第二单元长方体正方体知识点
五年级下册长方体和正方体知识点
五年级下册长方体和正方体知识点一、长方体和正方体的认识。
1. 长方体的特征。
- 面:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)。
相对的面完全相同。
- 棱:长方体有12条棱,相对的棱长度相等。
可以分为三组,每组有4条棱。
- 顶点:长方体有8个顶点。
2. 正方体的特征。
- 面:正方体有6个面,每个面都是正方形,并且6个面完全相同。
- 棱:正方体有12条棱,12条棱的长度都相等。
- 顶点:正方体有8个顶点。
3. 长方体和正方体的关系。
- 正方体是特殊的长方体。
当长方体的长、宽、高相等时,这个长方体就是正方体。
二、长方体和正方体的表面积。
1. 表面积的概念。
- 长方体或正方体6个面的总面积,叫做它的表面积。
2. 长方体表面积公式。
- 长方体表面积=(长×宽 + 长×高+宽×高)×2,用字母表示为S = 2(ab+ah + bh),其中a表示长,b表示宽,h表示高。
3. 正方体表面积公式。
- 正方体表面积 = 棱长×棱长×6,用字母表示为S = 6a^2,其中a表示棱长。
三、长方体和正方体的体积。
1. 体积的概念。
- 物体所占空间的大小叫做物体的体积。
2. 体积单位。
- 常用的体积单位有立方厘米(cm^3)、立方分米(dm^3)和立方米(m^3)。
- 棱长是1厘米的正方体,体积是1立方厘米;棱长是1分米的正方体,体积是1立方分米;棱长是1米的正方体,体积是1立方米。
- 1立方米 = 1000立方分米,1立方分米=1000立方厘米。
3. 长方体体积公式。
- 长方体体积=长×宽×高,用字母表示为V = abh。
4. 正方体体积公式。
- 正方体体积 = 棱长×棱长×棱长,用字母表示为V=a^3。
5. 体积单位的换算。
- 高级单位换算成低级单位乘进率,低级单位换算成高级单位除以进率。
例如:3.5m^3=3.5×1000 = 3500dm^3,2500cm^3=2500÷1000 = 2.5dm^3。
长方体正方体.知识点总结
长方体的再认识一、 概念1、 长方体的元素:六个面、八个顶点、十二条棱2、 长方体的三元素的特点:〔主要是外观特征和数量关系〕①长方体的每个面都是长方形;②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
③长方体的六个面可以分为三组,每组中的两个面形状大小都相同。
3、 正方体是特殊的长方体。
4、 平面是平的,无边无沿,没有厚度和大小,一般用平行四边形来表示。
记作:平面ABCD 或平面α。
5、 将水平放置的平面画成一边是水平位置,另一边与水平线成45度角的平行四边形。
6、 斜二侧画法画长方体时要注意:宽画成标注尺寸的一半;看不到的线画成虚线;要标字母和尺寸,要写结论。
长方体ABCD-EFGH 、平面ABCD 、棱AB 、顶点A 。
7、 空间中两直线的位置关系有三种:相交、平行、异面① 如果两条直线在同一平面内,有唯一公共点,称这两条直线的位置关系是相交; ② 如果两条直线在同一平面内,没有唯一公共点,称这两条直线的位置关系是平行; ③ 如果两条直线既不平行也不相交,称这两条直线的位置关系是异面。
8、直线垂直于平面记作:直线P Q ⊥平面ABCD ;直线平行于平面记作:直线P Q ∥平面ABCD 。
9、 计算公式之一:〔三条棱长分别是a 、b 、c 的长方体〕① 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 外表积 = 2()ab bc ac ++ ; ④ 无盖外表积 = S ab -、S bc -、S bc - 10、计算公式之二:〔边长是a 正方体〕① 棱长和= 12a ;②体积= 3a ;③外表积= 26a ;④无盖外表积 =25a 。
11、长方体不一定是正方体;正方体一定是长方体。
12、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。
13、长方体中棱与面的位置关系有2种,分别是:平行、垂直。
14、长方体中面与面的位置关系有2种,分别是:平行、垂直。
(完整版)长方体和正方体知识点汇总(最新整理)
第二讲 长方体和正方体一、长方体和正方体的认识【知识点1】棱面顶点要素立体图形数量特征数量特征数量特征长方体12互相平行的棱长度相等6相对的面完全相同8特殊长方体12垂直于正方形面的棱长度相等6两个面是正方形,其余四个面是完全相同的长方形8正方体12所有的棱长度都相等6所有面都是正方形且完全相同8同一个顶点引出的三条棱分别叫做长、宽、高一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( ) 14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( ) 15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
长方体和正方体知识点汇总
长方体和正方体知识点汇总一、长方体长方体是一种具有六个面,每个面均为长方形的立体图形。
它的特点是长宽高不相等,分别对应着长方体的三条棱。
下面总结一些长方体的基本知识:1. 长方体的表面积公式为:S=2×(ab+bc+ac),其中a、 b、 c 分别为长方体的三个面的长宽高。
2. 长方体的体积公式为:V=abc,其中a、b、c分别为长方体的三个面的长宽高。
3. 长方体的对角线长度公式为:d=√(a²+b²+c²),其中a、b、c 分别为长方体的三个面的长宽高。
4. 长方体的中心对称轴是一条连接长方体两面中心点的直线,它与长方体的三条棱垂直。
5. 长方体的垂直截面是长方形,水平截面是正方形或长方形。
6. 长方体的立体对称轴有3条:一条是连接对角面中心的对称轴,另外两条是互相垂直的,分别连接相对边中心的对称轴。
7. 长方体的顶点个数为8个。
顶点是立方体的八个角。
二、正方体正方体是一种有六个面,每个面均为正方形的立体图形。
它具有的特点是长宽高相等,都是边长,下面总结一些正方体的基本知识:1. 正方体的表面积公式为:S=6a²,其中a为正方体的边长。
2. 正方体的体积公式为:V=a³,其中a为正方体的边长。
3. 正方体的对角线长度公式为:d=√3a,其中a为正方体的边长。
4. 正方体的中心对称轴是一条连接正方体两面中心点的直线,它与正方体的任何一边垂直。
5. 正方体的垂直截面和水平截面都是正方形。
6. 正方体的立体对称轴有4条:一条是连接对角面中心的对称轴,另外三条是互相垂直的,分别连接相对边中心的对称轴。
7. 正方体的顶点个数为8个。
顶点是正方体的八个角。
总结:长方体和正方体相比,长方体的三条棱长度不相等,而正方体的三条棱长度相等。
在实际生活中,我们可以用长方体来描述一些长宽高不相同的物品,例如房屋、柜子等;而正方体通常用来描述一些长宽高相同的物品,例如小盒子等。
长方体和正方体单元知识点
长方体和正方体单元知识点1. 长方体(Rectangular Prism):长方体是由6个矩形面组成的立体图形。
它的所有对面都是相等的,并且相对的面是平行的。
长方体有8个顶点、12条边和6个面。
1.1定义:长方体的定义可以用以下几个要素来描述:-一个有6个矩形面的立体图形。
-每个面都是直角相邻的。
-所有面的边长都不相等。
-所有对面都是平行的。
1.2特征:长方体具有以下特征:-所有边长不相等。
-所有对面都是平行的。
-每个面上的相对边长相等。
-所有的角都是直角。
1.3表面积计算:长方体的表面积可以通过计算每个面的面积,并将结果相加得到。
表面积 = 2lw + 2lh + 2wh其中,l、w和h分别代表长方体的长度、宽度和高度。
1.4体积计算:长方体的体积可以通过将长度、宽度和高度相乘来计算。
体积 = lwh2. 正方体(Cube):正方体是一种特殊的长方体,其所有边长相等。
正方体有8个顶点、12条边和6个面。
正方体具有更多的对称性和特殊性质。
2.1定义:正方体的定义可以用以下几个要素来描述:-一个具有6个正方形面的立体图形。
-所有边长相等。
-所有的角都是直角。
2.2特征:正方体具有以下特征:-所有边长相等。
-所有对面都是平行的。
-每个面上的角度都是直角。
-具有更多的对称性,即旋转或反射一个正方体的结果仍然是一个正方体。
2.3表面积计算:正方体的表面积可以通过计算每个面的面积,并将结果相加得到。
表面积=6s^2其中,s代表正方体的边长。
2.4体积计算:正方体的体积可以通过将边长三次幂(即三次方)来计算。
体积=s^3其中,s代表正方体的边长。
总结:长方体和正方体都是由矩形面组成的三维立体图形。
长方体具有所有边长不相等的特征,而正方体具有所有边长相等的特征。
它们在计算表面积和体积时的公式也有所不同。
长方体的表面积为2lw + 2lh + 2wh,体积为lwh;而正方体的表面积为6s^2,体积为s^3、正方体具有更多的对称性和特殊性质。
正方体与长方体知识点总结
正方体与长方体知识点总结一、正方体1、正方体有8个顶点、12条棱、6个面。
2、公式: 棱长总和=棱长×12棱长=棱长总和÷12正方体表面积=棱长×棱长×6正方体体积=棱长×棱长×棱长(V=a·a·a=a³)二、长方体1、长方体有8个顶点、12条棱、6个面。
2、公式: 棱长总和=(长+宽+高)×4长=棱长总和÷4-宽-高宽=棱长总和÷4-长-高高=棱长总和÷4-长-宽长方体表面积=(长×宽+长×高+宽×高)×2前面/后面:长×高左边/右面:宽×高上面/下面:长×宽长方体体积=长×宽×高=底面积×高=横截面面积×长长=体积÷宽÷高宽=体积÷长÷高高=体积÷长÷宽三、常用知识点总结1、正方体的棱长扩大n倍,棱长总和也扩大(n)倍,表面积扩大(n×n)倍,体积扩大(n×n×n)倍。
2、面积与体积无法比较,因为它们的意义不同。
3、占地面积=底面积=长×宽长方体体积公式可改写为:长方体体积=底面积×高高=体积÷底面积4、将一个物体投入水中,物体的体积=水面上升部分的体积。
5、将一个正方体模型熔化变成长方体模型,解题关键在于变化前后的体积不变。
6、单位换算口诀:大变小~乘进率~小数点向右移动小变大~除以进率~小数点向左移动。
7、几个同样大小的小正方体,搭成一个长方体,如何摆放长方体的表面积最大?(一条龙一样的摆放)如何摆放表面积最小?(形状越接近于正方体,表面积越小)。
四、关于涂色的正方体的一些规律正方体棱等分的份数三面涂色的个数(在顶点处)两面涂色的个数(在棱中间)一面涂色的个数(在面中间)没有涂色的正方体个数2 8个0 0 03 8个4 8个n 8个12x(3-2)=1212x(4-2)=2412x(n-2)6 x(3-2)²6 x(4-2)²6 x(n-2)²(3-2)³(4-2)³(n-2)³。
苏教版小学六年级数学上册第二单元 知识点 长方体和正方体
第二单元长方体和正方体1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。
2、长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。
3、长方体的特征:面——有六个面,都是长方形(特殊情况下有两个相对的面是正方形),相对的面完全相同;棱——有12条棱,相对的棱长度相等;顶点——有8个顶点。
4、正方体的特征:面——有六个面,都是正方形,所有的面完全相同;棱——有12条棱,所有的棱长度相等;顶点——有8个顶点。
5、正方体也是一种特殊的长方体。
6、把一个长方体或正方体纸盒展开,至少要剪开7条棱。
7、长方体(或正方体)的六个面的总面积,叫做它的表面积。
8、长方体的表面积=(长×宽+宽×高+高×长)×2正方体的表面积=棱长×棱长×6。
注:在解决实际问题中没有的部分应减掉。
如:没有盖或底边为:面积=表面积-没有的部分=(长×宽+宽×高+长×高)×2-长×宽没有左侧或右侧为:面积=表面积-没有的部分=((长×宽+宽×高+长×高)×2-宽×高没有前面或后面为:面积=表面积-没有的部分=((长×宽+宽×高+长×高)×2-长×高9、物体所占空间的大小叫做物体的体积。
10、容器所能容纳物体的体积,叫做这个容器的容积。
11、常用的体积单位有立方厘米、立方分米、立方米。
1立方米=1000立方分米,1立方分米=1000立方厘米。
12、计量液体的体积,常用升和毫升作单位。
1立方分米=1升,1立方厘米=1毫升,1升=1000毫升。
13、长方体的体积=长×宽×高V =abh14、正方体的体积=棱长×棱长×棱长V =a×a×a=a³。
长方体和正方体的知识点整理
-可编辑修改-长方体和正方体的知识整理、【概念】等,有12条棱,每条棱的长度都相等长方体的棱长总和=(长+宽+高)X 4【长方体和正方体的表面积】1、长方体或正方体6个面和总面积叫做它的表面积长方体的表面积=(长X 宽+长X 高+宽X 高)X 2S=2 (ab + ah + bh ) 正方体的表面积=棱长X 棱长X 6 S=a X a X6= 6a 22、表面积的常用单位有: 平方米、平方分米、平方厘米相邻两个面积单位 之间的进率是 100 1m 2 =100dm 2 1 dm 2 =100 cm 2 1m 2 =10000 cm 2三、【长方体和正方体的体积】1、体积:物体所占空间的大小叫做物体的体积姓名( ) 1、长方体或正方体两个面相交的边叫做 棱。
三条棱相交的点叫做顶点。
相交于 一个顶点的三条棱的长度分别叫做长方体的 长、宽、高2、正方体是长、宽、高都相等的长方体,它是一种 特殊的长方体3、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的 长度相等。
一个长方体 最多有6个面是长方形,最少有4个面是长方形,最多 有2个面是正方形。
正方体有 6个面 ,每个面都是 止力形 ,每个面的 面积都相正方体的棱长总和=棱长X 12 正方体的棱长=棱长总和* 12-可编辑修改-2、 常用的体积单位有: 立方米(m 3)、 立方分米(dm 3)、立方厘 米(cm 3 )① 棱长是1 cm 的正方体,体积是1 cm 3② 棱长是1 dm 的正方体,体积是1 dm 3③ 棱长是1 m 的正方体,体积是1 m 3 相邻两个体积单位之间的进率是 1000 1 m 3 =1000 dm 3 1dm 3=1000 cm 31 m 3 =1000000cm 3 长方体的体积=长x 宽x 高 V=abh 长方体(正方体)的体积=底面积x 高V =S xh 正方体的体积=棱长x 棱长x 棱长 v=a x a x a =a 3(a 3读作“ a 的立方” 表示3个a 相乘,即a a a )3、 容积:容器所能容纳物体的体积,叫做它的容积。
六年级数学长方体和正方体知识点总结
六年级数学长方体和正方体知识点总结一、长方体和正方体的概念:二、长方体和正方体的特征:长方体有6个面,每个面是一个长方形,所以叫做长方体。
长方体有12条棱,每相邻两条棱互相垂直。
正方体有8个面,每个面都是一个正方形,所以叫做正方体。
正方体有6条棱,相邻的棱长度相等。
三、长方体和正方体的表面积:1、底面的形状是长方形;2、长8厘米、宽5厘米;3、高6厘米;表面积是:( 8×5+8×6+5×6)×2= 50×36=2000(平方厘米)4、体积:棱长为6cm正方体的体积是:底面积为6平方厘米的正方体的体积是: 6×6×6=216(立方厘米)四、长方体和正方体的体积计算公式:五、正方体的展开图:六、长方体和正方体的表面积计算公式:七、长方体和正方体的认识过程:八、课后习题: 1、一辆大客车有8排座位,每排8个座位,一共可坐多少人? 2、( 1)小明有一块长10分米,宽6分米,高4分米的长方体铁块。
( 2)在这块铁块的周围贴上一圈商标纸,需要多长的铁皮?( 3)在这块铁皮上剪下一个最大的圆,它的半径是1分米,周长是多少?2、长方体的体积=底面积×高。
(1)已知一块长方体的体积为132立方分米,这块长方体的长是8分米,宽是4分米,高是几分米?(2)在一个长7分米,宽5分米,高3分米的长方体木箱中,放入一个最大的圆柱形木块,这个木块的体积是多少立方分米?长方体的体积=底面积×高。
3、长方体有六个面,三组对边分别相等,每组相邻的两个面的面积都相等。
它们的长、宽、高分别是多少厘米?长方体的长=长方体的长度=10,宽= 5,高= 6体积=6×5×6=216长方体的体积=1/2×10×6×5=20立方厘米长方体的体积=1/2×10×5×6=20立方厘米4、一块长方体木料的棱长总和是63厘米,这块木料的体积是多少立方厘米?长方体的体积=长×宽×高。
(完整版)长方体和正方体知识点
一、知识点一:长方体和正方体的认识
6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。
正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
长方体的长、宽、高。
=(长+宽+高)×4
用字母表示:(a+b+h)×4
正方体的棱长总和= 棱长×12
用字母表示:12a
二、知识点二:长方体和正方体的表面积的计算
6个面的总面积叫做它的表面积。
=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ah+bh)×2
正方体的表面积= 棱长×棱长×6
用字母表示:S=6a2
6
7、1m2 =100dm2 1dm2 =100cm2
三、知识点三:长方体和正方体的体积的计算
= 长×宽×高
用字母表示:V=abh
正方体的体积= 棱长×棱长×棱长
用字母表示:V=a3
1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm3
长方体或正方体的体积=底面积×高
用字母表示:V=Sh
把高级单位化成低级单位,用高级单位数乘以进率;------大乘小
把低级单位聚成高级单位,用低级单位数除以进率。
-----------小除大
四、知识点三:长方体和正方体的容积的计算
L和ml)
1L=1000ml 1L= 1dm3 1ml= 1cm3
跟体积的计算方法相同,但要从里面量长、宽、高。
长方体和正方体知识点及类型题总结
一,概念和定义:1,长方体:由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
1,棱长:两个面相交的边叫做棱。
2,顶点:三条棱相交的点叫做顶点。
3,长宽高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
2,长方体的特征: 1,有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
2,一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
3,正方体:由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
4,正方体特点: 1,有6个面,8个顶点,12条棱,12条棱长度都相等,6个面的面积都相等。
2,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5,长方体长、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
6,表面积 1,意义:长方体或正方体6个面的总面积,叫做它的表面积。
2,长方体表面积:长方体的表面积=(长×宽+宽×高+长×高)×2 字母表示S=2(ab+ah+bh)3,正方体表面积:正方体的表面积=棱长×棱长×6(任意一个面积×6),字母表示 S=a×a×64,无底(或无盖)长方体表面积= (长×宽+长×高+宽×高)×2 - 长×宽5,无底又无盖长方体表面积=(长×宽+长×高+宽×高)×2 - (长×宽)×26,没盖的正方体表面积=棱长×棱长×57,体积 1,意义:物体所占空间的大小叫做物体的体积。
2,体积单位:立方米,立方分米,立方厘米;用字母表示为:3,体积单位之间的进率:每两个相邻的体积单位之间的进率是1000.4,长方体的体积=长×宽×高=底面积×高字母表示V=abh 或 V=S h5,正方体的体积=棱长×棱长×棱长=底面积×高字母表示 V=a×a×a = a3读作“a的立方”表示3个a相乘,(即a·a·a)6,特殊体积:在一个有水的容器里放入一个物体(如:石头等),水面会上升,水面上升那部分水的体积,就是物体的体积。
(完整版)长方体和正方体的体积知识点
1、体积和容积。
(1)体积:物体所占空间的大小(2)容积:容器所能容纳物体的体积像这个长方体木箱的体积除了里面能容纳物体的体积外,还有做成木箱的木板的体积。
一个物体的体积要比一个物体的容积大,因为体积还包括自身材料的体积。
2、体积(容积)单位。
(1)用列表的形式来表述体积单位的大小,以利于记忆。
体积与容积单位之间的关系:1立方厘米=1毫升 1立方分米=1升升和毫升之间的进率是1000,因为1升是1立方分米,1毫升是1立方厘米。
升和毫升相比,升是高级单位,毫升是低级单位,把高级单位的数量换算成低级单位的数量,都要乘相应的进率。
3、因为长方体的体积都是由它的长、宽、高决定的,它的体积=长×宽×高。
正方体是特殊的长方体,长=宽=高,因而它的体积是由棱长决定的,体积=棱长×棱长×棱长。
因为长方体和正方体的底面积是两条棱长决定的,即长方体底面积=长×宽;正方体的底面积=棱长×棱长;所以长方体和正方体的体积又可以说是由底面积和高决定的,它们的体积=底面积×高。
(1)长方体的体积=长×宽×高(2)正方体的体积=棱长×棱长×棱长(3)长方体的体积=底面积×高4、求这根长方体木料的体积要用“底面积×高”,从中间截成两段,表面积实质上增加了两个底面,如果是截成三段,就是截了两次,增加了四个面。
也就是说每截一次,增加两个面。
5、综合运用体积单位、长度单位的知识。
将一个大的形体分成一个小的形体。
将小正方体紧紧地排成一排,能排多少米,实际上就是将这些小正方体的棱长加起来,看有多长。
一、填空题。
1、把一个容积是500ml的量杯里先注入200ml的水,然后放入一个土豆,这时测量杯里的容量为350ml,这个土豆的体积是()cm22、一个底面周长是1。
6分米的正方体鱼缸的容积是()升。
3、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。
长方体正方体知识点汇总
长方体正方体知识点汇总长方体和正方体都属于立体图形,具有一些共同和独特的特点。
下面是对长方体和正方体的综合了解和详细解释:一、长方体的定义和特点:长方体是一种有6个面的立体图形,这些面由矩形组成,且相邻面两两平行。
长方体具有以下特点:1. 面的特点:长方体有6个面,其中有3对平行面。
相邻面两两平行,且相对的面是相等的矩形。
2. 边的特点:长方体有12条边,每个顶点有3条边相交。
3. 顶点的特点:长方体有8个顶点,每个顶点都是3个面的交点。
4. 相邻面、边、顶点的关系:长方体中,两个相邻面的共用一条边,两个相邻面的共用一点,这个点同时也是四条边的端点。
5. 相对面的特点:长方体的相对面是相等的矩形,具有相同的形状和大小。
二、正方体的定义和特点:正方体是一种特殊的长方体,所有的面都是正方形,具有以下特点:1. 面的特点:正方体有6个面,都是正方形,且相邻面两两平行。
2. 边的特点:正方体有12条边,每个顶点有3条边相交。
3. 顶点的特点:正方体有8个顶点,每个顶点都是3个面的交点。
4. 相邻面、边、顶点的关系:正方体中,两个相邻面的共用一条边,两个相邻面的共用一点,这个点同时也是四条边的端点。
5. 相对面的特点:正方体的相对面是相等的正方形,具有相同的形状和大小。
三、长方体和正方体的性质:1. 体积:长方体和正方体的体积都可以通过公式V = l × w × h来计算,其中l为长,w为宽,h为高。
正方体的体积可以简化为V = a^3,其中a为边长。
2. 表面积:长方体和正方体的表面积都可以通过公式S = 2lw + 2lh + 2wh来计算,其中l为长,w为宽,h为高。
正方体的表面积可以简化为S = 6a^2,其中a为边长。
3. 对角线:长方体和正方体的对角线可以通过勾股定理来计算。
长方体的对角线长度为d = sqrt(l^2 + w^2 + h^2),正方体的对角线长度为d = sqrt(3a^2),其中l、w、h分别为长方体的长、宽、高,a为正方体的边长。
长方体、正方体的知识点
长方体、正方体的知识点长方体是一种具有六个面的立体图形,其每个面都是一个矩形。
长方体有固定的尺寸,可以根据其长、宽和高来确定。
而正方体是一种特殊的长方体,其所有的面都是相等的正方形,每个角都是直角。
1. 长方体的性质:a. 面:长方体有六个面,每个面都是一个矩形。
其中,相邻的面是平行的。
b. 边:长方体有12条边,每两条边相邻的都是平行的。
每个顶点都连接着三条边。
c. 顶点:长方体有8个顶点,每个顶点都连接着三条边。
d. 对角线:长方体的每个对面都有一条对角线,共6条对角线。
e. 体积:长方体的体积可以通过长、宽和高来计算,公式为体积=长×宽×高。
f. 表面积:长方体的表面积可以通过计算各个面的面积之和来获得,公式为表面积=2×(长×宽+长×高+宽×高)。
2. 正方体的性质:a. 面:正方体有六个面,每个面都是一个正方形。
其中,相邻的面是平行的。
b. 边:正方体有12条边,每两条边相邻的都是平行的。
每个顶点都连接着三条边。
c. 顶点:正方体有8个顶点,每个顶点都连接着三条边。
d. 对角线:正方体的每个对面都有一条对角线,共6条对角线。
e. 体积:正方体的体积可以通过边长(边长相等)来计算,公式为体积=边长×边长×边长。
f. 表面积:正方体的表面积可以通过边长(边长相等)来计算,公式为表面积=6×边长×边长。
3. 长方体和正方体的区别:a. 面形状:长方体的面是矩形,而正方体的面是正方形。
b. 边长:长方体的边长可以不相等,而正方体的边长是相等的。
c. 面积和体积计算:长方体的表面积和体积计算需要考虑长、宽、高的不同值,而正方体的面积和体积计算只需要一个边长即可。
4. 长方体和正方体的应用:a. 建筑:长方体和正方体是建筑中常见的立体图形。
很多建筑物的结构和形状可以用长方体或正方体来描述。
b. 数学问题:长方体和正方体经常在数学问题中出现,如几何形状的计算、体积和表面积的求解等。
长方体正方体知识点汇总
长方体正方体知识点汇总Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998长方体、正方体知识点汇总一、长方体和正方体的各部分名称1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
3、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体有有6个面,8个顶点,12条棱,它们的长度都相等,所有的面都完全相同。
4.长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5.长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
二、总棱长公式长方体的棱长总和=(长+宽+高)×4棱长总和÷4=长+宽+高正方体的棱长总和=棱长×12正方体的棱长=棱长总和÷12三、表面积1.长方体或正方体6个面和总面积叫做它的表面积。
2.长方体的表面积=(长×宽+长×高+宽×高)×2无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2 无底又无盖长方体表面积=(长×高+宽×高)×2正方体的表面积=棱长×棱长×6四、体积1.物体所占空间的大小叫做物体的体积。
2.长方体的体积=长×宽×高=底面积×高V=abh=sh长=体积÷宽÷高 a=V÷b÷h宽=体积÷长÷高 b=V÷a÷h高=体积÷长÷宽 h= V÷a÷b3.正方体的体积=棱长×棱长×棱长 V=a×a×a注意:正方体的棱长扩大n倍,表面积扩大n的平方倍,体积扩大n的立方倍。
小学五年级数学下册第二单元知识点总结
顶点
面
棱
个数
个数
形 状
大小关系
条数
长度关系
8
6
都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形。
相对的面是完全一样的长方形。
12
可以分为三组,相对的棱平行且相等。
8
6
都是正方形。
每个面的面积都相等
12
长度都相等。
3、正方体是特殊的长方体。因为正方体可以看成是长、宽、高都相等的长方体。
第二单元 长方体(一)
2.1长方体的认识
知识点:1、认识长方体、正方体,了解各部分的名称。
(1)表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。
(2)左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。
(3)长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。
2—2—2 型 1个 楼梯形
3-3 型 1个
注意:(1)田字型与凹字型的全错。
(2)正方体展开至少和最多都只剪开7条棱。
2.3长方体的表面积
知识点:1、表面积的意义:是指六个面的面积之和。
2、长方体和正方体表面积的计算方法:
长方体的表面积(6个面)=长×宽×2+长×高×2+宽×高×2
(上下面) (前后面) (左右面)
2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。
3、求露在外面的面的面积=棱长×棱长×露在外面的面的个数。
(一个面的面积)
S长=(长×宽+长×高+宽×高)×2
4、正方体的表面积(6个面)=棱长×棱长×6 S正=棱长×棱长×6
长方体和正方体知识点汇总
长方体和正方体知识点汇总一、长方体和正方体的定义及性质1. 定义长方体:长方体是一种六个面都是矩形的立体图形,其中相对的两个面是长方形,其余四个面是正方形。
正方体:正方体是一种六个面都是正方形的立体图形,每个面的边长相等。
2. 性质(1)长方体的性质长方体有6个面,12条棱,8个顶点。
相对的面是长方形,其余四个面是正方形。
相邻的棱长相等,相对的棱长也相等。
长方体的对角线互相垂直,且相等。
(2)正方体的性质正方体有6个面,12条棱,8个顶点。
所有面都是正方形,边长相等。
相邻的棱长相等,相对的棱长也相等。
正方体的对角线互相垂直,且相等。
二、长方体和正方体的表面积与体积1. 长方体的表面积与体积(1)表面积长方体的表面积是指六个面的面积之和。
设长方体的长、宽、高分别为a、b、c,则长方体的表面积S为:S = 2(ab + ac + bc)(2)体积长方体的体积是指长、宽、高三个维度的乘积。
设长方体的长、宽、高分别为a、b、c,则长方体的体积V为:V = abc2. 正方体的表面积与体积(1)表面积正方体的表面积是指六个面的面积之和。
设正方体的边长为a,则正方体的表面积S为:S = 6a^2(2)体积正方体的体积是指边长的三次方。
设正方体的边长为a,则正方体的体积V为:V = a^3三、长方体和正方体的空间关系1. 长方体的空间关系长方体的底面与顶面平行,且底面与侧棱垂直。
长方体的侧面与底面垂直,且相邻侧面互相垂直。
长方体的对角线互相垂直,且相等。
2. 正方体的空间关系正方体的底面与顶面平行,且底面与侧棱垂直。
正方体的侧面与底面垂直,且相邻侧面互相垂直。
正方体的对角线互相垂直,且相等。
四、长方体和正方体的应用1. 长方体的应用长方体广泛应用于建筑设计、家具设计、包装设计等领域。
长方体的体积和表面积计算对于计算材料用量、确定空间大小等有重要作用。
2. 正方体的应用正方体在建筑设计、雕塑创作、数学建模等领域有广泛的应用。
(完整版)长方体和正方体知识点总结+练习
第二单元长方体和正方体总结一、长方体和正方体的特征:形体相同点不同点关系面棱顶点面的形状面的大小棱长长方体 6 12 8一般六个面都是长方形(也有两个相对的面是正方形)。
相对的面面积相等平行的四条棱长度相等正方体是特殊的长方体正方体 6 12 8六个面都是正方形六个面的面积相等十二条棱长都相等长方体:①有6个面,相对的面完全相同;长方体放桌面上,最多只能看到3个面。
②有12条棱,相对的棱长长度相等,而且相对的棱互相平行;12条棱可以分为3组(分别为长、宽、高),每组的4条棱一样长;长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4③有8个顶点,每个顶点上的三条棱分别称为长方体的长、宽、高。
正方体:①有6个完全相同的面;正方体放桌面上,最多只能看到3个面。
②有12条长度相等的棱,每条棱的长度称为正方体的棱长;正方体的总棱长=棱长×12。
上下左后右前③有8个顶点。
练一练:1.一个长方体长、宽、高分别是10cm、7 cm、4 cm ,这个长方体的棱长和是多少厘米?(提示:根据长方体的总棱长公式计算)2.一个长方体的棱长和是160dm,其中,长是20dm,宽是8dm,它的高是多少?从一个顶点引出的三条棱的长度总和是多少?3.将一根铁丝长720厘米做成正方体,则正方体的棱长是多少厘米?二、长方体和正方体的表面积定义:长方体或正方体6个面的总面积,叫做它的表面积。
1.法一:(1)长方体的表面积(有六个面)=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2(因为长方体相对的面完全相同)法二:前、后面:长×高×2=X左、右面:长×高×2=Y上、下面:长×宽×2=Z则长方体的表面积(有六个面)= X + Y + Z2.正方体的表面积(有六个面)=棱长×棱长×6(因为正方体的六个面完全相同)在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
长方体的知识总结长方体和正方体的知识点整理
长方体的知识总结长方体和正方体的知识点整理长方体和正方体知识整理一、【概念】1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体有12条棱,它们的长度都相等,所有的面都完全相同。
长方体正方体 4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
长方体的棱长总和=(长+宽+高)×4L=(a+b+h)×4 长=棱长总和÷4-宽-高a=L÷4-b-h 宽=棱长总和÷4-长-高b=L÷4-a-h 高=棱长总和÷4-长-宽h=L÷4-a-b 正方体的棱长总和=棱长×12L=a×12 正方体的棱长=棱长总和÷12 a=L÷12 6、长方体或正方体的长、宽、高同时扩大几倍,棱长总和会扩大相同的倍数。
(如长、宽、高各扩大2倍,棱长总和就会扩大到原来的2倍)。
二、【长方体和正方体的表面积】1、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2 S=2(ab+ah+bh)-ab S=2(ah+bh)+ab 无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)正方体的表面积=棱长×棱长×6 S=a×a×6=6a22、表面积的常用单位有:平方米、平方分米、平方厘米相邻两个面积单位之间的进率是1001m2 =100dm21 dm2 =100 cm21m2 =10000 cm2 3、生活实际油箱、罐头盒等都是6个面;游泳池、鱼缸、粉刷教室等都只有5个面;水管、烟囱等都只有4个面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二单元 长方体、正方体知识点
1. 参照物: 书的厚度 指甲 粉笔盒 三张课桌
单位: 长度:mm → cm → dm → m → km
(相邻) 面积:mm 2 → cm 2 → dm 2 → m 2 → 公顷 → km 2(平方千米) 体积:mm 3 → cm 3(毫升)→ dm 3(升)→ m 3(教室、集装箱等)
补充:(1)占地面积:长×宽
(2)表面积:少上面或下面(宽×高×2):无盖水桶;抽屉;火柴盒内盒;
金鱼缸;游泳池;教师刮涂料(除门窗)。
少左右两个面:通风管;罐头
四周包装纸;火柴盒外壳。
台阶:上面+前面。
(3)当物体是空心时一般求表面积;当物体是实心时一般求体积。
10 10 10 1000 1000 1000 1000 100 100 100 10000 100
4.(1)把n个相同正方体排成一排拼成的长方体后,减少的正方形的面的个数
是2n-2
(2)①把同样多的物体包装成长方体,长、宽、高越接近,表面积越少;
②物体重合面积越大,包装用纸越少;
③体积一定,当长、宽、高相等时,表面积越小。
(3)表面积=侧面积+底面积×2;侧面积=底面周长×高[长×高×2+宽×高×2=(长×2+宽×2)×高];体积=底面积×高。
(4)正方形周长=边长×4;边长=正方形周长÷4;面积=边长×边长。
(5)三角形:底×高÷2;
长方形:周长=长×2+宽×2;面积=长×宽;长+宽=周长÷2 (6)。
物体体积=容器底面积(容器长×容器宽)×水面上升的高度。
5.展开图141 231 33 222 不能出现
6.长方体的长、宽、高(或正方体的棱长)扩大a倍,则棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。
7.至少需要8个小正方体才能拼成一个大正方体。
(长2宽2高2,2×2×2=8)
8.正方体个数 1 2 3 4 5 ……n
拼成长方体面的个数 6 10 14 18 22 ……4n+2
比原来少的面数/ 2 4 6 8 ……2n-2
9.①两个长方体的表面积相等,长方体的体积也相等。
(×)
②两个正方体表面积相等,正方体的体积也相等。
(√)
③不同单位之间无法比较,如:棱长6cm的正方体表面积和体积相等。
(×)。