barrier height vs B3LYP
CK Switch 产品说明书
Dimensions are shown: Inch (mm)Specifications and dimensions subject to change L–22S w i t ch l o c kModels AvailablePM Series5 Tumbler Miniature Snap-in SwitchlocksFeatures/Benefits• International agency listings • Snap-in mounting• Wire lead terminations available • 5 Tumbler lock with positive detentTypical Applications • Computers• Point-of-sale terminals • Marine equipmentSpecificationsCONTACT RATING: Q contact material: 4 AMPS @ 125 V AC or28 V DC; 2 AMPS @ 250 V AC (UL/CSA); 4 AMPS @ 125 V AC, 2 AMPS @ 250 V AC, T65 (VDE). See page L-28 for additional ratings.ELECTRICAL LIFE: 10,000 make-and-break cycles at full load.CONTACT RESISTANCE: Below 10 m Ω typ. initial @2-4 V DC, 100 mA, for both silver and gold plated contacts.INSULATION RESISTANCE: 109 Ω min.DIELECTRIC STRENGTH: 1,000 Vrms min. @ sea level.INDEXING: 90º:2 positions.MaterialsLOCK: 6/6 nylon with matte finish (UL 94V-2), color black, 5 tumbler, single bitted lock with integral detent mechanism.KEYS: Two nickel plated brass keys with black plastic head, othercolors available.SWITCH HOUSING: 6/6 nylon (UL 94V-2).CONTACTS & TERMINALS: Q contact material: Copper, silverplated. See page L-28 for additional contact materials.NOTE: Any models supplied with Q or B contact material are RoHS compliant.NOTE: Specifications and materials listed above are for switchlocks with standard options. For information on specific and custom switchlocks, consult Customer Service Center.Build-A-SwitchTo order, simply select desired option from each category and place in the appropriate box. Available options are shown and described on pages L–27 and L-28. For additional options not shown in catalog, consult Customer Service Center.Switch and lock FunctionPM0613 SP, 90º, Index, keypull pos. 1 PM061U SP, 90º Index, keypull pos. 1 & 3Lock Color 2 Black Key Color 2 BlackKeying E T wo nickel platedbrass keys with insert molded plastic headTerminations 05 Quick connect WC Wire leadContact Material Q Silver B G o ldLock TypeB 5 Tumbler lock with detentLock FinishM Plastic lock with matte finish Lock StyleK Cone shaped facing 27 Jun 22L–23SwitchlockSpecifications and dimensions subject to change PM Series= Detent Position (90º)= Key pull possible in these positions.= Stop PositionsLEGEND5 TUMBLER LOCK WITH DETENTTWO NICKEL PLATED BRASS KEYS WITH INSERT MOLDED PLASTIC HEADOPTION CODELOCK COLOR 2BLACKOPTION CODEKEY COLOR 2BLACKAll models with all options when ordered with ‘Q’ contact material.Key part number: 617D100410227 Jun 22Specifications and dimensions subject to changeWIRE LEADPM SeriesAVAILABLE HARDWAREPANEL MOUNTINGPanel thickness:.050-.080 (1,27-2,03)M PLASTIC LOCK WITH MATTE FINISHQUICK CONNECTCONE SHAPED FACINGUL style 1015.Black wire standard, other colors and lengths available,consult Customer Service Center.Key Code: 041PART NO. (ONE KEY)617D1004102 BLACKMaterial: BrassFinish: Nickel plate6/6 Nylon insert molded head1 CONTACTS & TERMINALS: Copper, with gold plate over nickel plate.2 C ONTACTS & TERMINALS: Copper, silver plated (standard with alltermination options).* Note: See Technical Data section of this catalog for RoHS compliant and compatible definitions and specifications.All models with all options when ordered with ‘Q’ contact material.CONTACT AND OPTION CODETERMINAL MATERIALRATINGQ 4 AMPS @ 125 V AC or 28 V DC; 2 AMPS @ 250 V AC (UL/CSA)LOW LEVEL/DRY CIRCUITBSILVER 2POWER0.4 VA MAX. @ 20 V AC or DC MAX.RoHSCOMPLIANT*RoHS COMPATIBLE*YES YES YESYESGOLD1L–24S w i t c h l o c k27 Jun 22。
量子垒高度对深紫外LED 调制带宽的影响
第43卷㊀第1期2022年1月发㊀光㊀学㊀报CHINESE JOURNAL OF LUMINESCENCEVol.43No.1Jan.,2022㊀㊀收稿日期:2021-10-25;修订日期:2021-11-11㊀㊀基金项目:国家重点研发计划(2017YFB0404104);国家自然科学基金(61974139);北京自然科学基金(4182063)资助项目Supported by National Key R&D Program of China (2017YFB0404104);National Natural Science Foundation of China (61974139);Beijing Natural Science Foundation(4182063)文章编号:1000-7032(2022)01-0001-07量子垒高度对深紫外LED 调制带宽的影响郭㊀亮1,2,郭亚楠1,2,羊建坤1,2,闫建昌1,2,王军喜1,2,魏同波1,2∗(1.中国科学院半导体研究所半导体照明研发中心,北京㊀100083;2.中国科学院大学材料与光电研究中心,北京㊀100049)摘要:AlGaN 基深紫外LED 由于具有高调制带宽和小芯片尺寸,在紫外光通信领域受到越来越多的关注㊂本研究通过改变生长AlGaN 量子垒层的Al 源流量,生长了三种具有不同量子垒高度的深紫外LED,研究了量子垒高度对深紫外LED 光电特性和调制特性的影响㊂研究发现,随着量子垒高度的增加,深紫外LED 的光功率出现先增加后减小的趋势,量子垒中Al 组分为55%的深紫外LED 的光功率相比50%和60%的深紫外LED 提升了近一倍㊂载流子寿命则出现先减小后增大的趋势,且发光峰峰值波长逐渐蓝移㊂APSYS 模拟表明,随着量子垒高度增加,量子垒对载流子的束缚能力增强,电子空穴波函数空间重叠增加,载流子浓度和辐射复合速率增加;但进一步增加量子垒高度又会由于电子泄露,空穴浓度降低,从而辐射复合速率降低㊂量子垒中Al 组分为55%的深紫外LED 的-3dB 带宽达到94.4MHz,高于量子垒Al 组分为50%和60%的深紫外LED㊂关㊀键㊀词:紫外光通信;深紫外发光二极管;多量子阱层;调制带宽;发光功率中图分类号:TN383+.1;TN929.12㊀㊀㊀文献标识码:A㊀㊀㊀DOI :10.37188/CJL.20210331Effect of Barrier Height on Modulation Characteristics ofAlGaN-based Deep Ultraviolet Light-emitting DiodesGUO Liang 1,2,GUO Ya-nan 1,2,YANG Jian-kun 1,2,YAN Jian-chang 1,2,WANG Jun-xi 1,2,WEI Tong-bo 1,2∗(1.Research and Development Center for Semiconductor Lighting Technology ,Institute of Semiconductors ,Chinese Academy of Sciences ,Beijing 100083,China ;2.Center of Materials Science and Optoelectronics Engineering ,University of Chinese Academy of Sciences ,Beijing 100049,China )∗Corresponding Author ,E-mail :tbwei @Abstract :AlGaN-based deep ultraviolet LED has attracted more and more attention in ultravioletcommunication due to its high modulation bandwidth and small chip size.In this study,AlGaN-based deep ultraviolet LEDs with varied Al composition of 50%,55%,60%in quantum barriers are fabricated.The effect of barrier height on the photoelectric and modulation characteristics of deep ultraviolet LEDs is studied.It is found that the optical power and external quantum efficiency (EQE)of the deep ultraviolet LED increase first and then decreased,and carrier lifetime decreases first and then increases as the quantum barrier height increases.The peak wavelength of the spectra shows a blue-shift.APSYS simulation revealed that the spacial overlap between the wave function of electron and hole is enhanced as Al composition increases.But further increase on barrier height will lead to current leakage which reduces the radiation recombination rate and carrier density in . All Rights Reserved.2㊀发㊀㊀光㊀㊀学㊀㊀报第43卷quantum well layer.The-3dB bandwidth of deep ultraviolet LED with55%Al composition inquantum barrier is measured to be94.4MHz,higher than those with50%and60%Al composition in quantum barrier.Key words:ultraviolet communication;deep ultraviolet light-emitting diodes;multiple-quantum-well layer;modula-tion bandwidth;optical power1㊀引㊀㊀言随着深紫外LED和日盲探测器的发展,紫外光通信受到越来越多的关注㊂紫外光通信利用紫外光传输信号,该信号可以被漂浮在空气中的微粒和气溶胶等散射和反射,实现非视距通信[1-2]㊂紫外光通信中使用的紫外光也称为日盲紫外光,它在光谱中位于200~280nm之间[3-4]㊂当太阳辐射穿过大气层时,会被空气中的水蒸气㊁二氧化碳㊁氧气㊁臭氧㊁悬浮颗粒和其他气体分子强烈散射㊁吸收或反射,从而导致太阳光谱不连续㊂在所有分子和粒子中,仅占大气0.01%~0.1%的臭氧在紫外光谱中具有很强的吸收带,从而使得到达地表的太阳光中日盲紫外光含量极少,这则为紫外光通信提供了低背景噪声的通信环境[5]㊂同时,紫外光通信还具有高保密性㊁无需频段许可㊁抗干扰能力强等优势,这使得紫外光通信在军事领域具有重要应用价值㊂紫外光源作为紫外光通信系统中重要的组成部分,其光功率决定了紫外光通信系统的传输距离,而其带宽决定了通信速率的上限[6]㊂紫外光通信系统中最常用的三种光源包括气体放电灯㊁激光器和LED㊂气体放电灯制造成本低㊁输出功率大,激光器的光线相干性高㊁单色性好㊁发散性低,然而这两种光源都存在体积大㊁功耗大㊁调制速率低的缺点㊂AlGaN基LED由于具有更高的调制带宽和更小的芯片尺寸,在紫外光通信中得到了越来越广泛的应用[7-9]㊂近年来,越来越多的研究团体开始研究基于深紫外LED作为光源的紫外光通信㊂Alkhazragi等基于商用发光波长为279nm的深紫外LED实现了1m链路上通信速率为2.4Gbps的紫外光通信系统,测得调制带宽为170MHz[10]㊂2018年,Kojima等基于调制带宽为153MHz㊁发光波长为280nm的深紫外LED,在1.5m链路上实现了1.6Gbps的通信速率[11]㊂2019年,He等制备了AlGaN基262nm深紫外Micro-LED阵列,在71 A/cm2电流密度下,测得调制带宽达到了438 MHz,在0.3m链路上实现了高达1.1Gbps的数据传输速率[12]㊂Zhu等制备了100μm深紫外Micro-LED,在400A/cm2电流密度下,测得调制带宽为452.53MHz[13]㊂尽管AlGaN基深紫外LED在紫外光通信中已经得到了广泛应用,但目前大部分研究仍集中在LED芯片工艺的改进上㊂关于深紫外LED外延结构对调制特性的影响的研究几乎处于空白状态㊂本研究通过改变生长AlGaN量子垒层时的Al源流量,控制了量子垒中Al组分分别为50%㊁55%和60%,生长了三种具有不同量子垒高度的深紫外LED,研究了量子垒高度对深紫外LED光电特性和调制特性的影响㊂并借助APSYS模拟和时间分辨光致发光光谱对实验结果进行了深入分析㊂2㊀实㊀㊀验2.1㊀样品制备实验中首先在c面蓝宝石衬底上生长1μm 厚的AlN缓冲层,然后在1130ħ下沉积20个周期的AlN(2nm)/Al0.6Ga0.4N(2nm)超晶格层㊂然后依次生长1.8μm厚Si掺杂浓度为3ˑ1018 cm-3的n-Al0.61Ga0.39N层,5个周期Al0.4Ga0.6N图1㊀紫外外延片结构示意图Fig.1㊀Wafer structure of ultraviolet LED. All Rights Reserved.㊀第1期郭㊀亮,等:量子垒高度对深紫外LED调制带宽的影响3㊀(3nm)/Al0.5/0.55/0.6Ga0.5/0.45/0.4N(12nm)多量子阱层,50nm厚的Mg掺杂p-Al0.6Ga0.4N电子阻挡层,30nm厚p-Al0.5Ga0.5N层以及150nm厚Mg 掺杂浓度为1ˑ1018cm-3的p-GaN层㊂随后,在800ħ氮气气氛下退火20min以激活Mg受主㊂对生长得到的深紫外LED外延片使用标准紫外流片工艺,制备了倒装结构深紫外LED,芯片尺寸为250μmˑ550μm,图1为外延片结构示意图㊂2.2㊀样品表征LED光功率测试采用的是远方光电公司HAAS-2000高精度快速光谱辐射计,该设备光谱范围为200~2550nm㊂光致发光光谱测试采用215nm紫外激光器作为激发光源,激光功率为31 mW,所用光栅线密度为1200l/mm,测试波长范围为240~320nm,步长为0.2nm,积分时间为1.0s,测试环境温度为295K㊂带宽测试系统采用安捷伦E5061B型网络分析仪,其扫描频率范围为5Hz~3GHz,可覆盖氮化物LED的频率响应范围㊂直流偏置源采用Keithley2420作为电流源,该电流源最大输出电流为3A,最大输出电压为60 V㊂紫外探测器采用Thorlabs公司APD430A2/M 型硅基雪崩探测器,可探测波长范围是200~ 1000nm,可覆盖整个UVC波段㊂图2为实验中使用的带宽测试系统示意图㊂图2㊀带宽测试系统示意图Fig.2㊀Diagram of bandwidth testing system3㊀结果与讨论3.1㊀电致发光光谱图3是3种不同量子垒高度深紫外LED的EL测试结果㊂在20mA电流下,量子垒中Al组分为50%㊁55%和60%的深紫外LED的峰值波长分别为280.4,276.5,274.0nm,可以看出随着量子垒中Al组分的增加,深紫外LED的峰值波长逐渐蓝移㊂这是因为随着量子垒高度增加,量子阱对电子空穴的束缚能力增加,电子和空穴波函数的空间分离减小,量子限制效应增强,从而导致蓝移㊂同时可以看出,随着电流从20mA增加到100mA,深紫外LED的峰值波长逐渐红移㊂Al组分为50%的深紫外LED的峰值波长红移了1.2nm,Al组分为55%的深紫外LED的峰值波长红移了2nm,Al组分为60%的深紫外LED的峰值波长红移了1nm㊂同时LED的发光峰半高宽也逐渐展宽,Al组分为50%的深紫外LED的半高宽从9.9nm展宽到10.8nm,Al组分为55%的深紫外LED的半高宽从11.3nm展宽到12nm, Al组分为60%的深紫外LED的半高宽从10.7nm图3㊀量子垒中Al组分为50%(a)㊁55%(b)㊁60%(c)的深紫外LED的EL光谱随电流的变化㊂Fig.3㊀EL spectra of ultraviolet LED with Al composition of 50%(a),55%(b),60%(c)in quantum barrierunder varied currents.. All Rights Reserved.4㊀发㊀㊀光㊀㊀学㊀㊀报第43卷展宽到11.7nm㊂这是因为根据焦耳定律,随着电流增加,单位时间内产生的热量增加㊂根据能带宽度和温度的关系,深紫外LED的能带宽度会随着温度升高而线性减小,从而导致发光波长红移[14]㊂热量的增加还会导致量子限制斯塔克效应增强,从而导致半高宽增加[15]㊂3.2㊀光功率对3种不同量子垒高度的深紫外LED芯片进行光电测试,得到不同测试电流下的光功率测试结果,如图4所示㊂可以看出光功率随着量子图4㊀量子垒中Al组分为50%㊁55%㊁60%的深紫外LED 的光功率随电流的变化㊂Fig.4㊀Optical power of ultraviolet LED with Al composition of50%,55%,60%in quantum barrier under var-ied currents.垒高度的增加,出现先增大后减小的趋势㊂这是因为随着量子垒高度的增加,量子阱对电子空穴的束缚能力增强,使得电子空穴浓度增加,从而导致光功率增大㊂但进一步增加量子垒高度,会导致电子阻挡层对过冲电子的束缚能力减弱,过冲电子与p型区的空穴复合,导致空穴电流减小,最终导致光功率降低[16]㊂3.3㊀APSYS模拟我们使用APSYS软件对不同量子垒高度的AlGaN基深紫外LED的能带结构进行了模拟㊂模拟时,深紫外LED的注入电流为62.5mA,器件尺寸为250μmˑ250μm,从下到上为蓝宝石衬底㊁AlN缓冲层㊁n-Al0.55Ga0.45N层㊁有源区㊁p-Al0.65Ga0.35N电子阻挡层㊁p-Al0.55Ga0.45N层㊁p-GaN层㊂有源区由5个量子阱层和6个量子垒层组成,阱层为2nm厚的Al0.45Ga0.55N,垒层为10nm厚的Al0.5/0.55/0.6Ga0.5/0.45/0.4N㊂不同量子垒高度的AlGaN基的深紫外LED的能带结构如图5(a)㊁(b)㊁(c)所示㊂可以看出,随着量子垒高度的增加,电子和空穴的波函数空间分离逐渐减小,我们进一步对其辐射复合速率进行了模拟,模拟结果如图5(d)所示㊂辐射复合速率随着量子垒高度出现了先增加后减小的趋势㊂这是因为随着量子垒高度的增加,量子垒对载流子的束缚作图5㊀量子垒中Al组分为50%(a)㊁55%(b)㊁60%(c)的深紫外LED的能带结构示意图;(d)量子垒中Al组分为50%㊁55%和60%的深紫外LED的辐射复合速率分布示意图㊂Fig.5㊀Band structure of ultraviolet LED with Al composition of50%(a),55%(b),60%(c)in quantum barrier.(d)Ra-diation recombination rate of ultraviolet LED with Al composition of50%,55%and60%in quantum barrier.. All Rights Reserved.㊀第1期郭㊀亮,等:量子垒高度对深紫外LED调制带宽的影响5㊀用增加,使得量子阱内的载流子浓度增大,同时由于电子和空穴的空间波函数重叠增加,辐射复合所占的比重也会增加,从而辐射复合速率增大㊂但进一步增加量子垒高度又会由于电子泄漏,从而导致辐射复合速率减小[17-18]㊂3.4㊀时间分辨光致发光光谱我们对不同量子垒高度的深紫外LED进行了时间分辨光致发光光谱(TRPL)测试㊂不同量子垒高度深紫外LED的TRPL测试结果如图6所示㊂通过对曲线的衰减部分使用以下公式进行双衰减指数拟合[19]:I(t)=A1e-ττ1+A2e-ττ2,(1)其中τ1满足1/τ1=1/τnr+1/τ2,τnr为非辐射复合载流子寿命,τ2为辐射复合载流子寿命㊂量子垒中Al组分为50%㊁55%和60%的深紫外LED的载流子寿命分别为432,276,352ps㊂可以看出载流子寿命随着量子垒中Al组分的增加出现先减小后增大的趋势㊂图6㊀量子垒中Al组分为50%㊁55%㊁60%的深紫外LED的TRPL光谱随电流的变化㊂Fig.6㊀TRPL spectra of ultraviolet LED with Al composition of50%,55%,60%in quantum barrier.热平衡状态下,pn结中的载流子复合速率可以由以下公式得到:R=B(N0+Δn)(P0+Δn)-BN0P0,(2)其中B为复合常数,N0为电子浓度,P0为空穴浓度,Δn为过剩载流子浓度㊂经整理后可以得到如下公式:R=B(N0+P0+Δn)Δn,(3)由于在p型区中,P0远大于N0,因此上述公式可以进一步简化为:R=B(P0+Δn)Δn,(4)载流子寿命可以由以下公式表示:τ=Δn R=1B(P0+Δn),(5)由于载流子寿命和辐射复合速率成反比,随着量子垒高度增加,量子垒对载流子的束缚作用增强,辐射复合速率增加,载流子寿命因此减小㊂但进一步增加量子垒高度又会由于电子泄漏,导致辐射复合速率减小,载流子寿命增加[20]㊂3.5㊀调制带宽测试在60mA电流下,测试得到了深紫外LED的频率响应结果如图7所示㊂量子垒中Al组分为50%㊁55%和60%的深紫外LED的-3dB带宽分别为75.0,94.4,82.0MHz㊂深紫外LED的调制带宽随着量子垒高度的增加,出现了先增加后减小的趋势㊂LED的调制带宽主要受到载流子寿命和RC 时间常数决定,并且对于常规尺寸LED,其主要受载流子辐射复合寿命决定㊂载流子辐射复合寿命决定了发光强度在交变信号下的上升和下降时间,也决定了光功率随交变信号变化反应的快慢㊂两者之间满足以下关系[21]:f-3dB=12πτBJ qd,(6)其中f-3dB为LED的-3dB带宽,B为双分子复合系数,J为电流密度,q为元电荷,d为有源区厚度㊂载流子寿命越短,则光子随外电流变化反应的速度越快,从而调制带宽越高㊂这一结果也与3.4中载流子寿命的结果相吻合㊂图7㊀量子垒中Al组分为50%㊁55%㊁60%的深紫外LED 的频率响应图㊂Fig.7㊀Frequency response of ultraviolet LED with Al com-position of50%,55%,60%in quantum barrier. 4㊀结㊀㊀论本文研究了量子垒高度对深紫外LED光电. All Rights Reserved.6㊀发㊀㊀光㊀㊀学㊀㊀报第43卷特性和调制特性的影响,制备了3种具有不同量子垒高度的深紫外LED㊂研究发现,随着量子垒高度的增加,深紫外LED的光功率和外量子效率出现先增加后减小的趋势,载流子寿命则出现先减小后增大的趋势,EL光谱发光峰峰值波长逐渐蓝移㊂最后,我们使用基于网络分析仪的带宽测试系统对不同量子垒高度的深紫外LED进行了带宽测试,测得量子垒中Al组分为50%㊁55%和60%的深紫外LED的-3dB带宽分别为75.0, 94.4,85.0MHz㊂本文专家审稿意见及作者回复内容的下载地址: /thesisDetails#10.37188/ CJL.20210331.参㊀考㊀文㊀献:[1]UAN R Z,MA J S.Review of ultraviolet non-line-of-sight communication[J].China Commun.,2016,13(6):63-75.[2]DROST R J,SADLER B M.Survey of ultraviolet non-line-of-sight communications[J].Semicond.Sci.Technol.,2014,29(8):084006-1-11.[3]SHAW G A,NISCHAN M L,IYENGAR M A,et al.NLOS UV communication for distributed sensor systems[C].Pro-ceedings of SPIE4126,Integrated Command Environments,San Diego,CA,United States,2000:83-96.[4]KHAN A,BALAKRISHNAN K,KATONA T.Ultraviolet light-emitting diodes based on group three nitrides[J].Nat.Photonics,2008,2(2):77-84.[5]VAVOULAS A,SANDALIDIS H G,CHATZIDIAMANTIS N D,et al.A survey on ultraviolet C-band(UV-C)communica-tions[J].IEEE Commun.Surv.Tutor.,2019,21(3):2111-2133.[6]GUO L,GUO Y N,WANG J X,et al.Ultraviolet communication technique and its application[J].J.Semicond.,2021,42(8):081801.[7]ZHANG H,HUANG C,SONG K,et positionally gradedⅢ-nitride alloys:building blocks for efficient ultraviolet op-toelectronics and power electronics[J].Rep.Prog.Phys.,2021,84(4):044401-1-28.[8]HUANG C,ZHANG H C,SUN H D.Ultraviolet optoelectronic devices based on AlGaN-SiC platform:towards monolithicphotonics integration system[J].Nano Energy,2020,77:105149.[9]YU H B,MEMON M H,WANG D H,et al.AlGaN-based deep ultraviolet micro-LED emitting at275nm[J].Opt.Lett.,2021,46(13):3271-3274.[10]ALKHAZRAGI O,HU F C,ZOU P,et al.Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistical-ly shaped DMT and diversity reception[J].Opt.Express,2020,28(7):9111-9122.[11]KOJIMA K,YOSHIDA Y,SHIRAIWA M,et al.1.6-Gbps LED-based ultraviolet communication at280nm in direct sun-light[C].Proceedings of the2018European Conference on Optical Communication,Rome,Italy,2018:1-3.[12]HE X Y,XIE E Y,ISLIM M S,et al.1Gbps free-space deep-ultraviolet communications based onⅢ-nitride micro-LEDsemitting at262nm[J].Photonics Res.,2019,7(7):B41-B47.[13]ZHU S J,QIU P J,QIAN Z Y,et al.2Gbps free-space ultraviolet-C communication based on a high-bandwidth micro-LEDachieved with pre-equalization[J].Opt.Lett.,2021,46(9):2147-2150.[14]BAUMGARTNER H,VASKURI A,KÄRHÄP,et al.Temperature invariant energy value in LED spectra[J].Appl.Phys.Lett.,2016,109(23):231103-1-4.[15]WANG T,NAKAGAWA D,WANG J,et al.Photoluminescence investigation of InGaN/GaN single quantum well and multi-ple quantum wells[J].Appl.Phys.Lett.,1998,73(24):3571-3573.[16]REN Z J,YU H B,LIU Z L,et al.Band engineering ofⅢ-nitride-based deep-ultraviolet light-emitting diodes:a review[J].J.Phys.D:Appl.Phys.,2020,53(7):073002.[17]GUTTMANN M,HÖPFNER J,REICH C,et al.Effect of quantum barrier composition on electro-optical properties of Al-GaN-based UVC light emitting diodes[J].Semicond.Sci.Technol.,2019,34(8):085007-1-6.[18]王玮东,楚春双,张丹扬,等.俄歇复合㊁电子泄漏和空穴注入对深紫外发光二极管效率衰退的影响[J].发光学报,2021,42(7):897-903.WANG W D,CHU C S,ZHANG D Y,et al.Impact of auger recombination,electron leakage and hole injection on efficiency . All Rights Reserved.㊀第1期郭㊀亮,等:量子垒高度对深紫外LED 调制带宽的影响7㊀droop for DUV LEDs [J].Chin.J.Lumin .,2021,42(7):897-903.(in Chinese)[19]ZHUANG Z,GUO X,LIU B,et al.Great enhancement in the excitonic recombination and light extraction of highly ordered InGaN /GaN elliptic nanorod arrays on a wafer scale [J].Nanotechnology ,2016,27(1):015301.[20]刘恩科,朱秉升,罗晋生.半导体物理学[M].第7版.北京:电子工业出版社,2008.LIU E K,ZHU B S,LUO J S.The Physics of Semiconductors [M].7th ed.Beijing:Publishing House of Electronics Indus-try,2008.(in Chinese)[21]ZHU S C,YU Z G,ZHAO L X,et al.Enhancement of the modulation bandwidth for GaN-based light-emitting diode by sur-face plasmons [J].Opt.Express ,2015,23(11):13752-13760.郭亮(1996-),男,江西吉安人,硕士研究生,2018年于合肥工业大学获得学士学位,主要从事通信用深紫外LED 的研究㊂E-mail:guoliang18@semi.ac.cn魏同波(1978-),男,山东潍坊人,博士,研究员,2007年于中国科学院半导体研究所获得博士学位,主要从事宽禁带半导体材料生长及器件制备的研究㊂E-mail:tbwei@. All Rights Reserved.。
英文门窗术语
英文门窗术语钢门及门框steel doors &frames 铝合金门及门框aluminum不锈钢stainless steel 铜门及门框bronze doors and frames木门panel wood doors 塑料门plasticlaminate—faced doors推拉门和格栅sliding doors &grilles 安全门detention/security doors 卷帘门和格栅coiling doors &grilles 工业厂房和棚厂门industrial &hangar doors 折叠门和格栅folding doors&grilles 防爆门blast—resistant doors 入口和商店门面ENTRANCE &STOREFRONTS 自动入口门automatic entrance doors 自动推拉平板式入口门auto-sliding flat panel entrance doors 入口转门revolving entrance doors 塑料窗vinyl windows 特种窗special windows 室外上卷式百叶窗exterior roll-up windows shutters 天窗及屋顶采光SKYLIGHTS 五金配件hardware门用小五金door hardware 推拉和折叠门五金sliding &folding door hardware 门操作器door operators 密封条,门槛及密封胶weatherstripping,thresholds& seals 窗五金window hardware& specialties 门窗配件door and window accessoriesSash 扇Transom 框梃Mullion 扇梃Hardware 五金件Coupler 拼接材Reinforcement 钢衬Gasket 胶条,毛条Screw 螺钉Wood 木衬Aluminum 铝衬Door panel 门板Fly screen 纱扇Bead 压条Inter lock 封盖Sash connector 盖帽Floating transom 对开梃Glass Adjust Board 玻璃垫片AuxiliaryMaterial 辅助材料Wide side height 长面长度Narrow side height 窄面长度Frame Mullion 框梃Screen Sash 推拉纱扇Inter Seal 盖帽Outward Opening Sash 外开扇Inward Opening Sash内开扇Sliding Door Sash 推拉门扇Screen sash Rail 挡轨Pseudo Mullion假中梃Intergrated Frame Mullion一体框梃Door Sash 外开门扇Door Frame 平开门框Floor Spring Door Frame 地弹门框Floor Spring Door Connecting 地弹门连接件Jaiousie Window Holder 百叶窗架glazing Bead玻璃压条Coupling连接材90°Corner 90度转角连接材Aluminium Rail Frame 铝轨外框Jaiousie Window Vane百叶窗Steel Reinforcement日系钢衬套Fixed Frame固定框Outer Frame 外框Triple Glazing Bead 三玻压条Doudle Glazing Bead 双玻压条Single Glazing Bead 单玻压条Doudle Seal Inward Sash双密封内开扇Triple Seal Outward Sash三密封外开扇Glass Pad 玻璃垫板Tube 180度转角连接件Decoration bar 装饰条Universal Post 转角圆管Brush Seal 密封毛条Yarn netRight-Angle Minor Frame直边小断面外框Right — Angle Frame 直边外框Aluminium Rail Frame 铝轨框Static Coupling 转角拼接框header页眉cutting centre 锯切中心CNC数控corner cleaning machine角缝清理机roller shutter machine 卷帘机glazing bead saw 玻璃条锯End milling 先孔size limits 极限尺寸optimisation 最优化output 输出ffcuts 边料,尾料machine type 设备型号pairing mode 设备模式double mitre saw双角锯,铝材切割profile feed 型材剖面single cutting 单切rear track后轮距front track 前轮距V-notch capabilities 切槽孔能力Module 模块Machinery control 设备控制Part 零件Part matrix 零件矩阵digit logical code 三位逻辑代码Store 库存Face drainage 排水面Specify 指定Format code 格式代码Stock code 库存编码Set up the system 设置系统Subsystem page 子系统页面Rules page 规则页面Frame bottom length 框底长Offset 偏移Rang 环状Pos code 销售代码Saw prog 锯切程序Drill code 钻头代码Op field 操作区Pilot hole 安装孔Op class操作级别Pn 性能参数DSB双边的Internally glazed sash 内装玻璃上Espagnole 插销Drip rail 滴水槽Door blinge 门铰链Slot vent 气压平衡槽Welding 焊接Cutting,milling 铝塑材切割Copy router 仿形钻床Screw drilling 钻攻机Bending machine 圆弧窗机Internal corner cleaner n内角酰Set up the visibility 设置可见度Datum option 基准选择Overall 全部DIF差值Map绘图计划Date folder 资料库Attribut page 属性页面Adjoining 相邻Modifiled 改进的Solution page 解决方法页面DLL 动态连接链Drgo原来的Server management 服务管理器塑料窗vinyl windows电子锁系统electrical locking systemsFlush door 平面门,全板门Ledged door 直板门High—density plywood 压缩胶合板,高密度胶合板Margined flush door 镶边平板门Exterior door户外门Bow door 弓形门Double sliding door 双滑门top rail 顶横档bottom rail 下横档panels 门面lock stile 门锁竖挡lock rail 门锁横档threshold 门槛hinge stile 铰链竖挡jamb 框边Ball bearing slide脚轮滑道Bolt pin 螺栓插销Bolts and nuts for furniture 家具用螺钉,螺帽Accessories附件anti-slam防撞arched拱形arched head拱顶assembly装配barrel hinge圆柱合页copy router仿形铣床corner crimping machine挤角机corner joint挤角角码curve弯弧decorative sash bar(门、窗魄力外)的装饰格栅drainage排水drilling machine钻床drilling patterns钻孔模板end milling machine端铣机fabrication制作、装配face-fitted塔接式(扇比框高)fitting装配flush-fitted平齐式gasket密封胶条glazing bead玻璃扣条glazing option玻璃槽口hand punch手动冲床hinge合页、铰链horizontal pivot中轴(窗)intercoms对讲装置inward open内开letterbox信箱limiting stay限位撑、风撑meeting rail假中停mid-rail中横框milling cut端铣机铣刀mullion竖框multioperation press多工位冲床outer frame边框outward open外开pneumatic punch气动冲床press tools冲模profile型材断面roller shutter卷帘routing template仿形铣床模板routing tools仿形铣刀section节点side hung平开sill门槛、窗台slide推拉strip window条窗tilt下悬T-jointT形角码transom横框turn平开vent开启扇口ventilation通风vertical pivot立轴(窗)wall attachment(与墙体)安装附件五金词汇B Ball bearingslide脚轮滑道Bolt pin 螺栓插销Bolts and nuts for furniture 家具用螺钉,螺帽CCarcase 框架,架子Castor 小脚轮Ceiling 天花板Central hinges 中央铰链Chrome铬Complete range of drawer slide各种类型的抽屉滑道Component零配件,元件Concealed hinge 内藏铰链Cupboard—lock 拒门锁DDecorative trims for furniture 家具金边饰条Drawer—lock 抽屉锁Drawer runner 抽屉滑槽EEquipment for surface treatment表面处理工具3/4 extension slide部分开式滑道F Faucet 水龙头Fixture 固定装置Full extensionslide 全开式滑道Furniturehardware家具五金Furniture parts家具零配件Furniture structuralparts 家具结构零件Gas lift chassis气压棒底盘Glass door hinge 玻璃门铰链Heavy duty slide 承重式滑道Hook lock 钩锁Keyboard slide键盘板滑道Large head type 大头型Locating dowel 定位榫钉Lockrail 安锁冒头MMagnetic catch 磁性拉手Magnetic-lock 磁锁magnetic push latch磁性撞锁Marquetry work镶嵌装饰品Metal fittings 金属配件Matal handle 金属拉手Mold模具Office chair central tube accessories 办公椅中管配件Office chair hardware accessories 办公椅五金配件Out set 外盖型套轮Panel veneer 板料Plastic bolt and threaded axis 塑料螺帽及牙轴Pocket door slide 柜门滑道Prevent falling off due to turning 防止旋转脱落Secret—hinge 暗铰Semifinished furniture product and accessories 家具半成品及配件Semifinished product for interior fittings 装潢用半成品Simple connecting fittings 简单五金配件Single item 单项产品Sliding door roller series 推拉门用轮系列Straight-lock 企口锁Surface gluing 板面上胶Veneer trimming 薄片整修Vertical upright 直挂格Wood—button 木纽Wood components 木制配件Wooden bar 车件Wooden cork 木塞Wooden curtain rod and ring 木制窗帘杆及吊环Woodscrew 木螺钉Wreathed hand—rail 扭弯扶手玻璃幕墙---————glass curtain wall4mm THK。
2025届高考英语复习:经典好题专项(用动力学和能量观点解决多过程问题)练习(附答案)
2025届高考英语复习:经典好题专项(用动力学和能量观点解决多过程问题)练习1.如图所示为某轮滑比赛的场地,由斜面AB、圆弧面BCD和平台组成,斜面AB和圆弧面在B点相切,C为圆弧面的最低点,刚好与地面相切,圆弧BC所对的圆心角α=37°,圆弧轨道半径为R,D点离地面的高度是平台离地面高度的一半,平台离圆弧轨道D点的水平距离和平台的高度相等,轮滑运动员从斜面上A点由静止滑下,从D点飞出后,刚好沿水平方向滑上平台,整个过程运动员视为质点,不计一切摩擦和阻力,重力加速度为g,求:(已知sin 37°=0.6,cos 37°=0.8,)(1)圆弧CD所对的圆心角θ;(2)斜面AB的长度。
2.(2024ꞏ重庆市南开中学校考)第24届冬季奥林匹克运动会已在我国北京成功举办,其中滑雪项目是一项有极大观赏性的运动。
某滑雪训练场地由两部分组成,AB是倾角为53°、长度L=10 m的助滑坡区,BCD是半径为R=10 m的圆弧过渡区,O为圆心,C为最低点,∠OBD =∠ODB=37°,DE是足够长的水平面,如图所示。
某运动员(含装备)质量为60 kg,从A点由静止开始出发进入助滑区,并用滑雪杆助滑,过B点后自由滑行,到达过渡区最低点C时速度大小为20 m/s,不计所有阻力,运动员可视为质点,已知sin 53°=0.8,取g=10 m/s2。
求:(1)运动员在过渡区最低点C时对场地压力;(2)运动员在助滑区助滑过程中至少需要消耗的体能E;(3)运动员离开D点后距水平面DE的最大高度。
3. 如图,在竖直平面内,半径R=0.5 m的光滑圆弧轨道ABC与粗糙的足够长斜面CD相切于C点,CD与水平面的夹角为θ=37°,B是轨道最低点,其最大承受力F m=21 N,过A 点的切线沿竖直方向。
现有一质量为m=0.1 kg的物块,从A点正上方的P点由静止落下。
已知物块与斜面之间的动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g=10 m/s2,不计空气阻力。
Master Lock 商业赫炎金属锁说明书
B
1-1/2in (38mm) 2-1/2in (64mm)
1in (25mm) 1-1/2in (38mm) 2-1/2in (64mm)
1in (25mm)
A = 3/8in (10mm) C = 15/16in (24mm)
1-1/2in (38mm) 2-1/2in (64mm)
6
2in Wide (51mm) Commercial Magnum, Keyed Alike
6
2in Wide (51mm) Commercial Magnum, 1-1/2in (38mm) Shackle, Keyed Alike
6
2in Wide (51mm) Commercial Magnum, 2-1/2in (64mm) Shackle, Keyed Alike
7000-0618
MO 10M Printed in the USA 07/16
COMMERCIAL MAGNUM VS COMMERCIAL LAMINATED
Octagonal, chromeplated boroncarbide shackle
Stainless steel body cover
Round shackle
No body cover
Stainless steel top and bottom plates
Dual-ball bearing locking
Lever locking
Hardened steel bottom
plate
Model Number M1STS M1LFSTS M1LJSTS
M1KASTS M1KALFSTS M1KALJSTS
模具专业术语(中英对照)
English中文常见词义bolt螺栓die钢模injection注塑mould模具spring弹簧lower die base下模座mould strength模具强度packing materials包材padding block垫块semi-finished product半成品sink mark缩水slide block滑块spare die模具备品thin steel薄钢位weak steel area薄钢位upper die base上模座upper padding plateblank上垫板upper supporting blank上承板buffle隔板bush衬套灌木bushing衬套管cross四通elbow弯头肘部insert镶件latch锁扣lifter斜顶升降机metallurgy冶金plate压条盘子,板材screw螺丝slide滑块ball catch波子弹弓??choke plug堵头die spring模具弹簧dowel pin管钉guided injection bushing顶针板套管latch lock弹键锁leader pin边钉lever arm杠杆臂locating ring定位圈mold base模胚movable core活动铁芯movable joint活接头parting lock set核膜定位器pipe cap管帽ply bar scot开模槽push bar推杆stripper plate推板bend折弯blanking下料空白burr毛边dome凸圆factor系数gap间隙groove压线reducer减速器tee三通cavity insert上内模die height range适用模高draw hole抽孔ejector pin顶针ejector plate guide顶针板导柱ejector retainer plate顶针板forming die成型模material thickness材料厚度plain die简易模press specification冲床规格progressive die连续模riveting die铆合模shearing die剪边模side stretch测冲压平sprue bushing唧嘴stamp mark冲记号support pillar撑头support plate撑板turned-over edge翻边abrasion磨损adhesive黏附的break断裂brittleness脆性。
英文门窗术语
英文门窗术语钢门及门框steel doors & frames 铝合金门及门框aluminum不锈钢stainless steel 铜门及门框bronze doors and frames木门panel wood doors塑料门plastic laminate-faced doors 推拉门和格栅sliding doors & grilles 安全门detention/security doors卷帘门和格栅coiling doors & grilles 工业厂房和棚厂门industrial & hangar doors折叠门和格栅folding doors& grilles 防爆门blast-resistant doors入口和商店门面ENTRANCE & STOREFRONTS自动入口门automatic entrance doors自动推拉平板式入口门auto-sliding flat panel entrance doors入口转门revolving entrance doors 塑料窗vinyl windows特种窗special windows室外上卷式百叶窗exterior roll-up windows shutters天窗及屋顶采光SKYLIGHTS五金配件hardware门用小五金door hardware推拉和折叠门五金sliding & folding door hardware门操作器door operators密封条,门槛及密封胶weatherstripping,thresholds& seals 窗五金window hardware& specialties门窗配件door and window accessoriesSash 扇Transom 框梃Mullion 扇梃Hardware 五金件Coupler 拼接材Reinforcement 钢衬Gasket 胶条,毛条Screw 螺钉Wood 木衬Aluminum 铝衬Door panel 门板Fly screen 纱扇Bead 压条Inter lock 封盖Sash connector 盖帽Floating transom 对开梃Glass Adjust Board 玻璃垫片Auxiliary Material 辅助材料Wide side height 长面长度Narrow side height 窄面长度Frame Mullion 框梃Screen Sash 推拉纱扇Inter Seal 盖帽Outward Opening Sash 外开扇Inward Opening Sash内开扇Sliding Door Sash 推拉门扇Screen sash Rail 挡轨Pseudo Mullion假中梃Intergrated Frame Mullion一体框梃Door Sash 外开门扇Door Frame 平开门框Floor Spring Door Frame 地弹门框Floor Spring Door Connecting 地弹门连接件Jaiousie Window Holder 百叶窗架glazing Bead玻璃压条Coupling连接材90°Corner 90度转角连接材Aluminium Rail Frame 铝轨外框Jaiousie Window Vane百叶窗Steel Reinforcement日系钢衬套Fixed Frame固定框Outer Frame 外框Triple Glazing Bead 三玻压条Doudle Glazing Bead 双玻压条Single Glazing Bead 单玻压条Doudle Seal Inward Sash双密封内开扇Triple Seal Outward Sash三密封外开扇Glass Pad 玻璃垫板Tube 180度转角连接件Decoration bar 装饰条Universal Post 转角圆管Brush Seal 密封毛条Yarn netRight-Angle Minor Frame直边小断面外框Right - Angle Frame 直边外框Aluminium Rail Frame 铝轨框Static Coupling 转角拼接框header页眉cutting centre 锯切中心CNC数控corner cleaning machine角缝清理机roller shutter machine 卷帘机glazing bead saw 玻璃条锯End milling 先孔size limits 极限尺寸optimisation 最优化output 输出ffcuts 边料,尾料machine type 设备型号pairing mode 设备模式double mitre saw双角锯,铝材切割profile feed 型材剖面single cutting 单切rear track后轮距front track 前轮距V-notch capabilities 切槽孔能力Module 模块Machinery control 设备控制Part 零件Part matrix 零件矩阵digit logical code 三位逻辑代码Store 库存Face drainage 排水面Specify 指定Format code 格式代码Stock code 库存编码Set up the system 设置系统Subsystem page 子系统页面Rules page 规则页面Frame bottom length 框底长Offset 偏移Rang 环状Pos code 销售代码Saw prog 锯切程序Drill code 钻头代码Op field 操作区Pilot hole 安装孔Op class操作级别Pn 性能参数DSB双边的Internally glazed sash 内装玻璃上Espagnole 插销Drip rail 滴水槽Door blinge 门铰链Slot vent 气压平衡槽Welding 焊接Cutting,milling 铝塑材切割Copy router 仿形钻床Screw drilling 钻攻机Bending machine 圆弧窗机Internal corner cleaner n内角酰Set up the visibility 设置可见度Datum option 基准选择Overall 全部DIF差值Map绘图计划Date folder 资料库Attribut page 属性页面Adjoining 相邻Modifiled 改进的Solution page 解决方法页面DLL 动态连接链Drgo原来的Server management 服务管理器塑料窗vinyl windows电子锁系统electrical locking systemsFlush door 平面门,全板门Ledged door 直板门High-density plywood 压缩胶合板,高密度胶合板Margined flush door 镶边平板门Exterior door户外门Bow door 弓形门Double sliding door 双滑门top rail 顶横档bottom rail 下横档panels 门面lock stile 门锁竖挡lock rail 门锁横档threshold 门槛hinge stile 铰链竖挡jamb 框边Ball bearing slide脚轮滑道Bolt pin 螺栓插销Bolts and nuts for furniture 家具用螺钉,螺帽Accessories 附件anti-slam防撞arched拱形arched head拱顶assembly装配barrel hinge圆柱合页copy router仿形铣床corner crimping machine挤角机corner joint挤角角码curve弯弧decorative sash bar(门、窗魄力外)的装饰格栅drainage排水drilling machine钻床drilling patterns钻孔模板end milling machine端铣机fabrication制作、装配face-fitted塔接式(扇比框高)fitting装配flush-fitted平齐式gasket密封胶条glazing bead玻璃扣条glazing option玻璃槽口hand punch手动冲床hinge合页、铰链horizontal pivot中轴(窗)intercoms对讲装置inward open内开letterbox信箱limiting stay限位撑、风撑meeting rail假中停mid-rail中横框milling cut端铣机铣刀mullion竖框multioperation press多工位冲床outer frame边框outward open外开pneumatic punch气动冲床press tools冲模profile型材断面roller shutter卷帘routing template仿形铣床模板routing tools仿形铣刀section节点side hung平开sill门槛、窗台slide推拉strip window条窗tilt下悬T-jointT形角码transom横框turn平开vent开启扇口ventilation通风vertical pivot立轴(窗)wall attachment(与墙体)安装附件五金词汇B Ball bearing slide脚轮滑道Bolt pin 螺栓插销Bolts and nuts for furniture 家具用螺钉,螺帽C Carcase 框架,架子Castor 小脚轮Ceiling 天花板Central hinges 中央铰链Chrome 铬Complete range of drawer slide 各种类型的抽屉滑道Component 零配件,元件Concealed hinge 内藏铰链Cupboard-lock 拒门锁D Decorative trims for furniture家具金边饰条Drawer-lock 抽屉锁Drawer runner 抽屉滑槽EEquipment for surface treatment表面处理工具3/4 extension slide 部分开式滑道F Faucet 水龙头Fixture 固定装置Full extension slide 全开式滑道Furniture hardware家具五金Furniture parts 家具零配件Furniture structural parts 家具结构零件Gas lift chassis 气压棒底盘Glass door hinge 玻璃门铰链Heavy duty slide 承重式滑道Hook lock 钩锁Keyboard slide 键盘板滑道Large head type 大头型Locating dowel 定位榫钉Lock rail 安锁冒头M Magnetic catch 磁性拉手Magnetic-lock 磁锁magnetic push latch磁性撞锁Marquetry work镶嵌装饰品Metal fittings 金属配件Matal handle 金属拉手Mold模具Office chair central tube accessories 办公椅中管配件Office chair hardware accessories 办公椅五金配件Out set 外盖型套轮Panel veneer 板料Plastic bolt and threaded axis 塑料螺帽及牙轴Pocket door slide 柜门滑道Prevent falling off due to turning 防止旋转脱落Secret-hinge 暗铰Semifinished furniture product and accessories 家具半成品及配件Semifinished product for interior fittings 装潢用半成品Simple connecting fittings 简单五金配件Single item 单项产品Sliding door roller series 推拉门用轮系列Straight-lock 企口锁Surface gluing 板面上胶Veneer trimming 薄片整修Vertical upright 直挂格Wood-button 木纽Wood components 木制配件Wooden bar 车件Wooden cork 木塞Wooden curtain rod and ring 木制窗帘杆及吊环Woodscrew 木螺钉Wreathed hand-rail 扭弯扶手玻璃幕墙-------glass curtain wall4mm THK. Composite AluminumPlastic 4mm厚复合铝板5mm THK. Aluminum Plate 5mm厚单铝板Acid 酸,酸性的Across 横过,交叉Allowable 允许Alloy 合金Alum. bracket 铝支架Alum. Panel 铝板Aluminum alloy 铝合金Anchor Bolt 锚拴Anchor 锚固Angle steel 角钢Annealed glass 浮法(退火)玻璃Anodizing oxidation coating 阳极氧化喷涂Anodizing 阳化Anti-corrosive zinc paint 防锈白漆Anti-reflective coating 防反射涂膜Average=AVG. 平均Aviation obstruction 阻航Backer rod 加强棒,泡沫棒Base level 基本平面,海平面Be equivalent to 等于Bear 负荷bedding 衬垫Bend 弯曲,屈服Bituminous paint 沥青油Bituminous 含沥青的Bolt 螺栓Bond 接合,搭接Bonding 搭接,接合Booklet 小册子Brace 斜撑Bracket 支托Buckle 使弯曲,使屈服Built-up 有组织的,密集的Butt welding对接焊缝Canopy 天蓬,雨蓬Cantilever beam 悬臂梁Caption 说明,标题Cast-in 埋入Catalogue 目录,总目Cementitious 水泥的Channel 槽,频道,通道Circular hollow section 圆通Clear glass 透明玻璃Client 客户,委托人Closure 外盖Code 代码,法规Coefficient 系数Composite 混合物,混合Compression 压,压迫Compressive 受压的Concealed 隐藏的Concrete 混凝土Constant 常数Construction tolerance 施工容差Contact surface 接触面Continuous beam 连续梁Contractor 承包商Copper 铜Court 中庭Cracked 开裂的Crylic acid coating 丙烯酸喷涂Dead load 恒荷载Deduction 折减,扣除Definition 定义,精确度Deflection 挠度Deform 变形Deformation 变形Demountable panel 可拆除挂板Derivation 引出,导出Detail 详图,节点图Detection 探知,发现Diagonal 对角线Diagrid 斜交格构Diaphragm 加强层Die 冲模Distributed 均匀的,分布的Double glazing 双层(中空)玻璃Double Skin Wall 双层幕墙Downwind 顺风面Drive pin 射钉Dynamic 活动的,动态的Earthquake load 地震荷载Eccentric 偏心的Egress door 紧急出口Elastic 弹性的Electrophoretic coating 电泳喷涂Element 构件Embedment 预埋件Equal angle 等边角钢Examined 审定Expansible 伸缩的Expansion Bolt 膨胀螺栓Exposed frame 明框Extrusion 挤压Fabricate 加工Fabrication 加工Facial glass (facade glass) 面玻璃Facial(facade) 脸部、表面的Fastener-Stainless Steel不锈钢紧固件Fatigue 疲劳Figured glass 压花玻璃Fillet 带子,带形的fillet weld 角焊缝Fin glass (stiffen fin glass) 肋玻璃Fin 鳍,鳍状物Fire prevention 防火Fire Stop mineral wool 防火岩棉Fixing lug n.摩耳Flange 凸缘,翼缘Flashing 防水板,遮雨板Float glass 浮法玻璃Foam Rod 泡沫填充棒Folded 折叠的Foreword 序言Formula 方程Free stand type 坐(落)地式full glass curtain wall 全玻幕墙galvanizing镀锌Galvanization 镀锌Galvanize 镀锌Galvanized Bolt 镀锌螺栓Geometry 几何定位,定位(图)Granite cladding花岗岩围护,干挂石Granite 花岗石Grille 格子,隔栅Grout 水泥浆Grouting (填塞的)水泥砂浆Gutter Sleeve 天沟,排水沟Gyration 回转,旋转Half strengthened glass半钢化玻璃Hanger system 吊挂系统Heat strengthened glass半钢化玻璃Heat Soak Test 引爆处理Hidden frame curtain wall 隐框幕墙Hidden frame 隐框Horizontal 水平的Hot-dipped zinc galvanization热浸锌Imposed 应用的,施加的Inclined 倾斜的Inertia moment 惯性矩Inertia 惯性Insulating Glass Unit (IGU) 中空玻璃Intumescent coating 防火涂层in a complete manner在完整意义Issue 发行,发布Joint 连接Joist 托梁,Laminated glass 夹层玻璃Lateral 侧面的,旁边的Linear 线性的Lip 薄片Lips薄片、唇Load 荷载,加载Lobby 大厅Local 局部的,地方性的location blocks 定位块Louver 百叶,百页Lug 凸耳,凸杆Machine Bolt 机制螺栓Member.杆件Membrane 防水层Mesh 网,网状物Metallic 金属的Mild steel钢Micron 微米Mock-up 实体样板Modulus 模量Moment 力矩Monumental glazing 巨幅玻璃Movement capacity 变形能力Negative 否定,负数Neutral 中性的Node 节点Normal 普通的,法向的Nut 螺丝帽Operable panel 可开启面板Panel 板,仪表板Pane窗格玻璃Patio 内庭Peak 峰值Penetration butt 对接埋入焊Penetration 浸透,浸入Pile 桩Pin 大头钉,栓Plate 金属板Plinth 基座Podium 矮墙,女儿墙Poisson’s Ratio 泊桑比Polished glass 磨光玻璃Powder coating 粉末喷涂Pre-cast 预埋,预置Preliminary 初步的Pressure 压力,压强Principal 主要的Purposed 计划的,打算的PVDF Coating 氟碳喷涂PVF2 Coating氟碳喷涂Railing? 扶手,栏杆Rectangle hollow section 矩形管Refer 提交,查阅Reflective glass 反射玻璃Reinforcement 加强件,加固物Relative Heat Gain 相对热增益Relief pattern 浮雕图案Resistance 抵抗Restrain 约束Revision 修订,校订Revolving panel 旋转面板reflective ratio反射率Rigid Insulation 刚性绝缘体Rigidity 刚性Rod 棒,竿Scope 范围,广度Screw 螺钉,拧紧Sealant 密封胶Security configuration 保安配置Self-weight 自重semi-exposed framing glass curtain wall 半隐框幕墙Serial 序列,系列Setting block 垫块Shading coefficient 遮阳系数Shaft 管井Shear force 剪力Shear 修剪,剪切Sheet 薄板Similar 相似的,相同Simply supported beam 简支梁Single glass.temperd单层钢化玻璃Single toughened glass 单层钢化玻璃Site-ground 室外地面Silicone硅树脂Slab 楼板Sleeve 袖子,套筒Snow and ice retention雨雪拦截设施Span 跨度Spandrel 横档Spider fixing (玻璃)固定爪Splice 接合,连接Square hollow section 方形管Stainless steel bolt不锈钢螺栓Steel bracket 钢角码Stiffen 使变硬Strength 强度Structural silicone 结构硅胶Strut 支柱Sub-contractor 分包商Submission 递呈,提交,服从Suction 吸力Sunshade 遮阳Supplier 供应商Supply 提供,补充,替代Support on four sides 四边支撑Support on two sides 两边支撑Super-structure 主体结构Symmetry 对称的Tee n.T字形,T形物Tempered glass 钢化玻璃Tempered 调节的,钢化的Tensile 拉力的,张力的Tension 张力,拉力Terrain 地带,地域,范围Thread纤维The arm of force 力臂Tile 砖,磁片Tinted 着色的Tolerance 允许误差Top 顶部,上总的Torsion 扭转,扭矩Transom 横梁,横档Trapezoid 梯形,不等边四边形transmissibility透射率Type 类型,型号,打字Typical 标准的Unequal angle steel 不等边角钢Unequal angle不等边角钢Unfolded 展开图Visible Light Reflectance 可见光反射率Visible Light Transmittance 可见光透光率Void 中空处Walkable 可上人的Weather proofing sealant 耐候胶Weep 滴水welding line焊缝Welded seam 焊缝Zinc-plated 镀锌建筑词汇masonry wall 砌筑墙体;砖石墙体sag/cave in塌陷,凹陷shear wall剪力墙shear wall frame interaction框剪结构skeleton-and-skin system骨架结构space frame空间网架structural members结构构件switchbox配电箱tape inward收分tensile strength拉力timber construction =wood frame木结构transformer substation变电站truss桁架underground network of pipes地下管网wood beam木梁weight strength重力yield屈服shell system壳体结构bundled tube system束筒体系cantilevered悬臂的cantilevered end悬臂端close interval(柱)间距紧凑critical point(受力)临界点,相变点distributing box配电柜framed tube框筒结构grid structure网架结构HVAC=Heating, Ventilation & AirConditioning暖通空调heat exchanger空气循环piled-up mass of adobe=sun-driedmud干打垒precast预制的precise measurements精确的计算prefabrication配件预制overlapping搭接,重叠,(柱式的)组合recirculate air再循环空气research model结构模型resistance against weathering|耐候性安全防火隔热fire-safing insulation安全荷载safe load;safety load 安全荷载系数safety load factor安全帽protecting cap;safety helmet安全系数safety factor/coefficient 安装标准installation benchmark 安装程序installation procedure安装方法报告书installation method statement安装工程erection work安装就位erecting and setting安装施工资格installation qualification安装容差installation tolerance暗匣Blind pocket奥氏体Austenitic百叶(窗)louver; shutter; Persian blinds百叶跨度length of the louver百叶帘venetion blind百页片Blade百叶铝板aluminum louver panel 百叶式出气口louvered air outlet 搬运handling板;板块board; plate;panel;slab 板材plate半钢化玻璃heat strengthened glass; half strengthened glass半径radius;semidiameter半透明的translucent半隐框玻璃幕墙semi-exposed framing glass curtain wall包装packaging保安配置Security configuration保护(涂)层protective coating保证(书)warranties保温板heated board保温材料insulation material保温层insulating layer保温顶棚heat insulated ceiling保温(岩)棉insulation报价bid;quote报价单quotation背板back-pan备注remark 比例scale比例proportion避雷保护lightning protection避雷针Lighting protection airterminal编号numbering;serial number边缘荷载edge load边缘块edge block变化系数variation coefficient变量Variable变硬Stiffen变形deform; deformation变形缝movement joint变形能力deformation capacity标称nominal标记mark/marking; indicator; label标价bid price标价单bid sheet标签label;checklist标示display标书bid标志signage标准尺寸typical dimension标准版本standards version标准构件standard element标准间隔材料standard spacermaterial标准节点typical detail标准值characteristic value表面处理finish表面涂层surface coating表面压缩应力surfacecompression stress冰雪处理与缓和ice and snowmanagement and mitigation丙烯酸喷涂Duracron玻璃安装材料glazing material玻璃安装商glazier玻璃板glass plate玻璃采光顶glass skylight玻璃窗;玻璃装饰glazing玻璃窗标准glazing standards玻璃窗工艺glazing workmanship玻璃刀glass cutter玻璃钢glass reinforced plastic玻璃固定fixing for glass玻璃间隔条glazing spacer玻璃肋式点支承幕墙Glass rib Steelstrand玻璃类型表glass type schedule玻璃密封垫glazing gasket玻璃密封条glazing tape玻璃面板glass panel玻璃面砖glass facing tile玻璃幕墙glass curtain wall;window wall; glass wall; glasspanel wall; coated glass; twinklewall玻璃腔glass pocket玻璃墙面glass wall face玻璃穹顶glass dome玻璃透光率transmittance of glass玻璃温度应力thermal stress ofglass玻璃屋顶glass roof;glazed roof玻璃压条glazing bead玻璃翼/肋glass fin玻璃原片primary glass玻璃砖glass block波纹corrugation波纹拉丝不锈钢板stainless steelfinish corrugated波形的corrugated波纹不锈钢板corrugated S.S. plate波形玻璃corrugated glass波形垫片corrugated gasket波形铝板corrugated aluminumsheet薄板sheet; thin slab薄垫片Shim薄膜film;membrane薄膜玻璃film glass薄膜防水membrane waterproofing薄片Lip补充文件supplement riderdocument不等边角钢Unequal angle steel不规则荷载abnormal load不透明的opaque不透明玻璃opaque glass不锈钢stainless steel(S.S)不锈钢吊杆S.S rod不锈钢螺钉S.S screw不锈钢紧钉螺钉S.S holding/set/stop screw不锈钢紧固件Stainless Steel Fastener不锈钢自攻螺钉S.S self-tapping screw不锈钢螺栓S.S bolt不锈钢机制螺栓S.S machine bolt 不锈钢暖气罩S.S heating cover 不显眼的Inconspicuous擦窗机,吊篮gondola擦窗设备BMU (building maintenance unit)擦窗设备公司BMU supplier擦窗机荷载gondola load擦窗设备荷载BMU loads擦窗器window cleaner材料审查报告materials testing report采购订单purchase order采购活动procurement activity采光玻璃屋顶skylight glass roof 采光系数daylighting factor采用预埋件embed model彩色夹层可视玻璃vision glazing with colored interlayer彩釉玻璃ceramic frit glass彩釉夹胶玻璃ceramic frit laminated glass参数parameter残余应力residual stress槽Channel槽,狭缝Slot槽钢channel steel;channel槽口notch侧,测向的,侧面的,旁边的lateral 侧塞块side block测试方案test proposal测压孔pressure tap测验实体模型testing mock-up层间滑移Interstorey drift层间位移floor level movement 叉车fork lift truck插接件connector茶色玻璃dark brown glass产品保证product guaranties长期强度long-term strength常数Constant常温养护normal temperaturecuring场地勘查field survey场地条件site condition超白钢化夹胶玻璃low-irontempered laminated glass超白钢化折弯夹胶玻璃low-irontempered bent laminated glass超高层建筑super high-rise building车间Shop车库门garage door撤除removal沉降缝Settlement joint沉头螺钉Countersunk screw衬板lining衬垫Bedding撑杆brace rod; stay bar承包范围extent of contractor;scope承包商;承包人contractor成本核算cost accounting承压面bearing surface承压墙bearing wall;carrying wall承压强度bearing strength承载力carrying /bearing capacity承载力系数bearing capacity factor尺寸size/dimension尺寸公差dimensional tolerance;tolerance of dimension冲模Die抽芯铆钉Blind rivet初步的Preliminary初步方案preliminary scheme初步概算preliminary estimate初步规划preliminary planning初步勘查preliminary exploration初期养护initial curing初始应变initial strain出入口access;openings储存storage穿孔perforation穿孔百叶perforated louver穿孔板perforated plate传热路系统heat-trace system传热系数heat-transfer coefficient窗洞window opening窗格window division窗合页window hinge窗框window frame窗帘匣pelmet窗棂window bar窗扇window sash; leaf窗台/槛window sill垂直(方向)的vertical;vertically垂直度squareness垂直于vertical to;perpendicular to垂直挡雨板vertical rain-shield垂直幕墙vertical curtain wall雌料female material次支撑构件secondary supportmember磁锁mag-lock磁砖Tile粗糙rough;roughness粗糙系数roughness factor淬火玻璃heat-strengthened glass脆性Brittleness存放期shelf life搭接,接合Bonding打胶sealant installation打孔holes drilling; perforate大跨度结构long span structure大理石marble大理石板marble slab大理石墙面marble wall face大理石饰面marble finish大厅Lobby大样图detail drawing代码,法规Code带空隙的Interstitial带子,带形的Fillet单层钢化玻璃Single toughenedglass单层索网幕墙single-layercable-net curtain wall单剪连接one shear joint单片玻璃monolithic glass单位成本unit cost单位面积unit area单一货源责任single source responsibility单元式幕墙unitized curtain wall挡风板wind shield挡水板flashing挡雨板rain-shield导热heat conduction导热系数thermal conductivity灯的安装和走线Light fixture and wiring灯架light mounting灯具lighting灯槽light trough灯荷载light load等边角钢equal angle steel等效荷载equivalent load等效厚度equivalent thickness等压设计pressure equalization低辐射镀膜玻璃Low-E coated glass低碳钢mild steel低温玻璃;退火玻璃annealed glass滴水槽檐drip edge底部bottom底漆primer抵抗Resistance抵抗(力)矩resisting moment地带,地域,范围Terrain地基沉降Foundation settlement地接线Ground connection地心引力,重力Gravity地震earthquake地面粗糙度ground roughness type地震测试seismic rocking testing 地震荷载seismic load地震荷载作用效应组合系数seismic load action combination coefficient 递呈,提交,服从Submission典型幕墙单元typical curtain wallunit点拨件spider点支式幕墙point supportingcurtain wall点支承玻璃幕墙Point supportingglass curtain wall电导管electrical conduit电动开启窗automatic operablevent电泳喷涂Electrophoretic coating垫块,塞块,支撑块Setting block;Jack pad垫片shim垫圈washer吊车,起重机Crane吊顶ceiling吊顶板材ceiling tile吊顶荷载suspended-ceiling load吊顶梁ceiling beam吊顶龙骨ceiling joist吊顶主龙骨main joist ofsuspended ceiling;main runner吊顶幕墙overhang curtain wall吊顶体系ceiling suspensionsystem;suspended ceiling system吊杆结构suspending structure吊杠臂Davit arm吊钩tie back吊篮Gondola丁基玻璃密封条butyl glazing tape丁基热熔密封胶butyl sealant顶部采光toplighting顶层top level定期检查regular inspection定期清洁progressive cleaning定义;精确度definition定位块setting block; locationblock定位螺丝set screw定位(图)geometry动荷载dynamic load; moving load洞口opening动态的,动力的Dynamic动力系数dynamic factor动力放大系数dynamicamplificatory coefficient独立试验机构independent testingagent镀膜玻璃coated glass镀锌处理galvanize镀锌的galvanized; zinc-plated镀锌钢板galvanized steel panel镀锌瓦楞钢板corrugatedgalvanized sheet镀锌螺栓Galvanized Bolt堆积accumulation对称Symmetry对称荷载symmetrical load对角线diagonal对接焊接butt welding对接埋入焊penetration butt对齐销钉alignment rod对准,成一条线align端部释放ends released端盖end cap短期强度short-term strength短暂的Transient断桥隔热条thermal break断热条thermal break断热材料thermal break material对齐销钉alignment rod多功能建筑multi-purposearchitecture多功能裙楼multi- functionalpodium多叶片转台multiple plate turntableE额定荷载rated load耳生噪音阻力self-generatednoise resistance发包contract award发包工程award work发光的Luminous法规要求regulatory requirements法兰flange法线(方向)的normal反复荷载cyclic load反光glisten; reflection of light反光玻璃anti-sun glass反光度reflectance反力reaction;counterforce反射玻璃reflective glass反应,反作用reaction泛水区flashed area范围,广度Scope方案plan; scheme方程Formula方头螺栓Square head bolt方头紧定螺栓Square-head set-bolt 方通Square hollow section方形Square方形管square hollow section防暴测试bomb blast protection resistance testing防虫网insect screen防反射涂膜Anti-reflective coating 防腐蚀corrosion protection;antisepsis防腐蚀垫片anti-corrosion washer 防滑处理Anti-slip treatment防滑垫Slide bearing pad防火fire protection/prevention防火标准fire protection standard 防火材料fire-proof material防火等级fire-protection rating防火堵料fire proof plug防火封堵墙fireproof closure wall 防火隔断fire proof partition; fire stop防火构造fire proof construction防火卷帘fire shutter防火绝缘材料fire-safing insulation 防火可视玻璃fire rated vision glazing防火岩棉fire stop mineral wool防火涂层intumescent coating防结露技术dew preventive technology防漏技术penetration preventive technology防鸟网bird screen防汽阻隔vapor barrier防视玻璃obscure glass防水water proof; water proofing 防水板,遮雨板Flashing防水薄膜waterproofing membrane防水层Membrane防水层屋面系统membrane roofsystem防水海绵waterproofing sponge防水汽板vapour retarder; vapourretardant panel防霜加热线de-icing heating cable防碳化涂层anti-carbonationcoating防锈白漆anti-corrosive zinc paint防锈涂料antirust paint防眩玻璃glare control glass防烟密封装置smoke seal防雨(水)板flashing防雨屏Rain screen非标准的special非承重结构non-bearing structure分包合同subcontract分包商subcontractor分布荷载distributed load分布离差dispersion分布众数mode分段完工staged completion分格module;panel分格高度module height分区墙Compart wall分析analyze;analysis分项系数distribution coefficient粉末喷涂PPC;powder coating风道air passage风洞测试wind tunnel test/study风洞试验报告wind tunnel testingreport风洞研究Wind tunnel study风格式样style风荷载wind load风荷载作用效应组合系数windload action combination coefficient风化的Etched风区fetch;air pressure风压wind pressure封边Cap封口砖closer封烟板smoke seal封样approved sample蜂窝铝板aluminum honey-combpanel峰值Peak浮雕图案Relief pattern浮法玻璃float glass扶手handrail;railing氟碳喷涂PVDF coating; FluorineCarbon;PVF2 coating俯视图Planform腐蚀corrode;corrosion/erosion辅助建筑accessory building;subsidiary building辅助框架sub-frame复合铝塑板composite aluminumplastic负的,否定的Negative负风压区negative wind pressurearea负荷load; bear负荷等级load grade负剪力negative shear负弯矩negative bending moment负值negative value附加费用extra charges附加荷载additional load附加建筑additional building附加条款additional clause附加弯矩secondary moment附属结构accessory structure附图attached drawings概率probability干挂石granite cladding干密封gasket sealed干燥剂desiccant杆件Member感压胶带,压敏胶带PSA(pressuresensitive adhesive)tape钢板steel panel钢度rigidty;inflexibility钢化的Tempered钢化玻璃tempered glass;钢化中空玻璃tempered insulatedglass钢化中空Low-E玻璃tempered insulated Low-E glass钢化透明玻璃tempered clear/transparent glass钢结构式点支承幕墙Steel structure point supporting curtain wall钢筋reinforced bar钢筋混凝土reinforced concrete钢拉索steel cable钢码steel bracket刚性Rigidity刚性垫层rigid fill刚性结点rigid joint刚性结构rigid structure刚性绝缘体Rigid Insulation刚性支承rigid support高层建筑high-rise building高度height高级碳纤维high-grade carbon fibre 高温防火密封胶fire stop sealant 高温防火岩棉fire stop wool高温喷涂pyrolytic coating高温喷涂浮尘玻璃pyrolytic-coated float glass隔断partition隔断衬板partition lining隔热玻璃(单元)insulating glass unit隔热衬垫insulation blanket隔热挡板thermal baffle隔热数值thermal/insulation value 格构diagrid; lattice;trellis格构分格panel格构结构latticed structure格栅grille格子,网格Grid隔板,隔舱Bulkhead隔片Spacer隔音Acoustic attenuation隔声玻璃acoustical glass隔声材料acoustical material隔声要求acoustic requirement个别的Individual根据According to工程(技术)Engineering 工程,项目project工程,工作works工程编号(project number)工程拨款project appropriation工程测量engineering survey工程进度progress of works工程项目construction item工程造价construction cost工地site工地质量控制经理on-site qualitycontrol manager工艺workmanship工艺说明书workmanshipspecification工形…I; I-shaped; I-head工形柱H Column公差tolerance供电系统power supply system供货商supplier供暖heating供暖系统heating system供应supply; provide; furnish; offer公共通道public passage公共照明public lighting供货商supplier公料male extrusion公制metric拱肩spandrel拱肩玻璃spandrel glass共振,回声Resonance沟槽,刻槽Groove构件component/member/element构件式玻璃幕墙component glasscurtain wall固定端fixed end固定爪spider fixing故障defect刮刀spatula刮痕scratch挂钩hook挂件bracket, hanger管道,沟渠Conduit管件系统ductwork管井Shaft管状的,空心的Tubular惯性inertia惯性矩inertia moment光电幕墙photoelectric curtain wall光泽Gloss规定specify规定标准specified standards规范specifications/code硅胶嵌缝Silicone joint硅树脂silicone硅酮结构密封胶structural siliconesealant硅酮密封剂silicone sealant硅酮耐候密封胶weather proofingsealant滚动痕迹roller mark过道passageway; corridor过梁Lintel过滤网Filter netH型钢H-type steel含沥青的Bituminous函数Function罕遇地震rare earthquake焊缝Welding line焊接标准welding standards合同签订award of contract合页hinge荷载,加载load荷载计算load calculation荷载模量load modulus荷载组合load combination恒荷载dead load桁架truss; girder横龙骨transom横向的Transverse后片玻璃second lite护栏Guardrail划痕scratch(es)花岗岩granite花岗岩维护,干挂石granitecladding滑动门Sliding door滑动玻璃门sliding glass panel door滑移Drift环保的environmental friendly缓冲板,挡板Baffle缓冲结构buffer structure缓和mitigation回转,旋转Gyration混合物composite混凝土Concrete混凝土蠕变和收缩Concrete creep and shrinkage混凝土外包Concrete encasement 活动窗operable window活荷载live load基本参数basic parameter基本风压basic wind pressure基本竣工substantial completion基本平面,海平面Base level基础设施Infrastructure基准值Reference value基准位置reference location基座Plinth激活Activation机械通风百叶mechanical ventilation louvers机械装备mechanical equipment 机制螺钉machine screw机制螺栓machine bolt集水槽gutter集中荷载concentrated load;point load极限值extreme value几何参数geometry coefficient几何图形geometry挤压硅胶extruded silicone挤压铝型材aluminum extrusion挤压应力pressure stress技术规范technical specification技术设计Design Development技术性能technical performance技术要求technical requirements 计划,平面图,设计图Plan计划的,打算的Purposed技术的,工业的Technical计算高度Calculating Height计算书engineering calculation;计算系数computing coefficient加工容差fabrication tolerance加工商fabricator 加工图fab. drawing加强棒,泡沫棒Backer rod加强层Diaphragm加强件,加固物Reinforcement加强角片,防滑片Cleat加强片Stiffener加强肋reinforcing rib加热线heating cable加速度Acceleration夹层interlayer夹层的,夹胶的Laminated夹层玻璃laminated glass/laminate夹胶玻璃laminated glass夹丝玻璃Wired glass夹具fixture; clamp甲级Grade A甲(一)级资质Grade Acertification/qualification甲级建筑幕墙专项设计资质GradeA certification of Curtain WallDesign架空地板系统Raised floor system监理Supervision Company兼容compatible兼容性compatibility兼容性测试compatibility test间隙gap/clearance间隔条spacer间距spacing剪力shear force剪力墙Shear wall剪切shear剪切面shear front检修孔access hole简支梁free beam;simplysupported beam溅涂浮法玻璃sputter-coated floatglass建设单位Owner建筑钢结构architectural steelwork建筑设计顾问architectural designconsultant建筑主体primary structure建筑主体混凝土primary structureconcrete建筑主体钢结构primary steelstructure交错排列形式staggered pattern交底submittal交点crossing point/ meetingpoint/node/intersecting point交货deliver/delivery胶带Adhesive tape胶条gasket胶合板Plywood角度angle角钢Angle steel角焊缝fillet weld角码bracket铰链Pivot校订revision校核check;checking校核依据checking basis校准Calibration接触Contact接触面contact surface接缝,接合点joint接缝清洁剂joint cleaner接合,搭接bond;bonding接口界面interface节点detail;node节点力nodal force节点图detail结构打胶structural glazing结构硅胶Structural silicone结构胶Sealant结构分析structural analysis结构工程structural engineering结构跨度structure span结构计算structural calculation结构胶structural silicone结构图structural drawing结构支撑structural support截流器restrictor截面参数Section parameter节能技术energy-saving technology节能环保设计energy-savingenvironmental friendly design解释Annotation金属防虫网metal insect screen。
Introduction to Computational Chemistry (2)
• What can we predict with modern Ab Initio methods?
– Geometry of a molecule – Dipole moment – Energy of reaction – Reaction barrier height – Vibrational frequencies – IR spectra – NMR spectra – Reaction rate – Partition function – Free energy – Any physical observable of a small molecule
Born-Oppenheimer Approximation
• The potential surface is a Born-Oppenheimer potentials surface, where the potential energy is a function of geometry. Motion of the nuclei is assumed to be independent of the motion of the electrons
– There is an enormous toolbox of theoretical methods available, and it will take skill and creativity to solve real-world problems.
Electronic Structure Theory
! $ =
c e"#ir2 i
i
Electronic Structure Theory
• A plane-wave basis set is a common choice for predicting properties of a crystal
人工智能助手:GPT-4说明书
-1-Human Recombinant B2 Bradykinin Receptor Stable Cell LineTechnical Manual No. TM0407 Version 06042010I Introduction ............................................................................................ 1 II Background .............................................................................................. 1 III Representative Data ................................................................................. 2 IV Thawing and Subculturing ........................................................................ 2 V References . (3)Limited Use License Agreement (4)I.IntroductionCatalog Number: M00184Cell Line Name: CHO-K1/B2/Gα15Gene Synonyms: BDKRB2, B2R, BK2, BK-2, BKR2, BRB2, DKFZp686O088 Expressed Gene: Genbank Accession Number NM_000623; no expressed tags Host Cell: CHO-K1Quantity: 2 vial (3×106per vial) frozen cells Stability: 16 passagesApplication: Functional assay for B2 receptorFreeze Medium: 45% culture medium, 45% FBS, 10% DMSO Complete Culture Medium: Ham ’s F12, 10% FBSCulture Medium: Ham ’s F12, 10% FBS, 400 μg/ml G418, 100 μg/ml Hygromycin B Mycoplasma Status: NegativeStorage: Liquid nitrogen immediately upon deliveryII.BackgroundBradykinin (BK) is a pro-inflammatory polypeptide that can cause pain, inflammation, increased vascularpermeability, vasodilation, contraction of various smooth muscles, and cell proliferation by stimulating B1 and B2 receptors. B2 receptors are most commonly distributed in the vascular and non-vascular smooth muscle and in the heart. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK). The stimulation of BK B2 receptors is not only implicated in the pathogenesis of inflammation, pain, and tissue injury but also in cardioprotective mechanisms. So B2 receptor agonists may have important clinical value in the treatment and prevention of various cardiovascular disorders such as hypertension, ischaemic heart disease, left ventricular hypertrophy, ventricular remodeling, congestive heart failure, and diabetic disorders.-2-III. Representative DataCHO-K1/B2/G α15CHO-K1Log[Bradykinin] M∆R F UFigure Intracellular calcium response from CHO-K1 cells stably expressing human B2 receptor and from untransfected control cells. Cells were loaded with Calcium-4 then stimulated with the indicated concentrations of Bradykinin. Calcium responses were recorded on a FlexStation plate reader. Data represent the average +/- standard deviation of triplicate determinations.IV. Thawing and SubculturingThawing: Protocol1. Remove the vial from liquid nitrogen tank and thaw cells quickly in a 37°C water-bath.2. Just before the cells are completely thawed, decontaminate the outside of the vial with 70% ethanol andtransfer the cells to a 15 ml centrifuge tube containing 9 ml of complete growth medium. 3. Pellet cells by centrifugation at 200 x g force for 5 min, and discard the medium. 4. Resuspend the cells in complete growth medium. 5. Add 2 ml of the cell suspension per well in a 6 well-plate.6. Add Hygromycin B and G418 to concentrations of 100 μg/ml and 400 μg/ml respectively the following day.Subculturing: Protocol 1. Remove and discard culture medium.2. Wash cells with PBS (pH=7.4) to remove all traces of serum that contains trypsin inhibitor.3. Add 2.0 ml of 0.05% (w/v) Trypsin- EDTA (GIBCO, Cat No. 25300) solution to 10 cm dish and observe thecells under an inverted microscope until cell layer is dispersed (usually within 3 to 5 minutes).Note: To avoid clumping, do not agitate the cells by hitting or shaking the dish while waiting for the cells to detach. Cells that are difficult to detach may be placed at 37°C to facilitate dispersal. 4. Add 6.0 to 8.0 ml of complete growth medium and aspirate cells by gently pipetting, centrifuge the cells 200 x g force for 5min, and discard the medium. 5. Resuspend the cells in complete growth medium with Hygromycin B and G418 and add appropriate aliquots ofthe cell suspension to new culture vessels. 6. Incubate cultures at 37°C.Subcultivation Ratio: 1:3 to 1:8 weekly.Medium Renewal: Every 2 to 3 daysV. References1. Sharma, J.N. (2003) Bradykinin receptor antagonists: therapeutic implications. IDrugs. 6(6):581-62. Heitsch, H. (2003) The therapeutic potential of bradykinin B2 receptor agonists in the treatment of cardiovascular disease. Expert Opin Investig Drugs.12(5):759-703. Leeb-Lundberg, L.M., (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 57(1):27-77GenScript USA Inc.120 Centennial Ave., Piscataway, NJ 08854Tel: 732-885-9188, 732-885-9688Fax: 732-210-0262, 732-885-5878Email:******************Web: For Research Use Only.-3--4-Limited Use License AgreementThis is a legal agreement between you (Licensee) and GenScript USA Inc. governing use of GenScript's stable cell line products and protocols provided to licensee. By purchasing and using the stable cell line, the buyer agrees to comply with the following terms and conditions of this label license and recognizes and agrees to such restrictions:1) The products are not transferable and will be used at the site where they were purchased. Transfer to anothersite owned by buyer will be permitted only upon written request by buyer followed by subsequent written approval by GenScript.2) The purchaser cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made usingthis product or its components to a third party.3) The products sold by GenScript are for laboratory and animal research purposes only. The products are not tobe used on humans, for consumption, or for any unlawful uses.GenScript USA Inc. will not assert against the buyer a claim of infringement of patents owned or controlled by GenScript USA Inc. and claiming this product based upon the manufacture, use or sale of a clinical diagnostic, therapeutic and vaccine, or prophylactic product developed in research by the buyer in which this product or its components has been employed, provided that neither this product nor any of its components was used in the manufacture of such product. For information on the use of this product for other purposes, contact Marketing Department, GenScript USA Inc., 120 Centennial Avenue, Piscataway, New Jersey 08840, U.S.A. Phone: 1-732-885-9188. Fax: 1-732-210-0262. Email: ***********************.。
海尔全自动电饭煲商品说明书
Series 2, Built-in oven, 60 x 60 cm,BlackHBF031BA0I Included accessories 1 x enamel baking tray 1 x combination grid 1 x universal panThe built-in oven with 3D hot air: achieve perfect baking and roasting results on up to three levels simultaneously.Design and safety.3D Hotair: perfect results thanks to optimal distribution of heat on up to 3 levels simultaneously.EcoClean Direct: almost no cleaning is necessary thanks to a special coating of the rear wall that automatically absorbs grime.Hotair Gentle: saves energy while baking and roasting.Technical DataGross weight : 33.0 kgColor / Material Front : Black Built-in / Free-standing : Built-inIntegrated Cleaning system : catalytic partial, HydrolyticMin. required niche size for installation (HxWxD) : 575-597 x 560-568 x 550 mmDimensions : 595 x 594 x 548 mmDimensions of the packed product (HxWxD) : 670 x 685 x 650mmControl Panel Material : metal lacquered Door Material : Glass Net weight : 30.9 kgUsable volume of cavity : 66 lCooking method : Conventional heat, Full width variable grill,Hot Air, Hotair gentle, Hot air grilling First cavity material : Other Number of interior lights : 1Length electrical supply cord : 100.0 cm Interior Lights - cavity 1 : 1Pull-out system : Accessory Clock function : AlarmIncluded accessories : 1 x enamel baking tray, 1 x combination grid, 1 x universal panBroil Element Wattages cavity 1 : 2800 WEnergy consumption per cycle conventional (2010/30/EC) : 0.98kWh/cycleEnergy consumption per cycle forced air convection (2010/30/EC) : 0.79 kWh/cycleEnergy efficiency index (2010/30/EC) : 95.2 % Connection Rating : 3300 W Fuse protection : 16 A Voltage : 220-240 V Frequency : 50-60 HzPlug type : India plug (16 Ampere)Color / Material Front : Black Energy input : ElectricRequired cutout/niche size for installation (in) : x xDimensions of the packed product : 26.37 x 25.59 x 26.96Net weight : 68.000 lbs Gross weight : 73.000 lbsLength electrical supply cord : 100.0 cm Net weight : 30.9 kgIncluded accessories : 1 x enamel baking tray, 1 x combination grid, 1 x universal pan'!2E 20A F -d h d g e c !1/3Series 2, Built-in oven, 60 x 60 cm, Black HBF031BA0IThe built-in oven with 3D hot air: achieve perfect baking and roasting results on up to three levels simultaneously.Heating Functions-Oven with 5 heating methods: Hot Air, Conventional heat, Hotair grilling, Hotair gentle, Full width variable grill-Temperature range 50 °C - 275 °C -Cavity volume: 66 lHook-in racks / rails-Easy fit shelf support rails with electronic linkDesign-Rotary control knob-Ecolyse features: back panel -Full-glass inner doorComfort-LED display control (red)-Oven door with Drop down door -Rapid heating-up-Rapid heating-up: manual -Bar handle-1 x universal pan, 1 x combination grid, 1 x enamel baking trayConnecting cable: 100 cm Technical Information-Length of mains cable: 100 cm -Nominal voltage: 220 - 240 V-Total connected load electric: 3.3 KW -Number of glass panes: 2 PCDimensions:-Appliance dimension (hxwxd): 595 mm x 594 mm x 548 mm -Required niche size for installation (HxWxD): 575 mm - 597mm x 560 mm - 568 mm x 550 mm -Please reference the built-in dimensions provided in the installation drawing-electronic clock with LED display -Integral cooling fanAccessories-Energy efficiency rating (acc. EU Nr. 65/2014): A(at a range ofenergy efficiency classes from A+++ to D)Energy consumption per cycle in conventional mode:0.98 kWh Energy consumption per cycle in fan-forced convection mode:0.79 kWhNumber of cavities: 1 Heat source: electrical Cavity volume:66lEnergy efficiency rating (acc. EU Nr. 65/2014):A(at a range of energy efficiency classes from A+++ to D)Energy consumption per cycle in conventional mode:0.98 kWh Energy consumption per cycle in fan-forced convection mode:0.79 kWhNumber of cavities: 1 Heat source: electrical Cavity volume:66l2/3Series 2, Built-in oven, 60 x 60 cm, BlackHBF031BA0I3/3。
福特 Mustang 车型说明说明书
MODELMustang EcoBoostMustang GTMustang Dark HorseConstruction/materials Unitized welded steel body,aluminum hood and steel front fenders Unitized welded steel body,aluminum vented hood and steel front fenders Unitized welded steel body, aluminum vented hood and steel front fenders Body style Fastback coupe, convertible Fastback coupe, convertible Fastback coupe Trim levelEcoBoost, EcoBoost Premium GT, GT Premium Dark Horse Final assembly locationFlat Rock, MichiganFlat Rock, MichiganFlat Rock, MichiganENGINE CONFIGURATIONEngine 2.3-liter EcoBoost5.0-liter V85.0-liter V8Configuration Port fuel direct injection turbocharged I-4Dual port fuel direct injection V8Dual port fuel direct injection V8ValvetrainDOHC, Ti-VCTDOHC, Ti-VCTDOHC, Ti-VCTBlock/head material High-pressure cast aluminum block and headCast aluminum block and head with plasma transfer wire arc cylinder liners Steel oil panCast aluminum block and head with plasma transfer wire arc cylinder liners Steel oil panForged connecting rodsDisplacement 137.5 cu. in. (2,300 cc)307 cu. in. (5,038 cc)307 cu. in. (5,038 cc)Bore x stroke 3.30 in. x 4.0 in. (84 mm x 102 mm) 3.63 in. x 3.65 in. (93 mm x 92.7 mm) 3.63 in. x 3.65 in. (93 mm x 92.7 mm)Compression ratio 10.6:112:112:1Induction Twin scroll with overboost Naturally aspirated with dual air boxes and throttle bodiesNaturally aspirated with dual air boxes and throttle bodiesIgnition system Distributor-less with coil-on-plug Distributor-less with coil-on-plug Distributor-less with coil-on-plug DRIVETRAINStandardFront-engine, Rear Wheel Drive with limited-slip differentialFront-engine, Rear Wheel Drive with limited-slip differentialFront-engine, Rear Wheel Drive with limited-slip differentialFuel deliveryPort Fuel & Direct Injection Port Fuel & Direct Injection Port Fuel & Direct Injection Engine control systemPowertrain control modulePowertrain control modulePowertrain control moduleTRANSMISSIONStandard 6-speed manual with rev-matching and no-lift-shift N/AGetrag MT-82Tremec TR-3160Gear ratios:1st - 3.237:1 3.25:12nd - 2.104:1 2.23:13rd - 1.422:1 1.61:14th - 1.000:1 1.24:15th -0.814:1 1.00:16th-0.622:10.63:110-speed automatic Standard with optional SelectShift Optional with standard SelectShift Optional with standard SelectShift 1st 4.696:1 4.696:1 4.70:12nd 2.985:1 2.985:1 2.99:13rd 2.146:1 2.146:1 2.15:14th 1.769:1 1.769:1 1.77:15th 1.520:1 1.520:1 1.52:16th 1.275:1 1.275:1 1.28:17th 1.000:1 1.000:1 1.00:18th 0.854:1 0.854:1 0.85:19th 0.689:1 0.689:1 0.69:110th0.636:10.636:10.64:1Final drive3.15:1 Limited-slip rear axle, 3.55:1 TORSEN Limited-slip rear axle (Performance Package)3.15:1, 3.55:1 Limited-slip rear axle, 3.55:1 TORSEN Limited-slip rear axle (Performance Package with automatic), 3.73 TORSEN Limited-slip rear axle (Performance Package with manual)3.55:1 TORSEN Limited-slip rear axle (with automatic), 3.73:1 TORSEN Limited-slip rear axle (with manual)CHASSIS/SUSPENSIONMustang EcoBoost Mustang GT Mustang Dark HorseConstructionFully unitized steel chassis with fully independent front/rear suspension and perimeter subframe, tower-to-tower brace for Performance Packages. K-brace included on all convertible models, Performance Packages and any model with 20-in. or larger wheels.Front configuration Double-ball-joint MacPherson strut with stabilizer bar and aluminum control arms. MagneRide dampers optional on Performance PackagesDouble-ball-joint MacPherson strut with stabilizer bar and aluminum control arms. MagneRide dampers optional on Performance PackagesDouble-ball-joint MacPherson strut with stabilizer bar and aluminum control arms. MagneRide dampers standardRear configurationIntegral-link independent with coil springs and stabilizer bar. MagneRide dampers optional on Performance PackagesIntegral-link independent with coil springs and stabilizer bar. MagneRide dampers optional on Performance PackagesIntegral-link independent with coil springs andstabilizer bar. MagneRide dampers standard.STABILIZER BAR DIAMETERSPreliminary specifications as of Sept. 22, 2022 and are subject to change. Preproduction model shown. Available starting summer 2023.Mustang EcoBoostMustang GTMustang Dark HorseWHEELSSAFETY/CONTROL SYSTEMSEXTERIOR DIMENSIONSBRAKESTypeFour-wheel power disc brakes with EPB and Electronic Brake Booster and four-sensor, four-channel antilock braking system and AdvanceTrac electronic stability control; drift brake (Performance Package)Four-wheel power disc brakes with EPB and Electronic Brake Booster and four-sensor, four-channel antilock braking system and AdvanceTrac electronic stability control; drift brake (Performance Package)Four-wheel power disc brakes with EPB and Electronic Brake Booster and four-sensor, four-channel antilock braking system and AdvanceTrac electronic stability control; standard drift brakeFront brake configuration/ diameter/thickness/material Standard: 320 x 30 mm vented disc, twin-piston 43 mm floating aluminum calipers;Optional: 390 x 36 mm vented discs, Brembo six-piston 36 mm fixed aluminum calipersStandard: 352 mm x 32 mm vented discs, four-piston 46 mm fixed aluminum calipers;Optional: 390 x 36 mm vented discs, Brembo six-piston 36 mm fixed aluminum calipers390 x 36 mm vented two-piece discs, Brembo six-piston 36 mm fixed aluminum calipersRear brake configuration/ diameter/thickness/materialStandard: 320 x 12 mm solid discs, single-piston 41 mm floating aluminum calipersOptional: 355 x 28 mm vented discs, four-piston 30 mm fixed aluminum calipers Standard: 350 x 26 mm vented discs, single-piston 45 mm floating aluminum calipers Optional: 355 x 28 mm vented discs, four-piston 30 mm fixed aluminum calipers Standard: 355 x 28 mm vented discs, four-piston 30 mm fixed aluminum calipers Pad Material Standard: NAOOptional: Low-metallic Standard: NAOOptional: Low-metallic Low-metallicFront swept area Standard: 467 sq. cm/plate Optional: 768 sq. cm/plate Standard: 576 sq. cm/plate Optional: 768 sq. cm/plate 768 sq.cm/plateRear swept area Standard: 402 sq. cm/plate Optional: 523 sq. cm/plateStandard: 509 sq. cm/plate Optional: 523 sq. cm/plate523 sq. cm/plateSTEERINGTypeSelectable-Effort Electric Power Assisted (EPAS)Selectable-Effort Electric Power Assisted (EPAS)Selectable-Effort Electric Power Assisted (EPAS)Steering modes Normal, comfort, sport Normal, comfort, sport Normal, comfort, sport Ratio15.5:115.5:115.5:1Active featuresOptional MagneRide damping systemOptional MagneRide damping systemMagneRide damping systemMustang EcoBoostMustang GTMustang Dark HorseHEADLIGHTSLED Standard Standard Standard Auto on/offStandard Standard Standard LED daytime running lamps Standard Standard Standard Auto high beamStandardStandard StandardINTERIOR DIMENSIONS(inches unless otherwise noted)Seating capacity Four Four Four Front headroom37.637.637.6Front headroom, convertible 37.637.6—Front legroom, SAE 44.544.544.5Front shoulder room 56.356.356.3Front hip room54.954.954.9Rear headroom, fastback 34.834.834.8Rear headroom, convertible 35.735.7—Rear legroom, SAE fastback 292929Rear legroom, SAE convertible 29.229.2—Rear shoulder room, fastback 52.252.252.2Rear shoulder room, convertible 44.644.6—Rear hip room, fastback 47.447.447.4Rear hip room, convertible 43.743.7—Passenger volume, fastback 82.8 cu. ft.82.8 cu. ft.82.8 cu. ft.Passenger volume, convertible 79.2 cu. ft.79.2 cu. ft.—Trunk volume, fastback 13.3 cu. ft.13.3 cu. ft.13.3 cu. ft.Trunk volume, convertible10.3 cu. ft.10.3 cu. ft.—。
stm势垒高度和样品距离的关系
英文回答:The relationship between the barrier height of scanning tunneling microscopy (STM) and the distance from the sample holds considerable significance in STM measurements. The barrier height, representing the energy obstacle that the tunneling electron encounters in transitioning from the tip to the sample, relies on the spatial proximity between the STM tip and the sample surface. As the tip advances towards the sample, the barrier height diminishes due to the amplified overlap of the electronic wave functions between the tip and the sample. This reduction in barrier height facilitates an augmented tunneling current, resulting in a more distinct and elucidated image of the sample surface. As a consequence, precise control over the tip-to-sample distance is imperative in order to attain optimal STM imaging oues.扫描隧道显微镜(STM)的屏障高度与样本的距离之间的关系在STM 测量中具有相当的重要性。
碧杰-Rexroth BSHP FKN 短筒低筒动态特性滑道速度最大值为3米 秒,加速度最大值为25
N1 N6±0.5
S1
S2
S5
S9
T
V1
m
C
C0
Mt
Mt0
ML
ML0
20
7.7 13.2 5.3 M6 6.0 M3x5 60 6.0
0.25
9 600 13 600
120
170
40
58
25
9.3 15.2 6.7 M8 7.0 M3x5 60 7.5
0.45
19 800 21 200
280
300
130
Note on lubrication ▶ Not pre-lubricated
Note For all SNS/SNO ball guide rails.
Options and part numbers
Size
Ball runner block with size
20 251)
e.g.
R1663 8 R1663 2 R1663 8
B1
open lube port if necessary (see section Lubrication).
a) Lube nipple, size 20 – 25:
Funnel-type lube nipple DIN 3405-A M3x5, B2 = 8 mm lube port with additional anti-torsion element.
1) BSHP ball runner block
Preload class
C0 9 9
Order example Options: ▶ FKN ball runner block ▶ Size 20 ▶ Preload class C1 ▶ Accuracy class H ▶ With standard seal,
锂电尖晶石和层状氧化物的离子导率
锂电尖晶石和层状氧化物的离子导率
锂电尖晶石和层状氧化物是两种常见的材料,它们在锂离子电池中扮演着重要的角色。
关于它们的离子导率,我们可以从多个角度来进行讨论。
首先,让我们来看锂电尖晶石。
锂电尖晶石是一种具有优异离子导电性能的材料,其晶体结构使得锂离子能够在其中快速传输。
锂电尖晶石的离子导率受多种因素影响,包括晶体结构、晶格缺陷等。
一般来说,锂电尖晶石的离子导率较高,这也是为什么它被广泛应用于锂离子电池中的原因之一。
接下来,我们来看层状氧化物。
层状氧化物也是一种常见的锂离子电池材料,它的离子导率同样是一个重要的性能指标。
与锂电尖晶石不同,层状氧化物的离子导率受到层状结构的影响。
层状结构中的离子传输路径较长,因此层状氧化物的离子导率一般会低于锂电尖晶石。
总的来说,锂电尖晶石和层状氧化物都具有一定的离子导率,但锂电尖晶石通常具有更高的离子导率,这也使得它在锂离子电池中得到广泛应用。
当然,对于不同的具体材料和电池设计,离子导
率会有所不同,需要具体的实验和测试来确定。
希望这个回答能够帮助你更好地理解锂电尖晶石和层状氧化物的离子导率。
Sensotec TensiMaster 3000 产品说明书
Provides the ultimate solution for measuring and monitoring precise tension on web process or wire machinery in demanding industrial environments•For use with pillow block bearingsand rotating shaft installations.•Washdown-duty, withstanding impinging liquids and wet environments.•Designed to comply withNEMA 4x, IP65/67 standards.•Completely sealed. Corrosion-resisting and chemical-resisting (Stainless Steel 410 or Anodized Aluminum Alloy 6061).•Competitively priced againstcommon non-sealed,non-corrosive and chemical resistive designs.•Compact low-profile design fits easily into tight places.•With an end connector design(instead of on the side), no need for a left hand and right hand configuration.•Available in a variety of loadcapacities (25 to 30,000 lb.)and sizes (6.5 to 17 inches long),suiting a wide range of applications.•Provides 500% overload protection.•Easily mounted at any angle.•Convenient mounting plate for easy installation of pillow block bearing.Performance BenefitsThe UPB (Under-Pillow-Block)Washdown-Duty LC (load cell) is part of the Cleveland-Kidder ®Tension Transducer product family. It sets the standard for under-pillow-block tension transducers for the web process industry.The UPB Washdown-Duty LC has a completely sealed corrosion-resisting design, making it ideal for use in demanding industrial environments,including the production of paper, steel,textiles, roofing shingles, linoleum,rubber, foil, and food products.The UPB Washdown-Duty LC can be mounted at any angle. Its web force direction is not restricted to being either parallel or perpendicular to the UPB top surface (common with other load cell designs). Its compact low profile design makes it perfect for use in both retrofit and OEM applications.The UPB Washdown-Duty LC is a solid one-piece design, providing a high natural frequency response with a high level, linear output signal.Design FeaturesThe Cleveland-Kidder UPB Washdown-Duty LC is an under-pillow-block load cell that has been designed formeasuring and monitoring tension on web process and wire machinery in demanding environments.The UPB Washdown-Duty LC is made from a solid block that results in a completely sealed design with a very low profile. It is typically applied in pairs,one under each of the supporting guide roll’s pillow block bearings. Mounting the pillow block bearing to the UPB Washdown-Duty LC is simple and convenient:Rather than having to drill into the top of the load cell, the UPB Washdown-Duty LC uses a convenient mounting plate, making installation andreplacement easier. Held in place by four corner bolts, the mounting plate is easily removed, drilled and tapped to match the pillow block mounting dimensions. The plate is then remounted and the pillow block bearing is bolted into place.To assure maximum corrosion and chemical resistance, the UPBWashdown-Duty LC is made from either Stainless Steel or Aluminum Alloy depending on the size rating.Displacement from loads is negligible (typically 0.002 in.) and the output is temperature compensated.UNDER PILLOW BLOCK WASHDOWN-DUTY LOAD CELLUPB Washdown-DutyLCSIZE RATING (LB) * ULTIMATE OVERLOAD (%)UPB125 to 1000500UPB21000 to 1000050020000250UPB310000 to 30000500INDUSTRIAL PRODUCTSDIMENSION TABLESRATINGSSize Dimensions in Inches*Maximum No.Working Force (lb.)A B C D E F(Max.)G H J(Max.)KL M N WUPB1 1.50.55 5.8 1.55/16(4) 5.8 1.6 1.951/2 1.40 6.5 1.3 2.2 2.2 25, 50, 100, 250, 500, 1000UPB230.8010.0 3.01/2 (4)10.0 3.0 2.473/4 1.6811.0 3.3 3.95 4.01000, 2500, 5000, 10000, 20000UPB3 4.51.6315.04.51 (4)15.6 5.04.21-1/8 2.8017.04.85.26.510000, 20000, 30000Size Dimensions in Millimeters*MaximumNo.Working Force (N)**A B C DE F(Max.)G H J(Max.)KLM N WUPB13814147.538M814740.549.5M1235.5165335656 110, 225, 450, 1100, 2250, 4500UPB2762025476M122547663M2042.5279.584100101.54500, 11000, 22000, 45000, 90000UPB311441.5381114M24396127106.5M307143212213216545000, 90000, 135000Weight lb. (kg.) Each UPB1UPB2UPB33.7 (1.7)22 (10)102 (47)*Ultimate overload: Maximum force applied on the transducer without risking permanentdeformation. For the Washdown duty UPB the output is linear up to the point of the ultimate overload.*Allow 2.5 inches clearance (64mm) for connector.**Approximate rating in Newtons.INDUSTRIAL PRODUCTS SPECIFICATIONSMaterial: Body: Size 1- Anodized Aluminum Alloy 6061Size 2 & 3 Stainless Steel 410Mounting Plates: Stainless Steel 304Bolts for Mounting Plates: Stainless Steel Gage Resistance:Each transducer contains a half-bridge,having a nominal end-to-end resistance of440-480 Ohms.Gage Factor:100 nominalExcitation Voltage:10 VDC or VAC (rms) maximumOutput Signal@ Rated M.W.F.: 100 mV nominal / transducer200 mV nominal / pair(With 10 VDC or VAC rms excitationvoltage)OperatingTemperature Range:0˚F to 200˚FSensitivity Changewith Temp.Less than 0.02% of rated outputtypicalHumidity:95% R.H.CombinedNon-linearityAnd hysteresis:±0.5% maximum of rated output Repeatability:±0.2% maximum of rated output“MS” Connectors:MS-3102E-10SL-3P(Sealed 3 Pin Connector)Input Impedancerequired:5K Ohms per transducer(TransducerSignal Amplifierif not CMCsupplied)Output impedance:880 Ohms for UPB2 and UPB3120 Ohms for UPB1UNDERPILLOWBLOCKWASHDOWN-DUTYLOAD CELLUPBWashdown-DutyLCProcedure for Mounting the UPB Load Cellto the Machine Frame (see picture above)Remove the pillow block mounting plate (it is held in place by four stainless steel corner bolts) in order to gain access to the four load cell mounting holes. Drill and tap the machine frame to match the load cell mounting holes. Note: The UPB must be oriented so that the resultant tension force direction (bisector of the wrap angle) isin the same quadrant as the load direction arrow on the side of the UPB.Bolt the load cell in place. The UPB load cell is designed so that either imperial or metric mounting bolts can be used when mounting the load cell to the machine frame. Refer to E in the Dimensions Table for the proper bolt size. Before remounting the pillow block mounting plate refer to the procedure below.Procedure for Mounting the Pillow Block Bearing to the UPB Load Cell (see picture above)Mounting the pillow block bearing to the UPB is simple and convenient. The UPB is offered with a pillow block mounting plate. The mounting plate is held in place by four stainless steel corner bolts. Remove the mounting plate, then drill and tap it to match the pillow block mounting dimensions. A centerline mark is provided on the mounting plate. The plate is to be drilled and tapped by utilizing this centerline mark to insure that the pillow block bearing is centered on the plate. Remount the plate and bolt the pillow block bearing to it. The mounting plate is 304 Stainless Steel, which is amenable to drilling but offers corrosive and chemical resistance. Refer to Jin the Dimensions Table for the maximum bolt diameterrecommended for bolting the pillow blockbearing to the mounting plate.INDUSTRIAL PRODUCTSUNDER PILLOW BLOCK WASHDOWN-DUTY LOAD CELLUPB LCSIZING CALCULATIONSIZING CALCULATION:ORDERING PROCEDURE:SELECTION CHARTT =Max Tension A =Wrap Angle (Degrees)W =Roll Weight B =Angle of Tension Force (Degrees)K =Overload for Transients(Nominally 1.4 for most applications)MWF = Maximum Working Force(This is used to select the proper force rating of the transducer)C =Mounting Angle H =Bearing Height + DSIZE L (in.) D (in.)UPB1 2.50.98UPB2 4.5 1.25UPB36.52.10A[2KT sin —][HsinB + LcosB] ±W[L cosC – HsinC]**2*The MWF calculation defines the force on each individual load cell.**If Angle B is below horizontal use + in calculation. If Angle B is above horizontal use - in calculation Note: Consult CMC for assistance in sizing the load cell to your specific application.1. Calculate the Maximum Working Force (MWF)rating based upon your calculations from the sizing calculation equation.2. From the Selection Chart,determine the part number for the UPB Washdown-Duty LC. Select a MWF rating that equals or exceeds the MWF from your sizing calculation. Then, make sure that your pillow block bearing fits the UPB type that you selected (UPB 1, 2,or 3).Example: If you calculate a MWF of 2,204 lbs., select a UPB 2 rated at 2,500 lbs.MWF from the Selection Chart. Your part number is M846-12172-100. Then,from the Dimensions Table,make sure that your pillow bearing fits on the Size 2transducer. If it does not,please consult factory.3. Obtain pricing and delivery information by contacting a CMC sales representative,distributor, or the factory.ACCESSORIESACCESSORIES CHART*Load Cell Cable The load cell cable end is provided with a straight or right angle connector as specified. The controller end is provided with tinned leads. The controller end of the cable can be cut to length if the standard length provided is not the exact length required.MWF* =2LTransducer MWF (lbs.)UPB1Rating25501002505001000Part No. M846-12171-000100200300400500UPB2Rating1000250050001000020000Part No. M846-12172-000100200300400UPB3Rating100002000030000Part No. M846-12173-000100200Cable Length Part Number - Straight Connector Part Number - Right Angle Connector 20 Feet MO-01948-020MO-01957-02025 Feet MO-01948-025MO-01957-02550 Feet MO-01948-050MO-01957-05075 Feet MO-01948-075MO-01957-075100 Feet MO-01948-100MO-09157-100150 FeetMO-01948-150MO-01957-150*Cables are not washdown-duty. For washdown-duty cables consult CMC.。
朗文声音系统 CBT 100LA-1 产品说明书
provide long life even in high humidityenvironments. The drivers are shielded.Dynamic SonicGuard ™minimizes distortion at high drive levels by limiting low frequency excursion dynamically. This maximizes clarity at high drive levels while protecting the drivers from damage due to overpowering.A swivel (pan)/tilt wall-mount bracket is included, plus eighteen M6 inserts on the back panel fit the spacing of common third-party mounting brackets, or can be utilized tosuspend the speaker using forged shoulder steel eyebolts, providing installation versatility.CBT 100LA-1 can be installed either indoors or outdoors. The drivers are weather-treated,the fiberglass reinforced ABS cabinet is excellent for outdoor applications, external screws are stainless steel screws, and the painted aluminum grille resists rusting in the harshest conditions.Available in black or white (-WH).Specifications :Components:Sixteen 50 mm (2 in) Full-RangeFrequency Range (-10 dB)1:80 Hz – 20 kHzVertical Coverage:VerticalNarrow Mode: 15° (2 kHz - 16 kHz) (±10°) Broad Mode: 40° (1 kHz - 16 kHz) (±10°) Horizontal :150° (ave, 1 kHz – 4 kHz, ±20°)Sensitivity (2.83V@ 1m)1:Narrow: (speech mode)96 dB (2 kHz - 14 kHz )(music mode)93 dB (300 Hz - 18 kHz)Broad:(speech mode)93 dB (2 kHz - 14 kHz)(music mode)90 dB (300 Hz - 18 kHz)Nominal Impedance:8 ohms (in Thru mode)Power Capacity 325 W (1300W peak), 2 hrs (8 ohm setting)2:200 W (800W peak), 100 hrsMax SPL 3:Narrow:(speech mode)121 dB cont ave (127 peak) (music mode)118 dB cont ave (124 peak)Broad:(speech mode)118 dB cont ave (124 peak)(music mode)115 dB cont ave (121 peak)70V/100V Transformer Taps:120W, 60W, 30W, (15W at 70V only), and 8⍀thru, via switchEnclosure:Fiberglass reinforced ABS cabinet, painted aluminum grilleColors:Black or White (-WH)Insert Points:18 M6 insert points on back panel.Mounting:Included swivel (pan)/tilt wall bracket provides continuously variable+/-80 degree left-right swivel aiming (at no up/down tilt -- see Bracket Guide for maximum swivel range at various up/down tilt angles),continuously adjustable ±15 degree tilt, as well as 5 degree fixed increment points. Eighteen threaded mounting points located on back panel conform to industry standard rectangular 108 x 51 mm (4.25x 2.0 in) pattern for OmniMount® 30.0 and other compatible third-party brackets. Threaded mounting points can be utilized for suspension.Dimensions (H x W x D):1000 x 98.5 x 153 (39.4 in x 3.8 in x 6.0 in)Net Weight:7.2 kg (15.8 lb)Included Accessories:Swivel (pan) / tilt wall bracket Optional Accessories:MTC-PC2 terminal panel coverMTC-CBT-FM1 flush-mount low-profile wall-mount bracketMTC-CBT-SMB1 Stand-Mount Bracket for use with 35 mm speaker standFull spaceIEC standard, full bandwidth pink noise with 6 dB crest factor.Calculated based on power rating and measured sensitivity, exclusive of power compression.JBL continually engages in research related to product improvement.Changes introduced into existing products without notice are an expression of that philosophy.Key Features:Patent-pending Constant BeamwidthTechnology™ provides constant directivity up to the highest frequencies and reduces out-of-coverage lobing.Vertical pattern coverage switchable between 40° for medium-throw coverage and 15° for long-throw applications.Switchable voicing provides flat response in music mode or mid-range presence peak in speech mode.Dynamic SonicGuard™ overload protection Swivel (pan)/tilt wall bracket included.Built-in 70V/100V transformer, plus 8 ohm direct capability.Overview:The CBT 100LA-1, with Constant Beamwidth Technology™, represents a breakthrough in pattern control consistency, utilizing complex analog delay beam-forming and amplitude tapering to accomplish superior, consistent vertical coverage without the narrow vertical beaming and out-of-coverage lobing that are typical of straight form-factor column speakers.The slim, compact design fits well into virtually any architectural decor. The 100 cm (39.4 in) tall line array height provides consistent pattern control throughout the intelligibility band, making the CBT 100LA-1ideal for difficult acoustic environments. The combination of superior sound quality, excellent pattern control, and compact design makes CBT 100LA-1 ideal for applications such as lecture halls, transit centers, conference rooms,cathedrals, multipurpose spaces, architectural spaces, and in-wall recessed locations, among many others.The innovative coverage adjustability allows switching between broad and narrow vertical coverage settings to allow matching the coverage and throw requirements of the application.Coverage can be easily switched in-venue with the speaker already installed. This innovation allows a single loudspeaker model to excel in an extremely wide variety of project types. The voicing can be set to match theapplication through the Music/Speech switch.The Music setting provides flat frequency response, while the Speech setting produces a mid-range presence boost to provide clear,intelligible speech even at the longest throw distances.The drivers feature dual neodymium magnets for light weight. Copper capped pole pieces lower both the driver inductance and the flux modulation, resulting in increased highfrequency extension and reduced distortion at high drive levels. Butyl rubber surroundsCBT100LA-1Constant Beamwidth Technology™Line Array Column Loudspeaker with Sixteen 50 mm (2 in) DriversOutdoor Capability:IP-55 rated, per IEC529, when installed with optional MTC-PC2 panelcover. UV, moisture and 200-hr ASTM G85 acid-air/salt-spray resistant.Frequency Response:“Music” Mode (solid); “Speech” Mode (dotted), 1W, 1m, and ImpedanceNarrow Setting2010010001000020000Frequency (Hz)6070809010031610031.6103.16S P L (d B )O h m sBeamwidth:2010010001000020000Frequency (Hz)10100360-6 d B B e a m w i d t h (d e g r e e s )Horizontal VerticalDirectivity, Q2010010001000020000Frequency (Hz)01020110100D i r e c t i v i t y I n d e x (D I ), d BD i r e c t i v i t y F a c t o r (Q )Vertical Off-Axis Frequency Response2010010001000020000Frequency (Hz)-30-20-1010A t t e n u a t i o n (dB )0 deg 10 deg 20 deg 30 deg 40 degHorizontal Off-Axis Frequency Response2010010001000020000Frequency (Hz)-30-20-1010A t t e n u a t i o n (dB )0 deg 10 deg 20 deg 30 deg 40 degFrequency Response:“Music” Mode (solid); “Speech” Mode (dotted), 1W, 1m, and ImpedanceBroad Setting2010010001000020000Frequency (Hz)6070809010031610031.6103.16S P L (d B )O h m sBeamwidth:2010010001000020000Frequency (Hz)10100360-6 d B B e a m w i d t h (d e g r e e s )Horizontal VerticalDirectivity, Q2010010001000020000Frequency (Hz)01020110100D i r e c t i v i t y I n d e x (D I ), d BD i r e c t i v i t y F a c t o r (Q )Vertical Off-Axis Frequency Response2010010001000020000Frequency (Hz)-30-20-1010A t t e n u a t i o n (dB )0 deg 10 deg20 deg 30 deg 40 degHorizontal Off-Axis Frequency Response2010010001000020000Frequency (Hz)-30-20-1010A t t e n u a t i o n (dB )0 deg 10 deg20 deg 30 deg 40 degVertical 1/3 Octave PolarsNarrow SettingBroad Setting90°270°60°300°30°330°0°120°240°150°210°180°0200 Hz250 Hz 315 Hz 400 Hz90°270°60°300°30°330°0°120°240°150°210°180°200 Hz 250 Hz 315 Hz 400 Hz90°270°60°300°30°330°0°120°240°150°210°180°0500 Hz630 Hz 800 Hz 1 kHz90°270°60°300°30°330°0°120°240°150°210°180°500 Hz 630 Hz 800 Hz 1 kHz90°270°60°300°30°330°0°120°240°150°210°180°0 1.25 kHz1.6 kHz 2 kHz2.5 kHz90°270°60°300°30°330°0°120°240°150°210°180°1.25 kHz 1.6 kHz 2 kHz2.5 kHz90°270°60°300°30°330°0°120°240°150°210°180°0 3.15 kHz4 kHz5 kHz 6.3 kHz90°270°60°300°30°330°0°120°240°150°210°180°3.15 kHz 4 kHz 5 kHz 6.3 kHz90°270°60°300°30°330°0°120°240°150°210°180°08 kHz10 kHz 12.5 kHz 16 kHz90°270°60°300°30°330°0°120°240°150°210°180°8 kHz 10 kHz 12.5 kHz 16 kHzNarrow SettingBroad Setting0°180°30°150°60°120°90°330°210°300°240°270°0200 Hz250 Hz 315 Hz 400 Hz0°180°30°150°60°120°90°330°210°300°240°270°0200 Hz 250 Hz 315 Hz 400 Hz0°180°30°150°60°120°90°330°210°300°240°270°0500 Hz630 Hz 800 Hz 1 kHz0°180°30°150°60°120°90°330°210°300°240°270°0500 Hz 630 Hz 800 Hz 1 kHz0°180°30°150°60°120°90°330°210°300°240°270°0 1.25 kHz1.6 kHz 2 kHz2.5 kHz0°180°30°150°60°120°90°330°210°300°240°270°0 1.25 kHz 1.6 kHz 2 kHz 2.5 kHz0°180°30°150°60°120°90°330°210°300°240°270°0 3.15 kHz4 kHz5 kHz 6.3 kHz0°180°30°150°60°120°90°330°210°300°240°270°0 3.15 kHz 4 kHz 5 kHz 6.3 kHz0°180°30°150°60°120°90°330°210°300°240°270°08 kHz10 kHz 12.5 kHz 16 kHz0°180°30°150°60°120°90°330°210°300°240°270°08 kHz 10 kHz 12.5 kHz 16 kHzHorizontal 1/3 Octave Polars51 [2.0]Ø7 [Ø0.28]215 [8.5]183 [7.2]Ø6.5 [Ø0.26]88 [3.5]177 [7.0] Tilt Angle Adjustment:Slot ( ±15°, continuous )Pre-Set Angles ( 5° increments )Loudspeaker-MountSectionAssembled Bracket Wall-MountSection TowardLoudspeakerTowardWall99 [3.9] 1000 [39.4]153 [6.0]51 [2.0]69 [2.7]108 [4.25]108 [4.25]108 [4.25]108 [4.25]108 [4.25]108 [4.25]108 [4.25]108 [4.25]M6x1.0P (18 places)Dimensions:Dimensions in mm (in)JBL Professional8500 Balboa Boulevard, P.O. Box 2200Northridge, California 91329 U.S.A.© Copyright 2013 JBL Professional 444195-002 REV C 02/13Wall Bracket。
高二英语Clean-up-Your-Butts-and-Bags
[单选]成人心肺复苏时胸外按压的深度为()A.胸廓前、后径的一半B.1~2cmC.2~3cmD.3~4cmE.4~5cm [单选]劳动(L)的总产量下降时()APl是递减的;B.APl为零;C.MPl为零;D.MPl为负。 [名词解释]人员配备 [单选,A1型题]妊娠13周行钳刮术,术中夹出黄色脂肪样组织,患者觉剧烈腹痛、恶心呕吐,脉搏110次/分,血压70/50mmHg,首先考虑的诊断为()A.子宫穿孔B.葡萄胎C.异位妊娠D.人流综合征E.羊水栓塞 [单选]我国目前使用的人民币非现金支付工具主要包括“三票一卡”的结算方式。“三票一卡”指()。A.现金支票、转账支票、本票和信用卡B.现金支票、转账支票、本票和银行卡C.支票、汇票、本票和银行卡D.支票、汇票、本票和信用卡 [单选]根据测量标准的定义,下列计量器具中()不是测量标准。A.100kN力值基准B.O.1级标准测力仪C.高精度多功能数字表D.标准物质 [单选,A1型题]β衰变发生于()A.激发态原子核B.贫中子原子核C.富中子原子核D.质子数大于82的原子核E.超重原子核 [单选,A2型题,A1/A2型题]细胞外液Na+为90mmol/L时可引起()。A.细胞内外液未流动B.细胞外液流向细胞内C.细胞内液流向细胞外D.细胞间液流向血浆E.血浆流向组织间液 [单选,A1型题]根据Gullstrand模型眼计算,眼在使用最大调节力时屈光力可达()。A.58DB.65DC.70DD.75DE.80D [单选]Cotard综合征常见于()。A.精神分裂症B.老年性痴呆C.老年抑郁症D.顶叶病变E.麻痹性痴呆 [单选]下列关于肥儿丸叙述错误的是()A.健胃消积B.驱虫C.用于脾虚气弱者D.一般服药不超过三日E.用于小儿消化不良 [填空题]档板“三对应”的内容:()、()、()三者之间对应。 [填空题]起重机工作级
低反光率纳米涂层在美国面世
低反光率纳米涂层在美国面世
杨靖
【期刊名称】《功能材料信息》
【年(卷),期】2006(003)001
【摘要】据有关媒体报导,美国科学家最近发明一种纳米涂层,能使各种玻璃不起雾、反光率低。
由美国麻省理工学院科学家发明的这种新型涂层,其光反射率仅为0.2%,比目前已有的反光涂层2%至3%的反光率要低得多。
这种涂层还能吸收微小的水珠,防止玻璃起雾。
它具有数层聚合纤维和能够形成微小细纹的玻璃纳米粒子。
玻璃遇到水时,这些细纹能像海绵一样将这些微小的水珠吸收,形成一个薄薄的水膜,因此就不会将光分散或在玻璃上形成雾气。
研究人员将这种涂层称作“分子尿布”,其中使用的纳米粒子的直径只有7个纳米,是可见光波长的百分之一。
它可使涂层具有透明效果。
【总页数】1页(P59)
【作者】杨靖
【作者单位】无
【正文语种】中文
【中图分类】TS156
【相关文献】
1.美国发明反射率极低的能防玻璃起雾的纳米涂层 [J], 李家鸣
2.美国:麻省理工学院发明反光率低纳米涂层 [J],
3.美国低发病率地区消除结核病的进展概况——美国消除结核病咨询委员会的建议[J], 龚震宇
4.美国农药残留超标率低 [J], 白小宁
5.美国科学家发明反光率低纳米涂层 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
How Well Can Hybrid Density Functional Methods Predict Transition State Geometries and Barrier Heights?Benjamin J.Lynch and Donald G.Truhlar*Department of Chemistry and Supercomputer Institute,Uni V ersity of Minnesota,Minneapolis,Minnesota55455-0431Recei V ed:No V ember21,2000;In Final Form:January26,2001We compare hybrid Hartree-Fock density-functional theory to ab initio approaches for locating saddle pointgeometries and calculating barrier heights on a Born-Oppenhiemer potential energy surface.We locatedreactant,product,and saddle point stationary points for22reactions by the MP2and QCISD ab initio methodsand the B3LYP,BH&HLYP,mPW1PW91,and MPW1K hybrid Hartree-Fock DFT methods.We examinedall of these methods with two basis sets,6-31+G(d,p)and MG3.By comparison to calculations on fivesystems where the saddle point has been optimized at a high level of theory,we determined that the bestsaddle point geometries were obtained using the MPW1K and QCISD levels of theory.Of the methods tested,mPW1PW91and B3LYP are the least effective for determining saddle point geometries and have meanunsigned error in barrier heights of3.4-4.2kcal/mol,depending on the basis set.In contrast,the MPW1Klevel of theory predicts the most accurate saddle point geometries and has a mean unsigned error of only1.5kcal/mol for either basis set.For even better accuracy,the combination of MPW1K/6-31+G(d,p)geometrycalculations with QCISD(T)/MG3or CCSD(T)/MG3single-point energy calculations is shown to have anexcellent performance-to-cost ratio.As a side product of this work,we report optimized scale factors forcomputing zero point energies by MPW1K.1.IntroductionHybrid Hartree-Fock density-functional theory(hereafter called hybrid DFT)is of great interest for computational thermochemistry and thermochemical kinetics.Its low compu-tational cost compared to ab initio methods makes it a very attractive alternative for many applications.Although the good performance of hybrid DFT in structural and thermochemical applications is well documented,its usefulness in kinetics calculations has not been as well established.There are several varieties of hybrid DFT based on various mixing fractions and functionals;more recent density functionals show great promise for improvement in the calculation of reaction barrier heights and transition state geometries.Hybrid DFT involves mixing various amounts of the Har-tree-Fock(HF)nonlocal exchange operator with DFT exchange-correlation functionals.Two very promising hybrid DFT methods are B3LYP1and mPW1PW91.2These hybrid DFT methods have proven to be a successful approach to obtaining accurate molecular structures,vibrational frequencies,and bond energies.The most important parameter that varies in these methods is the fraction of HF exchange(set to20%in B3LYP and25%in mPW1PW91).Although hybrid DFT is successful in predicting properties of stable molecules,it is a more challenging test to obtain accurate energies at an arbitrary point on a potential energy surface,especially points with partially formed bonds.It has been observed that the fraction of HF exchange one needs to accurately predict thermochemical properties differs from the optimal fraction to predict accurate barrier heights.For example, it has been shown empirically that the BH&HLYP3method gives more accurate barrier heights than B3LYP.The BH&HLYP method most significantly differs from B3LYP in that the HF exchange is set to50%,but this significantly decreases the accuracy of calculated bond energies and energies of reaction at the same time that it improves calculated barrier heights.4 Recently,we have parametrized a method that stands in relation to mPW1PW91as BH&HLYP stands in relation to B3LYP, and we obtained much better performance for both kinetics calculations and bond energies.This is attributed to the improved long-range behavior of the modified Perdew-Wang density functional2used in mPW1PW91.The resulting method as we optimized it for kinetics is called modified Perdew-Wang 1-parameter-method for kinetics4(MPW1K).Reaction-path calculations require energy gradients as well as single-point energies(i.e.,energy values for a fixed geom-etry),and the efficient calculation of vibrational frequencies and characterization of stationary points as minima or saddle points requires Hessians(second derivatives of the energy with respect to nuclear coordinates).Geometry optimization(i.e.,the location of stationary points on the potential energy surface)also requires gradients,and optimization of difficult structures such as saddle points often requires at least one Hessian.Furthermore,for fitting potential energy surfaces5and for direct dynamics calculations6(in which the need for a fit is circumvented by performing electronic structure calculations on the fly as needed by the dynamics algorithm),one requires a large number of energies and sometimes a large number of gradients and Hessians.Thus,a major issue in selecting electronic structure methods for dynamics applications is the performance-to-cost ratio,which may be gauged by considering the mean error for test data in relation to the typical computer resources required. With either explicitly correlated methods or DFT(either pure or hybrid),one must choose not only the method to treat correlation but also the one-electron basis set.The cost is a steep2936J.Phys.Chem.A2001,105,2936-294110.1021/jp004262z CCC:$20.00©2001American Chemical SocietyPublished on Web03/13/2001function of basis set size,and sometimes performance depends strongly on basis set as well.The goal of the present paper is to study a variety of hybrid DFT methods to determine how accurately available hybrid DFT methods can predict saddle point geometries and reaction barrier heights with two good basis sets,how their performance depends on basis set size,and how much they cost compared to conventional ab initio methods.The paper extends ref4in that we consider saddle point geometries as well as barrier heights and energies of reaction,we systematically consider an aug-mented polarized valence triple- basis set as well as an augmented polarized double- basis set,and we have enlarged the database of test data.The cost consideration is dependent on system size but for quantitative estimations we will use a cost measure based primarily on a system with11atoms(2 carbons,1nitrogen,and8hydrogens).The conclusions clearly also depend on the test set;we will use a set of22reactions for which the true barrier height can be estimated reasonably reliably by comparing experimental data to dynamics calculations in the literature.These reactions mainly involve making and breaking single bonds in neutral molecules by the transfer of hydrogen, and so it is not as diverse a test set as one would like.However, even if the conclusions turn out to be valid only for reactions involving neutral atoms and rearrangements involving onlysingle bonds or hydrogen transfers,their scope will encompass a large number of important applications.In a more qualitative way,though,the conclusions certainly apply as well to an even wider class of reactions,but it is beyond our scope or ability to quantify that here.There has been extensive previous work on applications of DFT and hybrid DFT to transition states,and it is useful to place the present work in context.The situation up to1995is summarized by a symposium paper by Truong et al.,7who concluded from this work that“non-local DFT and hybrid DFT methods yield results of comparable accuracy to the second-order Møller-Plesset(MP2)method but at a much cheaper computational cost,especially for large systems.”This sympo-sium volume also contains an overview by Baker et al.,8who,“drawing on a large body of recent work”concluded that hybrid DFT,in particular the Becke3-parameter method based on the Perdew-Wang1991correlation functional(B3PW91),also called the adiabatic connection method(ACM),is“typically of better quality than MP2and only marginally more expensive computationally than Hartree-Fock”for geometries,vibrational frequencies,energies,and barrier heights.In1996Durant9 reported a systematic evaluation of one DFT method and four hybrid DFT methods including BH&HLYP,B3LYP,and B3PW91for seven transition states.He found that the BH&HLYP hybrid DFT method was best for barrier heights,and he concluded that all functionals performed reasonably well for geometries.Jursic examined a variety of reactions and found that hybrid DFT methods,including B3LYP,generally under-estimate the barrier height for abstraction of a hydrogen atom by a hydrogen atom.10-12A1998Faraday Discussion includes a summary13of what had been learned from19studies of the accuracy of various DFT and hybrid DFT methods for transition state geometries and barrier heights.It was concluded that“the B3PW91and B3LYP methods,especially the latter,have yielded remarkably good accuracy for a number of applications to transition state geometries and energies.At the same time there are a number of cases where these methods are known to be quantitatively unreliable.”Some of the early conclusions about the accuracy of DFT and hybrid DFT methods suffer from the fact that calculations were compared to experimental Arrhenius activation energies rather than extracting a best estimate of the classical barrier height by detailed modeling of the observed rate constants in terms of a potential energy surface. The first attempt to create a reasonably large systematic database that did not have this deficiency was our own previous paper (with Fast and Harris),4where we created the first version of the database used here.With a6-31+G(d,p)one-electron basis set,that paper found mean unsigned errors in barrier heights of 2.5,4.8,3.9,and1.6kcal/mol,respectively,for BH&HLYP, B3LYP,mPWPW91,and MPW1K.This study also indicated a systematic signed error in B3LYP and mPW1PW91barrier heights,which tend to be too low.Kobayashi et al.14also found that B3LYP systematically underestimates barrier heights. Our previous findings4with a6-31+G(d,p)basis raise the issue of basis set effects on DFT and hybrid DFT predictions. The original,perhaps naive,expectation of many workers was that basis set effects would be smaller on DFT calculations than on calculations involving explicitly correlated wave functions. Detailed studies of this effect bear out this expectation; nevertheless,large basis sets are often required for accurate results.15-17A finding in our own previous study,4employing mPW1PW91and MPW1K,is the importance of diffuse func-tions in obtaining a balanced treatment of bond energies across a range of bond types.It seems that the lack of diffuse functions in the basis sets may contribute more significantly to the errors obtained in some applications than is widely appreciated.One of the goals of the present work is to systematically explore the effect of further increases in basis set size.In addition to making a systematic study of basis set effects on hybrid DFT barrier heights,the present paper provides a first systematic attempt to evaluate the accuracy of predicted saddle point geometries.Section2summarizes the test set.Section3summarizes all methods and basis sets to be tested.Section4presents results and discussion.2.Databases2.1.Energetics.The test set we will use in our comparisons consists of the22reactions listed in Table1.All energies reported in this paper will be molar energies in units of kcal. TABLE1:Best Estimates of Classical Barrier Heights and Classical Endoergicity for the Reaction Set areaction∆E V f q V r q1.Cl+H2f HC1+H-3.18.7 5.62.OH+H2f H+H2O-16.3 5.722.03.CH3+H2f H+CH4-2.912.115.04.OH+CH4f CH3+H2O-13.5 6.720.25.H+CH3OH f CH2OH+H2-6.57.313.86.H+H2f H2+H0.09.69.67.OH+NH3f H2O+NH2-10.0 3.213.28.HCl+CH3f Cl+CH4-6.0 1.87.89.OH+C2H6f H2O+C2H5-17.3 3.420.710.F+H2f H+HF-31.4 1.833.211.OH+CH3f O+CH4-5.97.813.712.H+PH3f PH2+H2-22.3 3.225.513.H+ClH′f HC1+H′0.018.018.014.OH+H f H2+O-3.010.113.115.H+trans-N2H2f H2+N2H-35.1 5.941.016.H+H2S f H2+HS-13.8 3.617.417.O+HCl f OH+Cl-0.19.89.918.CH4+NH f NH2+CH3-14.28.422.719.C2H6+NH f NH2+C2H5-10.48.018.420.C2H6+NH2f C2H5+NH3-7.410.417.821.NH2+CH4f CH3+NH3-3.414.517.922.s-trans cis-C5H8f s-trans cis-C5H80.038.438.4a Units are kilocalories per mole.Letters J.Phys.Chem.A,Vol.105,No.13,20012937The table lists our best estimate of the zero-point exclusive endoergicity ∆E and forward (f)and reverse (r)barrier height V x q ,which are related byNote that ∆E is also called the energy of reaction or classicalendoergicity (it is negative for an exoergic reaction),and V x q is also called classical barrier height.The best estimates of the classical endoergicities were obtained by removing the zero point contributions from experimental heats of formation at 0K;in particular they were calculated from zero-point exclusive atomization energies that were obtained in this way.18The best estimate of the classical barrier heights for 20of the reactions (1-20)comes from our previously published 4best estimate of the barrier heights for these reactions and is explained in that previous paper.For reaction 21,NH 2+CH 4,the best estimate of the barrier was determined from theoretical 19and experi-mental 18,20data using the method described previously.4For reaction 22,the [1,5]hydrogen shift isomerization of cis -1,3-pentadiene,the best estimate of the classical barrier height was obtained by a scheme similar to that used for the other reactions by basing the estimate on reaction rates for the [1,5]deuterium shift that had been calculated 21on both AM1and PM3potential surfaces.The AM1surface has a barrier height of 39.5kcal/mol and underestimates the reaction rate;the PM3surface predicts a barrier height of 36.6kcal/mol and overestimates the reaction rate.The best estimate of V q was taken from a linear interpolation of the logarithm of the two calculated rate constants vs the barrier height for these methods in order to obtain a rate constant that agrees with the experimental 22value at 478.45K.This gives our best estimate of the barrier height to be 38.4kcal/mol.Clearly,our barrier height database is not as accurate or reliable as the widely used databases for heats of formation and atomization energies of stable molecules.Nevertheless,we believe it is accurate enough to serve as a starting point for testing methods for calculating saddle point properties.We encourage other researchers to suggest improvements in the database in the future.2.2.Saddle Point Geometries.We also made a database of saddle point geometries.These are more difficult to determine,so our test set is smaller (reactions 1,6,10,13,and 14),and it consists of reactions where very high-level calculations of saddle point geometries are available.These test data for saddle point geometries are given in Table 2,along with the literature references 23-26for the calculations on which the estimates are based.Note that V sum q denotes the sum of the making and breaking bond distances;this is a measure of the looseness of the structure in a direction perpendicular to the reaction coordinate.We will call this sum the perpendicular looseness.3.MethodsThe methods used for geometry optimization include the hybrid density functionals MPW1K,4mPW1PW91,2B3LYP,1BH&HLYP,3and two ab initio methods:Møller -Plesset second-order perturbation theory 27(MP2),and quadratic con-figuration interaction with single and double excitations 28(QCISD).We also performed energy calculations with the QCISD(T)28and CCSD(T)29methods;these methods each include two quasiperturbative terms involving connected triple excitations,one analogous to a fourth-order term in the Møller -Plesset theory and one analogous to a fifth-order term.30The basis sets employed are the 6-31+G(d,p)basis 31and the modified G3Large basis,32which is called MG3here and in ref 33but is also known as G3MP2Large.34The MG3basis is identical to the older 6-311++G(2df,2p)basis for H and first row atoms (C,N,O,F),and it may be thought of as an improved 6-311+G(3d2f,2df,2p)basis for the second row (Si,P,S,Cl).The most significant improvement over older basis sets is probably the inclusion of tight d functions for the second row;for example,the exponents of the tightest d functions on P,S,and Cl are 2.2,2.6,and 3.0,respectively.The importance of tight d functions for the second row was first emphasized by Bauschlicher and Partridge 15,35and Martin and Uzan,36and experience in our research group is fully consistent with their conclusions.For the Cl -H -CH 3transition state,the MG3basis has 121contracted functions formed from 182primitive Gaussians,as compared to 62and 118respectively for 6-31+G-(d,p).For the H 2N -H -CH 2CH 3transition state,the MG3basis has 182functions contracted from 252primitives,as compared to 97and 152for 6-31+G(d,p).The most important relativistic effect for reaction dynamics with first and second row elements is spin -orbit coupling.In all of the calculations presented in this paper,the spin -orbit stabilization energy was added to all atoms and to selected open-shell molecules,as described previously.37The spin -orbit con-tributions were assumed to be negligible at all transition states.All of the calculations presented in this paper were performed with the Gaussian98program.38All calculations on open-shell systems use the spin-unrestricted formalism,3 e.g.,UMP2,UQCISD,UB3LYP,UMPW1K,etc.All saddle points were verified to be first order with a frequency calculation,with the exception of reactions 9,19,20,and 22at the QCISD/MG3level.For these four systems,the numerical Hessian would require an excessive amount of computing resources,but the structures are very similar to those confirmed at lower levels.The structures of all MPW1K and QCISD optimized saddle points are given in Supporting Information.The cost function we use is designed to be an estimate of the cost of a saddle point geometry optimization.The actual number of energies,gradients,and Hessians required for an optimization varies greatly depending on the system,initial geometry,coordinate system,and optimization algorithm.Therefore,for we defined a standard cost (C )bywhere E is the CPU time to perform an energy calculation in minutes,G is the time to calculate a gradient,and H is the time to calculate a Hessian.All of the timed calculations were performed on a single 300MHz R12000processor on an Origin 2000computer,and the value tabulated is the sum of the C functions for calculations on two of the saddle point structures,namely ClHCH 3and H 2NHC 2H 5.For single-point calculations,X //Y ,where the geometry is optimized at level Y and a single-point energy is calculated at level X ,the standard cost function is defined asTABLE 2:Best Estimates of Saddle Point Geometries for A +BC f AB +C areaction A +BC R AB q R BC q R sum q θABCq ref 1.Cl +H 2f HC1+H 0.981 1.431 2.412180126.H +H 2f H 2+H 0.9300.930 1.8601801310.F +H 2f H +HF 1.5460.771 2.3171191413.H +ClH ′f HC1+H ′ 1.480 1.480 2.9601801214.H +HO f H 2+O0.8941.2152.10918015aUnits are angstroms and degrees.V f q )V r q+∆E(1)C )10(E +G )+H (2)C (X //Y ))C (Y )+E (X )(3)2938J.Phys.Chem.A,Vol.105,No.13,2001Letters4.Results and Discussion4.1.Saddle Point Geometries.Table 3summarizes the meanerrors in R makingbond q ,R breakingbond q,and perpendicular looseness for the methods that predict a barrier for all five reactions in the saddle point geometry test set.Table 4summarizes the same information for four of the five reactions,leaving out reaction 10,F +H 2,but including the methods B3LYP and mPW1PW91in the comparisons.Reaction 10was left out of Table 4because the B3LYP and mPW1PW91methods predict that there is a monotonically downhill reaction path;thus they predict that the highest-energy point on the lowest-energy path is at reactants where R makingbond q is ∞.The errors in Tables 3and 4were computed using the values in Table 2rounded to 0.001Åalong with the unrounded results of our calculations,but the mean errors are rounded to 0.01Åto allow the significant trends to be seen more easily.When all five reactions are considered,the lowest RMS error in bond distances for each of the two basis sets was achieved by MPW1K for both the 6-31+G(d,p),and MG3basis sets.In Table 4where the B3LYP and mPW1PW91methods are considered,they have the highest RMS error in bond distances,even though the case on which they do worst is omitted.It can be seen that B3LYP and mPW1PW91methods predict looser saddle points in the perpendicular direction.That is,they tend to overestimate the sum of the bond distances for the forming and breaking bonds at the saddle point.MP2has the opposite trend for perpendicular looseness.The methods BH&HLYP,MPW1K,and QCISD do not exhibit a systematic error in perpendicular looseness as found in mPW1PW91,B3LYP,and MP2;however,BH&HLYP suffers from a large RMS error in both the bond length and perpendicular looseness.For the reactions explored in this paper,the error tables show that B3LYP and mPW1PW91are not well suited for geometry optimizations for dynamics calculations.Geometries optimized with QCISD are well balanced with respect to perpendicularlooseness;however,the method is prohibitively expensive except for small systems.MPW1K predicts saddle point geometries almost as well with only an augmented,polarized valence-double- -basis and a much lower cost,and MPW1K with the larger basis set is more accurate for the full (five-reaction)test set.4.2.Energetics.All calculated values of V f q ,V r q,and ∆E are given in the Supporting Information.Table 5compares the mean signed error (MSE),mean unsigned error (MUE),and root-mean-squared error (RMSE)for the barrier heights and reaction energies for the set of 22reactions optimized using the 6-31+G-TABLE 3:Mean Errors (Ångstroms)in Internuclear Distances at Saddle Point for Reactions 1,6,10,13,and 14bond distanceperpendicular loosenessmethod basis MSE a MUE b RMSE c MSE a MUE b RMSE c cost BH&HLYP/6-31+G(d,p)-0.010.040.06-0.010.040.06 2.4(2)d MPW1K/6-31+G(d,p)0.000.020.03-0.010.020.02 2.5(2)MP2/6-31+G(d,p)-0.030.030.05-0.050.050.07 2.6(2)QCISD/6-31+G(d,p)-0.010.030.04-0.020.030.04 1.9(4)BH&HLYP/MG3-0.010.030.05-0.020.040.05 1.6(3)MPW1K/MG3-0.010.010.01-0.010.020.02 1.6(3)MP2/MG3-0.030.040.06-0.070.070.08 3.3(3)QCISD/MG3-0.010.020.03-0.010.020.031.9(5)aMean signed error.b Mean unsigned error.c Root mean squared error.d Power of 10in parentheses.TABLE 4:Mean Errors (Ångstroms)in Internuclear Distances at Saddle Point for Reactions 1,6,13,and 14bond distanceperpendicular loosenessmethod basis MSE a MUE b RMSE c MSE a MUE b RMSE c cost B3LYP/6-31+G(d,p)0.030.070.120.070.070.11 2.4(2)d BH&HLYP/6-31+G(d,p)0.010.040.060.020.030.04 2.4(2)mPW1PW91/6-31+G(d,p)0.010.030.060.030.030.05 2.5(2)MPW1K/6-31+G(d,p)0.000.020.030.000.020.02 2.5(2)MP2/6-31+G(d,p)-0.010.020.02-0.030.030.03 2.6(2)QCISD/6-31+G(d,p)0.000.020.020.000.010.01 1.9(4)B3LYP/MG30.010.050.090.030.060.09 1.6(3)BH&HLYP/MG30.000.030.040.000.020.02 1.6(3)mPW1PW91/MG30.010.040.080.020.030.05 1.6(3)MPW1K/MG30.000.010.01-0.010.020.02 1.6(3)MP2/MG3-0.020.030.04-0.050.050.06 3.3(3)QCISD/MG30.000.020.030.000.010.011.9(5)aMean signed error.b Mean unsigned error.c Root mean squared error.d Power of 10in parentheses.TABLE 5:Mean Errors (kcal/mol)for 6-31+G(d,p)Basismethod MSE a MUE RMSE cost 66DataB3LYP3.84.4 2.4(2)b mPW1PW91 2.8 3.3 2.5(2)MPW1K 1.6 2.1 2.5(2)BH&HLYP 3.0 3.9 2.4(2)MP2 4.65.4 2.6(2)QCISD 3.84.4 1.9(4)44Barrier Heights B3LYP-4.1 4.2 4.9mPW1PW91-3.6 3.6 3.8MPW1K -1.1 1.5 1.9BH&HLYP 0.5 2.7 3.4MP2 5.5 5.8 6.3QCISD 3.2 3.5 4.122Energies of ReactionB3LYP2.83.4mPW1PW91 1.3 1.6MPW1K 1.7 2.3BH&HLYP 3.74.7MP2 2.1 2.9QCISD3.03.5aMean signed errors for energies of reaction are meaningless since each reaction could be written in either direction.b Power of 10in parentheses.Letters J.Phys.Chem.A,Vol.105,No.13,20012939(d,p)basis.The first six rows of Table5show the MSE,MUE, and RMSE over all66data(44barrier heights,and22energies of reaction).Table6displays the same errors for the structures optimized using the MG3basis.Tables5and6also show the errors averaged separately over the barrier heights and energies of reaction.Table7shows some results for optimizing the saddle point geometry at the MPW1K/6-31+G(d,p)level and then perform-ing single-point energy calculations at that geometry.The table shows that there is little advantage in doing this unless the higher level calculation includes connected triple excitations with a large basis set.But,if the higher-level calculation does include these characteristics,i.e.,QCISD(T)/MG3and CCSD(T)/MG3, then the results are quite accurate.For example,QCISD(T)/ MG3//MPW1K/6-31+G(d,p)shows a mean unsigned error in barrier heights of only1.3kcal/mol at a cost only20%larger than MPW1K/MG3(which has a mean unsigned error in barrier heights of1.5kcal/mol)and100times faster than the fully optimized QCISD/MG3calculations(which have a mean unsigned error in barrier heights of2.7kcal/mol).The MPW1K method outperforms all other methods tested in accuracy.It is also among the least expensive methods in terms of computational cost.The main source of error in the B3LYP and mPW1PW91methods comes from a systematic underestimate of the classical barrier height.Similarly,the ab initio methods suffer from a systematic error,but they instead tend to overestimate the barrier height.5.Summary and Concluding RemarksThis paper expands upon a previous database of classical barrier heights that can be used to test new methods for kinetics calculations and adds a database for saddle point geometries.It uses these databases as test cases and compares the cost and accuracy of a number of methods for calculating saddle point geometries,reaction barrier heights,and reaction energetics.It confirms the success for energies of the MPW1K hybrid density functional method with a small basis,it quantifies the improve-ment when going to a larger basis,it demonstrates that the method is quite accurate for saddle point geometries as well as energies,and it demonstrates the successful use of the method for calculating saddle point geometries in conjunction with single-point calculations at the QCISD(T)and CCSD(T)levels. For comparison the paper also reports full sets of optimizations with other hybrid density functionals and two ab initio levels with two basis sets,and a total of six single-point strategies are tested.The answer to the question in the title of this paper is “very well indeed,especially considering the low cost.”It is particularly encouraging to note that the hybrid DFT results are much less sensitive to the basis set than are the ab initio ones. The database is dominated by hydrogen-atom-transfer reac-tions of neutral species in the gas phase.It will be interesting to test the successful approaches more broadly in the future. Acknowledgment.This work was supported in part by the U.S.Department of Energy,Office of Basic Energy Sciences. Supporting Information Available:Tables of gas phase geometries at the sadle point and values of V f q,V r q,and∆E. This material is available free of charge via the Internet at http:// .Appendix.Vibrational FrequenciesIn a previous paper37we developed a database of thirteen anharmonic vibrational zero point energies(ZPEs)for testing and parametrizing vibrational frequencies.Although vibrational frequencies are not used in the present study,we did employ this vibrational ZPE database to develop scale factors for vibrational frequencies calculated both by MPW1K/6-31+G-(d,p)and MPW1K/MG3.The results will be useful for applyingTABLE6:Mean Errors(kcal/mol)for MG3Basis method MSE MUE RMSE cost66DataB3LYP 3.1 3.7 1.6(3)a mPW1PW91 2.7 3.1 1.6(3) MPW1K 1.4 1.8 1.6(3) BH&HLYP 2.6 3.3 1.6(3) MP2 3.7 4.5 3.3(3) QCISD 2.4 2.8 1.9(5)44Barrier HeightsB3LYP-3.5 3.6 4.1mPW1PW91-3.4 3.4 3.6MPW1K-1.0 1.5 1.8BH&HLYP0.6 2.5 3.1MP2 3.9 4.3 4.9QCISD 2.6 2.7 3.122Energies of ReactionB3LYP 2.1 2.6mPW1PW91 1.3 1.6MPW1K 1.4 1.7BH&HLYP 2.8 3.7MP2 2.5 3.4QCISD 1.6 2.0a Power of10in parentheses.TABLE7:Mean Errors(kcal/mol)for//MPW1K/6-31+G(d,p)Calculationssingle-point energy MSE MUE RMSE cost66dataPMP2/6-31+G(d,p) 2.7 3.4 2.5(2)a QCISD/6-31+G(d,p) 3.8 4.4 3.4(2) QCISD(T)/6-31+G(d,p) 3.1 3.6 3.8(2) PMP2/MG3 2.1 2.9 3.1(2) QCISD/MG3 2.3 2.7 1.4(3) QCISD(T)/MG3 1.2 1.5 1.9(3) CCSD(T)/MG3 1.2 1.5 2.1(3)44barrier heightsPMP2/6-31+G(d,p) 3.0 3.3 3.9QCISD/6-31+G(d,p) 4.1 4.2 4.8QCISD(T)/6-31+G(d,p) 3.0 3.2 3.7PMP2/MG3 1.3 2.1 3.0QCISD/MG3 2.4 2.6 3.0QCISD(T)/MG3 1.0 1.3 1.5CCSD(T)/MG3 1.1 1.3 1.622energies of reactionPMP2/6-31+G(d,p) 1.5 2.0QCISD/6-31+G(d,p) 3.0 3.5QCISD(T)/6-31+G(d,p) 2.7 3.3PMP2/MG3 2.0 2.6QCISD/MG3 1.6 2.0QCISD(T)/MG3 1.1 1.4CCSD(T)/MG3 1.1 1.3a Power of10in parentheses.TABLE8:Root-Mean-Square Errors and Scale Factors for Calculating Zero Point EnergiesRMS error in ZPE amethod unscaled scaled scale factor MP2/cc-pVDZ0.33b0.17b0.9790b MPW1K/6-31+G(d,p)0.700.210.9515 MPW1K/MG30.660.240.9552a Units are kcal/mol.b Ref37.2940J.Phys.Chem.A,Vol.105,No.13,2001Letters。