2018年春中考数学总复习 单元测试(八)统计与概率试题
2018中考数学总复习第八单元统计与概率检测卷(江西有答案)
第八单元限时检测卷(时间:120分钟 分值:120分)一、选择题(本大题共6小题,每小题3分,共18分) 1.下列事件中最适合使用普查方式收集数据的是( ) A .了解某班同学的身高情况 B .了解全市每天丢弃的废旧电池数 C .了解50发炮弹的杀伤半径 D .了解我省农民的年人均收入情况2.下列说法正确的是( )A .打开电视,它正在播广告是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C .在抽样调查过程中,样本容量越小,对总体的估计就越准确D .选举中,人们通常最关心的数据是众数3.PM 2.5是形成“灰霾”的主要原因,富含大量有毒、有害物质.2017年5月份,某市测得一周大气的PM 2.5的日均值(单位:微克/立方米)如下:31,35,31,33,30,33,31.对于这组数据下列说法正确的是( )A .众数是30B .中位数是31C .平均数是33D .方差是324.如图1,在4×4正方形网格中,任选一个白色的小正方形并涂黑,图中黑色部分仍为轴对称图形的概率是( )图1A .613B .513C .413D .3135.2017年某市中考体育考试包括必考和选考两项.必考项目:男生1 000米跑;女生800米跑;选考项目(五项中任选两项):A .掷实心球;B .篮球运球;C .足球运球;D .立定跳远;E.一分钟跳绳.那么小丽同学考“800米跑、立定跳远、一分钟跳绳”的概率是( )A .14B .16C .18D .1106.某校实施课程改革,为初三学生设置了A ,B ,C ,D ,E ,F 共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图2所示的统计图表(不完整),根据图表提供的信息,下列结论错误的是()图2AB.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中最想选F的人数为35人D.被调查的学生中最想选D的有55人二、填空题(本大题共6小题,每小题3分,共18分)7.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图3所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中__________是新手.图38.已知5个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是__________.9.(2017南宁)红树林中学共有学生1 600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有________人.10.一只蚂蚁在如图4所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是__________.图411.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是__________.12.小明有一双白袜子和一双黑袜子(袜子不分左右),把四只袜子放在同一个抽屉里,那么从中随机抽取两只恰好配成同色的一双的概率为__________.三、(本大题共5小题,每小题6分,共30分)13.小龙的妈妈让小龙去买一盒火柴,并叮嘱小龙,一定要试试火柴是否好用.小龙回家后,高兴地告诉妈妈:“火柴好用,我每根都试过了.”(1)小龙采取的是__________调查;(填“全面”或“抽样”)(2)你认为小龙采取的方法是否合适?为什么?14.(2017绥化)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图5所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;图5(2)求本次抽查中学生每天参加户外活动的平均时间.15.某校组织学生进行排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图6所示的不完整的统计图.试根据统计图信息,解答下列问题:图6(1)求出抽取的学生训练后成绩为“A”等次的人数,并补全统计图;(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.16.有两个布袋,甲布袋有12只白球,8只黑球,10只红球;乙布袋中有3只白球,2只黄球,所有小球除颜色外都相同,且各袋中小球均已搅匀.(1)如果任意摸出1球,你想摸到白球,你认为选择哪个布袋成功的机会较大?(2)如果又有一布袋丙中有32只白球,14只黑球,4只黄球,你又选择哪个布袋呢?17.元旦游园活动中,小明,小亮,小红和王老师一起进行“抢凳子”游戏.游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到“停”后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮.(1)下列事件是必然事件的是()A.王老师被淘汰B.小明抢坐到自己带来的椅子C.小红抢坐到小亮带来的椅子D.至少有两位同学可以进入下一轮游戏(2)如果王老师没有抢坐到任何一张椅子,三位同学都抢到了椅子但都没有抢坐到自己带来的椅子(记为事件A),求出事件A的概率,并用树状图法或列表法加以说明.四、(本大题共3小题,每小题8分,共24分)18.(2017镇江)为了解射击运动员小杰的集训效果,教练统计了他集训前后的两次测试成绩(每次测试射击10次),制作了如图7所示的条形统计图.(1)集训前小杰射击成绩的众数为____________;(2)分别计算小杰集训前后射击的平均成绩;(3)请用一句话评价小杰这次集训的效果.图719.如图8,在3×3的方格纸中,点A,B,C,D,E,F分别位于小正方形的顶点上.(1)从A,D,E,F四个点中任意取一点,以所取的这一点及点B,C为顶点画三角形,则所画三角形是等腰三角形的概率是多少?(2)从A,D,E,F四个点中先后任意取两个不同的点,以所取的这两点及点B,C为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解)图820.为了关注学生的身心健康发展,减轻学生的学业负担,某校对七年级学生完成家庭作业的时间进行问卷调查,随机抽取了部分学生,记录每个人平均每天完成家庭作业的时间,并将调查数据适当整理,绘制成如图9所示的两幅不完整的表和图:图9(1)a=________,b=________,c=________,并将条形统计图补充完整;(2)这次调查中,学生平均每天完成家庭作业时间的中位数出现在________组;(3)若该校有在校学生1 200人,小明根据上述调查结果,对该校平均每天完成家庭作业的时间在80分钟以上的人数作了如下估计:∵1 200×(0.20+0.10)=360,∴估计该校平均每天完成家庭作业的时间在80分钟以上的人数约为360人.①上述过程主要体现的数学思想是________________;②小明估计的结果是否合理,请说明理由;若不合理,怎样估计才合理.五、(本大题共2小题,每小题9分,共18分)21.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12~35岁的网瘾人群进行了简单的随机抽样调查,绘制出如图10所示的两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了__________人;(2)请补全条形统计图;(3)扇形统计图中18~23岁部分的圆心角的度数是__________;(4)据报道,目前我国12~35岁网瘾人数约为2 000万,请估计其中12~23岁的网瘾人数.图1022.某体育老师对自己任教的55名男生进行一百米摸底测试,若规定男生成绩为16秒合格,随机抽取10名男生分为A,B两组,测试成绩与合格标准的差值如下表(比合格标准多的秒数为正,少的秒数为负).(1)请你估算55(2)通过相关的计算,说明哪个组的成绩比较均匀;(3)请选择一个合适的量作为标准,评价A组和B组哪个成绩较好,并说明理由.六、(本大题共12分)23.(2017台州)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭做一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是________;(只需填上正确答案的序号) ①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图11:图11①m =__________,n =__________; ②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计有多少户家庭处理过期药品的方式是送回收点.第八单元限时检测卷1.A 2.D 3.B 4.B 5.D 6.D 7.小林 8.8或10 9.680 10.14 11.23 12.13 13.解:(1)全面;(2)小龙采取的方法不合适,因为试用火柴具有破坏性,所以应用抽样调查. 14.解:(1)a =1-15%-25%-40%=20%. 户外活动时间为0.5小时的有100×20%=20(人), 户外活动时间为1小时的有100×40%=40(人),100名学生的户外活动时间情况的中位数为第50和51名学生户外活动时间的平均数, 所以本次抽查中学生每天参加活动时间的中位数是1.(2)20×0.5+40×1+100×25%×1.5+100×15%×2100=1.175(小时).答:本次抽查中学生每天参加户外活动的平均时间是1.175小时. 15.解:(1)∵抽取的人数为21+7+2=30(人), ∴训练后成绩为“A”等次的人数为30-2-8=20(人).补全统计图略; (2)600×2030=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400人.16.解:(1)任意摸出1球,甲布袋摸到白球的机会为1212+8+10=0.4,乙布袋摸到白球的机会为33+2=0.6>0.4,故乙布袋成功的机会较大.(2)任意摸出1球,丙布袋摸到白球的机会为3232+14+4=0.64>0.6>0.4,故应选丙布袋.17.解:(1)D ;(2)设小明,小亮,小红三位同学带来的椅子依次为a ,b ,c , 画树状图如图1所示:图1由树状图可知,所有等可能结果共有6种,其中第4种、第5种结果符合题意, ∴事件A 的概率为26=13.18.解:(1)8;(2)小杰集训前射击的平均成绩为8×6+9×3+10×110=8.5(环),小杰集训后射击的平均成绩为8×3+9×5+10×210=8.9(环).(3)由集训前后平均成绩的变化可知,小杰这次集训后的命中环数明显增加.(答案不唯一,合理即可)19.解:(1)从A ,D ,E ,F 四个点中任意取一点,一共有4种可能,只有选取D 点时,所画三角形是等腰三角形,故所画三角形是等腰三角形的概率是14.(2)如图2,用树状图列出所有可能的结果:图2∵只有以点A ,E ,B ,C 为顶点及以D ,F ,B ,C 为顶点所画的四边形是平行四边形, ∴所画四边形是平行四边形的概率是412=13.20.解:(1)36,0.30,120,C 组的人数为120-18-36-24-12=30(人),图略; (2)C ;(3)①样本估计总体;②不合理,因为该样本是从七年级的学生中抽取的,对于八、九年级学生来说不具有代表性.如果要了解全校学生完成家庭作业的时间,应在三个年级随机抽取学生进行调查,进而分析.21.解:(1)1 500;(2)12~17岁的人数为1 500-450-420-330=300(人),图略; (3)108°;(4)估计12~23岁的网瘾人数为2 000×300+4501 500=1 000(万人).22.解:(1)∵从10名男生的成绩可知样本的合格率为610=35,∴55名男生合格的人数约为35×55=33(人).(2)x A =16+15×(-1.5+1.5-1-2-2)=15(秒),x B =16+15×(1+3-3+2-3)=16(秒);s 2A=15×[(-0.5)2+(2.5)2+02+(-1)2+(-1)2]=1.7, s 2B=15×[12+32+(-3)2+22+(-3)2]=6.4. ∴s 2A <s 2B ,即A 组的成绩比较均匀.(3)①若以合格率来作标准,A ,B 两组的合格率分别为80%,40%, ∴A 组成绩较好;②若以平均数作标准,由(2)知x B >x A , ∴A 组成绩较好;③若以众数作标准,A 组成绩的众数是14秒,B 组成绩的众数是13秒, ∴B 组成绩较好;④若以中位数作标准,A 组成绩的中位数是14.5秒,B 组成绩的中位数是17秒, ∴A 组成绩较好.(写出一条即可) 23.解:(1)③;(2)①20;6;②图略,总户数:80÷8%=1 000(户),则C 组户数:1 000×10%=100(户). ③根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是直接抛弃; ④若该市有180万户家庭,大约有180×10%=18(万户)家庭处理过期药品的方式是送回收点.。
浙江省2018年中考数学复习 第一部分 考点研究 第八单元 统计与概率 第32课时 数据的分析与应用试题
第八单元统计与概率(建议答题时间:40分钟)1. (2017宿迁)一组数据:5,4,6,5,6,6,3.这组数据的众数是( )A. 6B. 5C. 4D. 32. (2017苏州)有一组数据:2,5,5,6,7,这组数据的平均数为( )A. 3B. 4C. 5D. 63. 校园文化艺术节期间,有19位同学参加了校十佳歌手比赛,所得的分数互不相同,取前10位同学获得十佳歌手称号,某同学知道自己的分数后,要判断自己是否获得十佳歌手称号,他只需知道这19位同学的( )A. 平均数B. 中位数C. 众数D. 方差4. (2017黄冈)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为( )A. 12B. 13C. 13.5D. 145. (2017聊城)为了满足顾客的需求,某商场将5 kg奶糖,3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克( )A. 25元B. 28.5元C. 29元D. 34.5元6. (2017温州模拟)甲、乙两名运动员在10次的百米跑练习中,平均成绩分别为10.7秒、 10.7秒,方差分别为s2甲=0.054,s2乙=0.103,那么在这次百米跑练习中,甲、乙两名运动员成绩较为稳定的是( )A. 甲运动员B. 乙运动员C. 甲、乙两人一样稳定D. 无法确定7. (浙教八下第71页第10题改编)如图是A,B两家酒店去年下半年的月营业额折线统计图,下列结论正确的是( )第7题图A. A、B两酒店的月营业额方差相等B. A酒店的月营业额方差较小C. B酒店的月营业额方差较大D. B酒店的月营业额方差较小8. (2017泰安)某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:则他们捐款金额的中位数和平均数分别是( )A. 10,20.6B. 20,20.6C. 10,30.6D. 20,30.69. (2017福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图,这5个正确答题数所组成的一组数据的中位数和众数分别是( )A. 10,15B. 13,15C. 13,20D. 15,15第9题图10. (2017上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是________万元.第10题图11. (2017重庆)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.第11题图12. (2017苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图,由图可知,11名成员射击成绩的中位数是________环.第12题图13. (2017江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.14. (2017日照)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是________.15. (2017绥化)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9.则这位选手五次射击环数的方差为________.16. (浙教八下第64页探究活动题改编)已知五个数据99,97,96,98,95的方差为s2,如果把每个数据都减去97,得到一组新的数据,则这组新数据的方差为________.17. (2017天津)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:第17题图(Ⅰ)本次接受调查的跳水运动员人数为________,图①中m的值为________;(Ⅱ)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.18. (浙教八下第68页第2题改编)某工艺品厂共有16名工人,调查每个工人的日均生产能力,获得如下数据:(1)求这16名工人日均生产件数的平均数、众数、中位数;(2)若要使75%的工人都能完成任务,应选什么统计量(平均数、众数、中位数)作为日生产件数的定额?19. (2017百色) 甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):某同学计算出了甲的成绩平均数是9,方差是s 2甲=15[(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来; (2)若甲、乙射击成绩平均数都一样,则a +b =________;(3)在(2)的条件下,当甲比乙的成绩稳定时,请列举出a 、b 的所有可能取值,并说明理由.第19题图答案1. A 【解析】在5,4,6,5,6,6,3中,6出现了3次,出现次数最多,所以众数为6.2. C 【解析】根据平均数公式计算得x =15×(2+5+5+6+7)=5.3. B 【解析】由题意可得,19位同学取前10名,只要知道这19位同学的中位数,即排名第10的同学的成绩即可.故选B.4. B 【解析】将这10名篮球运动员的年龄按照从小到大排列,第5、6个数据都为13,∴这10名篮球运动员的年龄的中位数为13+132=13.5. C 【解析】根据题意,混合后的什锦糖的售价应该是:5×40+3×20+2×155+3+2=29010=29.故选C.6. A 【解析】因为s 2甲=0.054,s 2乙=0.103,方差小的为甲,所以成绩比较稳定的是甲运动员.故选A.7. D 【解析】x A =1+1.6+2.2+2.7+3.5+46=2.5,x B =2+3+1.7+1.8+1.7+3.66=2.3,s 2A =16×[(1-2.5)2+(1.6-2.5)2+(2.2-2.5)2+(2.7-2.5)2+(3.5-2.5)2+(4-2.5)2]≈1.073,s 2B =16×[(2-2.3)2+(3-2.3)2+(1.7-2.3)2+(1.8-2.3)2+(3.6-2.3)2+(1.7-2.3)2]≈0.54.故D 选项正确.8. D 【解析】这组数据共50个,则第25和26两个数据的平均数是中位数,即中位数是20.这组数据的平均数为x =150×(5×4+10×16+20×15+50×9+100×6)=30.6 .9. D 【解析】由条形统计图可得,5个班级中正确答题数为15个的班级数最多,∴众数为15,把这5个数据从大到小排列为20,15,15,13,10,可得15是中位数.10. 80 【解析】由图可得二月份产值的百分比为100%-25%-45%=30%,∵二月份产值为72万元,∴第一季度总产值为72÷30%=240万元,∴第一季度月产值的平均数x =2403=80万元. 11. 11 【解析】由折线图可知锻炼9小时的有6人,锻炼10小时的有9人,锻炼11小时的有10人,锻炼12小时的有8人,锻炼13小时的有7人,可得这组数据共有40个数,∴第20、21个数的平均数为中位数,∴中位数为(11+11)÷2=11.12. 8 【解析】∵共11名成员,∴中位数是第6个成员的成绩,由条形统计图可知,第6位成员的射击成绩为8环,∴这11名成员射击成绩的中位数为8环.13. 5 【解析】由题意得,平均数=2+5+x +y +2x +116=7,得出3x +y =24 ①,中位数=x +y2=7,得出x +y =14 ②,∴联立得⎩⎪⎨⎪⎧3x +y =24 ①x +y =14 ②,解得⎩⎪⎨⎪⎧x =5y =9,∴从小到大排列的数据为2,5,5,9,10,11,∴众数为5.14. 182 【解析】这组数据的平均数为183+191+169+190+1775=182.15. 2 【解析】数据5,8,7,6,9的平均数是7,所以方差是15×[(5-7)2+(8-7)2+(7-7)2+(6-7)2+(9-7)2]=15×(4+1+0+1+4)=2.16. s 2【解析】方差为各个数与其平均值差的平方的平均值,每个数减去97得到的新数与其平均值的差不变,所以方差不变.17. 解:(Ⅰ)40,30; 【解法提示】4÷10%=40(人),m =100-27.5-25-7.5-10=30.(Ⅱ)x =(13×4+14×10+15×11+16×12+3×17)÷40=15, ∵16出现12次,次数最多, ∴众数为16;按大小顺序排列,中间两个数都为15,∴中位数为15. 18. 解:(1)由表格可得, x =116×(10×1+11×3+12×5+13×4+14×2+15×1)=12.375,众数是12,中位数是12;(2)以平均数作为日生产件数定额,能完成任务的工人占:4+2+116×100%=43.75%,以众数作为定额,能完成任务的工人占5+4+2+116×100%=81.25%>75%,则若要使75%的工人都能完成任务,应选中位数作为日生产件数的定额. 19. 解:(1)如解图所示:第19题解图(2)17;【解法提示】a+b=9×5-10-9-9=17.(3)∵甲比乙成绩稳定,∴s2甲=0.8<s2乙,即(a-9)2+(b-9)2>3,∵a+b=17,0<a≤10,0<b≤10,∴当a=7时b=10,(a-9)2+(b-9)2>3符合题意;当a=8时b=9,(a-9)2+(b-9)2<3不符合题意;当a=9时b=8,(a-9)2+(b-9)2<3不符合题意;当a=10时b=7,(a-9)2+(b-9)2>3符合题意;即a=7,b=10或a=10,b=7.。
(完整版)2018全国中考数学统计概率题真题汇总(可编辑修改word版)
海璧:2018 全国中考统计概率题【2018 安徽】“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为(2)赛前规定,成绩由高到低前 60﹪人参赛选手获奖,某参赛选手的比赛成绩为 78 分,试判断他能否获奖,并说明理由(3)成绩前 4 名是 2 名男生和 2 名女生,若从他们中任选 2 人作为获奖代表发言,试求恰好选中 1 男 1 女的概率【2018 北京】某年级共有 300 名学生.为了解该年级学生 A,B 两门课程的学习情况,从中随机抽取 60 名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A 课程成绩的频数分布直方图如下(数据分成 6 组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100):b.A 课程成绩在70≤x<80 这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数海壁教育- 1 - 只教数学A 75.8m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中 m 的值(2)在此次测试中,某学生的 A 课程成绩为 76 分,B 课程成绩为 71 分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是(3)假设该年级学生都参加此次测试,估计 A 课程成绩跑过 75.8 分的人数【2018 福建】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为 70 元/日,每揽收一件抽成 2 元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过 40,每件提成 4 元;若当日揽件数超过 40,超过部分每件多提成 2 元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的 30 天中随机抽取 1 于,求这一天甲公司揽件员人均揽件数超过 40(不含 40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题①估计甲公司各揽件员的日平均揽件数②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.海壁教育- 2 - 只教数学【2018 兰州】学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题:(1)a= ,b= 4上上上上(2)该调查统计数据的中位数是,众数是(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数(4)若该校共有 2 000 名学生,根据调查结量,估计该校学生在一周内借阅图书“4次及以上”的人数.海壁教育- 3 - 只教数学【2018 兰州】在一个不透明的布袋里装有 4 个标有 1,2,3,4 的小球,它们形状,大小完全相同.李强从布袋里随机取出一个小球.记下数字为x,王芳在剩下的3 个小球中随机取出一个小球,记下数字为 y,这样确定了点M 的坐标(x,y).(1)画树状图或列表,写出点 M 所有可能的坐标(2)求点 M(x,y)在函数 y=x+1 的图象上的概率【2018 定西】在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2 个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【2018 定西】“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按 A,B,C,D 四个等级进行统计,制成了如下不海壁教育- 4 - 只教数学完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C 对应的扇形的圆心角是度(2)补全条形统计图(3)所抽取学生的足球运球测试成绩的中位教会落在等级(4)该校九年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多少人?【2018 广东】某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 21-1 图和题 21-2 图所示的不完整统计图.(1)被调查员工人数为人(2)把条形统计图补充完整(3)若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?海壁教育- 5 - 只教数学【2018 深圳】某学校为了调查学生的兴趣爱好,抽查了部分学生,并绘制成如下表格和条形统计图。
2018年中考数学复习第八单元统计与概率第33课时事件的概率与应用含近9年中考真题试题
第一部分考点研究第八单元统计与概率第33课时事件的概率与应用浙江近9年中考真题精选(2009~2017)命题点1事件的分类及意义(杭州2012.3,台州2考)1.(2010杭州14题3分)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件2.(2012杭州3题3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与白球的可能性相等D.摸到红球比摸到白球的可能性大命题点2概率的意义(台州2014.6)3.(2014台州6题4分)某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是()A.购买100个该品牌的电插座,一定有99个合格B.购买1000个该品牌的电插座,一定有10个不合格C.购买20个该品牌的电插座,一定都合格D.即使购买1个该品牌的电插座,也可能不合格命题点3概率的计算类型一一步概率(杭州4考,台州2考,温州4考,绍兴必考)4.(2016绍兴5题4分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.16B.13C.12D.235.(2014湖州7题3分)已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于()A.1B.2C.3D.46.(2013义乌9题3分)为支援雅安灾区,小慧准备通过爱心热线捐款,他只记得号码的前5位,后三位由5、1、2这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是()A.12 B.14 C.16 D.187.(2016湖州7题3分)有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6.若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是()A.16 B.14 C.13 D.128.(2014宁波7题4分)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B,在余下的7个点中任取一点C,使△ABC 为直角三角形的概率是()A.12 B.25 C.37 D.47第8题图9.(2015杭州9题3分)如图,已知点A,B,C,D,E,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为()第9题图A.14 B.25 C.23 D.59。
2018中考数学复习第八单元统计与概率第28讲统计试题
第八单元统计与概率第28讲统计1.(2014·巴中)今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000.其中说法正确的有(C)A.4个B.3个C.2个D.1个2.(2013·广州)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式是________,图中的a的值是________.(D)A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,243.(2017·唐山路北区三模)下表为某市2017年5月上旬10天的日最低气温情况,则这10天中日最低气温的中位数和众数分别是(C)A.14 ℃,14 ℃ B.14 ℃,13 ℃C.13 ℃,13 ℃ D.13 ℃,14 ℃4.(2017·河南)小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是(D)A.255分 B.84分 C.84.5分 D.86分5.(2017·河北中考考试说明)某商场对上周女装的销售情况进行了统计,如下表所示:经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是(C)A.平均数 B.中位数 C.众数 D.方差6.(2017·日照)积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:请你估计该200户家庭这个月节约用水的总量是(A)A.240吨 B.360吨 C.180吨 D.200吨7.(2017·广安)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:。
2018年中考数学总复习 第一轮 统计与概率单元测试(八)统计与概率试题
单元测试(八)统计与概率(时间:100分钟满分:150分)一、选择题(本大题共10小题,每小题5分,满分50分)题号12345678910选项DBCBACCBAC1.下列说法中正确的是(D )A.“打开电视机,正在播《民生面对面》”是必然事件B.“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是随机事件C.“概率为0.0001的事件”是不可能事件D.“在操场上向上抛出的篮球一定会下落”是确定事件2.下列调查中,适合用全面调查方式的是(A )A.了解某班同学课间操出勤情况B.了解一批水笔芯的使用寿命C.了解学校自来水的质量D.了解某袋面粉是否含有添加剂3.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球,从布袋里任意摸出一个球,则摸出的球是白球的概率为(D )A.12 B.15 C.13 D.234.(2017·资阳)我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款金额(元)51015202530人数(人)371111135则该班同学筹款金额的众数和中位数分别是(D )A.11,20B.25,11C.20,25D.25,205.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到的卡片上算式正确的概率是(A )a 3·a 4=a 7a 8÷a 4=a 2(a 3)2=a 6a 2+a 3=2a 5A.12B.1 C.14 D.346.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差s 2甲=0.23,s 2乙=0.053,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是随机事件.其中正确说法有(A )A.1个B.2个C.3个D.4个7.某学校为了了解九年级学生体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图(不完整),学生仰卧起坐次数在25~30之间的频率为(D )A.0.1B.0.17C.0.33D.0.48.(2017·泰安)某学校将为初一学生开设A,B,C,D,E,F 共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整):选修课A B CD EF人数4060100根据图表提供的信息,下列结论错误的是(D)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少9.(2017·芜湖二模)某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为(C)A.12B.23C.13D.3410.(2017·达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为(D)A.13B.12C.23D.34二、填空题(本大题共4小题,每小题5分,满分20分)11.(2017·兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球20个.12.某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有800人.13.(2017·金华)为检测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是1mg/L.。
中考复习数学分类检测试卷(8)统计与概率(含答案)
中考复习数学分类检测八 统计与概率(时间:90分钟 总分:120分)一、选择题(每小题4分,共40分)1.下列调查中,适宜采用抽样调查方式的是( ) A .对我国首架大型民用直升机各零部件的检查 B .对某校初三(5)班第一小组的数学成绩的调查 C .对我市市民实施低碳生活情况的调查D .对2012年重庆市中考前200名学生的中考数学成绩的调查2.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下表所示.则这10户家庭月用水量的众数和中位数分别为( )月用水量/t 10 13 14 17 18 户数22321A .14 t,13.5 tB .14 t,13 tC .14 t,14 tD .14 t,10.5 t3.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A .14B .12C .34D .14.甲、乙两人在同样条件下练习射击,每人打5发子弹,打中环数如下: 甲:6,8,9,9,8 乙:10,7,7,7,9 则甲、乙两人射击的成绩( ) A .甲比乙稳定 B .乙比甲稳定C .甲、乙稳定性相同D .甲、乙两人成绩无法比较5.2012年春某市发生了严重干旱,市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:月用水量/t 5 6 7 户数262则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .极差是2C .平均数是6D .方差是46.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( ) A .10 B .10 C .2 D . 27.有一个不透明的袋中,红色、黑色、白色的小球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .248.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( )A .1万件B .19万件C .15万件D .20万件9.如图所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是( )A .13B .34C .25D .3510.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )A .34B .13C .12D .14二、填空题(每小题4分,共24分)11.“建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为__________.12.一组数据23,27,20,x ,18,12的中位数是21,则x =__________.13.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图所示的统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款__________元.14.已知数据a ,b ,c 的平均数是8,那么数据2a +3,2b +3,2c +3的平均数是__________. 15.某商场开展购物抽奖促销活动,抽奖箱中有200张抽奖卡,其中有一等奖5张,二等奖10张,三等奖25张,其余抽奖卡无奖.某顾客购物后参加抽奖活动,他从抽奖箱中随机抽取一张,则中奖的概率为__________.16.从-2,-1,0,1,2这5个数中任取一个数,作为关于x 的一元二次方程x 2-x +k =0的k 值,则所得的方程中有两个不相等的实数根的概率是__________.三、解答题(56分)17.(8分)市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:各奖项人数百分比统计图各奖项人数统计图(1)一等奖所占的百分比是__________.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整.(3)各奖项获奖学生分别有多少人?18.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,计算出甲的平均成绩是__________环,乙的平均成绩是__________环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.19.(9分)某市今年中考理、化实验操作考查,采用学生抽签方式决定自己的考查内容.规定:每位考生必须在三个物理实验(用纸签A,B,C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考查.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?20.(9分)某校部分男生分三组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如图所示.训练前后各组平均成绩统计图训练后第二组男生引体向上增加个数分布统计图(1)求训练后第一组的平均成绩比训练前增长的百分数.(2)小明在分析了统计图后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由.(3)你认为哪一组的训练效果最好?请提供一个合理的理由来支持你的观点.21.(10分)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算摸出的小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.22.(12分)某校宣传栏中公示了担任下学期七年级班主任的12位老师的情况(见下表),小凤准备到该校就读七年级,请根据表中信息帮小凤进行如下统计分析:姓名性别年龄学历职称王雄辉男35 本科高级李红男40 本科中级刘梅英女40 中专中级张英女43 大专高级刘元男50 中专中级袁桂男30 本科初级蔡波男45 大专高级李凤女27 本科初级孙焰男40 大专中级彭朝阳男30 大专初级龙妍女25 本科初级杨书男40 本科中级(1)该校下学期七年级班主任老师年龄的众数是多少?(2)在图1中,将反映老师学历情况的条形统计图补充完整;(3)在图2中,标注扇形统计图中表示老师职称为初级和高级的百分比;(4)小凤到该校就读七年级,班主任老师是女老师的概率是多少?学历情况条形统计图职称情况扇形统计图图1 图2参考答案一、1.C2.C 从数据表看出:14 t 出现的次数最多,中位数应是第5个数、第6个数的平均数,是14 t ,故选C.3.B4.A x 甲=15×(6+8+9+9+8)=8,x 乙=15×(10+7+7+7+9)=8,s 2甲=15×[(6-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2]=1.2, s 2乙=15×[(10-8)2+(7-8)2+(7-8)2+(7-8)2+(9-8)2]=1.6, ∴s 2甲<s 2乙.∴甲比乙稳定.5.D6.C 由已知可得15(3+a +4+6+7)=5,解得a =5,则方差为s 2=15×[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2.7.B 口袋中白色球的个数为40×(1-15%-45%)=16.8.B 该厂产品100件中有5件不合格,则合格率为1-5%=95%. 所以20万件中合格产品约为20×95%=19(万件). 9.D10.C 若设大正方形的边长为2a ,则它的内切圆的直径等于2a ,则这个圆的内接正方形的对角线长为2a ,其边长等于2a ,面积为2a 2.而大正方形的面积等于4a 2,所以小球停在小正方形内部区域的概率P =2a 24a 2=12. 二、11.5012.22 由题意得20+x2=21,解得x =22.13.31.2 x =5×8%+10×20%+20×44%+50×16%+100×12%=31.2. 14.19 15.1516.35 因为Δ=(-1)2-4k =1-4k ,当方程中有两个不相等的实数根时,Δ>0,即k <14.三、17.解:(1)一等奖所占的百分比为1-20%-24%-46%=10%. (2)从条形统计图可知,一等奖的获奖人数为20. ∴这次比赛中收到的参赛作品为2010%=200份.∴二等奖的获奖人数为200×20%=40. 条形统计图补充如下图所示:(3)一等奖获奖人数为20,二等奖获奖人数为40,三等奖获奖人数为48,优秀奖获奖人数为92. 18.解:(1)9 9 (2)s 2甲=23,s 2乙=43. (3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.19.解:(1)列表格如下:所有可能出现的结果:AD AE AF BD BE BF CD CE CF.(2)从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M 出现了一次, 所以P (M )=19.20.解:(1)训练后第一组的平均成绩比训练前增长的百分数是5-33×100%≈67%.(2)不同意小明的观点,因为第二组的平均成绩增加个数为8×10%+6×20%+5×20%+0×50%=3. (3)本题答案不唯一,如:我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.解:(1)列表如下:结果有12种,其中积为6的有2种, ∴P (积为6)=212=16.(2)游戏不公平.因为积为偶数的有8种情况,而积为奇数的有4种情况. P (积为奇数)=13,P (积为偶数)=23,13≠23.游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. 22.解:(1)该校下学期七年级班主任老师年龄的众数是40; (2)大专4人,中专2人(图略); (3)高级:25%,初级:33.3%; (4)班主任老师是女老师的概率是412=13.。
通用版2018年中考数学总复习单元检测八统计与概率试题新版新人教版
单元检测八 统计与概率(时间90分钟 满分120分)一、选择题(每小题4分,共40分) 1.“a 是实数,|a|≥0”这一事件是(A)A.必然事件B.不确定事件C.不可能事件D.随机事件2.下列调查中,①调査本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟十一号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是(B) A.① B.② C.③ D.④3.中秋节前,学校食堂推荐了A ,B ,C 三种不同型号的月饼,对全校师生爱吃哪种型号的月饼进行了调查,以决定采购的型号.下面统计量中,最值得关注的是(B) A.方差 B.众数 C.中位数 D.平均数4.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是(B) A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况5.某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是(D) A.购买100个该品牌的电插座,一定有99个合格B.购买1 000个该品牌的电插座,一定有10不个合格C.购买20个该品牌的电插座,一定都合格D.即使购买1个该品牌的电插座,也可能不合格6.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为(A) A.12个 B.9个 C.6个 D.3个7.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是(C)A .B .C .D .8.某校九年级(1)班全体学生:成绩/分35 39 42 44 45 48 5人数/人 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是(D) A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分 9.某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是(C)A.扇形甲的圆心角是72°B.学生的总人数是900人C.甲地区的人数比丙地区的人数少180人D.丙地区的人数比乙地区的人数多180人〚导学号92034229〛10.从1,2,3,4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线y=x2上的概率是(B)A.B.C. D.二、填空题(每小题5分,共20分)11.为了了解某区5 500,统计结果列表如下:那么样本中体重在50~55范围内的频率是0.21.12.在开展“国学诵读”活动中,某校为了解全校1 300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图,根据图中数据,估计该校1 300名学生课外阅读时间不少于7小时的人数是520.13.某班七个兴趣小组人数分别为4,4,5,5,x,6,7.已知这组数据的平均数是5,则这组数据的众数和中位数分别是4,5.14.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.三、解答题(共60分)15.(6分)人类的血型一般可分为A,B,AB,O型四种.某市中心血站2017年共有8万人无偿献血,血站统计人员由电脑随机选出20人,血型分别是:O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.(1)请设计统计表分类统计这20人各类血型人数;(2)若每位献血者平均献血200毫升,一年中该市各医院O型血用血量约为6×106毫升,请你估计2017年这8万人所献的O型血是否够用?解(1)统计表格如图:血A B AB O型人6 4 2 8数(2)×8×104×200=6.4×106(毫升),因为6.4×106>6×106,所以O型血够用.16.(8分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率:(1)抽取1名,恰好是甲;抽取2名,甲在其中.解(1)从甲、乙、丙3名同学中随机抽取1名环保志愿者,恰好是甲的概率是.(2)从甲、乙、丙3名同学中随机抽取2名环保志愿者,所有可能出现的结果(甲,乙),(甲,丙),(乙,丙),共有3种,它们出现的可能性相同.所有可能的结果中,满足“甲在其中”(记为事件A)的结果只有2种,所以P(A)=.〚导学号92034230〛17.(8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加.本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐.下图是3×3阶魔方赛A区域30名爱好者完成时间统计图.求:3×3阶魔方赛A区域爱好者完成时间条形图(1)A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).(2)若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后本次大赛进入下一轮角逐的人数.(3)若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱(结果用最简分数表示).解(1)完成时间小于8秒的人数有1+3=4,总人数是30,所以A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例是=;(2)30名中有4名进入下一轮,则可估计600名进入下一轮的人数为600×=80.(3)根据题意得解得所以A区域共有30人,完成时间为8秒的有7人,则该项目赛该区域完成时间为8秒的爱好者的概率是.18.(8分)甲、乙两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示.(1)请你根据图中的数据填写表格:从平均数和方差相结合看,分析谁的成绩好些?从发展趋势来看,谁的成绩好些.如图所示:甲的平均数为(7+8+9+8+8)=8,=[(7-8)2+(8-8)2+(8-8)2+(9-8)2+(8-8)2]=0.4;由图中数据可得:乙组数据的众数为8,填表如下:(2)从平均数和方差相结合看,甲的成绩好些,从发展趋势来看,乙的成绩好些.19.(10分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练.将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图.优秀人数条形统计图优秀率折线统计图请根据以上两图解答下列问题:(1)该班总人数是: ;(2)根据计算,请你补全两个统计图;观察补全后的统计图,写出一条你发现的结论.),故答案为40.(2)第四次的优秀人数=40×85%=34;第三次的优秀率=32÷40=80%.补图如下优秀人数条形统计图优秀率折线统计图(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.20.(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人.解(1)①150;②略;③13.3%.(2)两人中至少有一个给“好评”的概率是.〚导学号92034231〛21.(10分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华优秀文化,我市某中学举行“汉字听写”大赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为;(3)组委会确定从本次比赛获得等级A的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知等学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是1名男生和1名女生的概率.由题图可知,成绩为A等级的学生人数占总人数的15%,则参加比赛的学生总人数为=20;故答(2)由题图可知,成绩为C等级的学生人数占总人数的m%,人数为8,×100%=40%,故m的值为40;(3)所选2名学生恰好是1名男生和1名女生的概率是P(1名男生和1名女生)==.〚导学号92034232〛。
2018届中考数学复习《统计与概率的应用》专题训练含答案
2018届初三数学中考复习 统计与概率的应用 专题复习训练题1.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,请根据上述统计图表,解答下列问题:(1)在表中,a =__0.1__,b =__0.3__,c =__18__;(2)补全频数分布直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解:(2)补图略 (3)平均成绩是81分 (4)800×(0.3+0.2)=400,即“优秀”等次的学生约有400人2. 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为__12__; (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.解:(2)画树状图:∴乙获胜的概率为123.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,根据以上信息,解答下列问题:(1)家庭用水量在4.0<x≤6.5范围内的家庭有__13__户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是__30__%;(2)本次调查的家庭数为__50__户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是__18__%;(3)家庭用水量的中位数落在__C__组.(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.解:(4)估计该月用水量不超过9.0吨的家庭数为200×4+13+1550=128(户)4.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了__150__个评价;②请将图1补充完整;③图2中“差评”所占的百分比是__13.3%__;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.解:(1)②“好评”一共有150×60%=90(个),补图略.(2)列表:由表可知,一共有95种,∴两人中至少有一个给“好评”的概率是595.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.最喜爱的传统文化项目类型频数分布表国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?解:(1)14÷0.28=50,a=18÷50=0.36(2)b=50×0.20=10,补图略(3)1500×0.28=420(人),估计该校最喜爱围棋的学生大约有420人6.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)15(2)画树状图(略),由树状图可知共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2257.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是__13__;(2)若甲、乙均可在本层移动.①用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率; ②黑色方块所构拼图是中心对称图形的概率是__29__.解:(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率P =39=138.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m 值;②求扇形统计图中阅读时间为5小时的扇形圆心角的度数;③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵m=15÷14=60 ②560×360°=30° ③第三小组的频数为60-10-15-10-5=20,补图略(2)众数为 3小时,中位数为3小时,平均数为2.75小时9. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算10. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?解:(1)红球占40%,黄球占60%(2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个11. 某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请以上 严重污染 2(1)统计表中m =__20__,n =__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹12. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为__25__;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m的运动员能否进入复赛.解:(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛。
中考数学总复习易错题8统计与概率(含解析)
中考数学总复习易错题8统计与概率(含解析)易错题 8 统计与概率1.每年 4 月 23 日是“世界读书日”,为了了解某校八年级 500 名学生对“世界读书日”的知晓情况,从中随 机抽取了 10%进行调查.在这次调查中,样本容量是( )A .500B .10%C .50D .52.某班七个兴趣小组人数分别为 4,4,5,5,x ,6,7,已知这组数据的平均数是 5,则这组数据的众数 和中位数分别是( )A .4,5B .4,4C .5,4D .5,53.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数 中位数 众数 方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A .平均数B .众数C .方差D .中位数4.下列特征量不能反映一组数据集中趋势的是( )A .众数B .中位数C .方差D .平均数5.若一组数据 1、a 、2、3、4 的平均数与中位数相同,则 a 不可能是下列选项中的( )A .0B .2.5C .3D .56.下列图形:任取一个是中心对称图形的概率是( )A .14B .12C .34D .17.如图,在 5×5 的正方形网格中,从在格点上的点 A ,B ,C ,D 中任取三点,所构成的三角形恰好是直 角三角形的概率为( )A .13 B .12 C .23D .34 8.甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数 是白球个数的 2 倍;乙袋中,红球个数是白球个数的 3 倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸 出一个球,摸出红球的概率是( )A .512 B .712 C .1724D .259.如图,正方形 ABCD 内接于⊙O ,⊙O 分米,若在这个圆面上随意抛一粒豆子,则豆子落 在正方形 ABCD 内的概率是( )A .2πB .2π C .12πD10.已知一组数据x1,x2,x3,x4,x5 的平均数是5,方差是4,那么另一组数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的平均数和方差分别为()A.5,4 B.3,2 C.5,2 D.3,411.为了了解景德镇市中学生本学期的学习成绩整体情况,市教育局准备在初一年级中的语文、数学、英语三个学科和初二年级中的语文、数学、英语、物理四个学科中各抽取一个学科作为调研考试来考察,那么初一、初二年级都抽中数学的概率是()A 13B.14C.16D.112事件 A 必然事件 随机事件 m 的值 12.下列说法正确的是( )A .某市“明天降雨的概率是 75%”表示明天有 75%的时间会降雨B .400 人中一定有两人的生日在同一天C .在抽奖活动中,“中奖的概率是1100”表示抽奖 l00 次就一定会中奖 D .十五的月亮像一个弯弯的细钩13.一家鞋店在一段时间内销售某种女鞋50 双,各种尺码的销售量如表所示: 尺码(厘米) 22 22.5 23 23.5 24 24.5 25销售量(双) 1 2 31 5 7 3 1如果你是店长,为了增加销售量,你最关注哪个统计量( )A .平均数B .众数C .中位数D .方差14.x 1,x 2,…,x 10 的平均数为 a ,x 11,x 12,…,x 50 的平均数为 b ,则 x 1,x 2,…,x 50 的平均数为( )A .a+bB . 2a b +C 105060a b +D .104050a b + 15.如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知 AB=13,AC=5, BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带 上,则小鸟落在花圃上的概率为 . 16.两组数据:3,5,2a ,b 与 b ,6,a 的平均数都是 6,若将这两组数据合并为 一组数据,则这组新数据的中位数和众数分别为 . 17.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测 试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最 小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于 130 次的成绩为优秀,全校共有 1200 名学 生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为 人.18.如图,随机地闭合开关 S 1,S 2,S 3,S 4,S 5 中的三个,能够使灯泡 L 1,L 2 同时发光的概率是 .19.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在偶数区域的概率是 .20.在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6个.(1)先从袋子中取出 m (m >1)个红球,再从袋子中随机摸出 1 个球,将“摸出黑球”记为 事件 A .请完成下列表格:(2)先从袋子中取出 m 个红球,再放入 m 个一样的黑球并摇匀,随机摸出 1 个球是黑球的可能性大小是45,求 m 的值.21.锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有 3 个选项,第二道单选题有 4 个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45)7 0.35第四组(45≤x<60) b 0.20(1)频数分布表中a= ,b= ,并将统计图补充完整;(2)如果该校七年级共有女生 180 人,估计仰卧起坐能够一分钟完成 30 或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.2018 年某市学业水平体育测试即将举行,某校为了解同学们的训练情况,从九年级学生中随机抽取部分学生进行了体育测试(把成绩分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)求本次抽测的学生人数;(2)求扇形图中∠α的度数,并把条形统计图补充完整;(3)在测试中甲乙、丙、丁四名同学表现非常优秀,现决定从这四名同学中任选两名给大家介绍训练经验,求恰好选中甲、乙两名同学的概率(用树状图或列表法解答).24.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣2、l、2,它们除了数字不同外,其它都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字 l 的小球的概率为.(2)小红先从布袋中随机摸出一个小球,记下数字作为 k 的值,再把此球放回袋中搅匀,由小亮从布袋中随机摸出一个小球,记下数字作为 b 的值,请用树状图或表格列出 k、b 的所有可能的值,并求出直线 y=kx+b 不经过第四象限的概率.25.某中学决定在本校学生中开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校m 名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.请你根据图中的信息,解答下列问题.(1)m= ,n= ;(2)请补全图中的条形图;(3)扇形统计图中,足球部分的圆心角是度;(4)根据抽样调查的结果,请估算全校1800 名学生中,大约有多少人喜爱踢足球.参考答案与试题解析1.【分析】根据样本容量是样本中包含的个体的数目,可得答案.【解答】解:500×10%=50,则本次调查的样本容量是50,故选:C.2.【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【解答】解:∵这组数据的平均数是5,∴=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选:A.3.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.4.【分析】根据中位数、众数、平均数和方差的意义进行判断.【解答】解:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选:C.5.【分析】首先求出这组数据的平均数是多少,再根据题意,分5 种情况:(1)将这组数据从小到大的顺序排列后为 a,1,2,3,4;(2)将这组数据从小到大的顺序排列后为 1,a,2,3,4;(3)将这组数据从小到大的顺序排列后1,2,a,3,4;(4)将这组数据从小到大的顺序排列后为1,2,3,a,4;(5)将这组数据从小到大的顺序排列为1,2,3,4,a;然后根据这组数据1、a、2、3、4 的平均数与中位数相同,求出a 的值是多少,即可判断出a 不可能是选项中的哪个数.【解答】解:这组数据1、a、2、3、4 的平均数为:(1+a+2+3+4)÷5=(a+10)÷5=0.2a+2(1)将这组数据从小到大的顺序排列后为a,1,2,3,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=2,解得a=0,符号排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,3,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(3)将这组数据从小到大的顺序排列后1,2,a,3,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,3,a,4,中位数是3,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=3,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,3,4,a,中位数是3,平均数是0.2a+2,∵这组数据1、a、2、3、4 的平均数与中位数相同,∴0.2a+2=3,解得a=5;符合排列顺序;综上,可得a=0、2.5 或5.∴a 不可能是3.故选:C.6.【分析】由共有4 种等可能的结果,任取一个是中心对称图形的有3 种情况,直接利用概率公式求解即可求得答案.【解答】解:∵共有4 种等可能的结果,任取一个是中心对称图形的有3 种情况,∴任取一个是中心对称图形的概率是:.故选:C.7.【分析】从点A,B,C,D 中任取三点,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【解答】解:∵从点 A,B,C,D 中任取三点能组成三角形的一共有 4 种可能,其中△ABD,△ADC,△ABC 是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选:D.8.【分析】首先根据每个袋子中球的倍数设出每个袋子中球的个数,然后利用概率公式求解即可.【解答】解:∵甲袋中,红球个数是白球个数的2 倍,∴设白球为4x,则红球为8x,∴两种球共有12x 个,∵乙袋中,红球个数是白球个数的3 倍,且两袋中球的数量相同,∴红球为9x,白球为3x,∴混合后摸出红球的概率为:=,故选:C.9.【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【解答】解:因为⊙O 的直径为分米,则半径为分米,⊙O 的面积为π()2=平方分米;正方形的边长为=1 分米,面积为1 平方分米;因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD 内)== .故选:A.10.【分析】根据平均数和方差的变化规律,即可得出答案.【解答】解:∵数据x1,x2,x3,x4,x5 的平均数是5,∴数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的平均数是5﹣2=3;∵数据x1,x2,x3,x4,x5 的方差是4,∴数x1﹣2,x2﹣2,x3﹣2,x4﹣2,x5﹣2 的方差不变,还是4;故选:D.11.【分析】依据题意画出树状图或列表,依据共有 12 种等可能的结果,其中初一、初二年级都抽中数学的情况有1 种,即可得到初一、初二年级都抽中数学的概率.【解答】解:画树状图可得:∵共有12 种等可能的结果,其中初一、初二年级都抽中数学的情况有1 种,∴P(初一、初二年级都抽中数学)=,故选:D.12.【分析】利用概率的意义以及实际生活常识分析得出即可.【解答】解:A、某市“明天降雨的概率是75%”表示明天有75%的概率降雨,故此选项错误; B、400 人中一定有两人的生日在同一天,正确; C、在抽奖活动中,“中奖的概率是”表示抽奖l00 次就有可能中奖,故此选项错误;D、十五的月亮是圆圆的,故此选项错误.故选:B.13.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.既然是对该鞋子销量情况作调查,那么应该关注那种尺码销的最多,故值得关注的是众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:B.14.【分析】先求前10 个数的和,再求后40 个数的和,然后利用平均数的定义求出50 个数的平均数.【解答】解:前10 个数的和为10a,后40 个数的和为40b,50 个数的平均数为.故选:D.15.【分析】根据AB=13,AC=5,BC=12,得出AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=13,AC=5,BC=12,∴AB2=BC2+AC2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径= =2,∴S△ABC=A C•BC=×12×5=30,S 圆=4π,∴小鸟落在花圃上的概率==;故答案为:.16.【分析】先根据平均数均为6 得出关于a、b 的方程组,解方程组求得a、b 的值后,把两组数据合并、重新排列,根据中位数和众数的定义求解可得.【解答】解:根据题意,得:,解得:,则两组数据重新排列为3、4、5、6、8、8、8,∴这组新数据的中位数为6,众数为8,故答案为:6,8.17.【分析】首先由第二小组有 10 人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260 乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.18.【分析】求出随机闭合开关 S1,S2,S3,S4,S5 中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关 S1,S2,S3,S4,S5 中的三个共有 10 种可能(任意开两个有4+3+2+1=10可能,故此得出结论),能够使灯泡L1,L2 同时发光有2 种可能(S1,S2,S4 或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5 中的三个,能够使灯泡L1,L2 同时发光的概率是=.故答案为.19.【分析】根据几何概率的求法:指针落在偶数区域的概率是就是所标数字为偶数的面积与总面积的比值.【解答】解:观察这个图可知:所标数字为偶数的面积占总面积的(+ )= ,故其概率为.20.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m 的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4 个红球时,摸到黑球是必然事件;∵m>1,当摸出2 个或3 个红球时,摸到黑球为随机事件,事件A 必然事件随机事件m 的值 4 2、3故答案为:4;2、3.(2)依题意,得,解得 m=2,所以m 的值为2.【点评】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=.21.【分析】(1)锐锐两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果;(2)由题意得出第一道题对的概率为,第二道题对的概率为,即可得出结果;(3)用树状图得出共有6 种等可能的结果,锐锐顺利通关的只有1 种情况,即可得出结果.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B 表示剩下的第一道单选题的2 个选项,a,b,c 表示剩下的第二道单选题的3 个选项,树状图如图所示:共有6 种等可能的结果,锐锐顺利通关的只有1 种情况,∴锐锐顺利通关的概率为:.22.【分析】(1)由统计图易得a 与b 的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【解答】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30 或30 次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12 种等可能的结果,所选两人正好都是甲班学生的有3 种情况,∴所选两人正好都是甲班学生的概率是:=.23.【分析】(1)根据B 级的频数和百分比求出学生人数;(2)求出A 级的百分比,360°乘百分比即为∠α的度数,根据各组人数之和等于总数求得C 级人数即可补全图形;(3)根据列表法或树状图,运用概率计算公式即可得到恰好选中甲、乙两名同学的概率.【解答】解:(1)160÷40%=400,答:本次抽样测试的学生人数是400 人;(2)×360°=108°,答:扇形图中∠α的度数是108°;C 等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:(3)画树状图如下:或列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣共有12 种等可能的结果,其中恰好选中甲、乙两位同学的结果有2 种,所以P(恰好选中甲、乙两位同学)==.24.【分析】(1)三个小球上分别标有数字﹣2、l、2,随机地从布袋中摸出一个小球,据此可得摸出的球为标有数字1 的小球的概率;(2)先列表或画树状图,列出k、b 的所有可能的值,进而得到直线y=kx+b 不经过第四象限的概率.【解答】解:(1)三个小球上分别标有数字﹣2、l、2,随机地从布袋中摸出一个小球,则摸出的球为标有数字1 的小球的概率=;故答案为;(2)列表:共有9 种等可能的结果数,其中符号条件的结果数为4,所以直线y=kx+b 不经过第四象限的概率=.25.【分析】(1)根据喜爱乒乓球的有10 人,占10%可以求得m 的值,从而可以求得n 的值;(2)根据题意和m 的值可以求得喜爱篮球的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以得到足球部分的百分比,即可得到足球部分的圆心角度数;(4)根据统计图中的数据可以估算出全校1800 名学生中,大约有多少人喜爱踢足球;【解答】解:(1)由题意可得,m=10÷10%=100,n%=15÷100=15%,故答案为:100,15;(2)喜爱篮球的有:100×35%=35(人),补全的条形统计图,如图所示:(3)扇形统计图中,足球部分的圆心角是360°×=144°;故答案为:144;(4)由题意可得,全校1800 名学生中,喜爱踢足球的有:1800×=720(人),答:全校1800 名学生中,大约有720 人喜爱踢足球;。
湖南省2018年中考数学复习必考考点过关 第八单元 统计与概率
第八单元统计与概率数据的收集与统计图A层基础练1.下列调查中,最适宜采用全面调查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查2.每年的4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况3.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少图K30-14.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如图K30-1的扇形统计图,则在被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60C.30,60 D.45,40图K30-25.学校为了解九年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成如图K30-2所示的统计图,则九年级学生参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.36.为了了解试验田里水稻的长穗情况,适合采用的调查方式是________.7.某年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图①和图②是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是________.图K30-38.一个样本的50个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率为________.图K30-49.某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一幅不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是________.10.某校为了了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数直方图图K30-5根据图表信息,(1)表中的a=________,b=________.(2)请把频数直方图补充完整.(画图后请标注相应的数据)(3)若该校共有1 200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?B层能力练11.要对大批量生产的商品进行检验,下列做法比较合适的是()A.把所有商品逐一进行检验B.从中抽取1件进行检验C.从中挑选几件进行检验D.从中按抽样规则抽取一定数量的商品进行检验12.如图K30-6是某手机店1~4月份的两个统计图,分析统计图,对3、4月份某品牌手机的销售情况四位同学得出了以下四个结论,其中正确的为()图K30-6A.4月份该品牌手机销售额为65万元B.4月份该品牌手机销售额比3月份有所上升C.4月份该品牌手机销售额比3月份有所下降D.3月份与4月份的该品牌手机销售额无法比较,只能比较该店销售总额13.爱心图书馆决定给9个贫困山区捐赠图书,管理员小张对各个地区捐赠情况作了统计,并制成了如下图表,下列结论不正确的是()图K30-7A.捐书的总数为200万册B.捐书数据的中位数是16万册C.捐书数据的众数是60万册D.捐书数扇形统计图中表示G的扇形的圆心角为30°图K30-814.[2017·宁夏]某商品四天内每天每斤的进价与售价信息如图K30-8所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天图K30-915.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图K30-9所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为________名.16.某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图(如图K30-10).请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校初二年级的总人数是480人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.图K30-10C层拓展练17.某中学为开拓学生视野,开展了“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,如图K30-11,请你根据统计图的信息回答下列问题:图K30-11(1)本次调查的学生总数为________人,被调查学生的课外阅读时间的中位数是________小时,众数是________小时;(2)请你补全条形统计图;(3)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是________;(4)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人.参考答案1.B 2.B 3.D 4.B 5.D6.抽样调查7.6 0008.0.49.40%10.解:(1)由题意可得:a=50×0.24=12(人).∵m=4,∴b=450=0.08,故填12,0.08;(2)如图所示:(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:(1-0.20-0.24)×1 200=672(人).11.D12.B[解析] 从条形统计图可以得到3月份、4月份手机销售总额分别为60万元、65万元,从折线统计图可以得到3月份、4月份该品牌手机销售额占该手机店当月手机销售总额的百分比分别为18%,17%,∴3月份该品牌手机销售额为60×18%=10.8(万元),4月份该品牌手机销售额为65×17%=11.05(万元),10.8<11.05,即4月份该品牌手机销售额比3月份多,故选B.13.D14.B15.6016.解:(1)由扇形统计图和条形统计图可得参加这次跳绳测试的共有20÷40%=50(人).故填50.(2)优秀的人数为50-3-7-10-20=10.补全条形统计图如图所示:(3)“中等”部分所对应的圆心角的度数是1050×360°=72°.故填72°.(4)该校初二年级跳绳成绩为“优秀”的人数为480×1050=96(人).答:该校初二年级跳绳成绩为“优秀”的人数为96人.17.解:(1)∵课外阅读时间为3小时的共10人,占总人数的20%,∴学生总数为1020%=50(人).∵课外阅读时间为4小时的人数占32%,∴课外阅读时间为4小时的人数为50×32%=16(人), ∴课外阅读时间为4小时的男生人数为16-8=8(人),∴课外阅读时间为6小时的男生人数为 50-6-4-8-8-8-12-3=1(人),∴课外阅读时间为3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人, ∴中位数是4小时,众数是5小时. 故填50,4,5. (2)如图所示.(3)∵课外阅读时间为5小时的人数是20人, ∴2050×360°=144°.故填144°. (4)∵课外阅读时间为6小时的人数是4人, ∴700×450=56(人).答:九年级一周课外阅读时间为6小时的学生大约有56人.数据的分析A 层基础练1.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )A .平均数B .中位数C .方差D .众数2.下列说法正确的是( )A .数据3,4,4,7,3的众数是4B .数据0,1,2,5,a 的中位数是2C .一组数据的众数和中位数不可能相等D .数据0,5,-7,-5,7的中位数和平均数都是03.若一组数据3,x ,4,5,6的众数是3,则这组数据的中位数为( )A.3 B.4C.5 D.64.如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是()A.4 B.7 C.8 D.195.某校男子足球队的年龄分布如图K31-1所示,则根据图中信息可知这些队员年龄的平均数、中位数分别是()图K31-1A.15.5,15.5 B.15.5,15C.15,15.5 D.15,156.[2017·枣庄]下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,A.甲B.乙C.丙D.丁7.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是________(填“平均数”“众数”或“中位数”).8.质检部门为了检测某品牌饮料的质量,从同一批次共5000件产品中随机抽取75件进行检测,结果其中3件有质量问题,由此估计这一批次产品中有质量问题的件数是________.9.则该校女子排球队队员的平均年龄是________岁.10.[2017·巴中]一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是________.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=________.B层能力练12.那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,513.对于不同的x,..A.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差14.已知一组数据:x1,x2,x3,x4,x5,x6的平均数是2,方差是3,则另一组数据:3x1-2,3x2-2,3x3-2,3x4-2,3x5-2,3x6-2的平均数和方差分别是()A.2,3 B.2,9C.4,25 D.4,2715.一组数据1,4,6,x的中位数和平均数相等,则x的值是________.图K31-216.若干名同学制作迎校运会卡通图片,他们制作的卡通图片张数的条形统计图如图K31-2所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.17.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:图K31-3(1)图①中a的值为________;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m的运动员能否进入复赛.C层拓展练18.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为________.19.某市团委举办了“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表.(1)在图①中,“80分”所在扇形的圆心角度数为________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.图K31-4乙校成绩统计表参考答案1.B 2.D 3.B 4.A 5.D 6.A 7.中位数 8.200 9.15 10.5 11.3.6 12.B 13.B 14.D 15.-1或3或9 [解析] 有三种情况: ①四个数中x 最小, 则1+42=11+x 4,解得x =-1.②四个数中x 最大, 则6+42=11+x 4,解得x =9.③四个数中x 既不最小也不最大,则x +42=11+x 4,解得x =3.故填-1或3或9.16.b >a >c17.解:(1)根据题意得:1-20%-10%-15%-30%=25%,则a 的值是25.故填25; (2)观察条形统计图得:x =1.50×2+1.55×4+1.60×5+1.65×6+1.70×32+4+5+6+3=1.61(m);∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65 m ;将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60, ∴这组数据的中位数是1.60 m. (3)能.18.6 [解析] 根据题意得⎩⎨⎧3+a +2b +5=24,a +6+b =18,解得⎩⎨⎧a =8,b =4,则新数据为3,8,8,5,8,6,4.排序后可知中位数为6.故填6.19.解:(1)6÷30%=20,3÷20×100%=15%, 360°×15%=54°,故所填的数据为54°. (2)20-6-3-6=5,统计图补充如下:(3)20-1-7-8=4,∴x 乙=70×7+80×4+90×1+100×820=85(分).(4)∵s 甲2<s 乙2,∴甲校20名同学的成绩比较整齐. O =60°,OB =CO ,∴△OBF ≌△COE ,∴BF =OE.概率A 层基础练 1.[2017·自贡]下列成语描述的事件为随机事件的是( ) A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼2.一个均匀的正方体木块,每个面上都分别标有数字1,3,5,7,9,11,任意掷出这个正方体木块,朝上的数字为偶数的可能性是( )A .很可能B .不可能C .不太可能D .可能3.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次奖必有一次抽到一等奖 B .抽一次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( ) A.15 B.25 C.35 D.45图K32-15.点O 1,O 2,O 3为三个大小相同的正方形的中心,一只小虫在如图K32-1所示的实线围成的区域内爬行,则小虫停留在阴影区域内的概率是( )A.17B.15C.27D.25图K32-26.如图K32-2,在5×5的正方形网格中,从在格点上的点A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的概率为( )A.13B.12C.23D.347.一枚质地均匀的正方体骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是( )A.12B.13C.23D.168.如图K32-3所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.图K32-3图K32-49.[2017·娄底]在如图K32-4所示的电路中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是________. 10.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球________个.11.[2017·六盘]水端午节当天,小明带了四个粽子(除味道不同外,其他均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能结果. (2)请你计算小红拿到的两个粽子刚好是同一味道的概率.12.在一个不透明的盒子里装有黑、白两种颜色的球共40个,这些球除颜色外其余完全相同.小颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为________; (3)试估算盒子里黑、白两种颜色的球各有多少个.B 层能力练13.在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n 的图象的顶点在坐标轴上的概率为( )A.25B.15C.14D.12图K32-514.如图K32-5,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A.613B.513C.413D.31315.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗16.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是________.17.[2017·福建]一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是________.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x ,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y.(1)用列表法或画树状图法表示出(x ,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x ,y)落在反比例函数y =6x 的图象上的概率;(3)求小兰、小田各取一次小球所确定的数x ,y 满足y <6x 的概率.C 层拓展练 19.[2017·聊城]如果任意选择一对有序整数(m ,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是________.参考答案1.B 2.B 3.C 4.B 5.B 6.D 7.C 8.12 9.1310.811.解:(1)记两个是大枣味的粽子分别为A 1,A 2,两个火腿味的分别为B 1,B 2. 画树状图如图所示:由树状图可知共有12种等可能的结果,分别为(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 2,A 1),(A 2,B 1),(A 2,B 2),(B 1,A 1),(B 1,A 2),(B 1,B 2),(B 2,A 1),(B 2,A 2),(B 2,B 1).(2)由(1)可知,一共有12种可能结果,小红拿到的两个粽子刚好是同一味道的有4种结果,所以P(同一味道)=412=13.12.解:(1)根据表中数据,当n 很大时,摸到白球的频率将会接近0.6,故答案为0.6; (2)∵摸到白球的频率为0.6,∴估计摸到白球的概率P =0.6,故答案为0.6; (3)盒子里白、黑两种颜色的球各有40×0.6=24(个),40-24=16(个). 13.A 14.B15.C [解析] ∵刚开始取得白色棋子的概率是25.∴x x +y =25,∵再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,∴x x +y +6=14,联立方程组⎩⎨⎧x x +y =25,x x +y +6=14,解得x =4,y =6.经检验,x =4,y =6是原方程组的解.∴原来盒中有白色棋子4颗,故选C. 16.1417.红球18.解:(1)列表如下:,(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)∵点(x ,y)落在反比例函数y =6x 的图象上的结果有(2,3),(3,2),共2种,∴点(x ,y)落在反比例函数y =6x 的图象上的概率为216=18.(3)∵满足y <6x 的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(3,1),(4,1),共8种,∴所确定的数x ,y 满足y <6x 的概率为816=12.19.17[解析] ∵m =0,±1,n =0,±1,±2,±3,∴有序整数(m ,n)共有:3×7=21(种)结果.∵方程x 2+nx+m=0有两个相等实数根,则Δ=n2-4m=0,有(0,0),(1,2),(1,-2)三种结果,∴关于x的方程x2+nx+m=0有两个相等实数根的概率是321=17,故答案为17.。
云南省2018年中考数学总复习第八章概率与统计第二节概率同步训练
率第二节概 ______分钟________ 班级:________ 限时:姓名:有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、东营)1.(2018·.将这五张卡片背面向上洗匀,菱形,从中随机抽取一张,卡片上的图形是中心对称图形的概率是________小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面、那么你赢;如).(2018·舟山2填“公平”或(________.据此判断该游戏__________.果两次是一正一反.则我赢.”小红赢的概率是“不公平”) 某射手在相同条件下进行射击训练,结果如下:2018·淮安)3.(mm 击中靶心的频数射击次数n击中靶心的频率 n0.900 10 90.950 20 190.925 37 400.900 45 500.890 100 890.905 200 1810.898 500 4490.9019011 000该射手击中靶心的概率的估计值是____________.(精确到0.01)4.(2018·益阳)2018年5月18日,益阳新建西流湾大桥竣工通车.如图,从沅江A地到资阳B 地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的概率是_________.5.(2018·淄博)下列语句描述的事件中,是随机事件的为( )A.水能载舟,亦能覆舟 B.只手遮天,偷天换日D.心想事成,万事如意C.瓜熟蒂落,水到渠成6.(2018·泰州)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%.他明天将参加一( )场比赛,下面几种说法正确的是10% .小亮明天的进球率为A 次必进球1次B.小亮明天每射球10 C.小亮明天有可能进球 D.小亮明天肯定进球某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了呼和浩特).7(2018·( )如下折线统计图,则符合这一结果的实验最有可能的是个黄球,从中随机取一个,取到红球A.袋中装有大小和质地都相同的3个红球和2 B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数 C.先后两次掷一枚质地均匀的硬币,两次都出现反面9D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过假()如图,飞镖游戏板中每一块小正方形除颜色外都相同,若某人向游戏板投掷飞镖一次苏州8.(2018·( ),则飞镖落在阴影部分的概率是设飞镖落在游戏板上)5411 A. B. D. C. 9923的号码,若从笔筒中10~(9.2018·贵港)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1( ) 的倍数的概率是任意抽出一支铅笔,则抽到编号是32131 C.A.D. B.510510位女选手的出位男选手和2019·原创)某校举行数学青年教师优秀课比赛活动,某天下午在安排2210.(( ) 场顺序时,采用随机抽签的方式.则第一、二位出场选手都是女选手的概率是1111D. C. A. B. 236411.(2018·贵阳)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同( )一条网格线上,其中恰好摆放成如图所示的位置的概率是2111 D.C.B.A. 512610点出发,沿格AAB剪下的图形,一质点P由如图是一个沿12.(2018·无锡)3×3正方形方格纸的对角线( )点的不同路径共有由A点运动到B点线每次向右或向上运动1个单位长度,则点P条 D.7.4条 B.条5 C.6条A( ) 小亮恰好站在中间的概率是2018·聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,.13(1211 C. A. B. D.6323个扇形,并使得各个扇形的面积都相等,然)镇江)小明将如图所示的转盘分成n(n14.是正整数(2018·个数字,且各区域内标注12n(,每个区域内标注6,…,4后他在这些扇形区域内分别标连续偶数数字2,),转动转盘1次,的数字互不相同当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率5是,则n的取值为( ) 6A.36B.30C.24D.18.(2019·特色)有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y 215=2x,y=x21-3(x>0),y=(x>0),y=-(x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是yx3x随x的增大而增大的概率是( )113C. D.1A. B. 44216.(2018·淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m-n|≤1,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是( )3511D. A. B. C. 2488.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是特色)17.(2019·( )1 A.小明不是胜就是输,所以小明胜的概率为221 ,所以输的概率是B.小明胜的概率是331C.两人出相同手势的概率为 2D.小明胜的概率和小亮胜的概率一样18.(2018·昆明五华区二模)第十九届中国(昆明)国际汽车博览会将于2018年6月28日-7月2日在昆明滇池国际会展中心举办,以“人·车·创造精彩新生活”为主题,博览会设了编号为1~5号新能源汽车展厅共5个,小雨一家计划利用两天时间参观其中两个展厅,第一天从5个展厅中随机选择一个,第二天从余下的4个展厅中再随机选择一个,且每个展厅被选中的机会均等 .(1)第一天,1号展厅没有被选中的概率是________;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.19.(2018·盐城)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子,一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(1).(2)请你计算小悦拿到的两个粽子都是肉馅的概率.20.(2018·江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是__________事件,“小悦被抽中”是________事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为________;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.21.(2018·昆明盘龙区一模)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相1同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率是.2 求口袋中黄球的个数;(1).(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率.22.(2019·特色)某体育馆有3个入口和3个出口,其示意图如下,参观者可从任意一个入口进入,参观结束后从任意一个出口离开.(1)用树状图表示,小明从进入到离开,对于入口和出口的选择共有多少种不同的结果?(2)小明从入口1进入并从出口2离开的概率是多少?23.(2018·甘肃省卷)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.24.(2019·易错)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图.(1)若小明设计的电路图(四个开关按键都处于打开状态)如图1所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图(四个开关按键都处于打开状态)如图2所示,求同时闭合其中两个开关按键,灯泡能发光的概率.(用列表或树状图法)25.(2018·陕西改编) 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(2).26.(2018·昆明五华区一模)为了弘扬中国传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加.其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“两个黄鹂鸣翠柳”.(1)小明回答该问题时,对第二个字是选“个”还是选“只”难以抉择,若随机选择其中一个,则小明回答正确的概率是________;(2)小丽回答该问题时,对第二个字是选“个”还是选“只”、第五个字是选“鸣”还是选“明”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.27.(2018·云南二模)正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.(1)请用树状图或列表的方法表示可能出现的所有结果;(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.PK环节,为了随机分选游戏双方的组员,某电视台的一档娱乐性节目中,在游戏)云南一模2018·(.28.主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA、BB、CC,只露出它们的头和111尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA的概率;1(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.29.(2018·连云港)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲、乙两队每局获胜的机会相..........同.(1)若前四局双方战成2∶2,那么甲队最终获胜的概率是________;(2)现甲队在前两局比赛中已取得2∶0的领先,那么甲队最终获胜的概率是多少?30.(2018·荆门)文化是一个国家、一个民族的灵魂.近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经典咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经典咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;(3)若选“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.参考答案141 2.4. 不公平1. 3.0.90 34513.B 11.A 12.B 6.C 7.D 8.C 9.C 10.A 5.D 17.D 16.B C 15.C 14.4(1);.解: 185(2)根据题意列表如下:1 2 3 4 5(14) ,2) ,(13) 5) (1,(11,(2 ,,(2,2 (2,1) 3) 4) 5) (2(33,,(31) (3,(3,2) 4) 5)(43) (4(44,2) 1) (4,,,5),(52),(55,3)(54),(51)由表格可知,总共有20种等可能的结果,每种结果出现的可能性相同.其中两天中4号展厅被选中的结果有8种,82∴P(4号展厅被选中)==.20519.解:(1)画树状图如解图所示:由树状图可知:小悦拿到两个粽子的所有可能结果共有12种;(2)由树状图可知:小悦拿到的两个粽子都是肉馅的结果共有2种,21所以P(小悦拿到的两个粽子都是肉馅的)==.126120.解:(1)不可能,随机,.4 画树状图如解图:(2).列表如下:小悦小艳小惠小倩小悦,小倩小悦,小艳小悦,小惠小悦小惠,小倩小惠,小悦小惠,小艳小惠小艳,小倩小艳,小惠小艳,小悦小艳小倩,小惠小倩,小悦小倩,小艳小倩由树状图或列表可知,共有12种等可能结果,其中小惠被抽中的有6种结果,61所以小惠被抽中的概率为:P(小惠被抽中)==.12221.解:(1)设口袋中黄球的个数为x个,21根据题意得:=, 2+1+x2解得:x=1,经检验:x=1是原分式方程的解且符合实际,答:口袋中黄球的个数为1个.(2)画树状图如解图:∵从树状图可知共有12种等可能的结果,其中两次摸出都是红球的有2种情况,21∴P(两次摸出都是红球)==.12622.解:(1)画树状图如解图:(2)由树状图可知,共有9种等可能结果,其中小明从入口1进入并从出口2离开的只有1种,1∴小明从入口1进入并从出口2离开的概率为.9.13 .23(1)=;米粒落在阴影部分的概率为39 (2)列表如下:110.=30种等可能的情况,其中图案是轴对称图形的有10种,故图案是轴对称图形的概率为共有3301 ;24.解:(1)任意闭合一个开关按键,灯泡能发光的概率为4 画树状图如解图:(2)所以同时闭合其6,共有12种等可能的结果数,其中同时闭合其中两个开关按键,灯泡能发光的结果数为16.中两个开关按键,灯泡能发光的概率为=212的概2(1).解:数字“1”“-2”“3”所占的圆心角均为120°,则转动转盘一次,转出的数字是-251120.=率为3360 列表如下:(2)乘积 1 3 -2-2 1 1 3- 3 9 6 34--26-2种,5种等可能的结果,其中乘积为正数的情况有9由表格可知:共有.5.∴转动转盘两次,转出的数字之积为正数的概率为9126.解:(1); 2(2)列表:∵由表格可知,若两次分别随机选择共有4种等可能结果,其中正确的有1种结果,∴小丽回答正确的概1率为.427.解:(1)解法一:用列表法如下:解法二:画树状图如解图.81(2)P(和为3的倍数)==.24328.解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,1∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA的概率是;13(2)画树状图如解图:种,种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3共有913.=则甲、乙两位嘉宾能分为同队的概率是39129.解:(1).2(2)画树状图如解图所示:由解图可知,剩下的三局比赛共有8种等可能的结果,其中甲至少胜一局有7种,7所以,P(甲队最终获胜)=.830.解:(1)调查的学生人数=30÷20%=150(人);(2)D类人数=150×50%=75(人);B类人数=150-(30+24+75+6)=15(人).因此在条形统计图中在B类处补充高为15的长方条,在D类处补充高为75的长方条,如解图.15B类所在扇形的圆心角=360°×=36°. 150(3)记“E”类中2名女生为N,N,4名男生为M,M,M,M :)画树状图略(列表如下.432121.∵共有30种等可能结果,其中恰好是同性别学生(记为事件F)的有14种情况,14∴P(F)=.3015。
2018年中考数学真题练习卷统计与概率(解析版)
2018年中考数学真题练习卷: 统计与概率一、选择题1.已知一组数据:6,2,8,,7,它们的平均数是6.则这组数据的中位数是()A. 7B. 6C. 5D. 4【答案】A【解析】:由题意得:5+2+8+x+7=6×5,解得:x=8,这组数据按照从小到大的顺序排列为:2,5,7,8,8,则中位数为7.故答案为:A.【分析】首先根据平均数为6求出x的值,然后根据中位数的概念这组数据按照从小到大的顺序排列,这组数据共有5个处于最中间位置的是7,从而得出答案。
2.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为,他明天将参加一场比赛,下面几种说法正确的是( )A. 小亮明天的进球率为B. 小亮明天每射球10次必进球1次C. 小亮明天有可能进球D. 小亮明天肯定进球【答案】C【解析】∵根据以往比赛数据统计,小亮进球率为,∴他明天参加比赛,有可能进球。
故答案为:C【分析】根据已知条件小亮进球率为,得出他明天参加比赛,有可能进球,即可得出答案。
3.一组数据2,1,2,5,3,2的众数是()A. 1B. 2C. 3D. 5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.4.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D符合题意,故答案为:D.【分析】根据众数是一组数据中出现次数最多的数,可对A作出判断;根据中位数的定义,分别求出甲乙两组数据的中位数,可对B作出判断;利用平均数公式分别计算出甲乙的平均数,可对C作出判断;分别求出甲乙两组数据的方差,比较大小,可对D作出判断;从而可得出答案。
江苏省徐州市中考数学总复习第八单元统计与概率单元测试
单元测试 ( 八)范围 : 统计与概率限时 :45 分钟 满分 :100 分一、 选择题 (每题 4分, 共 24 分)1 为了认识南京市 2018 年中考数学学科各分数段成绩分布情况, 从中抽取 150 名考生的中考数学成绩进行统计解析. 在.这个问题中 , 样本是指 ( )A . 150B . 被抽取的 150 名考生C . 被抽取的 150 名考生的中考数学成绩D . 南京市 2018 年中考数学成绩2. 要检查安顺市中学生认识禁毒知识的情况 , 以下抽样检查最适合的是()A . 在某中学抽取 200 名女生B . 在安顺市中学生中抽取200 名学生C . 在某中学抽取 200 名学生D . 在安顺市中学生中抽取200 名男生 3. 以下说法正确的选项是()A . 任意掷一枚质地平均的硬币10 次 , 必然有 5 次正面向上B . 天气预告说“明天的降水概率为 40%”, 表示明天有 40%的时间都在降雨C . “篮球队员在罚球线上投篮一次, 投中”为随机事件D . “a 是实数 , |a| ≥0”是不可以能事件4. 在一次数学答题比赛中 , 五位同学答对题目的个数分别为 7,5,3,5,10,则关于这组数据的说法不正确的选项是()A .众数是 5B .中位数是 5C .平均数是6D .方差是 3.65. 甲、乙、丙、丁 4 支仪仗队队员身高的平均数及方差以下表所示:甲乙 丙 丁平均数 (cm)177178178179方差0.9 1.6 1.1 0.6哪支仪仗队的身高更为整齐? ( )A . 甲B 乙C 丙D 丁. . .6. 在一个不透明的盒子中装有8 个白球 , 若干个黄球 , 它们除颜色不相同外 , 其他均相同 . 若从中随机摸出一个球为白球的概率是 , 则黄球的个数为( )A .16B .12C .8D .4二、 填空题 (每题 4分, 共 24 分)7. 甲 , 乙 , 丙三人进行射击测试 , 每人射击 10 次的平均成绩都是9. 1 环 , 方差分别是 =0.51, =0.50, =0.41, 则三人中成绩最牢固的是( 填“甲”或“乙”或“丙”).8.某校学生自主建立了一个学习用品义卖平台, 已知九年级200 名学生义卖所得金额的频数分布直方图如图D8- 1 所示 ,那么 20 30 元这个小组的频率是~.图 D8-19.某 8 种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.10.一个不透明的盒子里有n 个除颜色外其他都相同的小球, 其中有 6 个黄球 , 每次摸球前先将盒子里的球摇匀, 任意摸出一个球记下颜色后再放回盒子, 经过大量重复摸球实验后发现, 摸到黄球的频率牢固在30%,那么可以计算出n 大体是.11.春节期间 , 重庆某闻名旅游景点成为热门景点, 大量游客慕名而来, 市旅游局统计了春节期间五天的游客数量, 绘制了如图 D8- 2 所示的折线统计图, 则这五天游客数量的中位数为万人.图 D8-212.在不透明的口袋中有四个形状, 大小 , 质地完满相同的小球, 四个小球上分别标有数字,2,4,- ,现从口袋中任取一个小球 ,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点 P在反比率函数y= 的图像上,则点 P落在正比率函数 y=x 图像上方的概率是.三、解答题(共52分)13. (16 分 ) 某同学参加了学校举行的“五好小公民·红旗飘飘”演讲比赛,7 位评委给该同学的打分( 单位 : 分 ) 情况以下表 :评委评委 1评委 2评委 3评委 4评委 5评委 6评委7打分 6 8 7 8 5 7 8(1) 直接写出该同学所得分数的众数与中位数;(2) 计算该同学所得分数的平均数 .14. (17分)随着我国经济社会的发展, 人们关于美好生活的追求越来越高. 某社区为了认识家庭关于文化教育的花销情况 ,随机抽取部分家庭, 对每户家庭的文化教育年花销金额进行问卷检查, 依照检查结果绘制成不完满的统计图表.组别家庭年文化教育花销金额x(元)户数A x≤5000 36B 5000 ≤10000m<xC 10000 ≤15000 27<xD 15000<x≤20000 15E 20000 30x>图 D8-3请你依照统计图表供应的信息, 解答以下问题.(1) 本次被检查的家庭有户 , 表中m= ;(2) 本次检查数据的中位数出现在组 , 扇形统计图中 ,D 组所在扇形的圆心角是度;(3) 这个社区有 2500 户家庭 , 请你估计家庭年文化教育花销10000 元以上的家庭有多少户.15. (19 分 ) 为了增强学生的环保意识, 某校组织了一次全校2000 名学生都参加的“环保知识”考试, 考题共 10 题.考试结束后 , 学校团委随机抽查部分考生的考卷, 对考生答题情况进行解析统计, 发现所抽考卷中答对题量最少为 6 题.并且绘制了两幅不完满的统计图, 请依照统计图供应的信息解答以下问题:图 D8-4(1) 本次抽查的样本容量是; 在扇形统计图中, m=, n=, “答对8 题”所对应的扇形的圆心角为度 ;(2)将条形统计图补充完满 ;(3)依照以上检查结果 , 估计出该校答对很多于 8 题的学生人数.参照答案1.C2.B3.C4.D5.D6.D7.丙8. 0. 25 9. 120 10. 2011. 23. 412.[ 解析 ] P的横坐标为,2,4,- ,且点 P的纵坐标分别为2, , , - 3, 其中在正比率函数y=x 图像上方的点为(,2), 故概率为.13.解 :(1)众数为8分,中位数为7 分.(2)= ×(6 +8+7+8+5+7+8) =7(分) .答 : 该同学所得分数的平均数为7 分.14.解 :(1)30÷20%=150,150-36-27-15-30=42,故答案为 :15042.(2) 第 75 和第 76 两个数据都在 B 组 ,∴中位数出现在 B 组 ;D组所在扇形的圆心角为:×100%×360°=36°,故答案为 :B36.答 : 估计家庭年文化教育花销10000 元以上的家庭有1200 户. 15.解 :(1)样本容量是5÷10%=50,因此 B 所占百分比为×100%=16%,因此m=16;又 D 所占百分比为 1- (10%+16%+24%+20%)=30%,因此n=30;答对 8 题对应的是C, 因此对应的圆心角为360°×24%=86. 4°;故各空依次填 :50;16;30;86. 4.(2)D 对应人数 :50 × 30%=15( 人 );E 对应人数 :50 ×20%=10( 人 ) .补全的条形统计图以下:(3)抽样中答对很多于 8 题的学生所占的百分比=24%+30%+20%=74%.因此该校答对很多于8 题的学生人数为2000×74%=1480( 人 ) .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试(八) 统计与概率
(时间:45分钟 满分:100分)
一、选择题(每小题5分,共30分)
1.在下列调查中,适宜采用全面调查的是(B) A .了解我省中学生的视力情况
B .了解九(1)班学生校服的尺码情况
C .检测一批电灯泡的使用寿命
D .调查台州《600全民新闻》栏目的收视率
2.(2017·深圳)数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是(A)
A.17
B.13
C.121
D.110
3.(2017·资阳)我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:
A .11,20
B .25,11
C .20,25
D .25,20
4.(2017·达州)如图,在5×5的正方形网格中,从在格点上的点A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的概率为(D)
A.13
B.12
C.23
D.34
5.(2017·雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了扇形统计图,则在被调查的学生中,跑步和打羽毛球的学生人数分别是(B)
A .30,40
B .45,60
C .30,60
D .45,40
6.(2017·泰安)在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m )2
+n 的顶点在坐标轴上的概率为(A)
A.25
B.15
C.14
D.12
二、填空题(每小题5分,共20分)
7.(2017·兰州)一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球20个.
8.(2017·邵阳)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,
计算他们的平均成绩及方差如下表:
请你根据上表中的数据选一人参加比赛,最适合的人选是乙.
9.(2017·金华)为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5 mg/L ,则第3次检测得到的氨氮含量是1mg/L.
10.(2017·长沙)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是5
6.
三、解答题(共50分)
11.(12分)(2017·济宁)2017年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.
请根据图1、图2解答下列问题:
(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整; (2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.
解:(1)2013年父亲节当天剃须刀的销售额为5.8-1.7-1.2-1.3=1.6(万元). 补全条形图如图.
(2)1.3×17%=0.221(万元).
答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元. 12.(12分)(2017·黄冈)望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A 类,20分钟<t ≤40分钟的学生记为B 类,40分钟<t≤60分钟的学生记为C 类,t >60分钟的学生记为D 类四种,将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)m =26%,n =14%,这次共抽查了50名学生进行调查统计; (2)请补全上面的条形图;
(3)如果该校共有1 200名学生,请你估计该校C 类学生约有多少人? 解:(2)20%×50=10(名).补图如图.
(3)1 200×20%=240(人). 答:该校C 类学生约有240人.
13.(12分)小明参加某网店的“翻牌抽奖”活动,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品. (1)如果随机翻1张牌,那么抽中20元奖品的概率为1
4
;
(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,那么所获奖品总值不低于30元的概率为多少? 解:
∴总值不低于30元的概率为412=1
3
.
14.(14分)为了培养学生的兴趣,我市某小学决定开设A.舞蹈,B.音乐,C.绘画,D.书法四个兴趣班,为了解学生对这四个项目的兴趣爱好,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的统计图,请结合图中信息解答下列问题:
(1)在这次调查中,共调查了多少名学生? (2)请将两幅统计图补充完整;
(3)若本校一共有2 000名学生,请估计喜欢“音乐”的人数;
(4)若调查到喜欢“书法”的4名学生中有2名男生,2名女生,现从这4名学生中任意抽取两名学生,请用画树状图或列表的方法,求出刚好抽到相同性别的学生的概率.
解:(1)由图可知,这次调查中,共调查了120÷40%=300(名). 所以这次调查中,共调查了300名学生. (2)如图.
(3)若本校一共有2 000名学生,则喜欢“音乐”的学生约为:20%×2 000=400(人).
(4)若喜欢“书法”的4名学生中有2名男生,2名女生,现从这4名学生中任意抽取两名学生,用列表法如下:
)
女共有12种等可能结果,其中刚好抽到相同性别学生的有4种可能,所以刚好抽到相同性别的学生的概率为412=1
3
.。