3()5DA AB DA AB BC ∴+=++, 5()3()AD AB AD AB BC ∴+=++,232AD BC AB ∴=-,33352224AD BC AB x x x ∴=-=⨯-=, 35,24BC x AD x ∴== (2)5315424CD AD AB BC x x x x =++=++=, 当AB =12cm 时,1512454CD =⨯=cm . 【点睛】 本题考查了线段的和差,两点之间的距离,列代数式,正确的作出图形是解题的关键.12.(2021·湖南·明德华兴中学七年级期末)如图,点A 、B 、C 、D 在同一条直线上,且AB :BC :CD =2:3:5,线段BC =6.(1)求线段AB 、CD 的长;(2)若在直线上存在一点M 使得AM =2,求线段DM 的长.【答案】(1)AB =4, CD =10;(2)若点M 在点A 左侧,则DM =22;若点M 在点A 右,则DM =18 .【分析】(1)根据线段的和差倍分关系即可得到结论;(2)分两种情况:若点M 在点A 左侧,若点M 在点A 左侧,根据线段的和差即可得到结论.【详解】解:(1)∵AB :BC :CD =2:3:5,且BC =6;∵AB =4,CD =10(2)AD =AB +BC +CD =20若点M 在点A 左侧,则DM =AM +AD =22;若点M 在点A 右侧,则DM =AD -AM =18 ;综上所述,线段DM 的长为22或18.【点睛】本题考查了两点间的距离,利用了线段的和差倍分,正确的理解题意是解题的关键.13.(2021·全国·七年级课时练习)(1)如图,已知点C 在线段AB 上,且10AB =cm ,4BC =cm ,点M 、N 分别是AB 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AB a ,BC b =,点M ,N 分别是AB ,BC 的中点,则MN =________;(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,(2)中的结论是否仍然成立?若不成立,直接写出MN 的长度的表达式.【答案】(1)3cm ;(2)2a b -;(3)不成立,MN 的长度为2a b -或2a b +或2b a - 【分析】(1)根据点M 、N 分别是AB 、BC 的中点分别求出BM 和BN 的长度,最后用BM 减去BN 即可求出MN 的长度;(2)根据点M ,N 分别是AB ,BC 的中点,分别表示出BM 和BN 的长度,最后BM -BN 即可表示出MN 的长度;(3)根据题意分3种情况讨论,即当点C 在线段AB 上时,当点C 在AB 的延长线上时和当点C 在BA 的延长线上时,分别求出BM 和BN 的长度,然后根据BM ,BN 和MN 之间的关系即可表示出MN 的长度.【详解】解:(1)因为点M 是AB 的中点,点N 是BC 的中点, 所以1110522BM AB ==⨯=(cm ),114222BN BC ==⨯=(cm ),523MN BM BN =-=-=(cm ), ∵线段MN 的长度为3cm ;(2)2a b - 解析:因为点M 是AB 的中点,点N 是BC 的中点, 所以122BM AB a ==,1122BN BC b ==, 2a b MN BM BN -=-=; (3)不成立,MN 的长度为2a b -或2a b +或2b a -. 理由:当点C 在线段AB 上时,同(2)可得2a b MN -=; 当点C 在AB 的延长线上时,如图1所示,因为点M 是AB 的中点,点N 是BC 的中点,所以1122BM AB a ==,1122BN BC b ==,MN BM BN =+2a b +=, 即线段MN 的长度为2a b +; 当点C 在BA 的延长线上时,如图2所示,因为点M 是AB 的中点,点N 是BC 的中点,所以1122BM AB a ==,1122BN BC b ==,2b a MN BN BM -=-=,即线段MN 的长度为2b a -. 综上所述,MN 的长度为2a b -或2a b +或2b a -. 【点睛】 此题考查了线段的中点和线段长度的表示方法,解题的关键是熟练掌握线段的中点的概念和线段长度的表示方法.14.(2021·河北滦南·七年级期中)如图,已知B 、C 在线段AD 上.(1)图中共有________条线段;(2)若AB CD =.①比较线段的大小:AC ________BD (填:“>”、“=”或“<”);②若20AD =,12BC =,M 是AB 的中点, N 是CD 的中点,求MN 的长度.【答案】(1)6;(2)①=;②16【分析】(1)分别以A 、B 、C 为线段的端点,数出线段的条数即可;(2)①根据AC =AB +BC 及BD =BC +CD ,即可得AC 与BD 的大小关系;②由题意可求得AB +CD 的长,由中点的含义及MN BM CN BC =++即可求得MN 的长度.【详解】(1)以A 为端点的线段有AB 、AC 、AD 共3条;以B 为端点的线段有BC 、BD 共2条;以C 为端点的线段为CD ,有1条,故共有线段的条数为:3+2+1=6故答案为:6.(2)①∵AC =AB +BC ,BD =BC +CD ,且AB =CD∵AC =BD故答案为:=.②∵20AD =,12BC =∵8AB CD AD BC +=-=.∵M 是AB 的中点,N 是CD 的中点 ∵12BM AB =, 12CN CD = ∵11()8422BM CN AB CD +=+=⨯=. ∵41216MN BM CN BC =++=+=.【点睛】本题考查了线段的数量,线段的和差运算,线段的中点含义,线段大小的比较等知识,把线段表示成和差的形式是解决本题的关键.15.(2021·云南盘龙·七年级期末)如图,点C 在线段AB 上,点M 、N 分别是线段AC 、BC 的中点.(1)若CN =15AB =2cm ,求线段MN 的长度; (2)若AC +BC =acm ,其他条件不变,请猜想线段MN 的长度,并说明理由;(3)若点C在线段AB的延长线上,AC=p,BC=q,其它条件不变,则线段MN的长度会有变化吗?若有变化,请直接写出结果,不说明理由.【答案】(1)MN=5cm;(2)MN=12acm,见解析;(3)有变化,MN=12(p﹣q)【分析】(1)由中点的性质得MC=12AC、CN=12BC,根据MN=MC+CN=12AC+12BC=12(AC+BC)可得答案;(2)由中点性质得MC=12AC、CN=12BC,根据MN=MC+CN=12(AC+CB)可得答案;(3)根据中点的性质得MC=12AC、CN=12BC,结合图形依据MN=MC﹣CN=12AC﹣12BC=12(AC﹣BC)可得答案.【详解】解:(1)∵CN=15AB=2cm,∵AB=10(cm),∵点M、N分别是AC、BC的中点,∵MC=12AC、CN=12BC,∵MN=MC+CN=12AC+12BC=12(AC+BC)=12AB=5(cm);(2)∵M、N分别是AC、BC的中点,∵MC=12AC、CN=12BC,∵AC+CB=acm,∵MN=MC+CN=12(AC+CB)=12a(cm);(3)有变化,如图,∵M、N分别是AC、BC的中点,∵MC=12AC、CN=12BC,∵AC=p,BC=q,∵MN=MC﹣CN=12AC﹣12BC=12(AC﹣BC)=12(p﹣q).【点睛】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.16.(2020·福建·南安市南光中学七年级月考)如图,已知线段AB=12cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.(1)若点C恰好是AB的中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试说明无论AC取何值(不超过12cm),DE的长不变.【答案】(1)6;(2)6cm;(3)见解析.【分析】(1)由AB=12cm,点D,E分别是AC和BC的中点,得出DE=DC+CE=12(AC+CB),即可求解;(2)由AC=4cm,推出CD=2cm,根据AB=12cm,AC=4cm,得出BC=8cm,由DE=DC+CE即可求DE的长;(3)根据点D,E分别是AC和BC的中点,得出DC=12AC,CE=12CB,由DC+CE=12(AC+CB),即可得证.【详解】解:(1)∵点D,E分别是AC和BC的中点,∵DC=12AC,CE=12CB,∵DE=DC+CE=12(AC+CB)=6cm;故答案为:6.(2)∵AC=4cm,∵CD=2cm,∵AB=12cm,AC=4cm,∵BC=8cm,∵CE=4cm,DE=DC+CE=6cm;(3)∵点D,E分别是AC和BC的中点,∵DC=12AC,CE=12CB,∵DC+CE=12(AC+CB),即DE=12AB=6cm,故无论AC取何值(不超过12cm),DE的长不变.【点睛】本题考查了线段的和差倍分,解题的关键是正确的识别图形.。

新人教版初中数学七年级数学上册第四单元《几何图形初步》测试(含答案解析)(4)

新人教版初中数学七年级数学上册第四单元《几何图形初步》测试(含答案解析)(4)

一、选择题1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑 2.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒- 3.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定 4.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个5.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .6 6.计算:135333030306︒︒''''⨯-÷的值为( ) A .335355︒''' B .363355︒''' C .63533︒''' D .53533︒''' 7.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 8.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 9.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 10.如图,图中射线、线段、直线的条数分别为( )A .5,5,1B .3,3,2C .1,3,2D .8,4,111.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种12.如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个二、填空题13.同一条直线上有三点A ,B ,C ,且线段BC=3AB ,点D 是BC 的中点,CD=3,则线段AC 的长为______.14.若A ,B ,C 三点在同一直线上,线段AB =21cm ,BC =10cm ,则A ,C 两点之间的距离是________.15.如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.16.如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.17.25°20′24″=______°.18.如图所示,若∠AOC =90°,∠BOC =30°,则∠AOB =________;若∠AOD =20°,∠COD =50°,∠BOC =30°,则∠BOD =______,∠AOC =________,∠AOB =________.19.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.20.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题21.已知线段AB =10cm ,直线AB 上有一点C ,BC =6cm ,M 为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.22.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.23.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)24.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.25.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.26.已知直线l 上有三点A 、B 、C ,AB=3,AC=2,点M 是AC 的中点.(1)根据条件,画出图形;(2)求线段BM 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:由第一个图可知绿色和白色、黑色相邻,由第二个图可知绿色和蓝色、红色相邻,由已知可得每一块的各面都涂上不同的颜色,3块的涂法完全相同.根据第三个图可知涂成绿色一面的对面涂的颜色是黄色,故答案选C.考点:几何体的侧面展开图.2.C解析:C【分析】先利用角的和差关系求出∠AOB 的度数,根据角平分线的定义求出∠BOD 的度数,再利用角的和差关系求出∠COD 的度数.【详解】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD 平分∠AOB ,∴∠BOD=12(90°+α)=45°+12α,∴∠COD=∠BOD-∠COB=45°-12α,故选:C.【点睛】本题综合考查了角平分线的定义及角的和差关系,熟练掌握是解题的关键.3.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB+=,所以点C在线段AB上.故选A.【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.4.D解析:D【分析】根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.【详解】解:由题意设∠BOE=x,∠EOC=3x,∵∠DOE=60°,OD平分∠AOB,∴∠AOD=∠BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,∴∠EOC=∠AOE=90°,∠BOE=30°,∴∠BOD=∠AOD=30°,故①正确;∵∠BOD=∠AOD=30°,∴射线OE平分∠AOC,故②正确;∵∠BOE=30°,∠AOB=60°,∠DOE=60°,∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,∴图中与∠BOE互余的角有2个,故③正确;∵∠AOE=∠EOC=90°,∴∠AOE+∠EOC =180°,∵∠EOC =90°,∠DOB =30°,∠BOE =30°,∠AOD =30°,∴∠COD+∠AOD =180°,∠COD+∠BOD =180°,∠COD+∠BOE =180°,∠COB+∠AOB =180°,∠COB+∠DOE =180°,∴图中互补的角有6对,故④正确,正确的有4个,故选:D .【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数. 5.A解析:A【分析】根据题意可知BC=6,所以AC=18,由于D 是AC 中点,可得AD=9,从BD=AB-AD 就可求出线段BD 的长.【详解】由题意可知12AB =,且12BC AB =, 所以6BC =,18AC =.因为点D 是线段AC 的中点, 所以1118922AD AC ==⨯=, 所以1293BD AB AD =-=-=.故选A .【点睛】本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.6.B解析:B【分析】先进行度、分、秒的乘法除法计算,再算减法.【详解】135333030306︒︒''''⨯-÷4139555︒︒''''=-386415055︒︒''''-''='''363355︒=. 故选:B .【点睛】本题考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.7.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是:故选:B .【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.8.C解析:C【分析】根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.9.C解析:C【分析】可用特殊值法,设坐标轴上的点A 为0,C 为12m ,求出B 的值,得出BC 的长度,设D 为x ,则M 为2x ,N 为122m x ,即可求出MN 的长度为6m ,可算出MN 与BC 的关系. 【详解】设坐标轴上的点A 为0,C 为12m ,∵AB =BC+4m ,∴B 为8m ,∴BC =4m ,设D 为x ,则M 为2x ,N 为122m x +, ∴MN 为6m ,∴2MN =3BC ,故选:C .【点睛】本题考查了两点间的距离,解题关键是注意特殊值法的运用及方程思想的运用. 10.D解析:D【分析】直线没有端点,射线有一个端点,线段有两个端点.【详解】以A 点为端点的射线有2条,以B 为端点的射线有3条,以C 为端点的射线有2条,以D 为端点射线有1条,合计射线8条.线段:AB ,BC ,AC ,BD ,合计4条.直线:AC ,合计1条故本题 D.【点睛】直线没有端点,射线有一个端点,线段有两个端点.11.C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A 到B 有5条,B 到C 有4条,所以A 到B 到C 有5×4=20条,A 到C 一条.所以从A 地到C 地可供选择的方案共21条.故选C .【点睛】解决本题的关键是能够有顺序地数出所有情况.12.B解析:B【解析】【分析】利用公式:()21n n - 来计算即可.【详解】根据公式:()21n n-来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.二、填空题13.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.14.11cm或31cm【分析】分类讨论:当点C在线段AB上则有AC=AB﹣BC;当点C在线段AB的延长线上则AC=AB+BC然后把AB=21cmBC=10cm分别代入计算即可【详解】当点C在线段AB上则解析:11cm或31cm【分析】分类讨论:当点C在线段AB上,则有AC=AB﹣BC;当点C在线段AB的延长线上,则AC=AB+BC,然后把AB=21cm,BC=10cm分别代入计算即可.【详解】当点C在线段AB上,则AC=AB﹣BC=21cm﹣10cm=11cm;当点C在线段AB的延长线上,则AC=AB+BC=21cm+10cm=31cm;综上所述:A.C两点之间的距离为11cm或31cm.故答案为11cm或31cm.【点睛】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.15.两点之间线段最短【解析】【分析】根据两点之间线段最短可知在CD小区之间沿直线铺设可使用料最少即可解答【详解】解:根据两点之间线段最短可知:当P在线段CD上时PC+PD最小即此时所用的铺设水管的材料最解析:两点之间,线段最短【解析】【分析】根据两点之间线段最短可知,在C、D小区之间沿直线铺设可使用料最少,即可解答.【详解】解:根据两点之间线段最短可知:当P在线段CD上时,PC+PD最小,即此时所用的铺设水管的材料最少.故答案为两点之间,线段最短.【点睛】此题考查两点之间线段最短,解题关键在于掌握其定义.16.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两解析:② 两点之间,线段最短【分析】结合“两点之间线段最短”以及图形信息即可解答本题.【详解】根据题意,可把家与超市看作两个点,结合“两点之间线段最短”即可得出第②条为最短距离,即数学知识为“两点之间线段最短”.【点睛】本题考查两点之间的最短距离,熟练掌握“两点之间线段最短”的性质是解题关键. 17.34°【分析】此类题是进行度分秒的转化运算相对比较简单注意以60为进制【详解】25°20′24″=2534°故答案为2534【点睛】进行度分秒的转化运算注意以60为进制解析:34°【分析】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.【详解】25°20′24″=25.34°,故答案为25.34.【点睛】进行度、分、秒的转化运算,注意以60为进制.18.120°80°70°100°【分析】利用角度的和差计算求各角的度数【详解】若∠AOC=90°∠BOC=30°则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD =20°∠COD=50解析:120° 80° 70° 100°【分析】利用角度的和差计算求各角的度数.【详解】若∠AOC=90°,∠BOC=30°,则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD=20°,∠COD=50°,∠BOC=30°,则∠BOD=∠COD+∠BOC=50°+30°=80°;∠AOC=∠AOD+∠DOC=20°+50°=70°;∠AOB=∠AOD+∠COD+∠BOC=20°+50°+30°=100°;故答案为:120°,80°,70°,100°.【点睛】此题考查几何图形中角度的和差计算,根据图形确定各角度之间的数量关系是解题的关键.19.【分析】首先根据∠1与∠2互补可得∠1+∠2=180°再表示出∠1的余角90°-(180°-∠2)即可得到结论【详解】∵的余角是∴∵与互补∴故答案为126°【点睛】本题考查了余角和补角关键是掌握余角解析:126︒【分析】首先根据∠1与∠2互补可得∠1+∠2=180°,再表示出∠1的余角90°-(180°-∠2),即可得到结论.【详解】∵2∠的余角是36︒,∴2903654︒︒︒∠=-=.∵1∠与2∠互补,∴118054126︒︒︒∠=-=.故答案为126°.【点睛】本题考查了余角和补角,关键是掌握余角和补角的定义.20.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题21.2cm 或8cm【分析】分两种情况:(1)点C 在线段AB 上时,(2)点C 在AB 的延长线上时,分别求出线段MN 的值,即可.【详解】解:(1)若为图1情形,∵M 为AB 的中点,∴MB =MA =5cm ,∵N 为BC 的中点,∴NB =NC =3cm ,∴MN =MB ﹣NB =2cm ;(2)若为图2情形,∵M 为AB 的中点,∴MB =AB =5cm ,∵N 为BC 的中点,∴NB =NC =3cm ,∴MN =MB +BN =8cm .【点睛】本题主要考查线段的和差倍分和线段的中点概念,根据题意,画出图形,分类讨论,是解题的关键.22.120°【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.23.(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 24.(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可.【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠, 所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠. 因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠. 因为180AEB ︒∠=,30FEG ︒∠=, 所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=.(3)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=, ()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.25.(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.26.(1)见解析;(2)2或4.【分析】(1)分C 点在线段AB 上和C 点在BA 的延长线上两种情况画出图形即可;(2)利用(1)中所画图形,根据中点的定义及线段的和差故选,分别求出MB 的长即可.【详解】(1)点C 的位置有两种:当点C 在线段AB 上时,如图①所示:当点C 在BA 的延长线上时,如图②所示:(2)∵点M 是AC 的中点,AC=2,∴AM=CM=12AC=1, 如图①所示,当点C 在线段AB 上时,∵AB=AM+MB ,AB=3,∴MB=AB-AM=2.如图②所示:当点C在BA的延长线上时,MB=AM+AB=4.综上所述:MB的长为2或4.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用分类讨论的思想是解题关键.。

新人教版初中数学七年级数学上册第四单元《几何图形初步》测试题(包含答案解析)(3)

新人教版初中数学七年级数学上册第四单元《几何图形初步》测试题(包含答案解析)(3)

一、选择题1.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( )A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上 2.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .13.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°4.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒5.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .166.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°7.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论:①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 9.对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( )A .①④B .②④C .①②④D .①②③④ 10.如图所示,在∠AOB 的内部有3条射线,则图中角的个数为( ).A .10B .15C .5D .20 11.在钟表上,1点30分时,时针与分针所成的角是( ).A .150°B .165°C .135°D .120° 12.下列平面图形中不能围成正方体的是( )A .B .C .D .13.某公司员工分别在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C ,区有10人,三个区在一直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在_____区.14.如图所示,∠BOD =45°,那么不大于90°的角有___个,它们的度数之和是____.15.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.16.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n 棱柱,最多可以截得________边形.17.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.18.钟表在8:30时,时针与分针所成角的度数为________,2:40时,时针与分针所成角的度数是_________.19.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.20.如图,点A ,O ,B 在同一直线上,12∠=∠,则与1∠互补的角是________.若1283235'''∠=︒,则1∠的补角为________.21.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.22.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF.23.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.24.如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.25.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”26.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段,,,使它们分别与线段a相等;(2)在射线OD上作线段,使与线段b相等;(3)连接,,,.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选:A.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.2.C解析:C【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=1AC=7cm;2∵M是AB的中点,∴AM=1AB=5cm,2∴DM=AD﹣AM=2cm.故选:C.【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.3.A解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.A解析:A【分析】根据题意,先求得∠COB 的值;OM 平分∠BOC ,ON 平分∠AOC ,则可求得∠AOM 、∠AON 的值;∠MON=∠AOM+∠AON ,计算得出结果.【详解】∵∠AOB=90°,且∠AOC=40°,∴∠COB=∠AOB+∠AOC=90°+40°=130°,∵OM 平分∠BOC ,∴∠BOM=12∠BOC=65°, ∴∠AOM=∠AOB-∠BOM=25°,∵ON 平分∠AOC ,∴∠AON=12∠AOC=20°, ∴∠MON=∠AOM+∠AON=45°.∴∠MON 的度数是45°.故选:A .【点睛】本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.5.B解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.6.A解析:A【分析】首先根据三角形的内角和定理求得∠B ,再根据角平分线的定义求得∠BAD ,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC ,最后根据直角三角形的两个锐角互余即可求解.【详解】∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD 是∠BAC 的角平分线,∴∠BAD=12∠BAC=30°, ∴∠ADE=∠B+∠BAD=70°,又∵OE ⊥BC ,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A .【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.7.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确;∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒,∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′, ∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.8.C解析:C【分析】分三种情况: C 在线段AB 上,C 在线段BA 的延长线上以及C 不在直线AB 上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C 在线段AB 上时,BC=AB-AC= 8-6=2;当C 在线段BA 的延长线上时,BC=AB+AC =8+6=14;当C 不在直线AB 上时,AB 、AC 、BC 三边构成三角形,则2<BC <14,综上所述①②④正确故选:C .【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键. 9.B解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB ,M 不在线段AB 上时,则M 不是AB 的中点,故①错误,若AM=MB=12AB ,则M 是AB 的中点,故②正确; 若AM=12AB ,M 不在线段AB 上时,则M 不是AB 的中点,故③错误; 若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点. 10.A解析:A【分析】根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.11.C解析:C【分析】根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.【详解】钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.故选C.【点睛】此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.12.C解析:C【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【详解】根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项不能围成正方体.故选C.【点睛】此题考查展开图折叠成几何体,解题关键在于掌握正方体展开图的11种形式即可.二、填空题13.A【分析】根据题意分别计算停靠点分别在ABC各点时员工步行的路程和选择最小的即可求解【详解】∵当停靠点在A区时所有员工步行到停靠点路程和是:15×100+10×300=4500m当停靠点在B区时所有解析:A【分析】根据题意分别计算停靠点分别在A、B、C各点时员工步行的路程和,选择最小的即可求解.【详解】∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,∴当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A 区.故答案为A.【点睛】此题考查比较线段的长短,正确理解题意是解题的关键,要能把线段的概念在现实中进行应用,比较简单.14.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.15.2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时②当C 在线段AB上时根据线段的和差可得答案【详解】①当C在线段BA的延长线上时∵点D是线段AB的中点点A与点B的距离是8cm∴DA=4c解析:2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时,②当C在线段AB上时,根据线段的和差,可得答案.【详解】①当C在线段BA的延长线上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4+2=6cm;②当C在线段BA上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4-2=2cm;综上所述:AC=6 cm或2cm.【点睛】本题考查了两点间的距离,利用线段的中点是解题关键,要分类讨论,以防遗漏.16.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三解析:五,六,七,2n .【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.17.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.18.75°160°【分析】钟表表盘被分成12大格每一大格又被分为5小格故表盘共被分成60小格每一小格所对角的度数为6°分针转动一圈时间为60分钟则时针转1大格即时针转动30°也就是说分针转动360°时时解析:75° 160°【分析】钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动(112)度,反过来同理.【详解】解:钟表12个数字,每相邻两个数字之间的夹角为30°,∵8时30分时,时针指向8与9之间,分针指向6,∴8时30分,分针与时针的夹角是:2×30°+15°=75°;∵2时40分时,时针指向2与3之间,分针指向8,∴2时40分,分针与时针的夹角是:5×30°+10°=160°故答案为75°,160°.【点睛】本题考查的是钟表表盘与角度相关的特征.能更好地认识角,感受角的大小.19.90【分析】根据折叠的性质及平角的定义求出根据BD为∠A′BE的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD为∠A′BE的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠A BA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.20.【分析】根据补角的性质和余角的性质解答即可【详解】∵∠1=∠2∴与∠1互补的角是∠AOD ∵∠1=28°32′35″∴∠1的补角=151°27′25″故答案为:∠AOD ;151°27′25″【点睛】本解析:AOD ∠ 2512517'''︒【分析】根据补角的性质和余角的性质解答即可.【详解】∵∠1=∠2,∴与∠1互补的角是∠AOD ,∵∠1=28°32′35″,∴∠1的补角=151°27′25″,故答案为:∠AOD ;151°27′25″.【点睛】本题考查了余角和补角,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.三、解答题21.(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.22.【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【详解】∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=2FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.24.(1)3;(2)﹣2【分析】(1)根据点A 、B 表示的数利用两点间的距离公式即可求出AB 的长度;(2)设点C 表示的数为c ,则|c|=3,即c =±3,根据BC ﹣AC =4列方程即可得到结论.【详解】(1)AB =2﹣a =2﹣(﹣1)=3,故答案为:3;(2)∵点C 到原点的距离为3,∴设点C 表示的数为c ,则|c|=3,即c =±3,∵点A 在点B 的左侧,点C 在点A 的左侧,且点B 表示的数为2,∴点C 表示的数为﹣3,∵BC ﹣AC =4,∴2﹣(﹣3)﹣[a ﹣(﹣3)]=4,解得a =﹣2.【点睛】本题主要考查数轴上两点之间的距离,解此题的关键在于熟练掌握其知识点.25.34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.26.详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.。

《易错题》七年级数学上册第四单元《几何图形初步》-解答题专项经典测试题(含解析)

《易错题》七年级数学上册第四单元《几何图形初步》-解答题专项经典测试题(含解析)

一、解答题1.已知线段AB=12,CD=6,线段CD 在直线AB 上运动(C 、A 在B 左侧,C 在D 左侧).(1)M 、N 分别是线段AC 、BD 的中点,若BC=4,求MN ;(2)当CD 运动到D 点与B 点重合时,P 是线段AB 延长线上一点,下列两个结论:①PA PB PC +是定值; ②PA PB PC-是定值,请作出正确的选择,并求出其定值. 解析:(1)MN =9;(2)①PA PB PC+是定值2. 【分析】(1)如图,根据“M 、N 分别为线段AC 、BD 的中点”,可先计算出CM 、BN 的长度,然后根据MN =MC +BC +BN 利用线段间的和差关系计算即可;(2)根据题意可得:当CD 运动到D 点与B 点重合时,C 为线段AB 的中点,根据线段中点的定义可得AC =BC ,此时①式可变形为()()PC AC PC BC PA PB PC PC ++-+=,进而可得结论.【详解】解:(1)如图,∵M 、N 分别为线段AC 、BD 的中点,∴CM =12AC =12(AB ﹣BC )=12(12﹣4)=4, BN =12BD =12(CD ﹣BC )=12(6﹣4)=1, ∴MN =MC +BC +BN =4+4+1=9;(2)①正确,且PA PB PC+=2. 如图,当CD 运动到D 点与B 点重合时,∵AB =12,CD =6,∴C 为线段AB 的中点,∴AC =BC ,∴()()22PC AC PC BC PA PB PC PC PC PC ++-+===, 而()()212PC AC PC BC PA PB AC PC PC PC PC+---===,不是定值. ∴①PA PB PC +是定值2.【点睛】本题考查了线段中点的定义和线段的和差计算等知识,正确画出图形、熟练掌握线段中点的定义是解题的关键.2.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.3.如图,C,D,E为直线AB上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n-条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.能用大写字母表示的射线:射线AC、射线CD、射线DE、射线EB、射线CA、射线DC、射线ED、射线BE.(2)因为n个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,所以n个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC与线段CA,所以这条直线上共有(1)2n n-条线段.因为一个端点对应延伸方向相反的两条射线,所以当一条直线上有n个点时,共有2n条射线.【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法.4.如图是由若干个正方体形状的木块堆成的,平放于桌面上。

人教版七年级上册数学重难点题型分类练习

人教版七年级上册数学重难点题型分类练习

七年级上重难点题型【题型一:整式计算】1. 已知34243--+=-x nx x A m 是关于x 的二次多项式。

(1)求m 的值。

(2)若12422---x x A 的值与x 无关,试求n 的值。

2. 已知多项式222(63)(13)2mx x x x mx x -++-+-。

(1)若2m =,化简此多项式;(2)若多项式的值与x 的值无关,求2462m m -+的值。

3. 已知关于x 的方程2x =x +m ﹣3和关于y 的方程3y ﹣2(n ﹣1)2=m ,试思考: (1)请用含m 的代数式表示方程2x =x +m ﹣3的解;(2)若n =2,且上述两个方程的解互为相反数时,求m 的值;(3)若m =6时,设方程2x =x +m ﹣3的解为x =a ,方程3y ﹣2(n ﹣1)2=m 的解为y =b ,请比较3b ﹣a 与2的大小关系,并说明理由.【题型二:实际应用题】1.专车司机小李某天上午从家出发,营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣1,+6,﹣2,+2,﹣7,﹣4(1)将最后一位乘客送到目的地时,小李在出发地的哪一边?距离出发地多少km?(2)若汽车每千米耗油量为0.2升,这天上午小李接送乘客,出租车共耗油多少升?2.甲商品每件20元,乙商品每件15元,若购买甲、乙两种商品共40件,恰好用去675元,求甲、乙商品各买多少件?3.列方程解应用题.(1)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少m3?(2)加工一批零件,张师傅单独加工需要40天完成,李师傅单独加工需要60天完成.现在由于工作需要,张师傅先单独加工了10天,李师傅接着单独加工了30天后,剩下的部分由张、李二位师傅合作完成,这样完成这批零件一共用了多长时间?4.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?5.小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?6.已知A、B、C三地是同一条河流上的三个不同地方,且A、B、C在同一直线上,A、C相距28千米,某船先从A地顺流而下来到B地,再立刻调头逆流而上到达C 地,一共用了5小时,调头时间忽略不计.已知该船的静水速度为18km/h,水流速度为2km/h,请问:(1)船在顺水中航行的速度是km/h,船在逆水中航行的速度是km/h.(2)A、B两地相距多少千米?7. 某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?8. 某市根据地方实际情况,决定从2012年5月1日起对居民生活用水试行“阶梯水价”收费,具体收费标准见下表:2013年7月份,该市甲户居民用水9立方米,交水费18元;乙户居民用水36立方米,交水费76元。

2016新人教七年级数学上册线段的计算测试题

2016新人教七年级数学上册线段的计算测试题

2016新人教七年级数学上册线段的计算测试题实用标准文档新人教七年级数学上册线段的计算测试题姓名:________________ 分数:________________一.选择题(共12小题,每题3分,共36分)1.下列说法正确的是()A。

两点之间的连线中,直线最短B。

若P是线段AB的中点,则AP=BPC。

若AP=BP,则P是线段AB的中点D。

两点之间的线段叫做这两点之间的距离2.如图,点A、B、C顺次在直线l上,点M是线段AC 的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A。

AB=12 B。

BC=4 C。

AM=5 D。

CN=23.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A。

AC=BC B。

AC+BC=AB C。

AB=2AC D。

BC=AB4.如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB。

④AB+BC=AC,能表示B是线段AC的中点的有()A。

1个 B。

2个 C。

3个 D。

4个5.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A。

11cm B。

5cm C。

11cm或5cm D。

8cm或11cm6.已知线段AB和点P,如果PA+PB=AB,那么()A。

点P为AB中点 B。

点P在线段AB上C。

点P在线段AB外 D。

点P在线段AB的延长线上7.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A。

2(a-b) B。

2a-b C。

a+b D。

a-b8.如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A。

5a+8b+9c+8d+5e B。

5a+8b+10c+8d+5eC。

5a+9b+9c+9d+5e D。

10a+16b+18c+16d+10e9.下列说法不正确的是()A。

七年级上册数学计算题汇总

七年级上册数学计算题汇总

七年级上册数学计算题汇总1、已知线段AB,BC为同一直线上的两条线段,M,N分别是线段AB,BC的中点,AB=16㎝,BC=6㎝,则MN的长为多少?2、已知线段AB=7cm,在直线AB上画线段BC=3cm,则线段AC=_______3、在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司在支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?4、在一条东西走向的公路上有一个停车点,记作0米,如果由停车点向东走50米,记作+50米,向西走30米,记作-30米,回答下列问题:(1)甲先由停车点向东走了80米,有向西走了50米,此时,甲相对停车点的位置记作什么?(2)乙先由停车点向东走了90米,又向西走了120米,此时,乙相对停车点的位置记作什么?5、小虫重某点0出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各路段路程依次为(单位cm);+5,-3,+10,-8,-6,+12,-10问:(1)小虫最后是否回到出发点?(2)小虫离开出发点最原始多少米?(3)在爬行中,如果每爬行1cm奖励1粒芝麻,则小虫一共得到多少粒芝麻?6、—2的绝对值表示它离开原点的距离是个单位,记作7、已知|x|=3,|y|=2,且x<y,则x+y=____8、若(x-1)2+|y+4|=0,则3x+5y=______若|a-3|+ |3a-4b|=0,则-2a+8b=____9、1、(-5)7读作________________,其中底数是______,指数是_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式新人教七年级数学上册线段的计算测试题姓名:分数:一.选择题(共12小题,每题3分,共36分)1.(5分)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离2.(5分)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC 的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=23.(5分)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB4.(5分)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个5.(5分)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm6.(5分)已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外 D.点P在线段AB的延长线上7.(5分)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b8.(5分)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5e D.10a+16b+18c+16d+10e9.(5分)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC10.(5分)点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cm B.70cm C.75cm D.80cm11.(5分)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在()A.线段AB的延长线上B.线段AB的反向延长线上C.直线l上D.线段AB上12.(5分)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为()A.10cm B.16cm C.20cm D.3cm二.填空题(共8小题,每题3分,共24分)13.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.14.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.15.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有.(填序号)16.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.17.如图,图中有条直线,有条射线,有条线段.18.如图,A,B,C,D是一直线上的四点,则+ =AD﹣AB,AB+CD= ﹣.19.已知A、B、C三点在同一直线上,其中点A与点B的距离等于2.4千米,点B与点C 的距离等于3.5千米,那么点A与点C的距离等于千米.20.如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在楼.三.解答题(共7小题)21.(6分)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.22.(7分)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.23.(8分)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.24.(10分)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC 的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.25.(9分)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求线段MC的长.26.(9分)线段AD上两点B、C将AD分成2:3:4三部分,M是AD的中点,若MC=2,求线段AD的长.27.(12分)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm (如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.新人教七年级数学上册线段的计算测试题参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2016春•威海期中)下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离【分析】根据直线的定义、线段中点的性质、点到点的距离的概念利用排除法求解.【解答】解:A、两点之间的连线中,线段最短,错误;B、根据中点的定义可知若P是线段AB的中点,则AP=BP,正确;C、只有当点P在线段AB上,且AP=BP时,点P才是线段AB的中点,错误;D、连接两点的线段的长度叫做两点的距离,错误.故选B.【点评】本题主要考点有:线段的定义及性质,两点间的距离,直线的定义.根据各知识点的定义及性质进行判断.2.(5分)(2015•黄冈中学自主招生)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=2【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,继而即可得出答案.【解答】解:根据点M是线段AC的中点,点N是线段BC的中点,可知:,∴只要已知AB即可.故选A.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.3.(5分)(2015秋•高新区期末)点C在线段AB上,下列条件中不能确定点C是线段AB 中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、C、D都可以确定点C是线段AB中点.【解答】解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.【点评】根据线段的中点能够写出正确的表达式.反过来,也要会根据线段的表达式来判断是否为线段的中点.4.(5分)(2015秋•太康县期末)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个【分析】根据题意,画出图形,观察图形,一一分析选项,排除错误答案.【解答】解:如图,若B是线段AC的中点,则AB=AC,AB=BC,AC=2AB,而AB+BC=AC,B可是线段AC上的任意一点,∴表示B是线段AC的中点的有①②③3个.故选C.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.(5分)(2015秋•太康县期末)已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【解答】解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.【点评】本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.6.(5分)(2015秋•平武县期末)已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外 D.点P在线段AB的延长线上【分析】根据线段的和、差定义进行分析.【解答】解:如图:∵PA+PB=AB,∴点P在线段AB上.故选B.【点评】此题考查了线段的和的概念.7.(5分)(2015秋•嘉祥县期末)如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.(5分)(2015•合肥校级自主招生)如图,线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e.则以A,B,C,D,E,F为端点的所有线段长度的和为()A.5a+8b+9c+8d+5e B.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5e D.10a+16b+18c+16d+10e【分析】首先求出以A为端点线段的长度,类比依次求出B、C、D、E为端点的线段的长度,然后求出这些线段的长度总和.【解答】解:以A为端点线段有AB、AC、AD、AE、AF,这些线段长度之和为5a+4b+3c+2d+e,以B为端点线段有BC、BD、BE、BF,这些线段长度之和为4b+3c+2d+e,以C为端点线段有CD、CE、CF,这些线段长度之和为3c+2d+e,以D为端点线段有DE、DF,这些线段长度之和为2d+e,以E为端点线段有EF,线段的长度为e,故这些线段的长度之和为5a+8b+9c+8d+5e,故选A.【点评】本题主要考查比较线段的长短的知识点,解答本题的关键是求出A,B,C,D,E,F为端点的所有线段的条数,本题不是很难.9.(5分)(2014秋•温州期末)下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC【分析】熟练掌握线段的概念和定义,进行分析.【解答】解:A、根据线段的延长线的概念,则BA=BC﹣AC,故错误;B、根据线段的和的计算,正确;C、根据两点之间,线段最短,显然正确;D、根据两点之间,线段最短,显然正确.故选A.【点评】考查了线段的延长线的概念,同时注意线段公理:两点之间,线段最短.10.(5分)(2014秋•林甸县期末)点M、N都在线段AB上,且M分AB为2:3两部分,N分AB为3:4两部分,若MN=2cm,则AB的长为()A.60cm B.70cm C.75cm D.80cm【分析】由题意可知,M分AB为2:3两部分,则AM为AB,N分AB为3:4两部分,则AN为AB,MN=2cm,故MN=AN﹣AM,从而求得AB的值.【解答】解:如图所示,假设AB=a,则AM=a,AN=a,∵MN=a﹣a=2,∴a=70.故选B.【点评】在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.11.(5分)(2014秋•成县期末)点A、点B是直线l上的两个定点,点P是直线l上任意一点,要使PA+PB的值最小,那么点P应在()A.线段AB的延长线上B.线段AB的反向延长线上C.直线l上D.线段AB上【分析】分类讨论:当P点在线段AB的延长线上,则PA+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,然后比较线段的大小即可得到结论.【解答】解:当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.12.(5分)(2014秋•阜南县校级期末)P为线段AB上一点,且AP=AB,M是AB的中点,若PM=2cm,则AB的长为()A.10cm B.16cm C.20cm D.3cm【分析】结合图形表示出PM与AB的关系为PM=AB﹣AB,再代入数据求解即可.【解答】解:如图,∵M是AB的中点,∴AM=AB,∴PM=AM﹣AP=AB﹣AB=AB,∵PM=2cm,∴AB=10PM=20cm.故选C.【点评】作出图形,整理出AB与PM的关系是解本题的关键.二.填空题(共8小题)13.(2015秋•甘谷县期末)如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于11 .【分析】AD和AC已知,所以可以得出CD的长度,点C是BD的中点,所以CD的长度等于BD长度的一半,从而可求出BD的长度,进而可求出AB的长度.【解答】解:∵AD=3,AC=7∴CD=4.∵点C是线段BD的中点∴BD=2CD=8AB=BD+AD=3+8=11.故应填11.【点评】本题考点:线段中点的性质,根据题干图形得出各线段之间的关系,然后结合已知条件即可求出AB的长度.14.(2015秋•邢台期末)长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm .【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【解答】解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.(2015秋•淮安期末)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有③④.(填序号)【分析】由题意,认真分析题干,运用线段的性质直接做出判断即可.【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故答案为:③④.【点评】本题主要考查两点之间线段最短和两点确定一条直线的性质,应注意理解区分.16.(2016春•通化校级月考)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是两点确定一条直线.【分析】根据直线的性质:两点确定一条直线即可得.【解答】解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.【点评】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.17.(2016•綦江区校级模拟)如图,图中有 1 条直线,有9 条射线,有12 条线段,以E为顶点的角有 4 个.【分析】直线:过两点有且只有一条直线(两点确定一条直线),无端点.射线:直线上的一点,可向一方无限延伸,有一个端点.线段:直线的一部分,有限长,有2个端点再根据角的定义数出角的个数即可求解.【解答】解:如图,图中有直线AC,共1条直线,有A为端点的2条射线,B为端点的1条射线,C为端点的2条射线,E为端点的3条射线,F为端点的1条射线共2+1+2+3+1=9条射线,有线段AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,DF,EF,共12条线段,以E为顶点的角有∠AEB,∠AEF,∠BEC,∠CEF,共4个.故答案为:1,9,12,4.【点评】本题主要考查直线、线段、射线的知识点,还考查角的概念的知识点,不是很难,不过做题要仔细.18.(2016秋•高密市校级月考)如图,A,B,C,D是一直线上的四点,则BC + CD =AD﹣AB,AB+CD= AD ﹣BC .【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC,CD,AD,BC.【点评】题考查了两点间距离的计算,本题属基础题,熟练求线段长度是解题关键.19.(2016春•浦东新区期末)已知A、B、C三点在同一直线上,其中点A与点B的距离等于2.4千米,点B与点C的距离等于3.5千米,那么点A与点C的距离等于 5.9或1.1 千米.【分析】根据线段的和差,可得答案.【解答】解:A在线段BC上,由线段和差,得AC=BC﹣AB=3.5﹣2.4=1.1km,A点线段BC的反向延长线上,由线段和差,得AC=AB+BC=2.4+3.4=5.9km,故答案为:5.9或1.1.【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.20.(2013秋•惠山区校级月考)如图,一条街道旁有A、B、C、D、E五幢居民楼,某桶装水经销商统计各楼居民每周所需桶装水的数量如下表:他们计划在这五幢楼中租赁一间门市房,设立桶装水供应点.若仅考虑这五幢楼内居民取水所走的路程之和最小,可以选择的地点应在 D 楼.【分析】根据图形近似设AB=a,BC=2a,CD=a,DE=2a,再根据各楼所需的数量和距离分别计算出当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=779a;当桶装水供应点在C 楼时,这五幢楼内居民取水所走的路程之和=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=477a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=797a,于是可得判断桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.【解答】解:设AB=a,BC=2a,CD=a,DE=2a,当桶装水供应点在A楼时,这五幢楼内居民取水所走的路程之和=55a+50(a+2a)+72(a+2a+a)+85(a+2a+a+2a)=1003a;当桶装水供应点在B楼时,这五幢楼内居民取水所走的路程之和=38a+50×2a+72(a+2a)+85(2a+a+2a)=779a;当桶装水供应点在C楼时,这五幢楼内居民取水所走的路程之和=38(a+2a)+55×2a+72×a+85(a+2a)=551a;当桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和=38(a+2a+a)+55×(a+2a)+50a+85×2a=537a;当桶装水供应点在E楼时,这五幢楼内居民取水所走的路程之和=55(2a+a+2a)+50(a+2a)+72×2a+38(a+2a+a+2a)=797a,所以桶装水供应点在D楼时,这五幢楼内居民取水所走的路程之和最小.故答案为D.【点评】本题考查了比较线段的长短:比较两条线段长短的方法有两种:度量比较法、重合比较法.三.解答题(共7小题)21.(2015秋•连州市期末)根据下列语句,画出图形.已知四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.【分析】根据直线、线段和射线的定义作出即可.【解答】解:如图所示.【点评】本题考查了直线、射线、线段,主要是对文字语言转化为图形语言的能力的培养.22.(2013秋•金平区期末)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.【解答】解:点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短.【点评】本题考查了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵活运用.23.(2016春•郴州期末)如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别是线段AC、BC的中点,求MN的长度.【分析】(1)根据M是AC的中点得MC=3cm,由MB=10cm可得BC=7cm,再根据N为BC的中点可得CN的长,继而可得答案;(2)由M是AC中点,N是BC中点可得MC=AC、NC=BC,再根据MN=MC﹣NC即可得.【解答】解:(1)∵AC=6cm,M是AC的中点,∴AM=MC=AC=3cm,∵MB=10cm,∴BC=MB﹣MC=7cm,∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+CN=6.5cm;(2)如图,∵M是AC中点,N是BC中点,∴MC=AC,NC=BC,∵AC﹣BC=bcm,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=b(cm).【点评】本题主要考查两点间的距离,熟练掌握中点的性质是解题的关键.24.(2015秋•祁阳县期末)如图,AD=DB,E是BC的中点,BE=AC=2cm,求线段DE的长.【分析】根据题目已知条件结合图形可知,要求DE的长可以用AC长减去AD长再减去EC长或者用DB长加上BE长.【解答】解:由于BE=AC=2cm,则AC=10cm,∵E是BC的中点,∴BE=EC=2cm,BC=2BE=2×2=4cm,则AB=AC﹣BC=10﹣4=6cm,又∵AD=DB,则AB=AD+DB=AD+2AD=3AD=6cm,AD=2cm,DB=4cm,所以,DE=AC﹣AD﹣EC=10﹣2﹣2=6cm,或DE=DB+BE=4+2=6cm.故答案为6cm.【点评】本题考查求线段及线段中点的知识,解这列题要结合图形根据题目所给的条件,寻找所求与已知线段之间的关系,最后求解.25.(2015秋•偃师市期末)如图,已知B、C两点把线段AD分成2:4:3的三部分,M 是AD的中点,若CD=6,求线段MC的长.【分析】首先由B、C两点把线段AD分成2:4:3的三部分,知CD=AD,即AD=3CD,求出AD的长,再根据M是AD的中点,得出MD=AD,求出MD的长,最后由MC=MD ﹣CD,求出线段MC的长.【解答】解:∵B、C两点把线段AD分成2:4:3的三部分,2+4+3=9,∴AB=AD,BC=AD,CD=AD,又∵CD=6,∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=9﹣6=3.【点评】利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.本题中B、C是线段AD的九等分点中的两个.26.(2013秋•天柱县期末)线段AD上两点B、C将AD分成2:3:4三部分,M是AD 的中点,若MC=2,求线段AD的长.【分析】根据题意,设三条线段的长分别为2k、3k、4k,再根据“M是AD的中点”得到MD 等于4.5k,所以MC的长是0.5k,代入即可求出x的值,再求线段AD的长也就容易了.【解答】解:如图,根据题意,设AB、BC、CD的长分别为2k、3k、4k,∴AD=2k+3k+4k=9k,∵M是AD的中点,∴MD=AD=4.5k,∴MC=MD﹣CD=4.5k﹣4k=0.5k=2,解得k=4,∴AD=9k=9×4=36.【点评】本题主要考查根据设“k”法的思想,根据比例关系利用设“k”法是中学阶段重要的方法,需要熟练掌握.27.(2014秋•靖江市期末)如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.【分析】此题较为复杂,但仔细阅读,读懂题意根据速度公式就可求解.(1)从题中我们可以看出点P及Q是运动的,不是静止的,当PA=2PB时实际上是P正好到了AB的三等分点上,而且PA=40,PB=20.由速度公式就可求出它的运动时间,即是点Q的运动时间,点Q运动到的位置恰好是线段AB的三等分点,这里的三等分点是二个点,因此此题就有二种情况,分别是AQ=时,BQ=时,由此就可求出它的速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm,这也有两种情况即当它们相向而行时,和它们直背而行时,此题可设运动时间为t秒,按速度公式就可解了.(3)此题就可把它当成一个静止的线段问题来解决了,但必须借助图形.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.如图2,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.【点评】做这类题时学生一定要认真仔细地阅读,利用已知条件求出未知值.学生平时就要培养自己的思维能力.而且要图形结合,与生活实际联系起来,也可以把此题当成一道路程题来对待.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

相关文档
最新文档