【数学6份合集】河北省名校2019-2020学年中考第一次质量检测数学试题

合集下载

河北省保定市2019-2020学年中考一诊数学试题含解析

河北省保定市2019-2020学年中考一诊数学试题含解析

河北省保定市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=kx的图象上的两个点,则一次函数y=kx+b的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限2.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°3.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°4.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°5.将不等式组2(23)3532x xx x-≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( )A.B.C.D.6.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再A.4 B.6 C.8 D.107.济南市某天的气温:-5~8℃,则当天最高与最低的温差为()A.13 B.3 C.-13 D.-38.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1079.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-10.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°11.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.212.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简11x-÷211x-=_____.14.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.15.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.16.如图,在△ABC中,AB=3+3,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.17.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件________,使ABCD成为正方形.18.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.20.(6分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活多少?21.(6分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?22.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.23.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.6m ,木竿PQ 落在地面上的影子PM =1.8m ,落在墙上的影子MN =1.1m ,求木竿PQ 的长度.24.(10分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 25.(108﹣4cos45°+(12)﹣1+|﹣2|.AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.27.(12分)已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=mx图象的两个交点.求一次函数和反比例函数的解析式;求△AOB 的面积;观察图象,直接写出不等式kx+b ﹣mx>0的解集.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】把(2,2)代入k y x =得k=4,把(b ,﹣1﹣n 2)代入ky x=得,k=b (﹣1﹣n 2),即 241b n=--根据k 、b 的值确定一次函数y=kx+b 的图象经过的象限. 【详解】解:把(2,2)代入k y x=,把(b ,﹣1﹣n 2)代入ky x=得: k=b (﹣1﹣n 2),即241b n =--,∵k=4>0,241b n =--<0,∴一次函数y=kx+b 的图象经过第一、三、四象限, 故选C . 【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k ,b 的符号是解题关键. 2.D 【解析】 试题分析:如图,连接OC , ∵AO ∥DC ,∴∠ODC=∠AOD=70°, ∵OD=OC ,∴∠ODC=∠OCD=70°, ∴∠COD=40°, ∴∠AOC=110°, ∴∠B=∠AOC=55°.故选D .考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质 3.B 【解析】试题分析:如图,翻折△ACD ,点A 落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.4.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键5.B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:11xx≤⎧⎨>-⎩,即11x-<≤.∴在数轴上可表示为.故选B.“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.C【解析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=12 CF•CE.【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BC∥DE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以△CEF的面积=12CF•CE=8;故选:C.点睛:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.7.A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.8.D【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数9.B【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.【解析】分析:依据AB ∥EF ,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°. 详解:∵AB ∥EF , ∴∠BDE=∠E=45°, 又∵∠A=30°, ∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°, 故选C .点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等. 11.C 【解析】 【分析】由方程有两个相等的实数根,得到根的判别式等于0,求出m 的值,经检验即可得到满足题意m 的值. 【详解】∵一元二次方程mx 1+mx ﹣12=0有两个相等实数根, ∴△=m 1﹣4m×(﹣12)=m 1+1m =0, 解得:m =0或m =﹣1, 经检验m =0不合题意, 则m =﹣1. 故选C . 【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根. 12.D 【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2, 所以﹣2ba=﹣1,可得b=2a , 当x=﹣3时,y <0, 即9a ﹣3b+c <0, 9a ﹣6a+c <0,∵a<0,∴4a+c<0,所以①选项结论正确;②∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此选项结论不正确;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;④由图象得:当x>﹣1时,y随x的增大而减小,∵当k为常数时,0≤k2≤k2+1,∴当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=11x-÷1(1)(1)x x+-=11x-•(x+1)(x﹣1)=x+1,故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.14.2 3【解析】【分析】根据概率的概念直接求得. 【详解】解:4÷6=2 3 .故答案为:2 3 .【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.15.13518020 x x=+【解析】【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.【详解】∵甲平均每分钟打x个字,∴乙平均每分钟打(x+20)个字,根据题意得:13518020x x=+,故答案为13518020x x=+.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.16【解析】【分析】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.【详解】如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四边形ADEF是菱形,∴F,D关于直线AE对称,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是线段BD的长,∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=12x,3,∵∠EGB=45°,EG⊥BG,∴EG=BG=12x,∴3123,∴x=2,∴DH=1,BH=3,∴221310,∴PF+PB10,10.【点睛】本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.17.∠BAD=90°(不唯一)【解析】【分析】根据正方形的判定定理添加条件即可.【详解】解:∵平行四边形ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴四边形ABCD是菱形,当∠BAD=90°时,四边形ABCD为正方形.故答案为:∠BAD=90°.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.18.100(1+x)2=121【解析】【分析】根据题意给出的等量关系即可求出答案.【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2).【解析】【分析】(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.【详解】(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB 是直径 ∴∠ACB=90° ∴∠ACO+∠OCB=90° ∵OC ⊥PC∴∠BCP+∠OCB=90° ∴∠BCP=∠ACO ∵OA=OC ∴∠A=∠ACO ∴∠A=∠BCP在△PBC 和△PCA 中: ∠BCP=∠A ,∠P=∠P ∴△PBC ∽△PCA , ∴∴tan ∠CAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.20.(1)50(2)36%(3)160 【解析】 【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数. 【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%. (3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人.答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.21.(1)60;(2)s=10t-6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟.【解析】【分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【详解】(1)甲的速度为540090=60米/分钟.(2)当20≤t ≤1时,设s=mt+n,由题意得:200 303000 m nm n+=⎧⎨+=⎩,解得:3006000mn=⎧⎨=-⎩,所以s=10t-6000;(3)①当20≤t ≤1时,60t=10t-6000,解得:t=25,25-20=5;②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B步行到景点C的速度是2米/分钟.【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.22.(1),;(2)点的坐标为;(3)点的坐标为和【解析】【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.23.木竿PQ的长度为3.35米.【解析】【分析】过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.试题解析:【详解】解:过N点作ND⊥PQ于D,则四边形DPMN 为矩形,∴DN =PM =1.8m ,DP =MN =1.1m ,∴AB QDBC DN=, ∴QD =AB DNBC⋅=2.25,∴PQ =QD +DP = 2.25+1.1=3.35(m ). 答:木竿PQ 的长度为3.35米. 【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.24.(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94. 25.4 【解析】 分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可. 详解:原式=4224+=. 点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1pp a a-=(0a p ≠,为正整数)”是正确解答本题的关键.26.(1)证明见试题解析;(2)1. 【解析】 【详解】试题分析:(1)由AE=DF ,∠A=∠D ,AB=DC ,易证得△AEC ≌△DFB ,即可得BF=EC ,∠ACE=∠DBF ,且EC ∥BF ,即可判定四边形BFCE 是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中{AC DB A D AE DF=∠=∠=,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴当BE=1时,四边形BFCE是菱形,故答案为1.【考点】平行四边形的判定;菱形的判定.27.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.。

河北省邯郸市2019-2020学年中考数学一模考试卷含解析

河北省邯郸市2019-2020学年中考数学一模考试卷含解析

河北省邯郸市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为()A.8064 B.8067 C.8068 D.80722.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,43.如图,不等式组1010xx+⎧⎨-≤⎩f的解集在数轴上表示正确的是()A .B .C .D .4.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上5.下列计算正确的是()A .B .C .D .6.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A .1101002x x=+ B .1101002x x =+ C .1101002x x=- D .1101002x x =- 7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q8.如果关于x 的不等式组2030x a x b -≥⎧⎨-≤⎩的整数解仅有2x =、3x =,那么适合这个不等式组的整数a 、b组成的有序数对(,)a b 共有() A .3个B .4个C .5个D .6个9.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C10.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,∠ABG =46°,则∠FAE 的度数是( )A .26°.B .44°.C .46°.D .72°11.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .4312.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60o ∠=时,AC 等于( )A 2B .2C 6D .2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n 14.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .15.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B品牌粽子在图2中所对应的扇形的心角的度数是_____.16.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中AB、CD 分别表示一楼、二楼地面的水平,∠ABC=150°,BC 的长是8m,则乘电梯次点B 到点 C 上升的高度h 是_____m.(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_____边形.17.一个扇形的面积是125πcm,半径是3cm,则此扇形的弧长是_____.18.函数y=123xx++中,自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC 位似,且位似比为2:1,点C2的坐标是.20.(6分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?21.(6分)如图,在△ABC中,AB AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.22.(8分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.23.(8分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式组:24.(10分)当a=3,b=2时,求代数式222222a b b aba ab b a b+--++-的值.25.(10分)如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.26.(12分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.27.(12分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即S n=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.故选C.点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.2.B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.3.B【解析】【分析】首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【详解】解:解第一个不等式得:x>-1;解第二个不等式得:x≤1,在数轴上表示,故选B.【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.4.B【解析】【分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是13,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是16≈0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是14,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是18,故D选项错误,故选B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.5.D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可. 解答:解:A 、x+x=2x ,选项错误; B 、x?x=x 2,选项错误; C 、(x 2)3=x 6,选项错误; D 、正确. 故选D . 6.A 【解析】设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可. 解:设乙骑自行车的平均速度为x 千米/时,由题意得:1102x =100x, 故选A . 7.C 【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较. 8.D 【解析】 【分析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b<4,求出2<a≤4、9≤b <12,即可得出答案. 【详解】解不等式2x−a≥0,得:x≥2a, 解不等式3x−b≤0,得:x≤3b,∵不等式组的整数解仅有x =2、x =3, 则1<2a ≤2、3≤3b<4, 解得:2<a≤4、9≤b <12, 则a =3时,b =9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.9.C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.10.A【解析】【分析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.11.A【解析】【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.12.B【解析】【分析】首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,B60o∠=,易得△ABC是等边三角形,即可得到答案.【详解】连接AC,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,∴AB=BC,∵B60o∠=,∴△ABC是等边三角形,∴AC=AB=1.故选:B.【点睛】本题考点:菱形的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题解析:故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.14.30°【解析】试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC,∴∠C=∠OAC=30°.∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.15.120°【解析】【分析】根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数.【详解】解:∵三种品牌的粽子总数为1200÷50%=2400个,又∵A、C品牌的粽子分别有400个、1200个,∴B品牌的粽子有2400-400-1200=800个,则B品牌粽子在图2中所对应的圆心角的度数为360×8001360120 24003=⨯=︒.故答案为120°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.4 8【解析】【分析】(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为360? n故可列出方程求解.【详解】(1)∵∠ABC=150°,∴斜面BC的坡角为30°,∴h=12BC=4m(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为360? n依题意得2180360?3n n n-⨯︒=⨯()解得n=8 故为八边形. 【点睛】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式. 17.85π 【解析】 【分析】根据扇形面积公式1S 2l r 扇形=⋅⋅求解即可 【详解】根据扇形面积公式1S 2l r 扇形=⋅⋅. 可得:121352l π=⨯⨯, 85l π=,故答案:85π.【点睛】本题主要考查了扇形的面积和弧长之间的关系, 利用扇形弧长和半径代入公式1S 2l r 扇形=⋅⋅即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式. 18.x≠﹣32. 【解析】 【分析】该函数是分式,分式有意义的条件是分母不等于1,故分母x ﹣1≠1,解得x 的范围. 【详解】解:根据分式有意义的条件得:2x+3≠1 解得:32x ≠-. 故答案为32x ≠-. 【点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.20.(1)见解析;(2)140人;(1)1 4 .【解析】【分析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.【详解】(1)由统计图可得:(1分)(2分)(4分)(5分)甲(人)0 1 7 6 4乙(人) 2 2 5 8 4全体(%) 5 12.5 10 15 17.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙组得5分的人数统计有误,正确人数应为:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如图得:∵共有16种等可能的结果,所选两人正好分在一组的有4种情况,∴所选两人正好分在一组的概率是:41= 164.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.21.(1)证明见解析;(2)32;(3)1.【解析】【分析】(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=12BC=2,再证明△AOM∽△ABE,则利用相似比得到626r r-=,然后解关于r的方程即可;(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=32,所以BH=BE-HE=12,再根据垂径定理得到BH=HG=12,所以BG=1.【详解】解:(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=12BC=2,∵OM∥BE,∴△AOM∽△ABE,∴OM AOBE AB=,即626r r-=,解得r=32,即设⊙O的半径为32;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=32, ∴BH=BE ﹣HE=2﹣32=12, ∵OH ⊥BG , ∴BH=HG=12, ∴BG=2BH=1.22.(1)m≤1;(2)3≤m≤1. 【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x 1+x 2=6,x 1x 2=2m+1,再利用2x 1x 2+x 1+x 2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m 的取值范围. 试题解析:(1)根据题意得△=(-6)2-1(2m +1)≥0, 解得m≤1;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1, 而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20, 解得m≥3, 而m≤1,所以m 的范围为3≤m≤1. 23.(1),;(2)1≤x <1.【解析】试题分析:利用配方法进行解方程;首先分别求出两个不等式的解,然后得出不等式组的解. 试题解析:(1)-1x=3-1x+1=7=7 x -2=±解得:,(2)解不等式1,得x≥1 解不等式2,得x <1 ∴不等式组的解集是1≤x <1 考点:一元二次方程的解法;不等式组. 24.1b a b++,6﹣3. 【解析】 原式=()()()()2b a b a ba b a b a b -+++-+=11b b a b a b a b++=+++, 当3b=2时,6==-.25.(1)抛物线l 2的函数表达式;y=x 2﹣4x ﹣1;(2)P 点坐标为(1,1);(3)在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.1. 【解析】 【分析】(1)由抛物线l 1的对称轴求出b 的值,即可得出抛物线l 1的解析式,从而得出点A 、点B 的坐标,由点B 、点E 、点D 的坐标求出抛物线l 2的解析式即可;(2)作CH ⊥PG 交直线PG 于点H ,设点P 的坐标为(1,y ),求出点C 的坐标,进而得出CH=1,PH=|3﹣y |,PG=|y |,AG=2,由PA=PC 可得PA 2=PC 2,由勾股定理分别将PA 2、PC 2用CH 、PH 、PG 、AG 表示,列方程求出y 的值即可;(3)设出点M 的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x≤4时,点M 位于点N 的下方,表示出MN 的长度为关于x 的二次函数,在x 的范围内求二次函数的最值;②当4<x≤1时,点M 位于点N 的上方,同理求出此时MN 的最大值,取二者较大值,即可得出MN 的最大值. 【详解】(1)∵抛物线l 1:y=﹣x 2+bx+3对称轴为x=1, ∴x=﹣21b()⨯-=1,b=2,∴抛物线l 1的函数表达式为:y=﹣x 2+2x+3, 当y=0时,﹣x 2+2x+3=0, 解得:x 1=3,x 2=﹣1, ∴A (﹣1,0),B (3,0),设抛物线l 2的函数表达式;y=a (x ﹣1)(x+1), 把D (0,﹣1)代入得:﹣1a=﹣1,a=1, ∴抛物线l 2的函数表达式;y=x 2﹣4x ﹣1; (2)作CH ⊥PG 交直线PG 于点H ,设P 点坐标为(1,y ),由(1)可得C 点坐标为(0,3), ∴CH=1,PH=|3﹣y |,PG=|y |,AG=2, ∴PC 2=12+(3﹣y )2=y 2﹣6y+10,PA 2= =y 2+4, ∵PC=PA , ∴PA 2=PC 2,∴y 2﹣6y+10=y 2+4,解得y=1, ∴P 点坐标为(1,1);(3)由题意可设M(x,x2﹣4x﹣1),∵MN∥y轴,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①当﹣1<x≤4时,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣32)2+252,显然﹣1<32≤4,∴当x=32时,MN有最大值12.1;②当4<x≤1时,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣32)2﹣252,显然当x>32时,MN随x的增大而增大,∴当x=1时,MN有最大值,MN=2(1﹣32)2﹣252=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.【点睛】本题是二次函数与几何综合题,主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.26.(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.27.(1)详见解析;(1)①详见解析;②1;③62.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如图1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=1 2•x(4-x)=-12(x-1)1+1,∵-12<0,∴x=1时,△BMN的面积最大,最大值为1.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)2m mm+=3+32m,在Rt△EBH中,sin∠EBH=3+36226EHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,。

2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷解析版

2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷解析版

2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷一.选择题(每题3分,共计18分)1.(3分)下列方程为一元二次方程的是()A.ax2+bx+c=0B.x2﹣2x﹣3C.2x2=0D.xy+1=02.(3分)如图是某物体的直观图,它的俯视图是()A.B.C.D.3.(3分)下列图中是太阳光下形成的影子是()A.B.C.D.4.(3分)在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.5.(3分)如图,P为反比例函数y=的图象上一点,P A⊥x轴于点A,△P AO的面积为6,则下列各点中也在这个反比例函数图象上的是()A.(2,3)B.(﹣2,6)C.(2,6 )D.(﹣2,3)6.(3分)如图,双曲线y=经过点A(2,2)与点B(4,m),则△AOB的面积为()A.2B.3C.4D.5二.填空题(每题3分,共30分)7.(3分)分解因式:4m2﹣16n2=.8.(3分)一个三角形的两边长分别为4cm和7cm,第三边长是一元二次方程x2﹣10x+21=0的实数根,则三角形的周长是cm.9.(3分)将一个正十边形绕其中心至少旋转°就能和本身重合.10.(3分)某工厂两年内产值翻了一番,若设该工厂产值年平均增长的百分率为x,则可列方程为.11.(3分)如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=.12.(3分)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.13.(3分)如图,PB是⊙O的切线,A是切点,D是上一点,若∠BAC=70°,则∠ADC的度数是度.14.(3分)如图,正五边形ABCDE内接于⊙O,则∠CAD=度.15.(3分)关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是.16.(3分)已知⊙O的直径CD为4,的度数为80°,点B是的中点,点P在直径CD上移动,则BP+AP 的最小值为.三.解答题(共72分)17.用适当的方法解下列方程(1)2x2﹣5x=3(2)x(x﹣5)=2(x﹣5)18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.19.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.20.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.21.已知:如图A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,∠B=30°.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.22.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)(1)填空:EF=cm,GH=cm;(用含x的代数式表示)(2)若折成的长方体盒子的表面积为950cm2,求该长方体盒子的体积.23.如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6.(1)求直线AC的表达式;(2)若直线y=x+b与矩形OABC有公共点,求b的取值范围;(3)若点O与点B位于直线y=kx﹣2﹣10k两侧,直接写出k的取值范围.24.如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D 三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为10m,∠BAC=60°,求DE的长.2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共计18分)1.【解答】解:A、a=0时,属于一元一次方程,故本选项错误;B、不是方程,不符合一元二次方程的定义,故本选项错误;C、该方程符合一元二次方程的定义,故本选项正确;D、该方程中含有2个未知数,不是一元二次方程,故本选项错误.故选:C.2.【解答】解:圆柱的俯视图是圆,长方体的俯视图是长方形,所以该组合几何体的俯视图应是长方形内有一个圆.故选:A.3.【解答】解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B、D的影子方向相反,都错误;C中物体的物高和影长不成比例,也错误.故选:A.4.【解答】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;依物同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选:A.5.【解答】解:由于P为反比例函数的y=图象上一点,所以S=|k|=6,又因为函数位于第二象限,所以k=﹣12.再把各选项中的坐标代入进行判断:A、2×3=6≠﹣12,故不在函数图象上;B、﹣2×6=﹣12,故在函数图象上;C、2×6=12≠﹣12,故不在函数图象上;D、(﹣2)×3=﹣6≠﹣12,故不在函数图象上.故选:B.6.【解答】解:过A、B分别作x轴的垂线,垂足分别为C、D,如图,∵双曲线y=经过点A(2,2),∴k=2×2=4,而点B(4,m)在y=上,∴4•m=4,解得m=1,即B点坐标为(4,1),∴S△AOB=S△AOC+S梯形ABDC﹣S△BOD=OC•AC+×(AC+BD)×CD﹣×OD×BD=×2×2+×(2+1)×(4﹣2)﹣×4×1=3.故选:B.二.填空题(每题3分,共30分)7.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)8.【解答】解:方程x2﹣10x+21=0,分解因式得:(x﹣3)(x﹣7)=0,解得:x=3或x=7,当x=3时,三角形三边分别为3cm,4cm,7cm,3+4=7,不合题意,舍去;当x=7时,三角形三边为4cm,7cm,7cm,此时周长为4+7+7=18cm,故答案为:189.【解答】解:∵多边形每个中心角为:=36°,该图形绕其中心至少旋转36°和本身重合.故答案为:36.10.【解答】解:设该工厂产值年平均增长的百分率为x,原产值为1,由题意得:(1+x)2=2,故答案是:(1+x)2=2.11.【解答】解:∵AD为⊙O的直径,∴∠ABD=90°,∵AC=BC,∠ABC=75°,∴∠BAC=∠ABC=75°,∴∠C=180°﹣∠ABC﹣∠BAC=30°,∠CBD=∠ABD﹣∠ABC=15°,∴∠D=∠C=30°,∴∠BED=180°﹣∠CBD﹣∠D=135°.故答案为:135°.12.【解答】解:根据旋转过程可知:∠CAD=30°=∠CAB,AC=AD=4.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H点,在Rt△ACH中,CH=AC=2,AH=2.∴HD=AD﹣AH=4﹣2.在Rt△CHE中,∵∠E=45°,∴EH=CH=2.∴DE=EH﹣HD=2﹣(4﹣2)=2﹣2.故答案为2﹣2.13.【解答】解:如图,∵在优弧AC上取点E,连接AE,CE,PB是⊙O的切线,∠BAC=70°,∴∠E=70°,∴∠D=180°﹣∠E=110°.14.【解答】解:∵五边形ABCDE是正五边形,∴=====72°,∴∠CAD=×72°=36°.故答案为36.15.【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=﹣2或x+2=1,解得x=﹣4或x=﹣1.故答案为:x3=﹣4,x4=﹣1.16.【解答】解:过点B关于CD的对称点B′,连接AB′交CD于点P,延长AO交圆O与点E,连接B′E.∵点B与点B′关于CD对称,∴PB=PB′..∴当点B′、P、A在一条直线上时,PB+P A有最小值,最小值为AB′.∵点B是的中点,∴=120°.∴∠B′EA=60°.∴AB′=AE•sin60°=4×=2.故答案为:2.三.解答题(共72分)17.【解答】解:(1)方程整理得:x2﹣x=3,配方得:x2﹣x+=,即(x﹣)2=,开方得:x﹣=±,解得:x1=3,x2=﹣;(2)方程整理得:x(x﹣5)﹣2(x﹣5)=0,分解因式得:(x﹣2)(x﹣5)=0,解得:x1=5,x2=2.18.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EG=12cm,∠EGF=30°,∴EQ=AB=×12=6(cm).故答案为:6.19.【解答】解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B是双曲线y=上一点,∴k=xy=3.故答案为:3.20.【解答】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为7.故答案为:18,7.21.【解答】(1)证明:如图,连接OA;∵OC=BC,OA=OC,∴OA=OB.∴∠OAB=90°,即OA⊥AB,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.22.【解答】解:(1)EF=(30﹣2x)cm,GH=(20﹣x)cm.故答案为(30﹣2x),(20﹣x);(2)根据题意,得:40×30﹣2x2﹣2×20x=950,解得:x1=5,x2=﹣25(不合题意,舍去),所以长方体盒子的体积=x(30﹣2x)(20﹣x)=5×20×15=1500(cm3).答:此时长方体盒子的体积为1500cm3.23.【解答】解:(1)∵OA=8,OC=6,∴A(8,0),C(0,6),设直线AC解析式为y=mx+n(m≠0),将A(8,0)、C(0,6)代入y=mx+n,得:,解得:,∴直线AC的解析式为y=﹣x+6;(2)当直线y=x+b过点C时,将C(0,6)代入y=x+b,得:6=0+b,∴b=6;当直线y=x+b过点A时,将A(8,0)代入y=x+b,得:0=8+b,∴b=﹣8.∵若直线y=x+b与矩形OABC有公共点,∴b的取值范围为:﹣8<b<6.(3)∵OA=8,OC=6,四边形OABC为矩形,∴B(8,6).将A(0,0)代入y=kx﹣2﹣10k,得:﹣2﹣10k=0,解得:k=﹣;将B(8,6)代入y=kx﹣2﹣10k,得:8k﹣2﹣10k=6,解得:k=﹣4.∴k的取值范围为:﹣4<k<﹣.24.【解答】(1)证明:如图连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径;(2)DE与圆O相切,理由为:证明:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=20,设AC与⊙O交于点F,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=10,DE∥BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=20,AF=10,根据勾股定理得:BF=,则DE==5.。

2019-2020学年河北省邢台三中七年级(上)第一次月考数学试卷试题及答案

2019-2020学年河北省邢台三中七年级(上)第一次月考数学试卷试题及答案

2019-2020学年河北省邢台三中七年级(上)第一次月考数学试卷一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2016秋•房山区期中)下列各组数中,具有相反意义的量是() A.节约汽油10公斤和浪费酒精10公斤B.向东走5公里和向南走5公里C.收入300元和支出500元D.身高180cm和身高90cm2.(3分)(2019秋•桥东区校级月考)手机截屏显示吐鲁番盆地的海拔高度,它表示吐鲁番盆地()A.高于海平面154米B.低于海平面154-米C.低于海平面154米D.海平面154米以下3.(3分)(2017秋•沈河区期末)下列结论中,正确的是()A.0是最小的正数B.0是最大的负数C.0既是正数,又是负数D.0既不是正数,也不是负数4.(3分)(2019秋•桥东区校级月考)(9)--可以表示一个数的相反数,这个数是()A.19B.19-C.9D.9-5.(3分)(2019•沂源县一模)若等式0___1=﹣1成立,则___上的运算符号为() A.+B.-C.⨯D.÷6.(3分)(2019秋•桥东区校级月考)有理数a的绝对值记作||a,则||a的值可以是() A .4-B .3C .1-D .2-7.(3分)(2019秋•桥东区校级月考)幂34可以表示为( ) A .43⨯B .3333+++C .444⨯⨯D .3333⨯⨯⨯8.(3分)(2019•河北一模)如图,在数轴上,小手遮挡住的点表示的数可能是( )A . 1.5-B . 2.5-C .0.5-D .0.59.(3分)(2017秋•溧水区期末)水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm ,今天的水位为0cm ,那么2天前的水位用算式表示正确的是( ) A .(3)(2)+⨯+B .(3)(2)+⨯-C .(3)(2)-⨯+D .(3)(2)-⨯-10.(3分)(2017秋•宁德期末)在下列执行异号两数相加的步骤中,错误的是( ) ①求两个有理数的绝对值; ②比较两个有理数绝对值的大小; ③将绝对值较大数的符号作为结果的符号; ④将两个有理数绝对值的和作为结果的绝对值 A .①B .②C .③D .④11.(3分)(2019秋•桥东区校级月考)下列给出的算式中,你认为可以帮助探究有理数加法法则的算式组合是( )①3(2)+-;②43+;③(3)(2)-+-;④313+;⑤30+;⑥6(3)+-;⑦4(5)+-;⑧5(5)+-. A .①②③④⑤⑧B .②③⑤⑥⑦⑧C .①③④⑤⑥⑧D .①②④⑤⑦⑧12.(3分)(2015秋•北京校级期中) 4 个有理数相乘, 积的符号是负号, 则这 4 个有理数中,负数有( ) A . 1 个或 3 个B . 1 个或 2 个C . 2 个或 4 个D . 3 个或 4 个13.(3分)(2019秋•桥东区校级月考)若被除数是72-,除数比被除数小32,则商是() A .74-B .74C .710-D .71014.(3分)(2019秋•桥东区校级月考)老师设计了接力游戏,用合作的方式完成有理数加减运算,规则是:每名同学只能利用前面一个同学的式子,进一步计算,再将结果传给下一个同学,最后解决问题,过程如图所示:接力中,自己负责一步正确的是( ) A .甲B .乙C .丙D .丁二、填空题(本小题共3个小题,15-16每小题3分,17题每个空2分,共10分) 15.(3分)(2019•兰坪县二模)14-的倒数是 .16.(3分)(2018秋•晋安区期末)若2|2|(3)0m n -++=,则m n += . 17.(4分)(2019秋•桥东区校级月考)中国古代十进位制的算筹记数法,在世界数学史上是一个伟大的创造.算筹记数的方法是:个位、百位,万位⋯⋯的数按纵式的数码摆出:十位、千位、十万位⋯的数按横式的数码摆出:如图1中用算筹表示的算式是“74082366+”,则图2中算筹表示的算式 ,运算结果为 .三、解答题(本大共七个小题,满分68分,解答题应写出必要的解题步骤或文字说明) 18.(8分)(2019秋•桥东区校级月考)把下列各数填在相应的大括号内:8+,0.35,0,1.04-,200%,227,13-,2010-整数集合( ); 正数集合( );正分数集合();负有理数集合().19.(9分)(2019秋•桥东区校级月考)问题:比较6||5-与4()3-的大小.解:化简可得66||55-=-,44()33+-=-①,因为66||55=,44||33-=②又618204515153=<=③,所以6453-<-④,所以64||()53-<+-⑤(1)本题从开始产生错误;(2)请按照上述方法比较10()11-+与9||10-的大小.20.(10分)(2019秋•桥东区校级月考)有一块面积为64米2的正方形纸片,第1次剪掉一半,第2次剪掉剩下纸片的一半,如此继续剪下去,第6次后剩下的纸片的面积是多少米?21.(10分)(2018秋•淅川县期中)阅读第①小题的计算方法,再计算第②小题.①5231 5(9)17(3)6342 -+-++-解:原式5231 [(5)()][(9)()](17)[(3()] 6342 =-+-+-+-+++-+-[(5)=-+(9)5213 (3)17][()()()]6324 +-++-+-+-+10(1)4=+-114=-上述这种方法叫做拆项法.灵活运用加法的交换律、结合律可使运算简便.②仿照上面的方法计算:251 (2017)(2018)4034()362-+-++-.22.(10分)(2019秋•桥东区校级月考)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实际每月生产量与计划量相比情况如下表(增加为正,减少为负).(1)求实际生产量最多的一个月比生产量最少的一个月多生产了多少辆? (2)半年内总生产量是多少?比计划多了还是少了,增或减多少?23.(10分)(2019秋•桥东区校级月考)20191551()()(19)|4|(1)29636-+÷---÷-+-.24.(11分)(2019秋•桥东区校级月考)请大家阅读下面两段材料,并解答问题: 材料1:我们知道在数轴上表示4和1的两点之间的距离为3(如图1),而|41|3-=,所以在数轴上表示4和1的两点之间的距离为|41|-.材料2:再如在数轴上表示4和2-的两点之间的距离为6(如图2)而|4(2)|6--=,所以数轴上表示数4和2-的两点之间的距离|4(2)|--.(1)(如图3)根据上述规律,我们可以得出结论:在数轴上表示数a 和数b 两点之间的距离等于 .(2)试一试,求在数轴上表示的数253与144-的两点之间的距离为 .(3)已知数轴上表示数a 的点M 与表示数1-的点之间的距离为3,表示数b 的点N 与表示数2的点之间的距离为4,求M ,N 两点之间的距离.2019-2020学年河北省邢台三中七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2016秋•房山区期中)下列各组数中,具有相反意义的量是() A.节约汽油10公斤和浪费酒精10公斤B.向东走5公里和向南走5公里C.收入300元和支出500元D.身高180cm和身高90cm【解答】解:具有相反意义的量是收入300元和支出500元,故选:C.2.(3分)(2019秋•桥东区校级月考)手机截屏显示吐鲁番盆地的海拔高度,它表示吐鲁番盆地()A.高于海平面154米B.低于海平面154-米C.低于海平面154米D.海平面154米以下【解答】解:高于海平面记为正,低于海平面记为负,所以吐鲁番盆地海拔154-米,表示吐鲁番盆地低于海平面154米,故选:C.3.(3分)(2017秋•沈河区期末)下列结论中,正确的是()A.0是最小的正数B.0是最大的负数C .0既是正数,又是负数D .0既不是正数,也不是负数【解答】解:0既不是正数也不是负数,故选项A 、B 、C 错,选项D 正确, 故选:D .4.(3分)(2019秋•桥东区校级月考)(9)--可以表示一个数的相反数,这个数是( ) A .19B .19-C .9D .9-【解答】解:(9)9--=,9的相反数是:9-. 故选:D .5.(3分)(2019•沂源县一模)若等式0___1=﹣1成立,则___上的运算符号为( ) A .+B .-C .⨯D .÷【解答】解:011-=-, ∴___内的运算符号为-. 故选:B .6.(3分)(2019秋•桥东区校级月考)有理数a 的绝对值记作||a ,则||a 的值可以是() A .4-B .3C .1-D .2-【解答】解:因为||0a …, 所以||a 的值是非负数. 非负数只有3, 故选:B .7.(3分)(2019秋•桥东区校级月考)幂34可以表示为( ) A .43⨯B .3333+++C .444⨯⨯D .3333⨯⨯⨯【解答】解:34444=⨯⨯. 故选:C .8.(3分)(2019•河北一模)如图,在数轴上,小手遮挡住的点表示的数可能是( )A . 1.5-B . 2.5-C .0.5-D .0.5【解答】解:设小手盖住的点表示的数为x ,则10x -<<,则表示的数可能是0.5-. 故选:C .9.(3分)(2017秋•溧水区期末)水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm ,今天的水位为0cm ,那么2天前的水位用算式表示正确的是( ) A .(3)(2)+⨯+B .(3)(2)+⨯-C .(3)(2)-⨯+D .(3)(2)-⨯-【解答】解:根据题意得:2天前的水位用算式表示为(3)(2)+⨯-, 故选:B .10.(3分)(2017秋•宁德期末)在下列执行异号两数相加的步骤中,错误的是( ) ①求两个有理数的绝对值; ②比较两个有理数绝对值的大小; ③将绝对值较大数的符号作为结果的符号; ④将两个有理数绝对值的和作为结果的绝对值 A .①B .②C .③D .④【解答】解:执行异号两数相加的步骤: ①求两个有理数的绝对值,正确; ②比较两个有理数绝对值的大小,正确; ③将绝对值较大数的符号作为结果的符号,正确; ④将两个有理数绝对值的和作为结果的绝对值,错误. 故选:D .11.(3分)(2019秋•桥东区校级月考)下列给出的算式中,你认为可以帮助探究有理数加法法则的算式组合是( )①3(2)+-;②43+;③(3)(2)-+-;④313+;⑤30+;⑥6(3)+-;⑦4(5)+-;⑧5(5)+-. A .①②③④⑤⑧B .②③⑤⑥⑦⑧C .①③④⑤⑥⑧D .①②④⑤⑦⑧【解答】解:利用有理数加法法则可得②③⑤⑥⑦⑧可以帮助探究有理数加法法则. 故选:B .12.(3分)(2015秋•北京校级期中) 4 个有理数相乘, 积的符号是负号, 则这 4 个有理数中, 负数有( ) A . 1 个或 3 个B . 1 个或 2 个C . 2 个或 4 个D . 3 个或 4 个【解答】解: 4 个有理数相乘, 积的符号是负号, 则这 4 个有理数中, 负数有 1 个或 3 个 .故选:A .13.(3分)(2019秋•桥东区校级月考)若被除数是72-,除数比被除数小32,则商是() A .74-B .74C .710-D .710【解答】解:773717()()2222510-÷--=-⨯-=,故选:D .14.(3分)(2019秋•桥东区校级月考)老师设计了接力游戏,用合作的方式完成有理数加减运算,规则是:每名同学只能利用前面一个同学的式子,进一步计算,再将结果传给下一个同学,最后解决问题,过程如图所示:接力中,自己负责一步正确的是( ) A .甲B .乙C .丙D .丁【解答】解:甲:6(8)(3)(9)6839+----+=-+-,故计算错误; 乙:68396938--+=+--,故计算错误; 丙:6938(69)(38)--+=---,故计算错误; 丁:(69)(38)14--+=-,故计算正确. 故选:D .二、填空题(本小题共3个小题,15-16每小题3分,17题每个空2分,共10分) 15.(3分)(2019•兰坪县二模)14-的倒数是 4- .【解答】解:14-的倒数为4-.故答案为:4-.16.(3分)(2018秋•晋安区期末)若2|2|(3)0m n -++=,则m n += 1- . 【解答】解:2|2|(3)0m n -++=, ∴2030m n -=⎧⎨+=⎩,解得23mn=⎧⎨=-⎩,231m n∴+=-=-.故答案为1-.17.(4分)(2019秋•桥东区校级月考)中国古代十进位制的算筹记数法,在世界数学史上是一个伟大的创造.算筹记数的方法是:个位、百位,万位⋯⋯的数按纵式的数码摆出:十位、千位、十万位⋯的数按横式的数码摆出:如图1中用算筹表示的算式是“74082366+”,则图2中算筹表示的算式103529-,运算结果为.【解答】解:由图形规律可知:图2表示:103529426-=-.三、解答题(本大共七个小题,满分68分,解答题应写出必要的解题步骤或文字说明)18.(8分)(2019秋•桥东区校级月考)把下列各数填在相应的大括号内:8+,0.35,0,1.04-,200%,227,13-,2010-整数集合(8+,0,2010-);正数集合();正分数集合();负有理数集合().【解答】解:整数集合(8+,0,2010)-;正数集合(8+,0.35,200%,22)7;正分数集合(0.35,200%,22)7;负有理数集合( 1.04-,13-,2010)-. 故答案为:(8+,0,2010)-;(8+,0.35,200%,22)7;( 0.35,200%,22)7;( 1.04-,13-,2010)-. 19.(9分)(2019秋•桥东区校级月考)问题:比较6||5-与4()3-的大小. 解:化简可得66||55-=-,44()33+-=-①, 因为66||55=,44||33-=② 又618204515153=<=③,所以6453-<-④, 所以64||()53-<+-⑤ (1)本题从 ④ 开始产生错误;(2)请按照上述方法比较10()11-+与9||10-的大小. 【解答】解:(1)解:化简可得66||55-=-,44()33+-=-①, 因为66||55=,44||33-=② 又618204515153=<=③,所以6453->-④, 所以64||()53->+-⑤ 故答案为:④;(2)化简可得1010100()1111110-+=-=-, 9999||1010110-=-=-, 100100||110110-=,9999||110110-=, 又10099110110>, 10099110110∴-<-, 109()||1110∴-+<-. 20.(10分)(2019秋•桥东区校级月考)有一块面积为64米2的正方形纸片,第1次剪掉一半,第2次剪掉剩下纸片的一半,如此继续剪下去,第6次后剩下的纸片的面积是多少米?【解答】解:由题意得,61164()641264⨯=⨯=平方米, 答:第六次后,还剩1平方米.21.(10分)(2018秋•淅川县期中)阅读第①小题的计算方法,再计算第②小题. ①52315(9)17(3)6342-+-++- 解:原式5231[(5)()][(9)()](17)[(3()]6342=-+-+-+-+++-+- [(5)=-+(9)5213(3)17][()()()]6324+-++-+-+-+ 10(1)4=+- 114=- 上述这种方法叫做拆项法.灵活运用加法的交换律、结合律可使运算简便.②仿照上面的方法计算:251(2017)(2018)4034()362-+-++- 【解答】解:原式251(2017)(2018)4034()362=--+--++- 251(201720184034)()362=--++--- (1)(2)=-+-3=-.22.(10分)(2019秋•桥东区校级月考)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实际每月生产量与计划量相比情况如下表(增加为正,减少为负).(1)求实际生产量最多的一个月比生产量最少的一个月多生产了多少辆?(2)半年内总生产量是多少?比计划多了还是少了,增或减多少?【解答】解:(1)生产量最多的一个月是四月,生产量最少的一个月是六月,依题意有4(5)9+--=辆.所以,实际生产量最多的一个月比生产量最少的一个月多生产了9辆.(2)半年内计划生产量206120⨯=辆,实际总生产量为206(321425)121⨯++--++-=辆,所以实际生产量比计划数量多,多了1辆.23.(10分)(2019秋•桥东区校级月考)20191551()()(19)|4|(1)29636-+÷---÷-+-. 【解答】解:20191551()()(19)|4|(1)29636-+÷---÷-+- 155()(36)(8)41296=-+⨯---÷- 155(36)(36)(36)21296=⨯--⨯-+⨯-+- 18203021=-+-+-27=-.24.(11分)(2019秋•桥东区校级月考)请大家阅读下面两段材料,并解答问题: 材料1:我们知道在数轴上表示4和1的两点之间的距离为3(如图1),而|41|3-=,所以在数轴上表示4和1的两点之间的距离为|41|-.材料2:再如在数轴上表示4和2-的两点之间的距离为6(如图2)而|4(2)|6--=,所以数轴上表示数4和2-的两点之间的距离|4(2)|--.(1)(如图3)根据上述规律,我们可以得出结论:在数轴上表示数a 和数b 两点之间的距离等于 ||a b - .(2)试一试,求在数轴上表示的数253与144-的两点之间的距离为 . (3)已知数轴上表示数a 的点M 与表示数1-的点之间的距离为3,表示数b 的点N 与表示数2的点之间的距离为4,求M ,N 两点之间的距离.【解答】解:(1)故答案为:||a b -,(2)2111|5(4)|93412--=, 故答案为:11912. (3)由题意得,|(1)|3a --=,|2|4b -=,解得,2a =或4a =-,6b =或2b =-,①|||26|4a b -=-=,②|||2(2)|4-=--=,a b③|||46|10-=--=,a b④|||4(2)|2-=---=.a b答:点M、N之间的距离为2,4,10.。

河北省沧州市2019-2020学年中考一诊数学试题含解析

河北省沧州市2019-2020学年中考一诊数学试题含解析

河北省沧州市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为( )A .225B .9220C .324D .4252.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4- 3.如果,则a 的取值范围是( ) A .a>0 B .a≥0 C .a≤0 D .a<04.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.下列图形中,阴影部分面积最大的是A .B .C .D . 6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同7.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC 的( )A .三条高的交点B .重心C .内心D .外心8.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 9.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( ) A . B . C .D .10.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( ) A .众数B .中位数C .平均数D .方差 11.已知18x x -=,则2216x x +-的值是( ) A .60 B .64 C .66 D .7212.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A 15B .14C 15D 417 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____14.已知m=444153,n=44053,那么2016m ﹣n =_____. 15.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°16.直线y =﹣x+1分别交x 轴,y 轴于A 、B 两点,则△AOB 的面积等于___.17.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,3),则点C 的坐标为_____.18.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 边于点D ,E 是边BC 的中点,连接DE ,OD .(1)如图①,求∠ODE 的大小;(2)如图②,连接OC 交DE 于点F ,若OF=CF ,求∠A 的大小.20.(6分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)21.(6分)如图,已知∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE与BD相交于点O.求证:EC=ED.22.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.23.(8分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.24.(10分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.25.(10分)如图,在矩形ABCD 中,AB=3,BC=4,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',B'C 与AD 交于点E ,AD 的延长线与A'D'交于点F .(1)如图①,当α=60°时,连接DD',求DD'和A'F 的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD 的延长线上时,求EF 的长;(3)如图③,当AE=EF 时,连接AC ,CF ,求AC•CF 的值.26.(12分)如图,△ABC 是等腰直角三角形,且AC=BC ,P 是△ABC 外接圆⊙O 上的一动点(点P 与点C 位于直线AB 的异侧)连接AP 、BP ,延长AP 到D ,使PD=PB ,连接BD .(1)求证:PC ∥BD ;(2)若⊙O 的半径为2,∠ABP=60°,求CP 的长;(3)随着点P 的运动,PA PB PC +的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.27.(12分)如图,直线4y x =+与双曲线0k y k x=≠()相交于1A a -(,)、B 两点. (1)a = ,点B 坐标为 .(2)在x 轴上找一点P ,在y 轴上找一点Q ,使BP PQ QA ++的值最小,求出点P Q 、两点坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到=OH=13AE=13,由相似三角形的性质得到153AM AEFM FO===35,求得AM=38AF=4,根据相似三角形的性质得到AN ADFN BF==32,求得AN=35,即可得到结论.【详解】过F作FH⊥AD于H,交ED于O,则FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴=∵OH∥AE,∴HO DHAE AD==13,∴OH=13AE=13,∴OF=FH﹣OH=1﹣13=53,∵AE∥FO,∴△AME∽△FMO,∴153AM AEFM FO===35,∴AM=38,∵AD∥BF,∴△AND∽△FNB,∴AN ADFN BF==32,∴AN=35,∴MN=AN ﹣AM=625﹣324=9220,故选B .【点睛】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线 2.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴, A ∴,B 两点纵坐标相同, 设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.3.C【解析】【分析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.若|-a|=-a ,则可求得a 的取值范围.注意1的相反数是1.【详解】因为|-a|≥1,所以-a≥1,那么a 的取值范围是a≤1.故选C .【点睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.4.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项正确;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项错误.故选B .【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.C【解析】【分析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C .6.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.7.D【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.A【解析】【分析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确;B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.9.B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选B .【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.10.B【解析】【分析】【详解】解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.故选B .【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键.11.A【解析】【分析】将18x x -=代入原式2221124()4x x x x=+--=--,计算可得. 【详解】 解:当18x x-=时, 原式22124x x=+-- 21()4x x =-- 284=-644=-60=,故选A .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.12.A【解析】∵在Rt △ABC 中,∠C=90°,AB=4,AC=1,∴,则cosB=BC AB =4, 故选A二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 14.1【解析】【分析】根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n ,再根据任何非零数的零次幂等于1解答.【详解】 解:∵m=444153=4?444353=44053, ∴m=n ,∴2016m-n =20160=1.故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n. 15.B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.16.1 2 .【解析】【分析】先求得直线y=﹣x+1与x轴,y轴的交点坐标,再根据三角形的面积公式求得△AOB的面积即可. 【详解】∵直线y=﹣x+1分别交x轴、y轴于A、B两点,∴A、B点的坐标分别为(1,0)、(0,1),S△AOB=12OA•OB=12×1×1=12,故答案为12.【点睛】本题考查了直线与坐标轴的交点坐标及三角形的面积公式,正确求得直线y=﹣x+1与x轴、y轴的交点坐标是解决问题的关键.17.(﹣3,1)【解析】如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF ,在△COE 和△OAF 中,90CEO AFO COE OAF OC OA ⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△COE ≌△OAF ,∴CE=OF ,OE=AF ,∵A (1,∴CE=OF=1,∴点C,1),故答案为(,1).点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.18.①②③【解析】【分析】①证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②由AD ∥BC ,推出△AEF ∽△CBF ,得到AE AF BC CF =,由AE=12AD=12BC ,得到12AF CF =,即CF=2AF ; ③作DM ∥EB 交BC 于M ,交AC 于N ,证明DM 垂直平分CF ,即可证明; ④设AE=a ,AB=b ,则AD=2a ,根据△BAE ∽△ADC ,得到2b a a b =,即a ,可得tan ∠CAD=2b a = 【详解】 如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AE AF BC CF=,∵AE=12AD=12BC,∴12AFCF=,即CF=2AF,∴CF=2AF,故②正确;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,∴2b aa b=,即2a,∴tan∠CAD=222ba=,故④错误;故答案为:①②③.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)∠ODE=90°;(2)∠A=45°.【解析】分析:(Ⅰ)连接OE ,BD ,利用全等三角形的判定和性质解答即可;(Ⅱ)利用中位线的判定和定理解答即可.详解:(Ⅰ)连接OE ,BD .∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠CDB=90°.∵E 点是BC 的中点,∴DE=12BC=BE . ∵OD=OB ,OE=OE ,∴△ODE ≌△OBE ,∴∠ODE=∠OBE .∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF ,CE=EB ,∴FE 是△COB 的中位线,∴FE ∥OB ,∴∠AOD=∠ODE ,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD ,∴∠A=∠ADO=18090452︒-︒=︒.点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.20.1.8米【解析】【分析】设PA=PN=x ,Rt △APM 中求得MP =1.6x, 在Rt △BPM 中tan MP MBP BP ∠=,解得x=3,MN=MP-NP=0.6x=1.8.【详解】在Rt △APN 中,∠NAP=45°,∴PA=PN,在Rt △APM 中,tan MP MAP AP ∠=, 设PA=PN=x ,∵∠MAP=58°,∴tan MP AP MAP =⋅∠=1.6x,在Rt △BPM 中,tan MP MBP BP∠=,∵∠MBP=31°,AB=5,∴1.6 0.65xx=+,∴ x=3,∴MN=MP-NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.21.见解析【解析】【分析】由∠1=∠2,可得∠BED=∠AEC,根据利用ASA可判定△BED≌△AEC,然后根据全等三角形的性质即可得证.【详解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22.(3)证明见试题解析;(3)3.【解析】试题分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直线FG是⊙O的切线.(3)先得出△ODF∽△AGF,再由cosA=,得出cos∠DOF=;然后求出OF、AF的值,即可求出AG、CG的值.试题解析:(3)如图3,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG 是⊙O 的切线;(3)如图3,∵AB=AC=30,AB 是⊙O 的直径,∴OA=OD=30÷3=5,由(3),可得:OD ⊥FG ,OD ∥AC ,∴∠ODF=90°,∠DOF=∠A ,在△ODF 和△AGF 中,∵∠DOF=∠A ,∠F=∠F ,∴△ODF ∽△AGF ,∴,∵cosA=,∴cos ∠DOF=,∴OF===,∴AF=AO+OF==,∴,解得AG=7,∴CG=AC ﹣AG=30﹣7=3,即CG 的长是3.考点:3.切线的判定;3.相似三角形的判定与性质;3.综合题.23. (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.【解析】【分析】(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案.【详解】解:(1)设该车间应安排x 天加工童装,y 天加工成人装,由题意得:104530360x y x y +=⎧⎨+=⎩, 解得:46x y =⎧⎨=⎩, 答:该车间应安排4天加工童装,6天加工成人装;(2)∵45×4=180,30×6=180, ∴180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.【点睛】本题考查二元一次方程组的应用.24.证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B ,再由DC ∥AB ,可得∠D=∠A ,∠C=∠B ,进而得到∠C=∠D,根据等角对等边可得CO=DO.试题解析:证明:∵AB∥CD∴∠A=∠D ∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考点:等腰三角形的性质与判定,平行线的性质25.(1)DD′=1,A′F= 4;(2)154;(1)754.【解析】【分析】(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;(2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;(1)如图③中,作FG⊥CB′于G,由S△ACF=12•AC•CF=12•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;【详解】解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=1.②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=12∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=''D F CD,∴,∴A′F=A′D′﹣D′F=4(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴''''A D DFA D CD=,∴243DF=,∴DF=32.同理可得△CDE ∽△CB′A′,∴'''CD ED CB A B =,∴343ED =, ∴ED=94,∴EF=ED+DF=154. (1)如图③中,作FG ⊥CB′于G .∵四边形A ′B′CD′是矩形,∴GF=CD′=CD=1. ∵S △CEF=12•EF•DC=12•CE•FG , ∴CE=EF ,∵AE=EF ,∴AE=EF=CE ,∴∠ACF=90°. ∵∠ADC=∠ACF ,∠CAD=∠FAC ,∴△CAD ∽△FAC ,∴AC AD AF AC =, ∴AC2=AD•AF ,∴AF=254. ∵S △ACF=12•AC•CF=12•AF•CD , ∴AC•CF=AF•CD=754.26.(1)证明见解析;(262;(3)PA PB PC +的值不变,2PA PB PC+=. 【解析】【分析】 (1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D ,根据平行线的判定定理证明;(2)作BH ⊥CP ,根据正弦、余弦的定义分别求出CH 、PH ,计算即可;(3)证明△CBP ∽△ABD ,根据相似三角形的性质解答.【详解】(1)证明:∵△ABC 是等腰直角三角形,且AC=BC ,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB 为⊙O 的直径,∴∠APB=90°,∵PD=PB ,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC ∥BD ;(2)作BH ⊥CP ,垂足为H ,∵⊙O 的半径为2,∠ABP=60°,∴2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt △BCH 中,CH=BC•cos ∠6,BH=BC•sin ∠2,在Rt △BHP 中,2,∴62;(3)PA PB PC+的值不变, ∵∠BCP=∠BAP ,∠CPB=∠D ,∴△CBP ∽△ABD , ∴AD AB PC BC=2, ∴PA PD PC +2,即PA PB PC +2. 【点睛】本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.27. (1)3a =,()31B -,;(1)()20P -,,()02Q ,. 【解析】【分析】(1)由点A 在一次函数图象上,将A (-1,a )代入y=x+4,求出a 的值,得到点A 的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B 坐标;(1)作点A 关于y 轴的对称点A′,作点B 作关于x 轴的对称点B′,连接A′B′,交x 轴于点P ,交y 轴于点Q ,连接PB 、QA .利用待定系数法求出直线A′B′的解析式,进而求出P 、Q 两点坐标.【详解】解:(1)把点A (-1,a )代入一次函数y=x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(-1,3).把点A(-1,3)代入反比例函数y=k x,得:k=-3,∴反比例函数的表达式y=-3x.联立两个函数关系式成方程组得:43y xyx==+⎧⎪⎨-⎪⎩解得:13xy-⎧⎨⎩==或31xy-⎧⎨⎩==∴点B的坐标为(-3,1).故答案为3,(-3,1);(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.∵点B、B′关于x轴对称,点B的坐标为(-3,1),∴点B′的坐标为(-3,-1),PB=PB′,∵点A、A′关于y轴对称,点A的坐标为(-1,3),∴点A′的坐标为(1,3),QA=QA′,∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.设直线A′B′的解析式为y=mx+n,把A′,B′两点代入得:331m nm n==+⎧⎨-+-⎩解得:12mn⎧⎨⎩=,=∴直线A′B′的解析式为y=x+1.令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),令x=0,则y=1,点Q的坐标为(0,1).【点睛】本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.。

河北省邢台市2019-2020学年中考一诊数学试题含解析

河北省邢台市2019-2020学年中考一诊数学试题含解析

河北省邢台市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a 元,则原售价为( )A .(a ﹣20%)元B .(a+20%)元C .a 元D . a 元2.如图,AB 为O e 的直径,,C D 为O e 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°3.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为( )A .8cmB .4cmC .42cmD .5cm 4.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB→BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC =y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )A .235B .5C .6D .2545.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB =8 cm ,圆柱的高BC =6 cm ,圆锥的高CD =3 cm ,则这个陀螺的表面积是( )A.68π cm2B.74π cm2C.84π cm2D.100π cm26.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b-2)7.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.8.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF 的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD9.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩()m 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数是()A.1.65m B.1.675m C.1.70m D.1.75m10.下列实数0,23,3,π,其中,无理数共有( ) A .1个 B .2个 C .3个 D .4个11.下列调查中,最适合采用普查方式的是( )A .对太原市民知晓“中国梦”内涵情况的调查B .对全班同学1分钟仰卧起坐成绩的调查C .对2018年央视春节联欢晚会收视率的调查D .对2017年全国快递包裹产生的包装垃圾数量的调查12.如图,点P (x ,y )(x >0)是反比例函数y=k x(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:21m m ++112m m++=______. 14.在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm ,则根据题意可得方程 .15.一个几何体的三视图如左图所示,则这个几何体是( )A .B .C .D .16.如图,点A ,B ,C 在⊙O 上,∠OBC=18°,则∠A=_______________________.17.如图,ABC ∆中,∠BAC 75=︒,7BC =,ABC ∆的面积为14,D 为BC 边上一动点(不与B ,C 重合),将ABD ∆和ACD ∆分别沿直线AB ,AC 翻折得到ABE ∆和ACF ∆,那么△AEF 的面积的最小值为____.18.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系xOy 中,抛物线()2y nx 4nx 4n 1n 0=-+-≠,与x 轴交于点C ,D(点C 在点D 的左侧),与y 轴交于点A .()1求抛物线顶点M 的坐标;()2若点A 的坐标为()0,3,AB//x 轴,交抛物线于点B ,求点B 的坐标;()3在()2的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线1y x m 2=+与图象G 有一个交点,结合函数的图象,求m 的取值范围. 20.(6分)如图,在▱ABCD 中,AB=4,AD=5,tanA=43,点P 从点A 出发,沿折线AB ﹣BC 以每秒1个单位长度的速度向中点C 运动,过点P 作PQ ⊥AB ,交折线AD ﹣DC 于点Q ,将线段PQ 绕点P 顺时针旋转90°,得到线段PR ,连接QR .设△PQR 与▱ABCD 重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒).(1)当点R 与点B 重合时,求t 的值;(2)当点P 在BC 边上运动时,求线段PQ 的长(用含有t 的代数式表示);(3)当点R 落在▱ABCD 的外部时,求S 与t 的函数关系式;(4)直接写出点P 运动过程中,△PCD 是等腰三角形时所有的t 值.21.(6分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A 型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?22.(8分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.(1)试判断AB与⊙O的位置关系,并加以证明;(2)若tanE=12,⊙O的半径为3,求OA的长.23.(8分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.24.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?25.(10分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.(1)如图①,求∠ODE的大小;(2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.26.(12分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.27.(12分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据题意列出代数式,化简即可得到结果.【详解】根据题意得:a÷(1−20%)=a÷= a(元),故答案选:C.【点睛】本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.2.B【解析】【分析】根据题意连接AD ,再根据同弧的圆周角相等,即可计算的ABD ∠的大小.【详解】解:连接AD ,∵AB 为O e 的直径,∴90ADB ∠=︒.∵40BCD ∠=︒,∴40A BCD ∠=∠=︒,∴904050ABD ∠=︒-︒=︒.故选:B .【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.3.C【解析】【分析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【详解】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴14cm2CE DE CD===,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴242cmOC CE==,故选:C.【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.4.B【解析】【分析】易证△CFE∽△BEA,可得CF CEBE AB=,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【详解】若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB =,BE =CE =x ﹣52,即525522x yx -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5;故选B .【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.5.C【解析】试题分析:∵底面圆的直径为8cm ,高为3cm ,∴母线长为5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2,故选C .考点:圆锥的计算;几何体的表面积.6.D【解析】【分析】设点A 的坐标是(x ,y ),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 2a x +=0, 2b y +=-1, 解得x=-a ,y=-b-2,∴点A的坐标是(-a,-b-2).故选D.【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A′关于点C成中心对称是解题的关键7.C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

2019-2020学年河北省中考数学试卷(含解析及答案)

2019-2020学年河北省中考数学试卷(含解析及答案)

左视图如19-2020学年河北省中考数学试卷2. (3.00分)(2018?可北)一个整数815550…。

用科学记数法表示为8.1555X 1010, 则原数中“0^个数为( )A. 4B. 6C. 7D. 103. (3.00分)(2018?可北)图中由 O”和“即成轴对称图形,该图形的对称轴 是直线( )<> 声, 青 ■ ■A. 11B. 12C. 13D. 144. (3.00分)(2018?可北)将9.52变形正确的是()A. 9.52=92+0.52B. 9.52= (10+0.5) (10-0.5)C. 9.52=102 -2 X 10X 0.5+0.52D. 9.52=92+9X 0.5+0.525. (3.00分)(2018?可北)图中三视图对应的几何体是(一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1. (3.00分)(2018?可北)下列图形具有稳定性的是( )俯视图6. (3.00分)(2018?河北)尺规作图要求:I 、过直线外一点作这条直线的垂线; 葭 作线段的垂直平分线;田、过直线上一点作这条直线的垂线;IV 、作角的平分线.如图是按上述要求排乱顺序的尺规作图:7. (3.00分)(2018?河北)有三种不同质量的物体 ㈠”…“” 其中,同一种 物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体, 只有一组 左右质量不相等,则该组是(8. (3.00分)(2018?可北)已知:如图,点 P 在线段AB 外,且PA=PB 求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正 确的是( )A.①-IV,②-H ,③-I ,④-田 C.①-H,②-IV,③-田,④-IB.①-IV,②-田,③-H,④-I D.①-IV,②-I ,③-H ,④-田C.则正确的配对是( D .A.作/APB的平分线PC交AB于点CB.过点P作PCX AB于点C且AC=BCC取AB中点C,连接PCD.过点P作PC!AB,垂足为C9.(3.00分)(2018?可北)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:其田二其毛=13, —=算丁=15: s甲2=s 丁2=3.6, s乙2=s丙2=6.3.则麦苗又高又整齐的A C J A J人甲人内是()A.甲B.乙C.丙D. 丁10.(3.00分)(2018?可北)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A. 2个B. 3个C. 4个D. 5个11.(2.00分)(2018?可北)如图,快艇从P处向正北航行到A处时,向左转50 航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东300B.北偏东800C.北偏西300D.北偏西5012. (2.00分)(2018?可北)用一根长为a (单位:cm )的铁丝,首尾相接围成 一个正方形,要将它按图的方式向外等距扩 1 (单位:cm )得到新的正方形,则 这根铁丝需增加(A. 4cmB. 8cmC. (a+4) cm13. (2.00分)(2018?河北)若 2n +2n +2n +2n =2,则 n=(A. - 1B. - 2C. 0D. 1414. (2.00分)(2018?河北)老师设计了接力游戏,用合作的方式完成分式化简, 人,最后完成化简.过程如图所示:A,只有乙 B.甲和丁 C.乙和丙 D.乙和丁15. (2.00 分)(2018?可北)如图,点 I 为 4ABC 的内心,AB=4, AC=3 BC=Z 将/ACB 平移使其顶点与I 重合,则图中阴影部分的周长为(A. 4.5B. 4C. 3D. 216. (2.00 分)(2018?可北)对于题目 "段抛物线 L: y=- x (x-3) +c (0<x <3)与直线l: y=x+2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果 是c=1,乙的结果是c=3或4,则( )A.甲的结果正确D. (a+8) cm 规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一老师 甲 乙 丙 丁 接力中,自己负责的一步出现错误的是(B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17〜18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3.00分)(2018?可北)计算:产^= ______ .18.(3.00分)(2018?河北)若a, b互为相反数,贝U a2 - b2=.19.(6.00分)(2018?可北)如图1,作/ BPC平分线的反向延长线PA,现要分别以/APB, /APC /BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以/ BPC为内角,可作出一个边长为1的正方形,止匕时/ BPC=90,而亚工二45是360° (多边形外角和)的工2 8这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图1 图2图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8.00分)(2018?可北)嘉淇准备完成题目:%二''发现系数缸”印刷不清楚.(1)他把猜成3,请你化简:(3x2+6x+8) - (6x+5x2+2);(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数. ”通过计算说明原题中k”是几?21.(9.00分)(2018?可北)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分. (1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(9.00分)(2018?可北)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5, -2, 1, 9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k (k为正整数)的式子表示出数“1所在的台阶数.23.(9.00分)(2018?河北)如图,2 A=/ B=50°, P为AB中点,点M为射线AC 上(不与点A重合)的任意点,连接MP,并使MP的延长线交射线BD于点N, 设/ BPN瓶.(1)求证:△ APM0ABPNJ;第7页(共31页)(2)当MN=2BN 时,求a 的度数;(3)若4BPN 的外心在该三角形的内部,直接写出 a 的取值范围.C "E N D24. (10.00分)(2018?可北)如图,直角坐标系xOy 中,一次函数y=-^x+5的2图象l i 分别与x, y 轴交于A, B 两点,正比例函数的图象12与l i 交于点C(m, 4).(1)求m 的值及12的解析式;(2)求 S AOC — S A BOC 的值;(3) 一次函数y=kx+1的图象为13,且1i, 12, 13不能围成三角形,直接写出 k 的化25. (10.00分)(2018?河北)如图,点A 在数轴上对应的数为26,以原点O 为 圆心,OA 为半径作优弧靛,使点B 在O 右下方,且tanZ AOB=-,在优弧赢上任取一点P,且能过P 作直线1// OB 交数轴于点Q,设Q 在数轴上对应的数为x, 连接OP.(1)若优弧日上一段余的长为13阳 求/AOP 的度数及x 的值;(2)求x 的最小值,并指出此时直线1与定所在圆的位置关系;(3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(11.00分)(2018?可北)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与?t道y=L (x>1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M, A的竖直距离h (米)与飞出时间t (秒)的平方成正比,且t=1时h=5, M, A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.如19-2020学年河北省中考数学试卷参考答案与试题解析、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3.00分)(2018?可北)下列图形具有稳定性的是(【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.2.(3.00分)(2018?可北)一个整数815550…。

2019-2020学年人教A版河北省衡水中学高三第二学期第一次调研(理科)数学试卷 含解析

2019-2020学年人教A版河北省衡水中学高三第二学期第一次调研(理科)数学试卷 含解析

2019-2020学年高三第二学期一调数学试卷(理科)一、选择题1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.167.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.48.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:310.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.参考答案一、选择题(共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)解:集合A={y|y=x2+2,x∈R}=[2,+∞),集合B={x|y=lg(x﹣1)}=(1,+∞),图形阴影部分为∁U A∩B=(1,2),故选:B.2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵=,∴的虚部为﹣,由﹣=﹣,得a=2.∴复数z在复平面内对应的点的坐标为(,),位于第一象限.故选:A.3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c解:由题意0<a<1,故a<a a,故a a>,即b>c,而c=>a=π﹣2,故选:B.4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.解:f(x)=(﹣1)cos x=cos x,f(﹣x)=cos(﹣x)=cos x=﹣f(x).∴f(x)为奇函数,图象关于原点对称,排除A,C;当0<x<时,e x>1,cos x>0,∴f(x)=cos x<0,故选:B.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.解:在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为:P==.故选:D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.16解:如图,取AC中点D,AB中点E,并连接OD,OE,则:OD⊥AC,OE⊥AB;∴,;∴===8.故选:C.7.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.4解:①若p∨q为真命题的条件是p、q至少有一个是真命题,而p∧q为真命题的条件为p、q两个都是真命题,所以当p、q一个真一个假时,p∧q为假命题,所以①不正确;②命题“∀x>0,有e x≥1”的否定为“∃x0>0,有<1”;因此②不正确;③“平面向量与的夹角为钝角”⇒“”;反之不成立,平面向量与的夹角可能为平角.∴“平面向量与的夹角为钝角”的必要不充分条件是“”;因此不正确.④因为在锐角三角形中,∴π>A+B>,有>A>﹣B>0,所以有sin A>sin(﹣B)=cos B,即sin A>cos B,同理sin B>cos A,故sin A+sin B>cos A+cos B,所以④正确;⑤若等差数列{a n}为常数列,则m+n=p+q不一定成立,∴命题不正确.综上可得:只有④正确.故选:A.8.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.解:令g(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f(x)<f′(x),∴g′(x)==>0,∴g(x)=在区间(0,+∞)上单调递增,∴g(1)=<=g(2),∴<①;再令h(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f′(x)<2f(x)恒成立,∴h′(x)==<0,∴函数h(x)在x∈(0,+∞)上单调递减,∴h(1)=>=h(2),∴>②,综上①②可得:<<.故选:D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:3解:∵抛物线C:y2=4x的焦点为F(1,0),点A坐标为(0,2),∴抛物线的准线方程为l:x=﹣1,直线AF的斜率为k=﹣2,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠NMP=﹣k=2,∴=2,可得|PN|=2|PM|,得|MN|==|PM|,因此可得|FM|:|MN|=|PM|:|MN|=1:.故选:C.10.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.解:由已知得,∴a1+a2+…+a n=n(2n+1)=S n当n≥2时,a n=S n﹣S n﹣1=4n﹣1,验证知当n=1时也成立,∴a n=4n﹣1,∴,∴∴=+()+…+()=1﹣=.故选:C.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)解:y2xe1﹣y﹣ax﹣lnx=0可化为:,设g(y)=(﹣1≤y≤5),则g′(y)=,即函数g(y)在(﹣1,0),(2,5)为减函数,在(0,2)为增函数,又g(﹣1)=e2,g(2)=,g(5)=,设f(x)=a+(x∈[1,e]),f′(x)=,即函数f(x)在[1,e]为增函数,所以a≤f(x)≤a,对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx=0成立,即对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得成立,即a+∈[,)对于任意的实数x∈[1,e]恒成立,即,即,故选:B.12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③解:如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为arctan,故①正确;直线A1H与该正方体各面所成角相等,均为arctan,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.解:∵到点O1的距离等于1的点构成一个半个球面,到点O2的距离等于1的点构成一个半个球面,两个半球构成一个整球,如图,点P到点O1,O2的距离都大于1的概率为:P===1﹣=;故答案为:14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=2n2+n.解:f(x)=sin2x+2cos2x=3sin(2x+φ),当2x+φ=2kπ+,k∈Z,f(x)取得最大值3,∴a1=3.a n=(a n+1﹣a n﹣2)n﹣2n2,∴na n+1=(n+1)a n+2n2+2n,﹣=2,∴a n=n[3+2(n﹣1)]=2n2+n,故答案为:2n2+n.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为解:sin C=2sin A cos B,∴c=2a cos B.因此c=2a•,∵b2,2,c2成等差数列∴b2+c2=4,即有a2=b2=4﹣c2,因此S===,当c2=即c=时,S取得最大值×=,即△ABC面积S的最大值为,故答案为:.16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.解:设双曲线的右焦点为F,则F的坐标为(c,0),∵曲线C1与C3有一个共同的焦点,∴y2=4cx,∵,∴=,则M为F1N的中点,∵O为F1F的中点,M为F1N的中点,∴OM为△NF1F的中位线,∴OM∥PF,∵|OM|=a,∴|NF|=2a又NF⊥NF1,|F1F|=2c,∴|NF1|=2b,设N(x,y),则由抛物线的定义可得x+c=2a,∴x=2a﹣c过点F1作x轴的垂线,点N到该垂线的距离为2a.由勾股定理y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2),得e2﹣e﹣1=0,∴e=.故答案为:.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.解:(1)根据题意,b=2,c=4,2c cos C=b,则cos C==;又由cos C===,解可得a=4,即BC=4,则CD=2,在△ACD中,由余弦定理得:AD2=AC2+CD2﹣2AC•CD cos C=6,则AD=;(2)根据题意,AE平分∠BAC,则==,变形可得:CE=BC=,cos C=,则sin C==,S△ADE=S△ACD﹣S△ACE=×2×2×﹣×2××=.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.解:(Ⅰ)在棱AB上存在点E,使得AF∥平面PCE,点E为棱AB的中点.理由如下:取PC的中点Q,连结EQ、FQ,由题意,FQ∥DC且FQ=CD,AE∥CD且AE=CD,故AE∥FQ且AE=FQ.所以,四边形AEQF为平行四边形.3分所以,AF∥EQ,又EQ⊂平面PEC,AFα平面PEC,所以,AF∥平面PEC.5分(Ⅱ)由题意知△ABD为正三角形,所以ED⊥AB,亦即ED⊥CD,又∠ADP=90°,所以PD⊥AD,且平面ADP⊥平面ABCD,平面ADP∩平面ABCD=AD,所以PD⊥平面ABCD,故以D为坐标原点建立如图空间直角坐标系,7分设FD=a,则由题意知D(0,0,0),F(0,0,a),C(0,2,0),B(,1,0),=(0,2,﹣a),=(),设平面FBC的法向量为=(x,y,z),则由,令x=1,则y=,z=,所以取=(1,,),平面DFC的法向量=(1,0,0),l因为二面角D﹣FC﹣B的余弦值为,所以由题意:|cos<>|===,解得a=.10分由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以∠PBD为直线PB与平面ABCD所成的角,由题意知在Rt△PBD中,tan∠PBD==a=,从而∠PBD=60°,所以直线PB与平面ABCD所成的角为60°.12分19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.解:(1)由题意可知A(﹣2,0),设B(x1,y1),C(x2,y2),∵过A的直线l交抛物线于两点,∴直线l的斜率存在且不为0,设l:x=my﹣2,联立方程,消去x得,y2﹣2pmy+4p=0,∴y1+y2=2pm,y1y2=4p,∵点C是AB的中点,∴y1=2y2,∴,,∴4p=,∴,∴2pm2=9,∴x2=my2﹣2=﹣2=1,∴点C的横坐标为定值1;(2)直线m的倾斜角和直线l的倾斜角互补,所以直线m的斜率和直线l的斜率互为相反数,又点C(1,),所以设直线m的方程为:x=﹣m(y﹣)+1,即x=﹣my+4,设M(x1,y2),N(x2,y2),联立方程,消去x得,(m2+2)y2﹣8my+12=0,∴△=(8m)2﹣48(m2+2)=16m2﹣96>0,解得m2>6,∴,,∴|MN|===4,∵点C是AB的中点,∴S△BMN=S△AMN,设点A(﹣2,0)到直线MN的距离为d,则d ==,∴S△BMN=S△AMN ==4×=12,令t=m2﹣6,∴S△BMN=12=12≤12=,当且仅当t =,即t=8,m2=14时,等号成立,∴2p×14=9,∴p =.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.解:(1)①由分层抽样性质得:从300人中抽取60人,其中“年龄达到35岁“的人数为:100×=20人,”年龄达到35岁”中偶而使用单车的人数为:=9人.②A组这4人中得到礼品的人数X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:X0123P∴E(X)==.(2)按“年龄是否达到35岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到35岁12575200达到35岁5545100合计180120300m=35时,K2的观测值:k1===.m=25时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到25岁6733100达到25岁11387200合计180120300 m=25时,K2的观测值:k2==,k2>k1,欲使犯错误的概率尽量小,需取m=25.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x ﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f (x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x <∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.另解:由g(0)>0,g(1)>0 解出e﹣2<a<1,再证明此时f(x)min<0 由于f(x)最小时,f'(x)=g(x)=e x﹣2ax﹣b=0,故有e x=2ax+b且f(1)=0知e﹣1=a+b,则f(x)min=2ax+b﹣ax2﹣(e﹣1﹣a)x﹣1=﹣ax2+(3a+1﹣e)x+e﹣a﹣2,开口向下,最大值(5a2﹣(2e+2)a+e2﹣2e),分母为正,只需看分子正负,分子<5﹣(2e+2)+e2﹣2e(a=1时取最大)=e2﹣4e+3<0,故f(x)min<0,故e﹣2<a<1.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.解:(Ⅰ)由题可知,C1的直角坐标方程为:x2+y2﹣2x=0,设曲线C2上任意一点(x,y)关于直线y=x对称点为(x0,y0),∴,又∵,即x2+y2﹣2y=0,∴曲线C2的极坐标方程为:ρ=2sinθ;(Ⅱ)直线l1的极坐标方程为:θ=α,直线l2的极坐标方程为:.设A(ρ1,θ1),B(ρ2,θ2).∴,解得ρ1=2cosα,,解得.∴==.∵0≤α<,∴<.当,即时,sin()=1,S△AOB取得最大值为:.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.解:(1)当a=1时,f(x)=|x+1|+|2x﹣1|,即;解法一:作函数f(x)=|x+1|+|2x﹣1|的图象,它与直线y=3的交点为A(﹣1,3),B (1,3),如图所示;所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);解法二:原不等式f(x)>3等价于或或,解得:x<﹣1或无解或x>1,所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);(2)由0<a<2,得﹣<,a+2>0,且a﹣2<0;所以f(x)=|ax+1|+|2x﹣1|=,所以函数f(x)在上单调递减,在上单调递减,在上单调递增;所以当时,f(x)取得最小值,且;因为对∀x∈R,恒成立,所以;又因为a>0,所以a2+2a﹣3≥0,解得a≥1(a≤﹣3不合题意),所以a的最小值为1.。

河北省廊坊市2019-2020学年中考数学一模考试卷含解析

河北省廊坊市2019-2020学年中考数学一模考试卷含解析

河北省廊坊市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .0.555×104 B .5.55×103 C .5.55×104 D .55.5×1032.下列运算正确的是( )A .x 2•x 3=x 6B .x 2+x 2=2x 4C .(﹣2x )2=4x 2D .( a+b )2=a 2+b 23.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +9 4.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠CAD=2.其中正确的结论有( )A .4个B .3个C .2个D .1个5.如图,△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD =2,BC =5,则△ABC 的周长为( )A .16B .14C .12D .106.计算(x -l)(x -2)的结果为( )A .x 2+2B .x 2-3x +2C .x 2-3x -3D .x 2-2x +27.二次函数2y ax bx c =++()0a ≠的图象如图所示,则下列各式中错误的是( )A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=08.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.59.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=2:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有()A.2个B.3个C.4个D.5个10.下列计算正确的是()A.a3•a3=a9 B.(a+b)2=a2+b2 C.a2÷a2=0 D.(a2)3=a611.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=12∠ACD D.∠A=12∠BOD12.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)14.8的立方根为_______.15.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ABC.V 求作:ABC V 的内切圆.小明的作法如下:如图2,()1作ABC ∠,ACB ∠的平分线BE 和CF ,两线相交于点O ;()2过点O 作OD BC ⊥,垂足为点D ;()3点O 为圆心,OD 长为半径作O.e 所以,O e 即为所求作的圆.请回答:该尺规作图的依据是______.16.若一次函数y=kx ﹣1(k 是常数,k≠0)的图象经过第一、三、四象限,则是k 的值可以是_____.(写出一个即可).17.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.18.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm ),计算出这个立体图形的表面积.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.20.(6分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.21.(6分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.22.(8分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A (2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.23.(8分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)△ABC的面积等于_____;(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.24.(10分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.25.(10分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1 图2 图3(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D ,G 三点共线. 易证△AFG ≅ ,故EF ,BE ,DF 之间的数量关系为 ;(2)类比引申如图2,在图1的条件下,若点E ,F 由原来的位置分别变到四边形ABCD 的边CB ,DC 的延长线上,∠EAF=12∠BAD ,连接EF ,试猜想EF ,BE ,DF 之间的数量关系,并给出证明. (3)联想拓展如图3,在△ABC 中,∠BAC=90°,AB=AC ,点D ,E 均在边BC 上,且∠DAE=45°. 若BD=1,EC=2,则DE 的长为 .26.(12分)解不等式()()41223x x ---> ,并把它的解集表示在数轴上.27.(12分)如图,在菱形ABCD 中,E 、F 分别为AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G ,求证:点G 在BD 上.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:5550=5.55×1. 故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C【解析】【分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【详解】A 、x 2•x 3=x 5,故A 选项错误;B 、x 2+x 2=2x 2,故B 选项错误;C 、(﹣2x)2=4x 2,故C 选项正确;D 、( a+b)2=a 2+2ab+b 2,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键3.D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x 2-6x+9=(x-3)2.故选D .考点:2.因式分解-运用公式法;2.因式分解-提公因式法.4.A【解析】【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②正确.由AD ∥BC ,推出△AEF ∽△CBF ,推出AE BC =AF CF ,由AE=12AD=12BC ,推出AF CF =12,即CF=2AF ;③正确.只要证明DM 垂直平分CF ,即可证明;④正确.设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有 b a =2a b,即a ,可得tan∠CAD=CDAD=2ba=22.【详解】如图,过D作DM∥BE交AC于N.∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFCF.∵AE=12AD=12BC,∴AFCF=12,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF.∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即b=2a,∴tan∠CAD=CDAD=2ba=22.故④正确.故选A.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.5.B【解析】【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.6.B【解析】【分析】根据多项式的乘法法则计算即可.【详解】(x -l)(x -2)= x 2-2x -x +2= x 2-3x +2.故选B.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.7.B【解析】【分析】根据二次函数的图象与性质逐一判断即可.【详解】解:由图象可知抛物线开口向上,∴0a >,∵对称轴为1x =, ∴12b a-=, ∴20b a =-<,∴20a b +=,故D 正确,又∵抛物线与y 轴交于y 轴的负半轴,∴0c <,∴0abc >,故A 正确;当x=1时,0y <,即0a b c ++<,故B 错误;当x=-1时,0y >即0a b c -+>,∴a c b+>,故C正确,故答案为:B.【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.8.D【解析】【详解】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D9.C【解析】【分析】由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否. 【详解】解:由题意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此选项①正确;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;∵△AEF是等腰直角三角形,有:1,故此选项②正确;∵△AEF与△AHF不相似,∴AF2=FH·FE不正确.故此选项③错误,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此选项⑤正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.10.D.【解析】试题分析:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D考点:整式的混合运算11.D【解析】【分析】根据垂径定理判断即可.【详解】连接DA.∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=12∠BOD.故选D.【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5π【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π. 故答案为:5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键.14.2.【解析】【分析】【详解】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.15.到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】【分析】根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.16.1【解析】【分析】由一次函数图象经过第一、三、四象限,可知k >0,﹣1<0,在范围内确定k 的值即可.【详解】解:因为一次函数y=kx ﹣1(k 是常数,k≠0)的图象经过第一、三、四象限,所以k >0,﹣1<0,所以k 可以取1.故答案为1.【点睛】根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.17.18块(4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,所以第4个图应该有4×4+2=18块,第n个图应该有(4n+2)块.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.18.100 mm1【解析】【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【详解】根据三视图可得:上面的长方体长4mm,高4mm,宽1mm,下面的长方体长8mm,宽6mm,高1mm,∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).故答案为100 mm1.【点睛】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.20.见解析【解析】【分析】【详解】证明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC 和△DAE 中,∵CAB ADE{AB DA B DAE∠=∠=∠=∠,∴△ABC ≌△DAE (ASA ).∴BC=AE .【点睛】根据两直线平行,内错角相等求出∠CAB=∠ADE ,然后利用“角边角”证明△ABC 和△DAE 全等,再根据全等三角形对应边相等证明即可.21.(1)y=x2+2x ﹣3;(2)258;(3)详见解析. 【解析】试题分析:(1)先利用抛物线的对称性确定出点B 的坐标,然后设抛物线的解析式为y=a (x+3)(x-1),将点D 的坐标代入求得a 的值即可;(2)过点E 作EF ∥y 轴,交AD 与点F ,过点C 作CH ⊥EF ,垂足为H .设点E (m ,m 2+2m-3),则F (m ,-m+1),则EF=-m 2-3m+4,然后依据△ACE 的面积=△EFA 的面积-△EFC 的面积列出三角形的面积与m 的函数关系式,然后利用二次函数的性质求得△ACE 的最大值即可;(3)当AD 为平行四边形的对角线时.设点M 的坐标为(-1,a ),点N 的坐标为(x ,y ),利用平行四边形对角线互相平分的性质可求得x 的值,然后将x=-2代入求得对应的y 值,然后依据2y a +=052+,可求得a 的值;当AD 为平行四边形的边时.设点M 的坐标为(-1,a ).则点N 的坐标为(-6,a+5)或(4,a-5),将点N 的坐标代入抛物线的解析式可求得a 的值.试题解析:(1)∴A(1,0),抛物线的对称轴为直线x =-1,∴B(-3,0),设抛物线的表达式为y =a(x +3)(x -1),将点D(-4,5)代入,得5a =5,解得a =1,∴抛物线的表达式为y =x 2+2x -3;(2)过点E 作EF ∥y 轴,交AD 与点F ,交x 轴于点G ,过点C 作CH ⊥EF ,垂足为H.设点E(m ,m 2+2m -3),则F(m ,-m +1).∴EF =-m +1-m 2-2m +3=-m 2-3m +4.∴S△ACE=S△EFA-S△EFC=12EF·AG-12EF·HC=12EF·OA=-12(m+32)2+258.∴△ACE的面积的最大值为258;(3)当AD为平行四边形的对角线时:设点M的坐标为(-1,a),点N的坐标为(x,y).∴平行四边形的对角线互相平分,∴12x-+=()142+-,2y a+=052+,解得x=-2,y=5-a,将点N的坐标代入抛物线的表达式,得5-a=-3,解得a=8,∴点M的坐标为(-1,8),当AD为平行四边形的边时:设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,∴M(-1,16),将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,∴M(-1,26),综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.22.(1) B(-1.2);(2) y=57x?66x-;(3)见解析.【解析】【分析】(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA 解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.【详解】(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB 为等腰三角形,∴AO=BO ,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD ,在△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ),∵A (2,1),∴OD=AC=1,BD=OC=2,∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==, ∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP ,∴可知点P 在线段OA 的下方,过P 作PE ∥y 轴交AO 于点E ,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.23.6 作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G【解析】【分析】(1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.【详解】解:(1)4×3÷2=6,故△ABC的面积等于6.(2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG 即为所求正方形.故答案为:6,作出∠ACB 的角平分线交AB 于F,再过F 点作FE ⊥AC 于E,作FG ⊥BC 于G .【点睛】本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.24.(1)AD 2=AC•CD .(2)36°.【解析】试题分析:(1)通过计算得到=,再计算AC·CD ,比较即可得到结论;(2)由,得到,即,从而得到△ABC ∽△BDC ,故有,从而得到BD=BC=AD ,故∠A=∠ABD ,∠ABC=∠C=∠BDC .设∠A=∠ABD=x ,则∠BDC=2x ,∠ABC=∠C=∠BDC=2x ,由三角形内角和等于180°,解得:x=36°,从而得到结论.试题解析:(1)∵AD=BC=,∴==.∵AC=1,∴CD==,∴;(2)∵,∴,即,又∵∠C=∠C ,∴△ABC ∽△BDC ,∴,又∵AB=AC ,∴BD=BC=AD ,∴∠A=∠ABD ,∠ABC=∠C=∠BDC .设∠A=∠ABD=x ,则∠BDC=∠A+∠ABD=2x ,∴∠ABC=∠C=∠BDC=2x ,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.25.(1)△AFE. EF=BE+DF.(2)BF=DF-BE ,理由见解析;(35【解析】试题分析:(1)先根据旋转得:90ADG A ∠=∠=o ,计算180FDG ∠=︒,即点F D G 、、共线,再根据SAS 证明△AFE ≌△AFG ,得EF=FG ,可得结论EF=DF+DG=DF+AE ;(2)如图2,同理作辅助线:把△ABE绕点A逆时针旋转90o至△ADG,证明△EAF≌△GAF,得EF=FG,所以EF=DF−DG=DF−BE;(3)如图3,同理作辅助线:把△ABD绕点A逆时针旋转90o至△ACG,证明△AED≌△AEG,得DE EG=,先由勾股定理求EG的长,从而得结论.试题解析:(1)思路梳理:如图1,把△ABE绕点A逆时针旋转90o至△ADG,可使AB与AD重合,即AB=AD,由旋转得:∠ADG=∠A=90o,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=90o+90o=180o,即点F. D. G共线,∵四边形ABCD为矩形,∴∠BAD=90o,∵∠EAF=45o,∴904545BAE FAD∠+∠=-=o o o,∴45FAD DAG FAG∠+∠=∠=o,∴45EAF FAG∠=∠=o,在△AFE和△AFG中,∵AE AGEAF FAG AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案为:△AFE,EF=DF+AE;(2)类比引申:如图2,EF=DF−BE,理由是:把△ABE绕点A逆时针旋转90o至△ADG,可使AB与AD重合,则G在DC上,由旋转得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=90o,∴∠BAE+∠BAG=90o,∵∠EAF=45o,∴∠FAG=90o−45o=45o,∴∠EAF=∠FAG=45o,在△EAF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF−DG=DF−BE;(3)联想拓展:如图3,把△ABD绕点A逆时针旋转90o至△ACG,可使AB与AC重合,连接EG,由旋转得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=90o,AB=AC,∴∠B=∠ACB=45o,∴∠ACG=∠B=45o,∴∠BCG=∠ACB+∠ACG=45o+45o=90o,∵EC=2,CG=BD=1,由勾股定理得:22125EG=+,∵∠BAD=∠CAG ,∠BAC=90o ,∴∠DAG=90o ,∵∠BAD+∠EAC=45o ,∴∠CAG+∠EAC=45o =∠EAG ,∴∠DAE=45o ,∴∠DAE=∠EAG=45o ,∵AE=AE ,∴△AED ≌△AEG , ∴ 5.DE EG ==26.x <5;数轴见解析【解析】【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.【详解】移项,得 ()1x 213-<, 去分母,得 x 23-<,移项,得x 5<,∴不等式的解集为x 5<,在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.27.见解析【解析】【分析】先连接AC ,根据菱形性质证明△EAC ≌△FCA,然后结合中垂线的性质即可证明点G 在BD 上.【详解】证明:如图,连接AC.∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA, ∴△EAC≌△FCA,∴∠ECA=∠FAC, ∴GA=GC,∴点G在AC的中垂线上,∴点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.。

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案一、填空题:(本大题每题2分,共20分,把答案填写在题中横线上)1、┃π-14.3┃=_____________;若a <0,则3322a a a a +++=____________.2、当a __________时,42-a 无意义;22--x x有意义的条件是_____________. 3、已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是___________;方差是____________.4、某校九年级上学期期末统一考试后,甲、乙两班的数学成绩(单位:分)的统计情况如下表所示:从各统计指标(平均分、中位数、众数、方差)综合来看,你认为______班的成绩较好。

5、若关于x 的方程22)2()1(2+=--b x a x 有两个相等的实根,则=a ________;=b ________.6、已知菱形ABCD 中对角线AC 、BD 相交于点O ,添加条件______________或_____________可使菱形ABCD 成为正方形.7、已知点C 为线段AB 的黄金分割点,且AC=1㎝,则线段AB 的长为____________________.8、如图,E 为□ABCD 中AD 边上的一点,将△ABE 沿BE 折叠使得点A 刚好落在BC 边上的F 点处,若AB 为4,ED 为3,则□ABCD 的周长为_________.9、已知:如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°, 则∠BOE=_______°.第8题图 第9题图 第10题图10、如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝.二、选择题:(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 11、下列各式中与327x --是同类二次根式的是【 】.A 、327x B 、273x - C 、2391x -- D 、3x12、在下列各式的化简中,化简正确的有【 】. ①3a =a a ;②5x x -x x =4x x ;③6a2b a =ab ab 23 ;④24+61=86 A 、1个 B 、2个 C 、3个 D 、4个 13、下面是李刚同学在一次测验中解答的填空题,其中答对的是【 】. A 、若x 2=4,则x =2B 、方程x (2x -1)=2x -1的解为x =1C 、若x 2+2x +k =0的一个根为1,则3-=kD 、若分式1232-+-x x x 的值为零,则x =1,214、若关于x 的方程06)(22=+--x k x x 无实根,则k 可取的最小整数为【 】. A 、5- B 、4- C 、3- D 、2-15、甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);(3)甲班成绩比乙班成绩波动大。

(4份试卷汇总)2019-2020学年河北省名校中考第一次质量检测数学试题

(4份试卷汇总)2019-2020学年河北省名校中考第一次质量检测数学试题

2019-2020学年数学中考模拟试卷一、选择题 1.若a+b=3,,则ab 等于( ) A.2B.1C.﹣2D.﹣12.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为( )A .9B .12C .14D .183.如图,A ,B 是半径为1的O e 上两点,且60AOB ∠=︒.点P 从A 出发,在O e 上以每秒3π个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,则下面图象中可能..表示y 与x 的函数关系的是( )A.①或②B.②或③C.③或④D.①或④4.下面两幅图是由几个小正方形搭成的几何体的主视图与俯视图,则搭成这个几何体的小正方体的个数为( )A.3个B.4个C.5 个D.6个5.如图,一副直角三角板按如图所示放置,若AB ∥DF ,则∠AGD 的度数为( )A.45°B.60°C.65°D.75°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )A.48°B.42°C.34°D.24°7.如图:A B C D E F ∠∠∠∠∠∠+++++等于( )A .180oB .360oC .540oD .720o8.如图,抛物线y =ax 2+bx+c 的对称轴是x =13,小亮通过观察得出了下面四个结论:①c <0,②a ﹣b+c >0,③2a ﹣3b =0,④5b ﹣2c <0.其中正确的有( )A .1个B .2个C .3个D .4个9.下列计算中,正确的是( ) A .(﹣2a ﹣5)(2a ﹣5)=25﹣4a 2B .(a ﹣b )2=a 2﹣b 2C .(x+3)(x ﹣2)=x 2﹣6D .﹣a (2a 2﹣1)=﹣2a 3﹣a10.下列命题中假命题是( ) A .正六边形的外角和等于360° B .位似图形必定相似 C .对角线相等的四边形是矩形 D .两组对角相等的四边形是平行四边形 11.下列计算正确的是( ) A .b 5∙ b 5=2 b 5B .(a- b)5 ·(b - a)4=( a - b)9C .a +2 a 2=3 a 3D .(a n-1)3 = a 3n-112.如图,在平面直角坐标系中,⊙P 的圆心是(2,a ),半径为2,直线y =﹣x 与⊙P 相交于A 、B 两点,若弦AB 的长为3a 的值是( )A .﹣22B .﹣2+2C .﹣2﹣3D .﹣2﹣2二、填空题13.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣13x+4上,设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…依据图形所反映的规律,S 2019=_____.14.用不等号“>”或“<”连接:sin50°_____cos50°.15.如图是在正方形网格中按规律填成的阴影,根据此规律,若第n 个图中阴影部分小正方形的个数为440个,则n 的值是 .16.计算63a a ÷的结果等于_____. 17.若23x =,25y =,则2x y +=_____.18.如图,在△ABC 中,M 、N 分别为AC 、BC 的中点.若S △CMN =1,则S 四边形ABNM =________.三、解答题19.在四边形ABCD 中,AB ∥DC ,AB=AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ∥DB 交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形;(2)若∠DAB=60°,且AB=4,求OE 的长.20.第36届全国信息学冬令营在广州落下帷幕,长郡师生闪耀各大赛场,金牌数、奖牌数均稳居湖南省第一.学校拟预算7700元全部用于购买甲、乙、丙三种图书共20套奖励获奖师生,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元,设购买甲种图书x 套,乙种图书y 套,请解答下列问题:(1)请求出y 与x 的函数关系式(不需要写出自变量的取值范围); (2)若学校购买的甲、乙两种图书共14套,求甲、乙图书各多少套? (3)若学校购买的甲、乙两种图书均不少于1套,则有哪几种购买方案?21.先化简,再计算:2221222x x x x x x x--+--+g ,其中x =21+. 22.矩形OABC 的边OC 、OA 分别位于x 、y 轴上,点A (0,﹣4)、B (6,﹣4)、C (6,0),抛物线y =ax 2+bx 经过点O 和点C ,顶点M (3,﹣92),点N 是抛物线上一动点,直线MN 交直线AB 于点E ,交y 轴于F ,△A′EF 是将△AEF 沿直线MN 翻折后的图形. (1)求抛物线的解析式;(2)当四边AEA′F 是正方形时,求点N 的坐标. (3)连接CA′,求CA′的最小值.23.春暖花开,树木萌芽,某种时令蔬菜的价格呈上升趋势,若这种蔬菜开始时的售价为每斤20元,并且每天涨价2元,从第六天开始,保持每斤30元的稳定价格销售,直到11天结束,该蔬菜退市. (1)请写出该种蔬菜销售价格y 与天数x 之间的函数关系式;(2)若该种蔬菜于进货当天售完,且这种蔬菜每斤进价z 与天数x 的关系为z =﹣21(8)8-x +12(1≤x≤11),且x 为整数,那么该种蔬菜在第几天售出后,每斤获得利润最大?最大利润为多少? 24.服装店准备购进甲乙两种服装共100件,费用不得超过7500元.甲种服装每件进价80元,每件售价120元;乙种服装每件进价60元,每件售价90元. (Ⅰ)设购进甲种服装x 件,试填写下表. 表一购进甲种服装的数量/件 10 20 (x)购进甲种服装所用费用/元8001600…购进乙种服装所用费用/元 5400 …购进甲种服装的数量/件 10 20 (x)甲种服装获得的利润/元 800 … 乙种服装获得的利润/元27002400…25.如图,10×10的网格中,A ,B ,C 均在格点上,诮用无刻度的直尺作直线MN ,使得直线MN 平分△ABC 的周长(留作图痕迹,不写作法)(1)请在图1中作出符合要求的一条直线MN ;(2)如图2,点M 为BC 上一点,BM =5.请在AB 上作出点N 的位置.【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A B C D B B C A C BD13.201894.14.> 15. 16.a 3 17.15 18.3 三、解答题19.(1)证明见解析;7. 【解析】 【分析】(1)根据平行四边形的判定和菱形的判定证明即可; (2)根据菱形的性质和勾股定理解答即可. 【详解】(1)∵AB∥DC,∴∠CAB=∠ACD.∵AC平分∠BAD,∴∠CAB=∠CAD.∴∠CAD=∠ACD,∴DA=DC.∵AB=AD,∴AB=DC.∴四边形ABCD是平行四边形.∵AB=AD,∴四边形 ABCD是菱形;(2)∵四边形 ABCD是菱形,∠DAB=60°,∴∠OAB=30,∠AOB=90°.∵AB=4,∴OB=2,AO=OC=2.∵CE∥DB,∴四边形 DBEC是平行四边形.∴CE=DB=4,∠ACE=90°.∴OE===.【点睛】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(1)y=﹣53x+18;(2)购买甲种图书6套,乙种图书8套;(3)共有三种购买方案:①购买甲种图书3套,乙种图书13套,丙种图书4套;②购买甲种图书6套,乙种图书8套,丙种图书6套;③购买甲种图书9套,乙种图书3套,丙种图书8套.【解析】【分析】(1)根据题意设购买甲种图书x套,乙种图书y套即可列出方程(2)根据题意x+y=14,在于(1)组成方程组,即可解答(3)根据题意x≥1,51813x-+≥,求出解集,再根据x为整数,即可解答【详解】(1)设购买甲种图书x套,乙种图书y套,则购买丙种图书(20﹣x﹣y)套,依题意,得:500x+400y+250(20﹣x﹣y)=7700,∴y=﹣53x+18.(2)依题意,得:145-183x yy x+=⎧⎪⎨=+⎪⎩,解得:6 {8 xy==,∴购买甲种图书6套,乙种图书8套.(3)依题意,得:151813x x ≥⎧⎪⎨-+≥⎪⎩ ,解得:1≤x≤1015. ∵x ,﹣53 x+18,20﹣x ﹣(﹣53x+18)为整数, ∴x =3,6,9.∴共有三种购买方案:①购买甲种图书3套,乙种图书13套,丙种图书4套;②购买甲种图书6套,乙种图书8套,丙种图书6套;③购买甲种图书9套,乙种图书3套,丙种图书8套. 【点睛】此题考查二元一次方程组的解和一元一次不等式的应用,解题关键在于根据题意列出方程组 21.1x x-,【解析】 【分析】原式约分后,利用同分母分式的减法法则计算得到最简结果,将x 的值代入计算即可求出值. 【详解】原式=(1)(2)12(1)1212(1)x x x x x x x x x x x x+-++-⋅-=-=-+,当x时,2=. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 22.(1)y =12x 2﹣3x ;(2)51,2N ⎛⎫- ⎪⎝⎭;(33-.【解析】 【分析】(1)根据待定系数法进行求解即可得到答案; (2)根据正方形的性质,联立y =﹣x ﹣32与y =12x 2﹣3x ,即可得到答案; (3)根据圆的性质即可得到答案. 【详解】解:(1)由已知可知C (6,0),M (3,﹣92),代入y =ax 2+bx ,得 03669932a b a b =+⎧⎪⎨-=+⎪⎩, ∴123a b ⎧=⎪⎨⎪=-⎩ ∴y =12x 2﹣3x ;(2)当四边AEA′F 是正方形时, 直线MF 与x 轴成角45°, ∴MF 直线解析式为y =﹣x ﹣32, 联立y =﹣x ﹣32与y =12x 2﹣3x ,可得 x =1或x =3(舍) ∴N (1,﹣52); (3)A'的运动轨迹是以M 为圆心MA 为半径的圆, ∵MA =3,MC=, ∴CA'最小值为3-; 【点睛】本题考查待定系数法、正方形的性质和圆的性质,解题的关键是熟练掌握待定系数法、正方形的性质和圆的性质.23.(1)202(1)218(16)30(611)x x x y x +-=+<⎧=⎨⎩…剟;(2)在第11天进货并售出后,所获利润最大,且为每件最大利润为19.125元. 【解析】 【分析】(1)根据销售价格随时间的变化关系设y 与x 之间的函数关系为y =kx+b,由分段函数求出其值即可; (2)根据利润=售价﹣进价就可以表示出利润与时间之间的关系,由二次函数的性质就可以求出结论. 【详解】解:(1)该种蔬菜销售价格y 与天数x 之间的函数关系式:y =()()()20212181630611x x x x ⎧+-=+≤≤⎪⎨≤≤⎪⎩;(2)设利润为W,则W =y ﹣z =()()()()()()()222211218812141688113081281861188x x x x x x x x x ⎧++--=+≤≤⎪⎪⎨⎪+--=-+≤≤⎪⎩为整数为整数,W =21148x +,对称轴是直线x =0,当x >0时,W 随x 的增大而增大, ∴当x =5时,W 最大=258+14=17.125(元) W =()218188x -+,对称轴是直线x =8,当x >8时,W 随x 的增大而增大, ∴当x =11时,W 最大=18×9+18=1918=19.125(元) 综上可知:在第11天进货并售出后,所获利润最大且为每件19.125元. 【点睛】本题主要考查了二次函数的应用,待定系数法求函数的解析式的运用,二次函数的最值的运用,解答时求出利润的解析式是关键.24.(Ⅰ)80x ,4800,600060x -,400,40x ,300030x -;(Ⅱ)购进甲种服装75件,乙种服装25件时,可获得最大利润,理由见解析 【解析】 【分析】(1)甲服装的件数乘以进货价即为购进甲种服装所用费用,乙的进货价乘以(100-甲的件数)即为购进乙种服装所用费用;利润=(售价-进货价)×件数;(2)设购进甲种服装x 件,根据费用不得超过7500元,求出x 的范围,然后求出利润关于x 的函数关系式,再由函数的性质求出最值即可. 【详解】 (Ⅰ)表一8060(100)7500x x +-≤解得:75x ≤.购进甲种服装x 件,总利润为w 元,075x ≤≤,4030(100)103000w x x x =+-=+,∵100>,w 随x 的增大而增大, ∴当75x =时,w 有最大值,则购进甲种服装75件,乙种服装25件时,可获得最大利润. 【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键. 25.(1)见解析;(2)见解析 【解析】 【分析】(1)利用等腰三角形的中线的性质解决问题即可.(2)作△ABC 的中线AG ,连接AM ,作GN ∥AM ,交AB 于点N ,点N 即为所求. 【详解】解:(1)如图,直线MN 即为所求. (2)如图,点N 即为所求.理由:由题意:BA=BM=5,NG∥AM,∴BN BG BA BM,∴BN=BG,∴AN=GN,∵AB=AC,BG=CG,∴BN+BM=CM+AC+AN,∴直线MN平分△ABC的周长,【点睛】本题考查作图﹣应用与设计,等腰三角形的性质,平行线的性质等知识,属于中考常考题型.2019-2020学年数学中考模拟试卷一、选择题1.如图,矩形ABCD 中,AB =4,AD =6,E 为AD 中点,分别以B 、E 为圆心,以AB 、AE 为半径画弧,两弧交于点F ,连接AF 、BE ,则AF 的长为( )A.125B.135C.245D.52.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里,远地点高度为40万公里的预定轨道,将数据40万用科学记数法表示为( )A.4×105B.4×104C.4×106D.0.4×1053.如图,正六边形的中心为原点O ,点A 的坐标为(0,4),顶点E(-1,),顶点B(1,),设直线AE 与y 轴的夹角∠EAO 为α,现将这个六边形绕中心O 旋转,则当α取最大角时,它的正切值为( )A. B.1 C. D.4.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( ) A .1B .2C .3D .4 5.如图,点O 是ABC ∆的内心,M 、N 是AC 上的点,且CM CB =,AN AB =,若100B ∠=︒,则MON ∠=( )A .60︒B .70︒C .80︒D .100︒ 6.记者从某市轨道交通公司获悉,该市3月中旬轨道交通安全运送乘客约425万次,这里“425万”用科学记数法表示为( )A .24.2510⨯B .442510⨯C .64.2510⨯D .74.2510⨯7.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米.则“比邻星”距离太阳系约为( )A .13410⨯千米B .12410⨯千米C .139. 510⨯千米D .129. 510⨯千米8.如图,正五边形ABCDE ,点F 是AB 延长线上的一点,则∠CBF 的度数是( )A .60°B .72°C .108°D .120°9.下列选项中,下边的平面图形能够折成旁边封闭的立体图形的是( ) A. B. C. D.10.已知一个圆锥的底面半径为5cm ,高为11cm ,则这个圆锥的侧面积为( ) A .511πcm 2 B .30πcm 2 C .65πcm 2 D .85πcm 211.2019年春节联欢晚会在某网站取得了同时在线人数超34200000的惊人成绩,创下了全球单平台网络直播记录,将数34200000用科学记数法表示为( )A .80.34210⨯B .73.4210⨯C .83.4210⨯D .634.210⨯ 12.下列运算正确的是( ) A .2a 2b ﹣ba 2=a 2bB .a 6÷a 2=a 3C .(ab 2)3=a 2b 5D .(a+2)2=a 2+4 二、填空题13.如图,直线AD ∥BE ∥CF ,BC =13AC ,DE =6,那么EF 的值是_____.14.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________. 15.如图,AD 、BE 是△ABC 的中线,交于点O ,设OB a =u u u r r ,OD b =u u u r r ,那么向量AB u u u r 用向量a 、b 表示是______.16.如图,已知一次函数y =kx+b 的图象经过点(3,0),则当函数值y 小于0时,自变量x 的取值范围是_____.17.(-2)xy xy +=________________.18.如图,已知正方形ABCD 的边长为4,现有一动点P 从点B 出发,沿着B→C→D→A 的路径以每秒1个单位长度的速度运动,则S △PAB 与运动时间t (秒)之间的函数关系图象是( )A. B. C. D.三、解答题19.计算:(3)﹣1﹣(3)2+(π+3)0﹣27+|3﹣2|. 20.一只不透明的袋子中装有1个蓝球和2个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到蓝球的概率为 ;(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求至少有1次摸到红球的概率.21.如图10,在平面直角坐标系中,点A (0,6),点B 是x 轴正半轴上的一个动点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .过点B 作BD ⊥x 轴交直线AC 于点D .设点B 坐标是(t ,0).(1)当t =4时,求直线AB 的解析式;(2)①用含t 的代数式表示点C 的坐标: .②当△ABD 是等腰三角形时,求点B 坐标.22.(1)计算:221b a a b a b ⎛⎫÷- ⎪-+⎝⎭(2)解方程:x 2-6x-1=023.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求⊙O的半径.25.已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB =EF=6cm,BC=FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G,与BD交于点K;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动设运动事件为(s)(0<t<6),解答下列问题:(1)当为何值时,PQ∥BD?(2)在运动过程中,是否存在某一时刻,使S五边形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(3)在运动过程中,当t为秒时,PQ⊥PE.【参考答案】***一、选择题13.3 14.()()()()21212121----,,,,,,,(写出一个即可) 15.2a b +r r16.x >317.-xy18.A三、解答题19.﹣【解析】【分析】根据负整数指数幂的性质、乘方的定义、零指数幂的性质、二次根式的性质及绝对值的性质依次计算后,,再合并即可求解.【详解】3+1﹣.【点睛】本题考查了实数的混合运算,熟知实数的运算法则及运算顺序是解决问题的关键.20.(1)13;(2)89. 【解析】【分析】(1)由共有3种等可能结果,其中摸到蓝球可能的结果有1种,根据概率公式求解可得;(2)画树状图列出所有等可能结果,再根据概率公式求解可得.【详解】解:(1)∵袋中共有3个球,∴共有3种等可能结果,其中摸到蓝球可能的结果有1种.∴P (摸到蓝球)=13, 故答案为:13; (2)将2个红球编号为红球1,红球2,用树状图表示出所有可能出现的结果,由树状图知,共有9种等可能结果,其中至少有一次摸到红球可能的结果有8种.∴P (至少有1次摸到红球)=89. 【点睛】本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.21.(1)y =-32x +6;(2)①点C 的坐标为(t +3,2t ),②分三种情况进行分类讨论,点B 的坐标为(3,0).点B 的坐标为(12+50).当t≥0时,不存在BD =AB 的情况.【解析】【分析】(1)当t=4时,B (4,0),设直线AB 的解析式为y=kx+b .把A (0,6),B (4,0)代入解析式即可求出未知数的值,从而求出其解析式;(2)①根据点A 和点B 的坐标可以求得点M 的坐标,从而可以求得点C 的坐标;②分三种情况进行分类讨论:AD =BD,AB =AD ,BD≠AB.【详解】(1)当t =4时,B(4,0).设直线AB 的解析式为y =kx +b将A(0,6),B(4,0)代入,得:640b k b =+=⎧⎨⎩解得326k b ⎧⎪⎨⎪⎩=-= ∴直线AB 的解析式为y =-32x +6. (2)①)∵点A (0,6),点B (t ,0),点M 是线段AB 的中点,∴点M 的坐标是(2t ,3), 又∵将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC , ∴点C 的坐标为:(t+3,2t ), 故答案为:(t+3,2t ); ②分三种情况进行分类讨论(1)AD =BD ,则∠BAD =∠ABD .∵BD ∥y 轴,∴∠OAB =∠ABD ,∴∠OAB =∠BAD .∴tan ∠OAB=tan ∠BAD又∵∠AOB =∠ABC=90° ∴OB AO =BC AB =12,即6t =12,∴t =3. 此时点B 的坐标为(3,0).(2)若AB =AD方法一 :设直线AC 的解析式为6y kx =+∵点C 的坐标为(t +3,2t ) ∴(3)62t k t ++=∴12=26t k k -+ ∴12=626t y x k -++ ∴当=x t 时,23626t y t +=+ ∴23626t BD t +=+ 由题得=2BD AO∴236=1226t t ++ ∴22436t t -=∴1=12+65t 2=1265t -(舍去)方法二:过点A 作AH ⊥CG 于H ,则CH =HG =12CG .∵∠GEB =∠AOB =90°,∠GBE =∠ABO ,∴△GEB ∽△AOB .∴GE BE =AO BO, ∴GE =6t ×3=18t .又∵HE =AO =6,CE =2t ,GE +HE =HG =12CG =12(CE +GE). ∴18t +6=12(2t +18t),整理得t 2-24t -36=0.解得t 1=12+t 2=12-0(不合题意,舍去).此时点B 的坐标为(12+0).(3)当0≤t<12时,∠ADB 是钝角,△ADB 是钝角三角形,故BD≠AB.当t≥12时,BD≤CE<BC <AB .∴当t≥0时,不存在BD =AB 的情况.【点睛】本题考查了坐标与图形的变化-旋转, 解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答,注意分类讨论思想的应用.22.(1)1a b -;(2) x 1,x 2 【解析】【分析】(1)先把括号内通分,再把除法运算化为乘法运算,然后把分母因式分解后约分即可;(2)利用配方法解方程.【详解】(1)原式=()()b a b a b +-÷a b a a b +-+ =()()b a b a b +-•a b b + =1a b-; (2)x 2-6x=1,x 2-6x+9=10,(x-3)2=10,x-,所以x 1,x 2.【点睛】本题考查了分式的混合运算,解一元二次方程-配方法,熟练掌握分式混合运算的法则以及配方法的基本步骤是解本题的关键.23.(1)14;(2)16【解析】【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A 区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【详解】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A 区域只有1种情况,∴享受9折优惠的概率为14,故答案为:14;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为21 126.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)相切,理由见解析;(2)2.【解析】【分析】(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴直线BC与⊙O的位置关系是相切;(2)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB=BD+OD,即(R+2) =(2)+R,解得:R=2,即⊙O 的半径是2.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出OD ⊥BC.25.(1)247(2)t =2s 时,S 五边形AFPQM :S 矩形ABCD =9:8(3)327 【解析】【分析】(1)利用平行线分线段成比例定理构建方程即可解决问题.(2)假设存在,由S 五边形AFPQM :S 矩形ABCD =9:8构建方程即可解决问题.(3)利用相似三角形的性质构建方程即可解决问题.【详解】解:(1)∵PQ ∥BD , ∴PC CQ CB CD =, ∴886t t -=, 解得t =247, ∴当t =247时,PQ ∥BD . (2)假设存在.∵S 五边形AFPQM =S △ABF +S 矩形ABCD ﹣S △PQC ﹣S △MQD =12×(8﹣t )×6+6×8﹣12(8﹣t )×t﹣12×(6﹣t )×34(6﹣t ) =215117822t t -+. 又∵S 五边形AFPQM :S 矩形ABCD =9:8, ∴215117822t t ⎛⎫-+ ⎪⎝⎭:48=9:8, 整理得:t 2﹣20t+36=0,解得t =2或18(舍弃),∴t =2s 时,S 五边形AFPQM :S 矩形ABCD =9:8.(3)∵PQ ⊥PE ,∴∠QPE =90°,∵∠EFP =∠C =90°,∴∠EPF+∠QPC =90°,∠QPC+∠PQC =90°,∴∠EPF =∠PQC ,∴△EPF ∽△PQC , ∴EF PF PC CQ =, ∴688t t =-,解得t=327,∴当t=327时,PQ⊥PE.故答案为327.【点睛】本题考查矩形的性质,平行线分线段成比例定理,相似三角形的判定和性质,多边形的面积等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题,属于中考常考题型.2019-2020学年数学中考模拟试卷一、选择题1.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( )A .11B .13C .11或13D .不能确定 2.下列计算中,不正确的是( ) A .222a 2ab b (a b)-+=-B .2510a a a ⋅=C .()a b b a --=-D .32223a b a b 3a ÷=3.今年寒假期间,小芮参观了中国扇博物馆,如图是她看到的折扇和团扇.已知折扇的骨柄长为30cm ,扇面的宽度为18cm ,某扇张开的角度为120°,若这两把扇子的扇面面积相等,则团扇的半径为( )cm .A .67B .87C .66D .864.如图,正方形ABCD 中,E 、F 分别为BC 、CD 的中点,AF 与DE 交与点G .则下列结论中:①AF ⊥DE ;②AD =BG ;③GE+GF =2GC ;④S △AGB =2S 四边形ECFG .其中正确的是( )A.1个B.2个C.3个D.4个5.如图,在△ABC 中,BF 平分∠ABC ,AF ⊥BF ,D 为AB 中点,连接DF 并延长交AC 与点E ,若AB =12,BC =20,则线段EF 的长为( )A .3B .4C .5D .66.若m ,n 满足m 2+5m-3=0,n 2+5n-3=0,且m≠n.则11m n +的值为( ) A .35 B .35- C .53 D .53- 7.如图,线段CD 两个端点的坐标分别为C (﹣1,﹣2),D (﹣2,﹣1),以原点O 为位似中心,在第一象限内将线段CD 扩大为原来的2倍,得到线段AB ,则线段AB 的中点E 的坐标为( )A.(3,3)B.()C.(2,4)D.(4,2)8.在平面直角坐标系中,点A(a,0),点B(2﹣a,0),且A在B的左边,点C(1,﹣1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0≤a<1 C.﹣1<a<1 D.﹣2<a<29.在同一直角坐标系中,函数y=kx和y=kx﹣2的图象大致是()A.B.C.D.10.按如图所示的运算程序运算,能使输出的结果为7的一组x,y的值是()A.x=1,y=2B.x=﹣2,y=1C.x=2,y=1D.x=﹣3,y=111.分式方程的解是( )A. B. C. D.12.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+2b)(a﹣b)=a2+ab﹣2b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b2二、填空题13.在平面坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2014个正方形的面积为_________。

河北省廊坊市2019-2020学年中考一诊数学试题含解析

河北省廊坊市2019-2020学年中考一诊数学试题含解析

河北省廊坊市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.1cm 2的电子屏上约有细菌135000个,135000用科学记数法表示为( ) A .0.135×106B .1.35×105C .13.5×104D .135×1032.如图1,在△ABC 中,AB=BC ,AC=m ,D ,E 分别是AB ,BC 边的中点,点P 为AC 边上的一个动点,连接PD ,PB ,PE.设AP=x ,图1中某条线段长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是( )A .PDB .PBC .PED .PC3.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为()A .215B .8C .210D .2134.不等式﹣12x+1>3的解集是( ) A .x <﹣4B .x >﹣4C .x >4D .x <45.如图,AB ∥CD ,FH 平分∠BFG ,∠EFB =58°,则下列说法错误的是( )A .∠EGD =58°B .GF =GHC .∠FHG =61°D .FG =FH6.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 7.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A.8 B.8-C.4 D.4-8.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-9.对于代数式ax2+bx+c(a≠0),下列说法正确的是()①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a2x+bx+c=a(x-p)(x-q)②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+cA.③B.①③C.②④D.①③④10.一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C. D.11.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )A.EA EGBE EF=B.EG AGGH GD=C.AB BCAE CF=D.FH CFEH AD=12.如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度二、填空题:(本大题共6个小题,每小题4分,共24分.)13.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.14.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为__________.15.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC 于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.16.如果m,n互为相反数,那么|m+n﹣2016|=___________.17.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.18.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,联结DC.如果AD=2,BD=6,那么△ADC的周长为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD 与⊙O 的位置关系,并证明你的结论;(2)若E 是»AC的中点,⊙O 的半径为1,求图中阴影部分的面积. 20.(6分)如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.求点B 的坐标;若△ABC 的面积为4,求2l 的解析式.21.(6分)如图,已知二次函数24y x 49=-的图象与x 轴交于A ,B 两点,与y 轴交于点C ,C e 的半径为5,P 为C e 上一动点.()1点B ,C 的坐标分别为B(______),C(______);()2是否存在点P ,使得PBC V 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; ()3连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值=______.22.(8分)如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .(1)求证:AM 2=MF.MH(2)若BC 2=BD .DM ,求证:∠AMB =∠ADC .23.(8分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.24.(10分)如图,在平面直角坐标系中,圆M经过原点O,直线364y x=--与x轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S △PDE=110S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.25.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若23DFFO=,求证:CD=DH.26.(12分)已知关于x 的一元二次方程x 2+(2m+3)x+m 2=1有两根α,β求m 的取值范围;若α+β+αβ=1.求m 的值.27.(12分)已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】根据科学记数法的表示形式(a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数). 【详解】解:135000用科学记数法表示为:1.35×1. 故选B . 【点睛】科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.3.D【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴2222BE AE AB1086=--=.在Rt△BCE中,∵BE=6,BC=1,∴2222CE BE BC64213=+=+=D.4.A【解析】【分析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.【详解】移项得:−12x>3−1,合并同类项得:−12x>2,系数化为1得:x<-4. 故选A.本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法. 5.D 【解析】 【分析】根据平行线的性质以及角平分线的定义,即可得到正确的结论. 【详解】解:AB CD EFB 58∠︒Q P ,=,EGD 58=∠∴︒,故A 选项正确;FH BFG ∠Q 平分, BFH GFH ∠∠∴=, 又AB CD Q P BFH GHF ∠∠∴=, GFH GHF ∠∠∴=, GF GH =,∴故B 选项正确; BFE 58FH ∠︒Q =,平分BFG ∠,()118058612BFH ︒︒︒∴∠=-=, AB CD Q PBFH GHF 61∠∠∴︒==,故C 选项正确;FGH FHG ∠∠≠Q ,FG FH ∴≠,故D 选项错误;故选D . 【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 6.A 【解析】 【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.解:A 、(ab 2)2=a 2b 4,故此选项正确; B 、a 2+a 2=2a 2,故此选项错误; C 、a 2•a 3=a 5,故此选项错误; D 、a 6÷a 3=a 3,故此选项错误; 故选:A. 【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键. 7.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.8.D 【解析】 【分析】根据分式的基本性质,x ,y 的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案. 【详解】根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍, A 、23233x x x y x y ++≠--,错误;B 、22629y yx x≠,错误;C 、3322542273y y x x≠,错误; D 、()()22221829y y x y x y --=,正确;故选D . 【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心. 9.A 【解析】设2(0)y ax bx c a =++≠(1)如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则说明在2(0)y ax bx c a =++≠中,当x=p 和x=q 时的y 值相等,但并不能说明此时p 、q 是2(0)y ax bx c a =++≠与x 轴交点的横坐标,故①中结论不一定成立;(2)若am 2+bm+c=an 2+bn+c=as 2+bs+c ,则说明在2(0)y ax bx c a =++≠中当x=m 、n 、s 时,对应的y 值相等,因此m 、n 、s 中至少有两个数是相等的,故②错误;(3)如果ac <0,则b 2-4ac>0,则2(0)y ax bx c a =++≠的图象和x 轴必有两个不同的交点,所以此时一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c ,故③在结论正确;(4)如果ac >0,则b 2-4ac 的值的正负无法确定,此时2(0)y ax bx c a =++≠的图象与x 轴的交点情况无法确定,所以④中结论不一定成立. 综上所述,四种说法中正确的是③. 故选A. 10.B 【解析】 【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2bx a=->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案. 【详解】解:∵一次函数y=ax+b 图像过一、二、四, ∴a <0,b >0,。

河北省秦皇岛市2019-2020学年中考一诊数学试题含解析

河北省秦皇岛市2019-2020学年中考一诊数学试题含解析

河北省秦皇岛市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )A .3B .4C .5D .62.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=1.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .3.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >4.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙5.在平面直角坐标系中,点(,)P m n 是线段AB 上一点,以原点O 为位似中心把AOB ∆放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2,2)m n B .(2,2)m n 或(2,2)m n -- C .11(,)22m nD .11(,)22m n 或11(,)22m n --6.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为( )A .18×108B .1.8×108C .1.8×109D .0.18×10107.二次函数2y ax bx c =++()0a ≠的图象如图所示,则下列各式中错误的是( )A .abc >0B .a+b+c >0C .a+c >bD .2a+b=08.计算2a 2+3a 2的结果是( ) A .5a 4B .6a 2C .6a 4D .5a 29.关于x 的一元二次方程x 2﹣2x+k+2=0有实数根,则k 的取值范围在数轴上表示正确的是( ) A . B . C .D .10.正方形ABCD 和正方形BPQR 的面积分别为16、25,它们重叠的情形如图所示,其中R 点在AD 上,CD 与QR 相交于S 点,则四边形RBCS 的面积为( )A .8B .172C .283D .77811.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A .B .C .D .12.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A.12 B.9 C.6 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么GCD∠的正切值为___.14.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD 的边长为_____.15.25位同学10秒钟跳绳的成绩汇总如下表:人数 1 2 3 4 5 10次数15 8 25 10 17 20那么跳绳次数的中位数是_____________.16.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线11+22y x=图象上的概率为__.17.要使式子2x-有意义,则x的取值范围是__________.18.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值.20.(6分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.21.(6分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人? 22.(8分)一道选择题有,,,A B C D 四个选项.(1)若正确答案是A ,从中任意选出一项,求选中的恰好是正确答案A 的概率; (2)若正确答案是,A B ,从中任意选择两项,求选中的恰好是正确答案,A B 的概率.23.(8分)求不等式组()7153x 3x 134x x ⎧+≥+⎪⎨-->⎪⎩的整数解.24.(10分)在等腰Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是边BC 上任意一点,连接AD ,过点C 作CE ⊥AD 于点E .(1)如图1,若∠BAD=15°,且CE=1,求线段BD 的长;(2)如图2,过点C 作CF ⊥CE ,且CF=CE ,连接FE 并延长交AB 于点M ,连接BF ,求证:AM=BM .25.(10分)如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b .请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b 的图象经过一、二、四象限的概率.26.(12分)如图,在△ABC 中,AB=AC ,∠BAC=120°,EF 为AB 的垂直平分线,交BC 于点F ,交AB 于点E .求证:FC=2BF .27.(12分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.2.D【解析】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=(1﹣x),∴=AP•PQ==,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D.点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.3.C【解析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论. 【详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根, ∴ 2(6)490k k ≠⎧⎨=--⨯>⎩V , 解得:k<1且k≠1. 故选:C . 【点睛】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键. 4.B 【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC 全等,甲与△ABC 不全等. 详解:乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS , 所以乙和△ABC 全等;在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS , 所以丙和△ABC 全等; 不能判定甲与△ABC 全等; 故选B .点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 5.B 【解析】分析:根据位似变换的性质计算即可.详解:点P (m ,n )是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍, 则点P 的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m ,2n )或(-2m ,-2n ), 故选B .点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 6.C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:1800000000=1.8×109, 故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 7.B 【解析】 【分析】根据二次函数的图象与性质逐一判断即可. 【详解】解:由图象可知抛物线开口向上, ∴0a >, ∵对称轴为1x =, ∴12ba-=, ∴20b a =-<,∴20a b +=,故D 正确,又∵抛物线与y 轴交于y 轴的负半轴, ∴0c <,∴0abc >,故A 正确; 当x=1时,0y <,即0a b c ++<,故B 错误; 当x=-1时,0y > 即0a b c -+>, ∴a c b +>,故C 正确, 故答案为:B . 【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.8.D【解析】【分析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a2+3a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.9.C【解析】【分析】由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】∵关于x的一元二次方程x2−2x+k+2=0有实数根,∴△=(−2)2−4(k+2)⩾0,解得:k⩽−1,在数轴上表示为:故选C.【点睛】本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.10.D【解析】【分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【详解】∵正方形ABCD 的面积为16,正方形BPQR 面积为25, ∴正方形ABCD 的边长为4,正方形BPQR 的边长为5, 在Rt △ABR 中,AB=4,BR=5,由勾股定理得:AR=3, ∵四边形ABCD 是正方形, ∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°, ∴∠ABR=∠DRS , ∵∠A=∠D , ∴△ABR ∽△DRS ,∴AB ARDR DS =, ∴431DS=, ∴DS=34, ∴∴阴影部分的面积S=S 正方形ABCD -S △ABR -S △RDS =4×4-12×4×3-12×34×1=778, 故选:D . 【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR 和△RDS 的面积是解此题的关键. 11.C 【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C 左视图与俯视图都是,故选C.12.B 【解析】∵点(6,4)A -,D 是OA 中点 ∴D 点坐标(3,2)- ∵(3,2)D -在双曲线(0)k y k x =<上,代入可得23k=- ∴6k =-∵点C在直角边AB上,而直线边AB与x轴垂直∴点C的横坐标为-6又∵点C在双曲线6 yx-=∴点C坐标为(6,1)-∴22(66)(14)3AC=-++-=从而1136922AOCS AC OB∆=⨯⨯=⨯⨯=,故选B二、填空题:(本大题共6个小题,每小题4分,共24分.)13.31+【解析】【分析】延长GF与CD交于点D,过点E作EM DF⊥交DF于点M,设正方形的边长为a,则,CD GF DE a===解直角三角形可得DF,根据正切的定义即可求得GCD∠的正切值【详解】延长GF与CD交于点D,过点E作EM DF⊥交DF于点M,设正方形的边长为a,则,CD GF DE a===AF//CD,90,CDG AFG∴∠=∠=o1209030,EDM∠=-=o o o3cos30,DM DE=⋅=o23,DF DM a∴==)331,DG GF FD a a a∴=+==()3131tan.aGDGCDCD a∠===3 1.考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.14.52 2【解析】分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.详解:连接AC,交EF于点M,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴AE EM CF FM=,∵AE=1,EF=FC=3,∴13 EMFM=,∴EM=34,FM=94,在Rt△AEM中,AM2=AE2+EM2=1+916=2516,解得AM=54,在Rt△FCM中,CM2=CF2+FM2=9+8116=22516,解得CM=154,∴AC=AM+CM=5,在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,∴AB=522,即正方形的边长为522.故答案为:522.点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.【解析】分析:根据中位数的定义进行计算即可得到这组数据的中位数.详解:由中位数的定义可知,这次跳绳次数的中位数是将这25位同学的跳绳次数按从小到大排列后的第12个和13个数据的平均数,∵由表格中的数据分析可知,这组数据按从小到大排列后的第12个和第13个数据都是20,∴这组跳绳次数的中位数是20.故答案为:20.点睛:本题考查的是怎样确定一组数据的中位数,解题的关键是弄清“中位数”的定义:“把一组数据按从小到大的顺序排列后,若数据组中共有奇数个数据,则最中间一个数据是该组数据的中位数;若数据组中数据的个数为偶数个,则最中间两个数据的平均数是这组数据的中位数”.16.1 6【解析】【分析】根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在11+22y x=图象上的点,即可得出答案.【详解】画树状图得:∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线11+22y x=图象上的只有(3,2),∴点(a,b)在11+22y x=图象上的概率为16.【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.17.x2≤【解析】【分析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.由题意得:2-x≥0,解得:x≤2,故答案为x≤2.18.1.【解析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(2)证明见解析;(2)k2=2,k2=2.【解析】【分析】(2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;(2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.【详解】(2)证明:△=b2﹣4ac,=[﹣(2k+2)]2﹣4(k2+k),=4k2+4k+2﹣4k2﹣4k,=2>2.∴方程有两个不相等的实数根;(2)∵方程有一个根为2,∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,解得:k2=2,k2=2.【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.20.(1)证明见解析;(2)2.【解析】(1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;(2)证明△ODF∽△AEF,列比例式可得结论.【详解】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴,∵AB=4,AE=1,∴,∴BF=2.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.21.男生有12人,女生有21人.【解析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35 =男生的人数,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:2(1)13(1)5y xx y=--⎧⎪⎨=-⎪⎩,解得:1221xy=⎧⎨=⎩.答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.22.(1)14;(2)16【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.【详解】解:(1)选中的恰好是正确答案A的概率为14;(2)画树状图:共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,所以选中的恰好是正确答案A,B的概率=21126=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.-1,-1,0,1,1【解析】分析:先求出不等式组的解集,然后求出整数解.详解:()715331?34x xx x⎧+≥+⎪⎨-->⎪⎩①②,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式组的解集是﹣1≤x<3,∴不等式组71533134x xx x+≥+⎧⎪-⎨-⎪⎩()>的整数解是:﹣1、﹣1、0、1、1.点睛:本题考查了解一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式组的方法.24.(1) 2﹣3;(2)见解析【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2xx=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.详解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,设ED=x,则CD=2x,∴,,x=∴CD=2x=3,∴BD=BC﹣CD=AC﹣CD=2﹣233;(2)如图2,连接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四点共圆,∴∠BCM=∠MFB=45°,∴∠ACM=∠BCM=45°,∵AC=BC,∴AM=BM.点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.25.(1)答案见解析;(2)13.【解析】【分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.26.见解析【解析】【分析】连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=12CF,可证得结论.【详解】证明:连接AF,∵EF为AB的垂直平分线,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.27.(1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【解析】【分析】(1)设购进甲、乙两种商品分别为x 件与y 件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x 与y 的方程组,求出方程组的解即可得到x 与y 的值,得到购进甲、乙两种商品的件数;(2)设商店购进甲种商品a 件,则购进乙种商品(100-a )件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a 的不等式组,求出不等式组的解集,得到a 的取值范围,根据a 为正整数得出a 的值,再表示总利润W ,发现W 与a 成一次函数关系式,且为减函数,故a 取最小值时,W 最大,即可求出所求的进货方案与最大利润.【详解】(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:10015352700x y x y +⎧⎨+⎩==, 解得:4060x y ==⎧⎨⎩, 答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件,根据题意列得:()()15351003100510100890a a a a ⎧+-≤⎪⎨+-≥⎪⎩, 解得:20≤a≤22,∵总利润W=5a+10(100﹣a )=﹣5a+1000,W 是关于a 的一次函数,W 随a 的增大而减小, ∴当a=20时,W 有最大值,此时W=900,且100﹣20=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【点睛】此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.。

2019-2020冀教版河北省石家庄市市区联考九年级上册第一次联考数学试卷含答案解析版

2019-2020冀教版河北省石家庄市市区联考九年级上册第一次联考数学试卷含答案解析版

2019-2020冀教版河北省石家庄市市区联考九年级上册第一次联考数学试卷(2019.09)一、选择题(每小题3分,共30分)1.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A. 53,53B. 53,56 C. 56,53 D. 56,562.方差是刻画数据波动程度的量,对于一组数据x·x1·…x n,可用如下算式计算方差s2= [(x1-5)2+(x2-5)2+.…+(x-5)2],其中“5”是这组数据的()nA. 最小值B. 平均数 C. 中位数 D. 众数3.把一元二次方程x(x+1)=3x+2化为一般形式,正确的是()A. x2+4x+3=0B. x2﹣2x+2=0C. x2﹣3x﹣1=0 D. x2﹣2x﹣2=04.一元二次方程的解为()A.B. x1=0,x2=4C. x1=2,x2=-2D. x1=0,x2=-45.关于x的一元二次方程(m﹣1)x2+3x+m2﹣1=0的一根为0,则m的值是()A. ±1B. ±2 C. ﹣1 D. ﹣26.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:)A. 甲B. 乙C. 丙D. 丁7.小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是()A. 小黄的成绩比小韦的成绩更稳定B. 两人成绩的众数相同C. 小韦的成绩比小黄的成绩更稳定D. 两人的平均成绩不相同8.小莹同学10个周综合素质评价成绩统计如下:)A. 97.5 2.8B. 97.5 3C. 97 2.8D. 97 39.扬帆中学有一块长30m.宽20m的矩形空地,计划在这块空地上划出四分之—的区域种花.小禹同学设计方案如图所示.求花带的宽度。

2019-2020学年河北省石家庄四中七年级(上)第一次月考数学试卷(附答案详解)

2019-2020学年河北省石家庄四中七年级(上)第一次月考数学试卷(附答案详解)

2019-2020学年河北省石家庄四中七年级(上)第一次月考数学试卷1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若收入60元记作+60元,则−20元表示()A. 收入20元B. 收入40元C. 支付40元D. 支出20元2.如果10m表示向北走10m,那么−20m表示的是()A. 向东走20mB. 向南走20mC. 向西走20mD. 向北走20m3.下列各数中是负整数的是()A. −2B. 5C. 12D. −254.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P表示的有理数为a,b,c(对应顺序暂不确定).如果bc<0,b+c>0,ab>ac,那么表示数c的点为()A. 点MB. 点NC. 点PD. 点O5.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A. b+c<0B. |b|<|c|C. |a|>|b|D. abc<06.若数a,b在数轴上的位置如图示,则()A. a+b>0B. ab>0C. a−b>0 D. −a−b>07.−7的相反数是()A. −7B. −17C. 7D. 18.下列各数中,与5互为相反数的是()A. 15B. −5 C. |−5| D. −159.下列四个数中,最大的数是()A. −2B. −1C. 0D. |−3|10.下列四个地方:死海(海拔−400米),卡达拉低地(海拔−133米),罗讷河三角洲(海拔−2米),吐鲁番盆地(海拔−154米).其中最低的是()A. 死海B. 卡达拉低地C. 罗讷河三角洲D. 吐鲁番盆地11.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x−2y=()A. 2B. 4C. 6D. 812.温度由−4℃上升7℃后的温度为()A. −3℃B. 3℃C. −11℃D. 11℃13.如图所示的是长春12月28日的天气预报,图中关于温度的信息是()A. 下降19℃B. 下降10℃C. 最低零下10℃D. 最低零下19℃14.已知贵阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低()A. 4℃B. 零下4℃C. 4℃或者−4℃D. 34℃15.下列计算正确的是()A. 5+(−6)=−11B. −1.3+(−1.7)=−3C. (−11)−7=−4D. (−7)−(−8)=−116.下列计算结果等于4的是()A. |(−9)+(+5)|B. |(+9)−(−5)|C. |−9|+|+5|D. |+9|+|−5|17.如果存款600元记作+600元,那么取款400元记作______元.18.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A与表示1的点重合,滚动一周后到达点B,点B表示的数是______.19.当a,b互为相反数,则代数式a2+ab−2的值为______.20.比较大小:−23______−34。

河北省石家庄市2019-2020学年中考数学第一次调研试卷含解析

河北省石家庄市2019-2020学年中考数学第一次调研试卷含解析

河北省石家庄市2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b22.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=183.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.4.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.20195.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.196.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣12,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A .1个B .3个C .4个D .5个7.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( )A .m≤-1B .m<-1C .-1<m≤0D .-1≤m<08.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα9.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是( )A .50和48B .50和47C .48和48D .48和4310.估计624的值应在( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间11.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是( ) A .中位数不变,方差不变 B .中位数变大,方差不变 C .中位数变小,方差变小D .中位数不变,方差变小12.郑州地铁Ⅰ号线火车站站口分布如图所示,有A ,B ,C ,D ,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )A.1 3B.14C.15D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.三角形两边的长是3和4,第三边的长是方程x2﹣14x+48=0的根,则该三角形的周长为_____.14.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________. 15.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD 的长为________.16.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.17.如图,反比例函数y=kx(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y 轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A.5B.2C.42D.518.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.20.(6分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF (点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.21.(6分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.22.(8分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为752海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)23.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.24.(10分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.183 1.1.25.(10分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.26.(12分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.27.(12分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A选项:4x3•1x1=8x5,故原题计算正确;B选项:a4和a3不是同类项,不能合并,故原题计算错误;C选项:(-x1)5=-x10,故原题计算正确;D选项:(a-b)1=a1-1ab+b1,故原题计算正确;故选:B.【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则.2.B根据前后的时间和是18天,可以列出方程. 【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B 【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程. 3.B 【解析】A 、主视图为等腰三角形,俯视图为圆以及圆心,故A 选项错误;B 、主视图为矩形,俯视图为矩形,故B 选项正确;C 、主视图,俯视图均为圆,故C 选项错误;D 、主视图为矩形,俯视图为三角形,故D 选项错误. 故选:B. 4.C 【解析】 【分析】根据各点横坐标数据得出规律,进而得出x 1 +x 2 +…+x 7 ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:x 1、x 2、x 3、x 4、x 5、x 6、x 7、x 8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5; ∴x 1+x 2+…+x 7=﹣1∵x 1+x 2+x 3+x 4=1﹣1﹣1+3=2; x 5+x 6+x 7+x 8=3﹣3﹣3+5=2; …x 97+x 98+x 99+x 100=2…∴x 1+x 2+…+x 2016=2×(2016÷4)=1. 而x 2017、x 2018、x 2019的值分别为:1009、﹣1009、﹣1009, ∴x 2017+x 2018+x 2019=﹣1009,∴x 1+x 2+…+x 2018+x 2019=1﹣1009=﹣1,此题主要考查规律型:点的坐标,解题关键在于找到其规律 5.A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49, 故选A . 【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验. 6.B 【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2ba=1,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(1)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+1c=7a+11a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+1c <0,故(3)不正确;根据图像可知当x <1时,y 随x 增大而增大,当x >1时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 1)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 1,故(4)不正确; 根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 1,且x 1<x 1,则x 1<﹣1<x 1,故(5)正确. 正确的共有3个. 故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 1+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 1﹣4ac >0时,抛物线与x 轴有1个交点;△=b 1﹣4ac=0时,抛物线与x 轴有1个交点;△=b 1﹣4ac <0时,抛物线与x 轴没有交点. 7.A 【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②,解不等式①得:x<m , 解不等式②得:x>-1,由于原不等式组无解,所以m≤-1, 故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键. 8.B 【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD ,然后在Rt △BCD 中 cos ∠BCD=CD BC ,可得BC=cos cos CD hBCD α=∠. 故选B .点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键. 9.A 【解析】 【分析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A.【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.10.C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】-=,56﹣24=562636=54∵49<54<64,∴7<54<8,∴56﹣24的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.11.D【解析】【分析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.【详解】∵原数据的中位数是=3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;∵新数据的中位数为3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;所以新数据与原数据相比中位数不变,方差变小,【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.12.C【解析】【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【详解】解:列表得:∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为525=15,故选C.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.13【解析】【分析】利用因式分解法求出解已知方程的解确定出第三边,即可求出该三角形的周长.【详解】方程x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,当x=6时,三角形周长为3+4+6=13,当x=8时,3+4<8不能构成三角形,舍去,综上,该三角形的周长为13,故答案为13【点睛】此题考查了解一元二次方程-因式分解法,以及三角形三边关系,熟练掌握运算法则是解本题的关键.14.【解析】【分析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.15.1【解析】【分析】如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.【详解】在Rt△ABC中,由勾股定理.得6436,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴DE AD BC AB=,∴3=610AD , ∴AD=1. 故答案为1 【点睛】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED ∽△ACB 是解答本题的关键. 16.11π﹣633. 【解析】 【分析】阴影部分的面积=扇形ECF 的面积-△ACD 的面积-△OCM 的面积-扇形AOM 的面积-弓形AN 的面积. 【详解】解:连接OM ,ON.∴OM=3,OC=6, ∴30ACM ∠=o , ∴33CD AB ==,∴扇形ECF 的面积2120π927π360⋅==;△ACD 的面积2732AC CD =⨯÷=扇形AOM 的面积2120π33π360⋅==;弓形AN 的面积2120π31393333π36022⋅=-⨯⨯= △OCM 的面积1333322=⨯⨯= ∴阴影部分的面积=扇形ECF 的面积−△ACD 的面积−△OCM 的面积−扇形AOM 的面积−弓形AN 的面积2633(21π)cm .4=-故答案为63321π-. 【点睛】考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键. 17.A 【解析】 【分析】根据反比例函数图象上点的坐标特征由A 点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB 为等腰直角三角形,所以∠AOB=45°,再利用PQ ⊥OA 可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ ,所以∠BPQ=∠B′PQ=45°,于是得到B′P ⊥y 轴,则点B 的坐标可表示为(-4t ,t ),于是利用PB=PB′得t-2=|-4t |=4t,然后解方程可得到满足条件的t 的值. 【详解】 如图,∵点A 坐标为(-2,2), ∴k=-2×2=-4,∴反比例函数解析式为y=-4x, ∵OB=AB=2,∴△OAB 为等腰直角三角形, ∴∠AOB=45°, ∵PQ ⊥OA , ∴∠OPQ=45°,∵点B 和点B′关于直线l 对称, ∴PB=PB′,BB′⊥PQ ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°, ∴B′P ⊥y 轴,∴点B′的坐标为(-4t,t),∵PB=PB′,∴t-2=|-4t|=4t,整理得t2-2t-4=0,解得t1=15+,t2=1-5(不符合题意,舍去),∴t的值为15+.故选A.【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.18.C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1 2 .【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,∴P(A,C两个区域所涂颜色不相同)=41 82 =.考点:1.画树状图或列表法;2.概率.20.解:(1)①2.②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】【分析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB 边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=22AC=2.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=12×1=52.综上所述,当AC=3,BC=4时,AD的长为95或52.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:如图所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线∴CD=DB=12 AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠ACB=∠ACB,∴△CEF∽△CBA.21.(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.【解析】【分析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,∴总调查人数=20÷20%=100人;(2)参加娱乐的人数=100×40%=40人,从条形统计图中得出参加阅读的人数为30人,∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形统计图中“其它”类的圆心角=360×10%=36°;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200×30100=960(人).【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.22.(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(75﹣253)海里.【解析】【分析】(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.【详解】解:(1)过点B作BH⊥CA交CA的延长线于点H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×12=75(海里).答:B 点到直线CA 的距离是75海里;(2)∵BD =海里,BH =75海里,∴DH 75(海里), ∵∠BAH =180°﹣∠BAC =60°,在Rt △ABH 中,tan ∠BAH =BHAH,∴AH =∴AD =DH ﹣AH =(75﹣(海里).答:执法船从A 到D 航行了(75﹣ 【点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题.能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键. 23.(1)证明见解析;(2)35. 【解析】 【分析】(1)由于AG ⊥BC ,AF ⊥DE ,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB ,进而可证明△ADE ∽△ABC ; (2)△ADE ∽△ABC ,AD AEAB AC =,又易证△EAF ∽△CAG ,所以AF AE AG AC=,从而可求解. 【详解】(1)∵AG ⊥BC ,AF ⊥DE , ∴∠AFE=∠AGC=90°, ∵∠EAF=∠GAC , ∴∠AED=∠ACB , ∵∠EAD=∠BAC , ∴△ADE ∽△ABC ,(2)由(1)可知:△ADE ∽△ABC , ∴35AD AE AB AC == 由(1)可知:∠AFE=∠AGC=90°, ∴∠EAF=∠GAC , ∴△EAF ∽△CAG , ∴AF AEAG AC=,∴AF AG=35考点:相似三角形的判定24.建筑物AB的高度约为30.3m.【解析】分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE 为矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=AEDE,∴AE=DE•tan30°=34040 1.73223.093⨯=⨯≈.在Rt△DEB中,tan∠BDE=BEDE,∴BE=DE•tan10°=2×0.18=7.2,∴AB=AE+BE=23.09+7.2=30.29≈30.3.答:建筑物AB的高度约为30.3m.点睛:考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.25.详见解析.【解析】【分析】(1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,从而∠1=∠1.【详解】证明:∠1与∠1相等.在△ADC与△CBA中,AD BCCD ABAC CA=⎧⎪=⎨⎪=⎩,∴△ADC ≌△CBA .(SSS )∴∠DAC=∠BCA .∴DA ∥BC .∴∠1=∠1.②③图形同理可证,△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,∠1=∠1.26.(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(3. 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+ 当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩,解得1xy=-⎧⎨=⎩(舍),614xy=⎧⎨=-⎩,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h=5=5.点M到直线AB的距离的最大值是5.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键27.(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:4002400×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:8002400×1500=500个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年数学中考模拟试卷一、选择题1.某公司招聘考试分笔试和面试,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小红笔试成绩为90分,面试成绩为80分,那么小红的总成绩为( )A .80分B .85分C .86分D .90分 2.如图,∠AOB=120o ,以点O 为圆心,以任意长为半径作弧分别交OA 、OB 于点C 、D ,分别以C 、D 为圆心,以大于CD 为的长为半径作弧,两弧相交于点P ,以O 为端点作射线OP ,在射线OP 上截取线段OM=6,则M 点到OB 的距离为( )A.3B.C.2D.63.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )A .B .C .D .4.在同一坐标系中,函数ky x =和3y kx =-+的大致图象可能是( )A .B .C .D .5.若m ,n 满足m 2+5m-3=0,n 2+5n-3=0,且m≠n.则11m n +的值为( )A .35 B .35- C .53 D .53-6.若关于x 、y 的二元一次方程组3234x y ax y a +=+⎧⎨+=-⎩的解满足x +y >2,则a 的取值范围为() A .a <−2 B .a >−2 C .a <2 D .a >27.如图,要使□ABCD 成为矩形,需添加的条件是()A .AB=BCB .∠ABC=90°C .AC ⊥BD D .∠1=∠28.2019世界月季洲际大会4月28日将在中国某市举办!甲,乙,丙,丁四名同学将参加志愿者活动,若四名同学被随机分成两组,每组两人,则甲、乙恰好在同一组的概率是( )A .12B .13C .14D .169.如图,点A 是直线l 外一点,在l 上取两点B 、C,分别以点A 、C 为圆心,以BC 、AB 的长为半径画弧,两弧交于点D,分别连接AD 、CD,得到的四边形ABCD 是平行四边形.根据上述作法,能判定四边形ABCD 是平行四边形的条件是( )A .两组对边分别平行的四边形是平行四边形B .一组对边平行且相等的四边形是平行四边形C .两组对角分别相等的四边形是平行四边形D .两组对边分别相等的四边形是平行四边形10.已知m 2=|m|的估算正确的( )A .2<|m|<3B .3<|m|<4C .4<|m|<5D .5<|m|<6 二、填空题11.若关于x 的方程kx 2﹣3x ﹣94=0有实数根,则实数k 的取值范围是_____. 12.计算的值是________. 13.计算:= .14.在△ABC 中,点A 到直线BC 的距离为d ,AB >AC >d ,以A 为圆心,AC 为半径画圆弧,圆弧交直线BC 于点D ,过点D 作DE ∥AC 交直线AB 于点E ,若BC=4,DE=1,∠EDA=∠ACD ,则AD=__________.15.如图(1),已知小正方形 ABCD 的面积为1,把它的各边延长一倍得到新正方形 A 1 B 1 C 1 D 1 ;把正方形 A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形 A 2 B 2 C 2 D 2 (如图(2));以此下去,则正方形 A n B n C n D n 的面积为________.16.如图,在ABC △中,D ,E 分别是BC ,AB 上的点,且B ADE DAC ∠=∠=∠,如果ABC △,EBD △,ADC 的周长分别记为m ,1m ,2m ,则12m m m+的最大值是________.17.计算()233ab 的结果等于_____________18.计算:112--+=________.19.若x+3=5﹣y,a,b互为倒数,则代数式12(x+y)+5ab=_____.三、解答题20.已知抛物线经过点A(1,0)、B(3,0),且与y轴的公共点为点C.(1)求抛物线的解析式,并求出点C的坐标;(2)求∠ACB的正切值;(3)点E为线段AC上一点,过点E作EF⊥BC,垂足为点F.如果,求△BCE的面积.21.已知二次函数y=mx2-2mx(m为常数,且m≠0).(1)求证:不论m为何值,该函数的图象与x轴有两个公共点.(2)将该函数的图象向左平移2个单位.①平移后函数图象所对应的函数关系式为______;②若原函数图象顶点为A,平移后的函数图象顶点为B,△OAB为直角三角形(O为原点),求m的值.22.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?23.已知抛物线y1=ax2+bx经过C(﹣2,4),D(﹣4,4)两点.(1)求抛物线y1的函数表达式;(2)将抛物线y1沿x轴翻折,再向右平移,得到抛物线y2,与y2轴交于点F,点E为抛物线2上一点,要使以CD为边,C、D、E、F四点为顶点的四边形为平行四边形,求所有满足条件的抛物线y2的函表达式.24.如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面积为2,反比例函数y=kx的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O′,A′,若线段O′A′与反比例函数y=kx的图象有公共点,直接写出a的取值范围.25.计算:()1013cos3012π-︒⎛⎫-+- ⎪⎝⎭. 26.如图,在Rt △ABC 中,∠ACB =90°,分别以AC 、BC 为底边,向△ABC 外部作等腰△ADC 和△CEB ,点M 为AB 中点,连接MD 、ME 分别与AC 、BC 交于点F 和点G .求证四边形MFCG 是矩形.【参考答案】***一、选择题1.C2.C3.D4.D5.C6.A7.B8.B9.D10.A二、填空题11.k 1≥-.12.-613..14.2或15.5n16.5417.269a b 18.12-19.6三、解答题20.(1);C(0,-3);(2);(3).【解析】【分析】(1) 将A(1,0)、B(3,0)代入抛物线求出抛物线的解析式,令x=0即可得出点C的坐标;(2) 连接AC、BC.过点A作AD⊥BC,垂足为点D,根据题意可得出BC;根据∠ADB =∠COB = 90°可得出BD;在Rt△ACD中即可得出的值.(3) 连接BE.设EF = a. 由,得 BF = 4a.根据三角函数值即可求出a的值.从而求出△BCE 的面积.【详解】解:(1)由题意,得解得所以,所求抛物线的解析式为.由x=0,得y=-3.∴点C的坐标为(0,-3).(2) 连接AC、BC.过点A作AD⊥BC,垂足为点D.∵B(3,0),C(0,3),∴OB = OC = 3..在Rt△BOC和Rt△BDA中,∠ADB =∠COB = 90°.∴.∴.即得,.在Rt△ACD中,∠ADC = 90°,∴.(3)连接BE.设EF = a.由,得 BF = 4a.又∵,∴CF = 2a.∴BC = BF +FC = 6a.∴.解得.即得.∴.【点睛】本题考查了二次函数的综合,以及三角函数的求值,解题的关键是找到直角三角形得出所需线段的值. 21.(1)见解析;(2)①y=m(x+1)2-m;②m=±1.【解析】【分析】(1)由b2-4ac=(-2m)2-4×m×0=4m2,且m≠0可得答案;(2)①根据函数平移的规律解答即可;②根据平移前后抛物线解析式求得点A,B坐标,据此得出OA=OB,从而知∠AOB=90°,再根据勾股定理知2(1+m2)=4,解之可得.【详解】解:(1)由题意知,b2-4ac=(-2m)2-4×m×0=4m2,∵m≠0,∴b2-4ac=4m2>0,∴不论m为何值,该函数的图象与x轴有两个公共点;(2)①将该函数的图象向左平移2个单位,平移后函数图象所对应的函数关系式为y=m(x+2)2-2m(x+2),整理,得:y=m(x+1)2-m;②∵y=mx2-2mx=m(x-1)2-m,∴原函数图象的顶点A的坐标为(1,-m),又平移后函数图象的顶点B的坐标为(-1,-m),点O的坐标为(0,0),∴OA=OB,∴∠AOB=90°,∵OA2=OB2=1+m2,AB2=4,∴2(1+m2)=4,解得m=±1.故答案为:y=m(x+1)2-m.【点睛】本题是二次函数的综合问题,解题的关键是掌握抛物线与x轴的交点问题、函数图象平移规律、直角三角形的判定与勾股定理等知识点.22.(1)100+200x;(2)1.【解析】试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.试题解析:(1)将这种水果每斤的售价降低x 元,则每天的销售量是100+0.1x ×20=100+200x 斤; (2)根据题意得:(42)(100200)300x x --+=,解得:x=12或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:张阿姨需将每斤的售价降低1元.考点:1.一元二次方程的应用;2.销售问题;3.综合题.23.(1)y =﹣12x 2﹣3x ;(2)y 2=12(x+1)2﹣92或y 2=12(x ﹣1)2﹣92. 【解析】【分析】(1)将点C 、D 坐标代入抛物线表达式,即可求解;(2)变换后抛物线的表达式为:y 2=12(x+3﹣m )2﹣92,C 、D 、E 、F 四点为顶点的四边形为平行四边形,则点F (0,﹣4),将点F 坐标代入y 2表达式,即可求解.【详解】解:(1)将点C 、D 坐标代入抛物线表达式得:4241644a b a b -=⎧⎨-=⎩,解得:123a b ⎧=-⎪⎨⎪=-⎩, 故抛物线y 1的函数表达式为:y =﹣12x 2﹣3x ; (2)将抛物线y 1沿x 轴翻折的表达式为:y =12(x+3)2﹣92, 设再向右平移m 个单位得:y 2=12(x+3﹣m )2﹣92, C 、D 、E 、F 四点为顶点的四边形为平行四边形,C (﹣2,4),D (﹣4,4),则CD ∥x 轴,则点F (0,﹣4),将点F 坐标代入y 2表达式得:﹣4=12(0+3﹣m )2﹣92, 解得:m =2或4,故:y 2=12(x+1)2﹣92或y 2=12(x ﹣1)2﹣92. 【点睛】本题考查的是二次函数综合运用,涉及到图形平移、一次函数等知识,其中(2),利用四边形为平行四边形,确定点F的坐标,是本题解题的关键.24.(1)k=4;(2或【解析】【分析】(1)运用反比例函数的几何意义,求出k=4;(2)运用对称的点坐标关系,分别表示O′、A′,在第三象限,当点O′在双曲线上时a取最小值,当点A′在双曲线上时,a取最大值;在第一象限,同理可求a的取值范围【详解】解:(1)∵∠OAB=90°,OA=AB,∴设点B的坐标为(m,m),则OA=AB=m,∵△OAB的面积为2,∴12m m=2,解得:m=2(负值舍去),∴点B的坐标为(2,2),代入反比例函数y=kx中,得k=4;(2)∵B(2,2)∴∠BOA=45°,∵l⊥OB,∴O′A′⊥x轴∴P、O′、A′三点共线,且点O′在直线OB上∴O′(a,a)、A′(a,a﹣2)当O′在反比例函数图象上时,有a×a=4解得:a1=﹣2,a2=2当A′在反比例函数图象上时,有a×(a﹣2)=4解得:a3=a4=1若线段O′A′与反比例函数y=kx的图象有公共点,a或【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键25.【解析】【分析】先计算零指数幂、负指数幂、特殊角的三角函数、绝对值,再进行二次根式化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=2﹣1+1【点睛】考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、特殊角的三角函数值、绝对值等考点的运算.26.详见解析【解析】【分析】根据Rt△ABC,得出点M在线段AC的垂直平分线上.然后在等腰△ADC中,AC为底边,得到MD垂直平分AC.即可解答【详解】证明:连接CM,∵Rt△ABC中,∠ACB=90°,M为AB中点,∴ CM=AM=BM=12AB.∴点M在线段AC的垂直平分线上.∵在等腰△ADC中,AC为底边,∴AD=CD.∴点D在线段AC的垂直平分线上.∴MD垂直平分AC.∴∠MFC=90°.同理:∠MGC=90°.∴四边形MFCG是矩形.【点睛】此题考查了直角三角形的性质,等腰三角形的性质和矩形的判定,解题关键在于利用好特殊三角形的性质2020年数学中考模拟试卷一、选择题1.已知如图,△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A.315°B.270°C.180°D.135°2)A .4B .﹣4C .2D .±23.不等式组51132x x x ->-⎧⎪⎨-≥⎪⎩的所有整数解的和为( ) A .13 B .15 C .16 D .214.(11·孝感)如图,某航天飞机在地球表面点P 的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP =α,地球半径为R ,则航天飞机距地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A.,sin 180R R παα B.(90),sin 180R R R απα-- C.(90),sin 180R R R απα-- D.(90),sin 180R R R απα+- 5.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )A .56×108B .5.6×108C .5.6×109D .0.56×10106.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是( )A.20元B.18元C.15元D.10元 7.在平面直角坐标系中,点P(3,-5)关于原点对称的点的坐标是( )A .(3,5)B .(3,-5)C .(-3,-5)D .(-3,5) 8.如图,一个游戏转盘分成红、黄、蓝三个扇形,其中红、黄两个扇形的圆心角度数分别为90°,120°.让转盘自由转动,停止后,指针落在蓝色区域的概率是( )A .14B .13C .512D .无法确定 9.二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( )A.抛物线开口向下B.抛物线与x 轴有两个交点C.抛物线的对称轴是直线x =1D.抛物线经过点(2,3)10.我国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年收入500美元,预计2019年年收入将达到1000美元,设2017年到2019年该地区居民年人均收入平均增长率为x ,可列方程为A .()500121000x +=B .()250011000x += C .()250011000x += D .50021000x += 二、填空题11.用棋子按下列方式摆图形,依照此规律,第n 个图形有_____枚棋子.12.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C 在同一水平上),某工程师乘坐热气球从B 地出发,垂足上升100m 到达A 处,在A 处观察C 地的俯角为30°,则BC 两地之间的距离为_____m .13.如图,菱形ABCD 的周长为8 cm ,∠BAD =60°,则AC =________cm.14.一个n 边形的每一个外角都是60°,则这个n 边形的内角和是________15.如图,在平面直角坐标系中,将点P(-4,2)绕原点顺时针旋转90°,求其对应点Q 的坐标.16.正方形ABCD 的边长为10,点M 在AD 上,8AM =,过M 作MN AB ∥,分别交AC 、BC 于H 、N 两点,若E 、F 分别为(3)(2)x x f f ≤、BM 的中点,则EF 的长为_________________17.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=_____.18.计算的结果等于______.19.若m ,n 为实数,且m +8,则m+n 的算术平方根为_____. 三、解答题 20.已知A 是⊙O 的直径,C 是圆周上的动点,P 是弧ABC 的中点.(1)如图1,求证:OP ∥BC .(2)填空:①如图2,PC 交AB 于点D ,当∠A 的度数为 °时,OD =CD ;②若tanA =,OA =5,则BC = .21.习题改编.原题:梯形ABCD ,AD ∥BC ,∠B =90°,∠DCB =60°,BC =4,AD =2,△PMN ,PM =MN =NP =a ,BC 与MN 在一直线上,NC =6,将梯形ABCD 向左翻折180°.(1)向左翻折二次,a≥2时,求两图形重叠部分的面积;(2)向左翻折三次,重叠部分的面积等于梯形ABCD 的面积,a 的值至少应为多少?(3)向左翻折三次,重叠部分的面积恰好等于梯形ABCD 的面积的一半,求a 的值.22.(1)计算:0214cos30|2|3-︒⎛⎫-+-- ⎪⎝⎭⎝⎭(2)化简求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中3x =. 23.观察下列等式:①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…根据等式所反映的规律,解答下列问题:(1)直接写出:第⑤个等式为;(2)猜想:第n个等式为(用含n的代数式表示),并证明.24.6月1日是儿童节,为了迎接儿童节的到来,兰州某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?(3)在(2)条件下,若每件甲种玩具售价30元,每件乙种玩具售价45元,请求出卖完这批玩具获利W(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少?25.如图,点C在⊙O上,AB为直径,BD与过点C的切线垂直于D,BD与⊙O交于点E.(1)求证:BC平分∠DBA;(2)如果cos∠ABD=12,OA=2,求DE的长.26.在6×4的方格纸中,△ABC的三个顶点都在格点上(1)在图中画出线段BD,使BD∥AC,其中D是格点;(2)在图中画出线段BE,使BE⊥AC,其中E是格点,连接DE,并直接写出∠BED的度数.【参考答案】***一、选择题1.B2.C3.B4.B5.C6.A7.D8.C9.B10.B二、填空题11.(31)2n n12.1314.720°15.点Q的坐标为(2,4).1617.2018.4x519.3三、解答题20.(1)详见解析;(2)①36;②BC=6.【解析】【分析】(1)连结AC,延长PO交AC于H,如图1,由P是弧AC的中点,根据垂径定理得PH⊥AC,再根据圆周角定理,由AB是⊙O的直径得∠ACB=90°,然后根据OP∥BC;(2)①如图2,连接OP若OD=CD,则∠DOC=∠DCO,进而证得∠COD=∠A,得出∠POD=2∠A,即可得出∠AOP=∠COP=3∠A,由∠AOP+∠POB=180°,得出3∠A+2∠A=180°,从而求得∠A度数.②过PE⊥AB于E,过C作CF⊥AB于F,根据正切函数和勾股定理看求得.【详解】解:(1)连结AC,延长PO交AC于H,如图1,∵P是弧ABC的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC;(2)①连接OP,如图2,若OD=CD,则∠DOC=∠DCO,∵∠A=∠OCP,∴∠COD=∠A,∵OA=OP,∴∠OPA=∠A,∴∠POD=2∠A,∴∠AOP=∠COP=3∠A,∵∠AOP+∠POB=180°,∴3∠A+2∠A=180°,∴∠A=36°;②解;如图3,过PE⊥AB于E,∵tanA,∴设PE=a,则AE=2a,在RT△OPE中,(2a﹣5)2+a2=52,解得a=4,∴OE==3,过C作CF⊥AB于F,,设CF=4b,BF=3b,∵OB=OC=5,∴在RT△OCF中,(5﹣3b)2+(4b)2=52,解得a=,∴BC=5b=6.故答案为6.【点睛】本题考查了圆周角定理,三角形内角和定理,勾股定理的应用以及解直角三角形等作出辅助线根据直角三角形是解题的关键.21.(1;(2)8;(3)2)cm.【解析】【分析】(1)因为∠DCB=60°,△PMN也是等边三角形,这样容易知道△EGN也是等边三角形,易求GN=2,所以求两图形重叠部分的面积就可以求出;(2)如图,等边三角形的边长MN=GN+HG+MH,其中只要求MH,利用已知解Rt△KHM就可以了;(3)若现在重叠部分的面积等于直角梯形ABCD的面积的一半,如图首先判断HG的大小,梯形ABCD的面积可以直接求出;然后设HG为x,根据已知条件可以得到关于x的方程,解方程就可以得到题目的结果.【详解】解:(1)∵CB=4,CN=6,∴GN=2.又∵∠PNM=60°且∠EGN=60°,∴△EGN为正三角形.∴△EGN的高为h∴S△EGN=1 2(2)在直角梯形ABCD中,∵CD=4,∠DCB=60°,∴AB=在Rt△KHM中,tan30°=MH KH,MH=2,∴MN=2+4+2=8;(3)S梯形ABCD=12(2+4)•=当MP经过H点时,交D′G于F,则 S△HGF=1212S梯形ABCD.∴HG<4,设HG=x,则有h′=2x.∴S公共部分=12x•x2.2=,解得:x=或﹣∵GN=2,∴等边三角形PNM的边长a为()cm.【点睛】本题考查了翻折变换及直角梯形的知识,难度较大,图形变换比较复杂,考查了等边三角形的性质,面积计算,也考查了解直角三角形的知识,综合性比较强,注意后面两问表述的重叠面积的大小.22.(1)8 ;(2)1x3+,【解析】【分析】(1)根据,2|=1⎝⎭,221=1313-⎛⎫-⎪⎝⎭⎛⎫-⎪⎝⎭=9计算即可.(2)平方差公式:a 2-b 2=(a+b )(a-b ).【详解】解:(1)02114cos30|2|23-︒⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭=4×2-(+9=8(2)35222x x x x -⎛⎫÷+- ⎪--⎝⎭=()()222352222x x x x x x x x --⎛⎫-÷+- ⎪----⎝⎭=23922x x x x ⎛⎫--÷ ⎪--⎝⎭=()()32233x x x x x --⨯--+ =13x +当3x =时原式=2【点睛】本题考查了特殊角三角函数值,绝对值,以及整式的运算,解本题的关键是对零指数幂和负整数指数幂牢固掌握.23.(1)36﹣35=2×35;(2)3n+1﹣3n =2×3n .【解析】【分析】由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式,以及第n 个等式的底数不变,指数依次分别是n+1、n 、n .【详解】解:(1)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第⑤个等式36﹣35=2×35;故答案为:36﹣35=2×35;(2)由①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…得出第n 个等式的底数不变,指数依次分别是n+1、n 、n ,即3n+1﹣3n =2×3n .证明:左边=3n+1﹣3n =3×3n ﹣3n =3n ×(3﹣1)=2×3n =右边,所以结论得证.故答案为:3n+1﹣3n =2×3n .【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题.24.(1)甲、乙两种玩具分别是15元/件,25元/件;(2)故商场共有四种进货方案:方案一:购进甲种玩具20件,乙种玩具28件;方案二:购进甲种玩具21件,乙种玩具27件;方案三:购进甲种玩具22件,乙种玩具26件;方案四:购进甲种玩具23件,乙种玩具25件;(3)W =﹣5m+960,最大利润860元.【解析】【分析】(1)设甲种玩具进价为x 元/件,则乙种玩具进价为(40﹣x)元/件,根据用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解;(2)设购进甲种玩具m 件,则购进乙种玩具(48﹣m)件,根据甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,可列出不等式组求解;(3)先列出有关总利润和进货量的一次函数关系式,然后利用一次函数的性质结合自变量的取值范围求最大值即可.【详解】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x)元/件, 根据题意,得9015040x x=-, 解得x =15,经检验x =15是原方程的解,则40﹣x =25,答:甲、乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具m 件,则购进乙种玩具(48﹣m)件,由题意,得()241525481000m m m <⎧⎨+-≤⎩, 解得20≤m<24,∵m 是整数,∴m 取20,21,22,23,故商场共有四种进货方案:方案一:购进甲种玩具20件,乙种玩具28件;方案二:购进甲种玩具21件,乙种玩具27件;方案三:购进甲种玩具22件,乙种玩具26件;方案四:购进甲种玩具23件,乙种玩具25件;(3)设购进甲种玩具m 件,卖完这批玩具获利W 元,则购进乙种玩具(48﹣m)件,根据题意得:W =(30﹣15)m+(45﹣25)(48﹣m)=﹣5m+960,∵比例系数k =﹣5<0,∴W 随着m 的增大而减小,∴当m =20时,有最大利润W =﹣5×20+960=860元.【点睛】本题考查了一次函数的应用,列分式方程解实际问题的应用,一元一次不等式解方案设计问题的应用,找出题中的等量关系与不等关系是解题的关键.25.(1)证明见解析;(2)1.【解析】【分析】(1)如图1中,连接OC ,由CD 是⊙O 的切线,推出OC ⊥CD ,由BD ⊥CD ,推出OC ∥BD ,推出∠OCB=∠CBD ,由OC=OB ,推出∠OCB=∠OBC ,即可推出∠CBO=∠CBD ;(2)如图2,连接AC 、AE .易知四边形AEDC 是直角梯形,求出CD 、AE 、BE 长,则DE 可求出.【详解】(1)证明:如图1中,连接OC ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∵BD ⊥CD ,∴OC ∥BD ,∴∠OCB=∠CBD ,∵OC=OB ,∴∠OCB=∠OBC ,∴∠CBO=∠CBD ,∴BC 平分∠DBA ;(2)解:如图连接AC 、AE .∵cos ∠ABD=12, ∴∠ABD=60°,由(1)可知,∠ABC=∠CBD=30°,在Rt △ACB 中,∵∠ACB=90°,∠ABC=30°,AB=4,∴BC=AB •在Rt △ABE 中,∵∠AEB=90°,∠BAE=30°,AB=4,∴BE=12AB=2,,在Rt △CDB 中,∵∠D=90°,∠CBD=30°,∴CD=12BD=3, ∴DE=DB-BE=3-2=1.【点睛】本题考查切线的性质、解直角三角形、角平分线的定义、解直角三角形等特殊角三角函数、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.26.(1)见解析;(2)图见解析,∠BED =45°.【解析】【分析】(1)将线段AC 沿着CB 方向平移3个单位,即可得到线段BD ;(2)利用1×3的长方形的对角线,即可得到线段BE⊥AC.【详解】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求,∵△BDE是等腰直角三角形,∴∠BED=45°.【点睛】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.2020年数学中考模拟试卷一、选择题1.如图,平行于x 轴的直线与函数y 1=ax (a >0,x >0),y 2=b x(b >0.x >0)的图象分别相交于A 、B 两点,且点A 在点B 的右侧,在X 轴上取一点C ,使得△ABC 的面积为3,则a ﹣b 的值为( )A .6B .﹣6C .3D .﹣32.如图,D 是BC 上的一点,DE AB DA CE ∥,∥,若65ADE ∠=︒,则B C ∠∠,的度数分别可能是( )A .46,68︒︒B .45,71︒︒C .46,70︒︒D .47,68︒︒ 3.把抛物线y=(x-2)2向左平移2个单位长度,再向上平移2个单位长度,所得到的抛物线是( ). A .y=x 2+2 B .y=x 2-2C .y=(x+2)2-2D .y=(x+2)2+24.如图,P 的半径为5,A B 、是圆上任意两点,且6AB =,以AB 为边作正方形ABCD (点、D P在直线AB 两侧).若AB 边绕点P 旋转一周,则CD 边扫过的面积为( )A .5πB .6πC .8πD .9π5.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y=kx(k 为常数,k≠0)的图象上,正方形ADEF 的面积为4,且BF=2AF ,则k 值为( )A .4B .-4C .6D .-66.下列说法错误的是( )A .两组对边分别平行的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行,另一组对边相等的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形 7.给出下列算式:①(a 3)2=a 3×2=a 6;②a m a n =a m+n (m ,n 为正整数);③[(-x)4]5=-x 20.其中正确的算式有( ). A .0个 B .1个C .2个D .3个8.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为().A .50°B .60°C .70°D .80°9.肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表:A .150,150B .150,155C .155,150D .150,152.510.如图,四边形ABCD 为⊙O 的内接四边形,∠AOC =110°,则∠ADC =( )A .55°B .110°C .125°D .70°二、填空题11.若反比例函数ky x=的图象经过点()1,2-,则k 的值是__________. 12.不等式组211112x x -⎧⎪⎨-<⎪⎩…的整数解的个数为_____.13.如图,矩形ABCD中10AB =,12AD =,点E 是线段BC 上一动点,连接AE ,将ABE ∆沿直线AE 折叠,点B 落到F 处,连接CF ,BF ,当{}41log ,,,n n n n n n n n b a c a b T c n T +==+是数列的前项和求为等腰三角形时,BE 的长为__________.14.抛物线y =15x 2的开口方向_____,对称轴是_____,顶点是_____,当x <0时,y 随x 的增大而_____;当x >0时,y 随x 的增大而_____;当x =0时,y 有最_____值是_____. 15.计算﹣(﹣2)+(﹣2)0的值是_____.16.不等式组23112x x -<⎧⎨-≤⎩的正整数解为________.17.在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(2)班的数学学习小组做了摸球实验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到表中的一组统计数据:18.已知函数1()(1)=+f x x x ,其中f (a )表示当x =a 时对应的函数值,如1(1)12f =⨯,11(2),()23(1)f f a a a ==⨯+,则f (1)+(2)+f (3)+f (2019)=_____. 19.在矩形ABCD 中,AB =6,AD =3,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A',当点E 、A'、C 三点在一条直线上时,DF 的长度为_____.三、解答题20.如图,已知点A (a ,m )在反比例函数y =的图象上,并且a >0,作AB ⊥x 轴于点B ,连结OA (1)当a =2时,求线段AB 的长.(2)在(1)条件下,在x 轴负半轴上取一点P ,将线段AB 绕点P 按顺时针旋转90°得到CD .若点B 的对应点D 落在反比例函数y =的图象上,求点C 的坐标.(3)将线段OA 绕点O 旋转,当点A 落在反比例函数y =﹣(x <0)图象上的F (d ,n )处时,请直接写出m 和n 之间的数量关系.21.如图,在△ABC 中,AB=,AC=,BC=3,将△ABC 沿射线BC 平移,使边AB 平移到DE ,得到△DEF.(1)作出平移后的△DEF(要求:尺规作图,保留作图痕迹,不写作法); (2)若AC 、DE 相交于点H ,BE=2,求四边形DHCF 的面积.22.如图,港口B 位于港口A 的南偏西45°方向,灯塔C 恰好在AB 的中点处.一艘海轮位于港口A 的正南方向,港口B 的南偏东45°方向的D 处,它沿正北方向航行18.5 km 到达E 处,此时测得灯塔C 在E 的南偏西70°方向上,求E 处距离港口A 有多远?(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)23.如图,在▱ABCD 中,过A 、B 、C 三点的⊙O 交AD 于点E ,连接BE 、CE ,BE =BC . (1)求证:△BEC ∽△CED ;(2)若BC =10,DE =3.6,求⊙O 的半径.24.为了增强体质,小明计划晚间骑自行车调练,他在自行车上安装了夜行灯.如图,夜行灯A 射出的光线AB 、AC 与地面MN 的夹角分别为10°和14°,该夜行灯照亮地面的宽度BC 长为149米,求该夜行灯距离地面的高度AN 的长. (参考数据:179611010141410050254sin ,tan ,sin ,tan ︒︒︒︒≈≈≈≈)25.如图,在平面直角坐标系xOy 中,已知直线y=kx+b (k≠0)与双曲线y=mx(m≠0)交于点A (2,-3)和点B (n ,2);(1)求直线与双曲线的表达式;(2)点P是双曲线y=mx(m≠0)上的点,其横、纵坐标都是整数,过点P作x轴的垂线,交直线AB于点Q,当点P位于点Q下方时,请直接写出点P的坐标.26.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):七年级:89,92,92,92,93,95,95,96,98,98八年级:88,93,93,93,94,94,95,95,97,98整理得到如下统计表(1)填空:a=;m=;n=;(2)两个年级中,年级成绩更稳定;(3)七年级两名最高分选手分别记为:A1,A2,八年级第一、第二名选手分别记为B1,B2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】***一、选择题1.A2.D3.A4.D5.D6.C7.C8.C9.B10.C二、填空题11.-212.313.103或152或1214.上, y轴,(0,0),减小,增大,最小, 0.15.316.117.318.2019 202019.1或11三、解答题20.(1)AB=4;(2)C(2,﹣4);(3)①m=n;②m+n=0或mn=﹣8.【解析】【分析】(1)把A点的横坐标代入y=,求得纵坐标,即可求得ab的长;(2)设P(t,0),由题意D(t,2﹣t),理由待定系数法,把问题转化为方程解决即可;(3)分两种情形①当点A与点D关于x轴对称时,A(a,m),F(d,n),可得m=n.②当点A绕点O旋转90°时,得到F′,F′在y=﹣上,作F′H⊥y轴,则△OGA≌△F′HO,推出OG =F′H,AG=OH,由A(a,m),推出F′(﹣m,a),即F′(﹣m,n),由F′在y=﹣上,可得mn=8.【详解】(1)∵点A(a,m)在反比例函数y=的图象上,a=2,∴m==4,∴A(2,4),∵AB⊥x轴于点B,∴AB=4;(2)设P(t,0),由题意得D(t,2﹣t),∵点D在y=上,∴t(2﹣t)=8,解得t1=﹣2,t2=4(舍去),∴D(﹣2,﹣4),∵DC=AB=4,∴C(2,﹣4).(3)如图2,①当点F与点A关于x轴对称时,A(a,m),F(d,n),∴m=n.②当点A绕点O旋转90°时,得到F′,F′在y=﹣上,作F′H⊥y轴,则△AGO≌△F′HO,∴OG=F′H,AG=OH,∵A(a,m),∴F′(﹣m,a),即F′(﹣m,n),∵F′在y=﹣上,∴mn=8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.【点睛】本题考查反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加辅助线,构造全等三角形解决问题.21.(1)详见解析;(2)【解析】 【分析】(1)根据“已知三边作三角形”即可得解;(2)根据题意得△ABC 是直角三角形,易得其面积,再证明△ECH ∽△EFD 得=,从而得四边形DHCF 的面积=S △DE ,即可得解. 【详解】(1)作图如图所示:(2)∵AB=,AC=,BC=3,∴BC 2=AB 2+AC 2,∴△ABC 是直角三角形,∴S △DEF =S △ABC =··=∵EF =BC =3,BE =2 ∴EC =BC -BE =1 ∵ AC ∥DF ∴△ECH ∽△EFD ∴==∴四边形DHCF 的面积=S △DEF =·=【点睛】本题考查作图-基本作图,相似三角形的判定与性质等知识,解题的关键是熟练掌握五种基本作图. 22.5 km . 【解析】 【分析】过点B 作BM ⊥AD ,垂足为M ,过点C 作CN ⊥AD ,垂足为N ,设CN =x km ,在Rt △ACN 中,利用∠A 的正切值可得AN=x ,在Rt △ECN 中,利用∠CEN 的正切值可得EN=tan 70x,根据平行线分线段成比例性质可。

相关文档
最新文档