高考志愿填报问题数学建模

合集下载

数学建模论文:高考志愿填报建议

数学建模论文:高考志愿填报建议

20X X高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): X 我们的参赛报名号为(如果赛区设置报名号的话): xxxxxxxx 所属学校(请填写完整的全名):集美大学参赛队员 (打印并签名) : 1.2. 刘伟权数学0912 553.指导教师或指导教师组负责人 (打印并签名):日期: 2011 年 7 月 31 日赛区评阅编号(由赛区组委会评阅前进行编号):20XX高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):2011年福建高考志愿填报建议摘要:在每一年的高考志愿填报中涉及到很多随机因素和策略,考生往往不知道如何科学的填报志愿,本文在提取大量数据的基础上,主要解决的是计算出考生对应分数填报其感兴趣的高校被录取的概率。

在综合考虑每年的各高校的录取分数线及平均分,运用概率统计和模糊数学的方法,将学校往年的录取分和考生的原始分转化为标准分,以排除每年考试的难易程度带来分数波动的影响。

另外,运用层次分析法将各种因素纳入考虑算出权重。

最后计算被录取的概率。

最后,根据我们的研究分析,对考生填报志愿给出建议。

关键词:高考志愿概率统计模糊数学层次分析标准分权重目录一、问题重述二、问题分析三、模型假设四、模型建立五、模型应用六、给考生的建议七、模型推广与评价八、参考文献一、问题重述在每年的高考结束后,考生和家长就投入到了紧张的志愿填报之中。

2023年全国数学建模题目

2023年全国数学建模题目

2023年全国数学建模题目
一、优化模型
题目:全球能源分配优化问题
问题描述:全球各国对能源的需求不断增长,而能源资源有限。

为了实现可持续发展,需要优化全球能源分配,确保各国都能获得适量的能源供应。

请运用优化模型和方法,设计一个全球能源分配方案,以满足各国能源需求,并尽量减少能源浪费和环境污染。

二、统计分析
题目:社交媒体用户行为分析
问题描述:社交媒体平台上积累了大量用户数据,包括用户发布的内容、关注对象、互动情况等。

请运用统计分析方法,分析社交媒体用户的偏好、行为模式和社交网络结构,为相关企业提供营销策略建议。

三、机器学习
题目:基于机器学习的文本分类问题
问题描述:文本数据包括各种主题,如政治、经济、文化等。

请运用机器学习算法,对给定的文本数据进行分类,并评估分类效果。

同时,请探讨如何提高分类准确率和泛化能力。

四、预测模型
题目:商品价格预测问题
问题描述:商品价格受到多种因素的影响,如市场需求、生产成本、政策因素等。

请运用预测模型和方法,预测未来一段时间内某种商品的价格走势,为投资者和企业提供决策依据。

五、决策分析
题目:企业投资决策问题
问题描述:企业需要在多个项目中做出投资决策,以实现利润最大化。

请运用决策分析方法,评估各项目的风险和收益,为企业制定最优投资策略。

六、系统动力学
题目:城市交通拥堵问题研究
问题描述:城市交通拥堵是一个复杂的问题,涉及多个因素之间的相互作用。

请运用系统动力学方法,建立城市交通拥堵问题的动力学模型,分析各因素之间的因果关系和动态变化规律,提出缓解交通拥堵的策略建议。

高考试题中数学建模的考查趋势分析及其教学建议

高考试题中数学建模的考查趋势分析及其教学建议
2
出面积的最大值.
二、数学建模在高中数学内容的渗透
(3)指数函数模型
例 3:(必修 1 第 57 页例 8)截住到 1999 年底,我国 人口约 13 亿.如果今后能将人口年平均增长率控制在 1%,那么经过 20 年后,我国人口数最多为多少(精确 到亿)?
二、数学建模在高中数学内容的渗透
(3)指数函数模型
一、数学建模素养的意义
(四)数学建模能力的构成 1、阅读理解能力 2、抽象概括能力 3、符号表示能力 4、模型选择能力 5、数学运算能力
一、数学建模素养的意义
1、阅读理解能力。
阅读理解能力是学生按照一定思路、步骤感知实际 问题的信息,在对信息分析和思考后,获得对问题感性 认识的能力。阅读理解能力较好的学生,读得准、读得 快、理解快、理解深,这是数学建模的前提。如,1999 年上海高考卷第22题的问题情境是冷轧钢板的过程,题 中出现了“减薄率”这一专门术语,并给出了即时定义 。能否深刻理解该定义,取决于学生阅读理解能力,这 将直接影响该问题的数学建模。
一、数学建模素养的意义
2、抽象概括能力。
如,将银行计息的“复利公式”类比和推 广到计算细胞分裂、人口增长等实际问题, 这不仅给了学生解决实际问题一把通用的钥 匙,也是培养和提高学生抽象概括能力的重 要方式。
一、数学建模素养的意义
3、符号表示能力。
把实际问题中表示数量关系的文字、图像 “翻译”成数学符号语言,即数、式子、方 程、函数、不等式等的能力。这种“翻译” 是数学建模的基础性工作。
二、数学建模在高中数学内容的渗透
数学建模的教学重点在新课程中规定的应用:
1、初步掌握建立函数模型解决问题的过程和方法,能应用导数等 解决一些简单的实际问题。

高考志愿预测的数学模型研究

高考志愿预测的数学模型研究

高考志愿预测的数学模型研究【摘要】本研究旨在探索利用数学模型预测高考志愿的可行性和有效性。

我们建立了一个基于历年高考成绩和志愿选择情况的数学模型,以预测考生的志愿排名。

接着,我们对大量数据进行收集和处理,确保模型的准确性和鲁棒性。

通过模型参数的优化和验证,我们提高了预测的准确率和稳定性。

我们还提出了一些改进策略,进一步提升模型性能。

结论部分讨论了数学模型在高考志愿预测中的应用前景和未来研究方向。

本研究为高考志愿预测领域提供了一种新的方法和思路,有望在实际应用中发挥重要作用。

【关键词】高考志愿预测、数学模型、研究背景、研究目的、研究意义、数据收集、模型参数优化、模型验证、模型评估、模型改进策略、应用前景、未来研究方向、总结。

1. 引言1.1 研究背景高考志愿预测一直是学生和家长们关注的焦点问题。

随着高考竞争日益激烈,学生们在填报志愿时往往面临着种种难题:应该选择哪些学校?哪些专业适合自己?如何合理安排志愿顺序?为了解决这些问题,研究者们开始利用数学建模的方法对高考志愿进行预测和优化。

传统的高考志愿填报通常基于学生的成绩和兴趣,但这种方法往往忽略了其他重要因素,如学校的声誉、专业的前景、学科交叉等。

建立一套科学的数学模型成为了解决这一问题的关键。

在这样的背景下,本文旨在探讨如何利用数学模型预测高考志愿,帮助学生和家长更好地选择适合自己的学校和专业。

通过收集和分析大量的数据,优化模型参数,验证和评估模型的准确性,并提出改进策略,以提高模型的预测能力和实用性。

本文也将展望数学模型在高考志愿预测中的应用前景,探讨未来的研究方向,并对本研究进行总结。

通过这些努力,希望能为解决高考志愿填报难题提供有力的支持和指导。

1.2 研究目的研究目的是为了探讨利用数学模型来预测高考志愿的可行性和准确性。

通过建立一个科学合理的数学模型,可以更好地帮助学生和家长了解考生的综合素质,从而为志愿填报提供更准确的参考。

通过对数据的收集和处理,可以进一步提高预测模型的准确性和可靠性,为考生提供更加个性化的志愿建议。

高考志愿填报决策模型

高考志愿填报决策模型

高考志愿填报决策模型第一部分高考志愿填报决策模型的概述 (2)第二部分模型构建的数据来源和处理方法 (4)第三部分影响志愿填报的主要因素分析 (7)第四部分志愿填报决策模型的理论基础 (11)第五部分志愿填报决策模型的构建步骤 (13)第六部分模型的应用与实际案例解析 (16)第七部分模型的局限性与改进方向 (19)第八部分结论:高考志愿填报决策模型的意义与价值 (22)第一部分高考志愿填报决策模型的概述在《高考志愿填报决策模型》一文中,我们探讨了如何运用科学的方法和模型来指导考生进行高考志愿的合理选择。

以下是对该文内容的一个简明扼要的概述。

模型背景与重要性高考是中国高中毕业生进入大学的主要途径,其竞争激烈程度不言而喻。

志愿填报作为高考后的一项关键环节,对考生未来的发展具有深远影响。

然而,由于信息不对称、个人认知偏差以及心理压力等因素,许多考生在填报志愿时常常面临困难。

因此,建立一套科学、系统的高考志愿填报决策模型显得尤为重要,它可以帮助考生理性地分析自身情况、院校信息,并据此做出更符合自身长远发展的选择。

决策模型要素一个完整的高考志愿填报决策模型应包含以下几个核心要素:自我评估:考生需要首先了解自己的兴趣、性格、能力以及价值观等个体特质。

这可以通过心理测试、生涯规划等活动进行。

同时,还需要对自身的学业成绩、学科优势、潜力等方面进行客观评价。

院校信息收集:包括各高校的基本情况(如地理位置、校园环境、教学设施等)、专业设置、师资力量、学术研究水平、就业前景及历年录取分数线等。

报考策略制定:根据自我评估和院校信息,确定报考的目标层次(如一本、二本或专科)和专业范围,然后结合招生政策(如平行志愿、顺序志愿等),制定出合理的报考策略。

风险评估与应对:考虑可能存在的落榜风险、调剂风险等,并提前准备好相应的应对措施,如是否愿意接受调剂、是否有备选方案等。

决策工具支持:利用数学模型、计算机软件等工具,将上述因素量化并进行综合分析,以提高决策的精准度和效率。

数学建模选课问题

数学建模选课问题

1.问题提出对于问题一,我们必须考虑在学校和院系的规定的条件下对同学选课最少进行求解。

所以我们先从已知条件入手,把他们转化为约束条件,然后建立0-1整数优化模型,利用LINGO软件对其进行求解。

对于问题二,我们同样考虑在选修学分最少的情况下对同学选课最多进行求解。

但两者不能同时都满足,所以我们必须把这个双优化模型转化为单优化模型,然后再利用LINGO对其进行求解。

问题三则是考虑了选修课程限选人数的问题,所以必须针对不同的学生类型设计相应的选择方案。

同时考虑到选修的课程能否如愿选上,需要在已只知不同课程限选人数的情况下,利用对不同目标加权的方法对问题进行优化。

2符号说明与模型假设2.1符号说明表2:符号说明表注:其它符号在文中另加说明2.2模型假设(1):各个同学在选修课程时不受其他因素影响,只受学分和选修课程门数影响。

(2):学生选课是独立的,相互之间不影响。

(3):选课的学生有两种类型,一类是对这门课真正感兴趣的,另一类是“混学分”的,且这两类各占选课学生人数的一半。

(4):学生的信息是不公开的。

(5):问题三中没有提到的课程表示人数没有限制。

3模型建立和求解3.1问题一的解决3.1.1模型的建立用xi表示选修表中按照编号顺序的18门课程的选择(i=1,2,…18),其中xi 取值为1或者0。

其定义如下:采用目标规划的方法,考虑到学校的各种约束条件,将约束条件用数学表达式表示为一下几点:1:要使选修课程的总学分数不少于18,既有下面的不等式:2:任选课程的比例不能少于所修总学分的1/6,也不能超过1/3:3:课程号为5、6、7、8的课程必须至少选一门:4:选修某些课程必须同时选修其他课程,可以表示为:在达到以上要求的情况下,只考虑选修课程最少的情况,相应的目标函数为:在Lingo[1]中可以对该目标函数进行优化,其中约束条件为①②③④,由于上述条件中有大于关系,可以在两边乘以—1将约束条件全部转换成小于关系,这样便于在Lingo中求解.最后本文建立了如下的优化模型3.1.2模型的求解利用LINGO软件求解可以得到3.1.3问题一的结果最后本文得到了在学校和院系的要求下选课最少是选五门,选择方案是选择课程1,2,6,10,14。

数学建模关于毕业生就业分析及量化分析

数学建模关于毕业生就业分析及量化分析

作者:来源:发表时间:2006-05-28[本文系作者主持的国家社会科学基金项目(02CJY002)研究成果之一,福建省教育科学基金课题(03SJY03)研究成果之一,国务院侨办基金项目成果之一,泉州市社会科学基金研究成果之一。

] [张向前,亦名张退之,1976年6月生人,男,汉族,福建仙游人,西安交通大学工商管理博士,国立华侨大学人力资源教研室主任,主要从事经济管理与经济法等研究。

联系地址:福建泉州国立华侨大学经济管理学院张向前收邮政编码:362011电邮及电话附文尾。

]据教育部今年4月发布的资料,2004年全国有280万高校毕业生,比2003年增加68万人,增幅达32%。

全社会新增劳动就业岗位900万个,其中有 500万个要解决下岗职工的再就业问题,剩下的就业岗位,除了要解决280万大学生就业,还有200多万的中专毕业生等待就业〔1〕,加上多年积累下来的待业人员,高校毕业生的就业局面相当严峻,就业问题是当前大学毕业生面临最大难题。

是不是我国大学毕业生太多了!目前我国大学生人数占总人口数的比例与世界发达国家相比,差距仍然很大,1996年我国高等教育毛入学率8.3%,到2002年达15%,1997年世界平均毛入学率17.8%,发达国家平均是 61.1%〔1〕,应该看到,我国高等教育还处在世界发展水平的初级阶段,还不能够完全满足我国经济社会快速发展的需求,有着强大的发展空间。

那么,大学生为什么还是面临着就业难题,本文就此进行分析。

一我国大学生就业市场新变化最近几年,我国大学毕业就业产生不少新变化。

首先,我国本土大学生面临国际联合办学机构竞争。

近几年来,我国高教市场逐步向国外资本开放,各种形式外国教育机构的进入,产生了更多类型的人才培养机构,他们不但提供了人才短期培训,不少教育机构还与国内大学进行联合办学,这种全新人才培养模式直接挑战了中国本土高校人才培养模式,对我国本土高校大学生就业增强了不少的竞争对手。

数学建模初赛一等奖获奖作品

数学建模初赛一等奖获奖作品
其次,对于高考志愿填报过程中的决策成本进行分析。决策成本的概念包括各个院 校以往的报录比、最低录取分数差等,以最小决策风险为目标。文中通过模糊隶属度和 对策论来分析实际决策成本,评价决策风险。在设置了超出控制线 160、60、30 分的 三个不同分数段的学生以及他们所选取所要报考的目标学校中进行决策成本的评估,最 终给出相应的决策成本度量。学生 1 的决策成本较低,易被所报考的学校录取,学生 2 的决策成本较高,录取的难度较大;学生 2 在决策成本较高的情况下,选择填报中国地 质大学(北京)更易被录取。
图 1. 准则评分曲线图
图 1 中蓝线表示决策的结果最好时的规划建议。红线表示风险最小时的规划建议。 只通过蓝线判断决策时,即在决策结果最好的情况下尽量不考虑决策成本印象,设 置决策结果为最大值,在这样约束条件下,我们可以得到一种牺牲决策成本换取决策结 果的决策建议,这样看来最好结果时学生所承担的风险为接近于 2.7,在整个决策成本 中,该值表示所需学生承担的风险最大。但是改为不考虑结果,仅将成本作为影响决策 的依据时,学生最终的录取志愿可能不理想,如图中,在红线达到最小值时,决策结果 评分只有 0.5,这是一种非常不理想的情况。 折中与平衡两个指标。如果愿意承担一定风险,又希望得到一个可以接受的高校, 那么按照规则取约束条件下的结果最大化,成本最小化。虽然决策结果或者决策成本不 是局部最优的选择,但是我们是在牺牲一部分可以接受范围内的因素得到我们愿意得到 的最好的结果。这是一种全局最优的平衡方法。在实际生活中,考虑众多因素的影响,
5
这是最为实际的决策方案。 模型结果说明两种极端的决策准则是可以有一个这种平衡点的,平衡这两种标准具
有较大的可行性。在本小问中构建的目标规划模型,我们可以将这个结论作为后续工作 的一个大体的约束与支持,讨论如何平衡两大准则。

高考数学数学建模练习题及答案

高考数学数学建模练习题及答案

高考数学数学建模练习题及答案一、综合分析题某城市2019年的二氧化硫(SO2)和氮氧化物(NOx)排放量分别为15.2万吨和20.8万吨。

根据监测数据,该城市出现了严重的空气污染,为了改善空气质量,政府制定了下列措施:1. 实施尾气治理方案,使汽车尾气排放的SO2和NOx总量每年减少10%。

2. 推广清洁能源车辆,使其占机动车保有量的比例增加4%。

3. 建设新的绿化景观,增加每年吸收的SO2和NOx总量3%。

根据以上措施,解答以下问题:1. 计算2023年该城市汽车尾气排放的SO2和NOx总量。

2. 估计2023年该城市机动车保有量。

3. 计算新绿化景观每年吸收的SO2和NOx总量。

解答:1. 计算2023年汽车尾气排放的SO2和NOx总量:2019年汽车尾气排放的SO2总量:15.2万吨2019年汽车尾气排放的NOx总量:20.8万吨汽车尾气排放的SO2和NOx总量每年减少10%,即每年剩余原量的90%。

2023年汽车尾气排放的SO2总量:15.2万吨 * 0.9 = 13.68万吨 2023年汽车尾气排放的NOx总量:20.8万吨 * 0.9 = 18.72万吨因此,2023年该城市汽车尾气排放的SO2总量为13.68万吨,NOx总量为18.72万吨。

2. 估计2023年该城市机动车保有量:假设2019年该城市机动车保有量为A辆。

推广清洁能源车辆,使其占机动车保有量的比例每年增加4%。

这可以表示为公式:A * (1 + 0.04)^4 = 1.04^4 * A2023年该城市机动车保有量:1.04^4 * A因此,估计2023年该城市机动车保有量为1.1699A辆。

3. 计算新绿化景观每年吸收的SO2和NOx总量:新绿化景观每年吸收的SO2和NOx总量增加3%。

假设2019年新绿化景观每年吸收的SO2总量为B吨,NOx总量为C吨。

2023年新绿化景观每年吸收的SO2总量:B * (1 + 0.03)^42023年新绿化景观每年吸收的NOx总量:C * (1 + 0.03)^4因此,2023年新绿化景观每年吸收的SO2总量为B * 1.1255吨,NOx总量为C * 1.1255吨。

高考题中的常见数学建模方法

高考题中的常见数学建模方法

高考题中的常见数学建模方法高考题中的常见数学建模方法“数学建模”是指通过对实际问题的抽象、简化,确定变量和参数,是一种创造性活动,也是一种解决现实问题的量化手段,根据创造性人才成长和发展的规律以及现代社会对人才素质的要求,寓创新能力培养于数学建模之中,是培养学生创新能力的一条有效途径。

解答数学应用问题的核心是建立数学模型。

这就要求:认真分析题意,准确理解题意,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想、转化、抽象,建立数学模型。

中学数学建模的基本类型有:一、函数最值模型有关涉及用料最省、成本最低、利润最大等应用问题,可考虑建立目标函数,转化为函数最值问题结合导数来解决。

例1:某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x(单位:元/千克)满足关系式y=a/(x-3)+10(x-6)~(2),其中3<x<="">(I)求a的值(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。

分析:本题是2011年福建高考题,是以函数最值为模型的一个实际问题。

考查运算求解能力、应用意识,函数建模的能力,关键是列出利润的目标函数,第(I)题,代入x=5,y=11,得a=2 (II)由(I)可知,该商品每日的销售量y=2/(x-3)+10(x-6)~(2),所以商场每日销售该商品所获得的利润的目标函数为f(x)=(x-3)[2/(x-3)+10(x-6)~(2)]=2+10(x-3)(x-6)~(2),3<x<6< p="">再利用导数求得三次函数的最大值。

二、不等式模型有关设计求最大、最小值问题的应用题时,考虑转化为不等式,应用不等式的性质及基本不等式来解。

例2;某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z=______A.4650元B.4700元C.4900元D.5000元分析:这是2011年四川高考题,是一道以不等式为模型的应用题,关键是列出线性约束条件及目标函数。

高考志愿录取概率模型研究

高考志愿录取概率模型研究

高考志愿录取概率模型研究本文旨在全面介绍概率主题模型的相关知识,包括其基本概念、研究现状、建立和优化方法以及在各个领域中的应用实例。

概率主题模型是一种基于概率图模型的文本主题模型,在文本挖掘、情感分析、推荐系统等领域具有广泛的应用。

本文将重点以下3-5个关键词:概率主题模型、文本挖掘、情感分析、推荐系统、建立和优化。

随着互联网技术的迅速发展,文本数据在各个领域中的重要性日益凸显。

如何有效地提取文本中的主题信息,进而实现文本数据的分析和利用成为研究热点。

概率主题模型是一种基于概率图模型的文本主题模型,能够有效地揭示文本数据中的主题分布,因此备受。

本文将详细介绍概率主题模型的相关知识,以期为相关领域的研究和应用提供参考。

概率主题模型是一种基于概率图模型的文本主题模型,通过建立文本中词项与主题之间的概率关系,来揭示文本数据中的主题分布。

概率主题模型的目标是通过对文本数据的建模,将文本中包含的多种主题以概率的形式表达出来,从而帮助人们更好地理解和分析文本数据。

建立概率主题模型通常包括以下步骤:文本预处理、模型建立和模型优化。

文本预处理是指对原始文本数据进行清洗、分词等操作,以准备用于后续的主题建模。

这一步骤的目的是去除文本中的噪声数据,提高主题建模的准确性。

在模型建立阶段,常用的方法包括Latent Dirichlet Allocation(LDA)和Probabilistic Latent Semantic Analysis(pLSA)。

这些方法通过建立词项与主题之间的概率关系,将文本数据转化为主题分布。

在模型优化阶段,研究者们通常采用以下方法来提高模型的性能:引入更多的主题、增加迭代次数、优化算法等。

为了解决模型可能存在的不足之处,研究者们还尝试引入其他技术,如深度学习,以进一步提高模型的性能。

概率主题模型在多个领域中均有着广泛的应用,如文本挖掘、情感分析、推荐系统等。

以下是一些应用实例:在文本挖掘领域,概率主题模型可以用于文本聚类、文档分类等任务。

数学建模例题[1]

数学建模例题[1]

数学建模习题指导第一章 初等模型讨论与思考讨论题1 大小包装问题在超市购物时你注重到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。

(1)分析商品价格C 与商品重量w 的关系。

(2)给出单位重量价格c 与w 的关系,并解释其实际意义。

提示:决定商品价格的主要因素:生产成本、包装成本、其他成本。

单价随重量增加而减少单价的减少随重量增加逐渐降低思考题2 划艇比赛的成绩赛艇是一种靠浆手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。

各种艇虽大小不同,但形状相似。

T .A .M c M a h o n 比较了各种赛艇1964—1970年四次2000m 比赛的最好成绩(包括1964年和1968年两次奥运会和两次世界锦标赛),见下表。

建立数学模型解释比赛成绩与浆手数量之间的关系。

329434w w c γβ+=''-各种艇的比赛成绩与规格第二章 线性代数模型森林管理问题森林中的树木每年都要有一批砍伐出售。

为了使这片森林不被耗尽且每年都有所收获,每当砍伐一棵树时,应该就地补种一棵幼苗,使森林树木的总数保持不变。

被出售的树木,其价值取决于树木的高度。

开始时森林中的树木有着不同的高度。

我们希望能找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济价值。

思考:试解释为什么模型中求解得到的 为每周平均销售量会略小于模型假设中给出的1。

练习:857.0 nR将钢琴销售的存贮策略修改为:当周末库存量为0或1时订购,使下周初的库存达到3架;否则,不订购。

建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。

2.将钢琴销售的存贮策略修改为:当周末库存量为0时订购本周销售量加2架;否则,不订购。

建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。

数学建模论文题目优选专业题目28个

数学建模论文题目优选专业题目28个

数学建模论文题目优选专业题目28个
1. 都市交通拥堵影响因素的分析与预测
2. 基于机器学习的股票市场走势预测模型研究
3. 社交媒体数据挖掘与情感分析
4. 基于深度学习的图像识别算法研究
5. 污染物扩散模型及其应用于环境保护领域研究
6. 金融风险管理模型设计与优化
7. 基于网络数据的用户行为分析与建模
8. 基于人工智能的医疗图像诊断与辅助系统研究
9. 供应链管理中的智能优化算法研究
10. 基于时间序列分析的气候变化预测模型构建
11. 电力系统短期负荷预测优化模型研究
12. 社会网络分析与传播模型构建
13. 航空航天系统的可靠性与维修策略优化
14. 面向大数据的云计算资源调度算法研究
15. 政府公共决策中的多目标规划模型分析
16. 基于深度强化学习的自动驾驶系统研究
17. 物流网络优化与路径规划算法研究
18. 环境污染治理中的排放控制模型设计
19. 医学影像数据处理与分析方法研究
20. 基于大数据的个性化推荐模型构建
21. 供热系统的热力优化运行策略研究
22. 金融市场波动性建模与预测分析
23. 城市规划与土地利用优化模型研究
24. 物联网中的传感器网络能耗优化算法研究
25. 基于随机过程的风险评估与管理模型研究
26. 公共交通线路优化与调度算法研究
27. 医学数据库挖掘与临床决策支持
28. 社交网络中的信息传播与用户行为建模
以上是28个数学建模论文题目的优选专业题目,每个题目都涉及
不同的领域和研究方向,可供研究者选择和拓展。

希望以上题目能够
在数学建模领域提供一定的启发和思路,推动相关领域的研究和发展。

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析在高中数学教学中,数学建模题是一种常见的题型,旨在让学生通过抽象建模,求解实际问题。

数学建模题通常涉及到数学知识、逻辑推理、数学模型的建立与优化等方面,对学生的综合能力提出了较高的要求。

本文将分析高中数学中常见的数学建模题,探讨解题方法及相关技巧。

1. 地面坡度问题地面坡度问题是高中数学建模中的常见题型,通常涉及到直角三角形、三角函数的知识。

这类问题常常以“某一杆塔吊挂重物”,“某座桥梁建设”等为背景,要求学生根据给定条件,计算坡度、高度、距离等。

解题时,可以通过绘制坡度示意图,使用三角函数公式,建立三角形关系等方法,辅助求解。

2. 最优生产方案问题最优生产方案问题是数学建模中的经典题型,要求学生根据生产成本、需求量、利润等条件,确定最优的生产方案。

这类问题常常涉及到线性规划、最值、函数优化等知识。

解题时,可以通过建立数学模型,使用线性规划方法,求解导数等方式,寻找最优生产方案。

3. 人口增长问题人口增长问题是数学建模中的典型题型,要求学生根据给定的人口增长率、初期人口数量等条件,预测未来人口数量。

这类问题常常涉及到指数函数、常微分方程等知识。

解题时,可以通过建立微分方程模型,使用指数函数性质,求解微分方程的通解等方法,完成人口增长问题的分析和预测。

4. 购物策略问题购物策略问题是数学建模中常见的实际问题,要求学生根据购物节省、优惠券折扣等条件,确定最佳购物策略。

这类问题通常涉及到百分数、比例、折扣计算等知识。

解题时,可以通过建立优惠券折扣函数,利用比例关系,计算购物节省金额等方式,找到最佳购物策略。

通过以上对高中数学中常见的数学建模题的分析,我们可以看到数学建模题在数学教学中的重要性和广泛性。

通过解答这些建模题,学生不仅可以提升数学能力,还可以锻炼主动解决实际问题的能力。

希望学生在学习数学建模的过程中,能够灵活运用数学知识,提高解决问题的能力,为将来的学习和工作打下坚实的基础。

高考志愿填报的层次分析模型

高考志愿填报的层次分析模型

i ΢ =1j ΢ =1 aij
如果将判断矩阵 A 的各列采用几何平均 , 然后归一化 , 得到的列向量就是权重向量 .其公式为 :
2 .2 .3 特征根法
wk
n
=n
Πa
j =1
kj
n
i
΢
=1
j
Π =1 aij
1/ n 1/ n
(k
=1 , 2 ,
…, n).
对于已知的判断矩阵 A , 求解 AW =λmaxW , 其中 , λmax为 A 的最大特征根 , 而 W =(w1 , w2 , … , wn)′ 为 A 的属于 λmax的特征向量 .将特征向量归t;0 , 1 ≤i
,j
≤n
,
aii
=1 , 1 ≤i
≤n
.
定义
1
矩阵
A
=(aij )n ×n
称为正互反矩阵
, 若其元素满足
aij
=1 a ji
,
aij
>0
,
a ii
=1
,
i
,
j
=1
,2
,
…,
n
.
由此可见 , 两两比较判断矩阵是一个正互反矩阵 .
定义 2 n 阶正互反矩阵 A =(aij)n ×n 称为是一致性矩阵 , 若其元素满足 aij =aajikk i , j , k =1, 2 , …, n . 2 .2 几种常用的权重的计算方法
R1 =(W(C 11)W(C12)W(C13))′
同样相对于 Ck1 , Ck2 , Ck3(k =2 , 3 , 4 , 5)可以建立 Z 1 , Z 2 , … , Z 8 的优先度矩阵 Rk(k =2 , 3 , 4 , 5). 按下列公式可以算出 Z 1 , Z 2 , … , Z 8 相对于一级因素 Bk 的优先度规范向量

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析一、引言数学建模题在高中数学学习中起到了非常重要的作用,它既锻炼了学生的数学思维能力,又培养了学生的实际问题解决能力。

本文将重点分析高中数学中常见的数学建模题,并探讨解决这些问题的方法和步骤。

二、数学建模题的分类1. 线性规划问题线性规划是数学建模中最基本的问题之一。

该问题通常涉及到在一定的约束条件下,求解一个线性方程组的最优解。

例如,某工厂在一定的资源限制下,如何安排生产,以使成本最小化或产量最大化。

2. 最优化问题最优化问题包括最大化问题和最小化问题。

这类问题的解决方法通常是通过求导数进行优化,找到使目标函数取得极值的点。

例如,在扔老师纳什扬尼的蛋问题中,要确定扔鸡蛋的起始楼层,以便在最坏情况下扔的次数最少。

3. 动态规划问题动态规划问题是将一个复杂的问题分解为多个重叠子问题,通过求解子问题的最优解来获取原问题的最优解。

例如,在路径规划问题中,我们可以使用动态规划来确定从起点到终点的最短路径。

4. 概率模型问题概率模型问题涉及到在给定的概率条件下,预测某个事件发生的概率。

例如,在赌博游戏中,我们可以使用概率模型来计算某个玩家获胜的概率。

5. 统计问题统计问题主要是研究如何通过样本数据来推断总体的某些特性。

通常通过收集样本数据,计算样本均值、标准差等统计量,然后通过统计推断方法来估计总体的参数。

三、数学建模题的解决方法和步骤1. 理解问题首先要对问题进行深入的理解,包括确定问题的背景、目标、约束条件等。

通过仔细阅读问题描述,了解问题所涉及的数学概念和模型。

2. 建立模型在理解问题的基础上,根据问题的特点建立适当的数学模型。

模型的建立应符合实际情况,并能够准确描述问题的要求。

3. 分析模型对建立的数学模型进行分析,包括模型的性质、特点和解的存在性及唯一性等。

通过分析模型的特点,可以更好地理解问题的本质,并为后续的解决方法提供指导。

4. 求解模型根据建立的数学模型,选择合适的求解方法进行求解。

高考数学冲刺策略非线性回归分析与模型选择

高考数学冲刺策略非线性回归分析与模型选择

高考数学冲刺策略非线性回归分析与模型选择高考数学冲刺策略:非线性回归分析与模型选择在高考数学的备考中,非线性回归分析与模型选择是一个重要且具有一定难度的考点。

对于即将迎来高考的同学们来说,掌握有效的冲刺策略至关重要。

首先,我们来了解一下什么是非线性回归分析。

简单来说,非线性回归分析是处理变量之间非线性关系的一种统计方法。

与我们常见的线性关系不同,非线性关系的表达式更加复杂,可能是指数形式、对数形式、幂函数形式等等。

在高考中,常见的非线性模型有指数模型、对数模型、幂函数模型等。

以指数模型为例,比如 y = aebx ,其中 a 和 b 是待确定的参数。

在解决这类问题时,我们通常会通过对等式两边取对数,将其转化为线性形式,然后再进行参数的估计。

那么,在冲刺阶段,如何更好地掌握非线性回归分析与模型选择呢?第一步,要熟练掌握各种非线性模型的形式和特点。

这就需要我们对教材中的相关内容进行深入复习,弄清楚每个模型适用的情况。

比如,当数据呈现出快速增长或衰减的趋势时,可能适合使用指数模型;而当数据的增长或减少速度逐渐变慢时,对数模型可能更为合适。

第二步,要多做练习题。

通过大量的练习,我们可以更加熟悉不同类型的题目,提高解题的速度和准确性。

在做题的过程中,要注意总结解题的方法和技巧。

比如,对于给定的数据,如何通过观察初步判断可能适合的模型类型;如何利用给定的条件和数据进行参数的估计等等。

第三步,学会利用数学软件或工具辅助分析。

在现代科技的帮助下,我们可以利用一些数学软件,如 Matlab、SPSS 等,来对数据进行处理和分析。

这不仅可以提高我们的效率,还能让我们更加直观地看到数据的分布和模型的拟合效果。

第四步,注重思维的培养。

非线性回归分析不仅仅是计算和公式的运用,更需要我们具备逻辑思维和分析问题的能力。

在面对复杂的问题时,要能够冷静思考,从多个角度去分析和解决问题。

在实际解题中,模型选择是一个关键的环节。

我们需要根据数据的特点和问题的背景,合理地选择模型。

数学建模学生面试问题(强烈推荐)

数学建模学生面试问题(强烈推荐)

学生面试问题摘要本文研究的学生面试问题,是在给定学生数量的前提下,按照每名学生的面试组由四名老师组成,且各个学生的面试组两两不完全相同的要求,研究需要的老师数量,并求出面试分组方案。

为了保证面试的公平性,组织者还提出了四条要求,需要考虑除Y2外使其它三条要求尽量满足的分配方案。

第一问是已知学生数量为N,求任意两个面试组最多只有一名老师相同的最小老师数量,我们将此问题转化成一个0-1规划模型,并设计了优化搜索方法,通过MATLAB编程实现了最少M的近似解。

在第二问的解决中,首先对Y1-Y4四个要求进行了分析,并分别建立了相应的量化指标,在此基础上,建立了一个多目标规划模型。

针对学生数较多,模型求解运算量大的问题,特别设计了优化算法,减少了搜索中的运算量。

同时,通过讨论均衡与公平性的含义,以分目标为基础,建立了综合评价目标,以此为指引,使搜索算法更具有针对性。

计算结果表明,分配方案满足Y1-Y4的情况是非常好的。

第二问中还运用组合数学中区组设计的理论,论证了N=379、M=24时不存在完全满足均衡和公平要求的理想分配方案。

第三问中,将老师组分成文、理两类,首先修改了问题一中的相应模型和算法,给出了求解结果。

在第二问中提出了启发式-混合交叉算法,从模拟结果看,分配方案比原第二问中的方案要差些,但总体上在各个指标上满足的情况也是较好的。

第四问首先分析了均匀性与面试公平性的关系,并提出了公平率的评价指标。

为了解决学生与面试老师有特殊关系,及个别老师打分过于苛刻或宽松的问题,本文提出了规避的解决方法。

关键词:多目标规划算法评价指标1.问题重述某高校采用专家面试的方式进行自主招生录取工作。

经过初选合格进入面试的考生有N人,拟聘请老师M人进行面试。

每位学生要分别接受“面试组”的每一位老师的单独面试。

每个面试组由4名老师组成。

各位老师独立地对考生提问并根据其回答问题的情况给出评分。

为了保证面试工作的公平性,组织者提出如下要求:Y1:每位老师面试的学生数量应尽量均衡;Y2:面试不同考生的“面试组”成员不能完全相同;Y3:两个考生的“面试组”中有两位或三位老师相同的情形尽量的少;Y4:任意两位老师面试的两个学生集合中出现相同学生的人数尽量少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模实验报告
高考志愿选择问题
摘要
本论文针对中学毕业生高考志愿选择问题设计一个依据大学的各项条件排出四个志愿的名次的模型。

对于志愿选择问题,我们采用层次分析法给出个各志愿的优先级顺序。

对问题先进行合理的假设,确定影响选择的因素及其权系数,并对矩阵进行一致性检验,算出权向量,最后得到权重,做出层次结构模型再进行层次分析,解决了高考志愿选择的问题。

关键词:高考志愿、层次结构、权重、层次分析
一、提出问题
高考结束后学生面临志愿选择问题,并且志愿的选择对学生今后的生活具有重大的影响,必须重视这一重大决策。

二、问题的重述
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡nm n n n n a a a a a a a a a ,,,,,,,212,2221112,11ΛM M M M ΛΛ易得n
j i a a a ij ij
ij ≤≤>=,1,0,1
对于所给的假设可得比对表如下
由此可以得到一个12*12的对比矩阵
(4)用matlab求得到的最大特征值和特征向量,并用书上189页介绍的方法求权向量,再进行一致性检验
A=[1 1 1 ;2 1 1 2 1 1 2 1 1 1 ;3 1 3 3 1;2 1 1 2 1 1 2 1 1 1 ;1 1 1 ;2 1 1 2 1 1 2 1 1 1 ;2 1 1 2 1 1 2 1 1 1 ;1 1 1 ;2 1 1 2 1 1 2 1 1 1 ;2 1 1 2 1 1 2 1 1 1 ;2 1 1 2 1 1 2 1 1 1 ;3 1 3 3 1;] maxeignvalue=max(max(b)) ;
index=find(b==max(max(b)));
eigenvector=a(:,index)
求权重向量
A=[;;; ;;;;; ;;;];
a= A./repmat((sum(A)),size(A,1),1)
所以权重为
[,,,,,,,,,,,]
CI=/11;
CR=ci/ri < 可以接受
将a-d四所大学的各项分数与权重相乘相加
A=
B=
C=
D=
所以选择B大学是最好的
六、模型的评价与推广
模型比较准确的判定了再给定大学各因素分数时的好坏
成度,可以由此推广到考虑更多因素时的选择。

七、参考文献
【1】周仪仓、郝孝量,数学建模实验,西安交通大学出版社,。

相关文档
最新文档