牛顿第二定律实验

合集下载

专题九 实验验证牛顿第二定律

专题九 实验验证牛顿第二定律

专题十实验验证牛顿第二定律1、目的:验证牛顿第二定律(a = F m)2、原理:控制变量法。

(1)保证物体质量不变时,改变合外力大小,测出不同合外力的大小和对应加速度大小,得出加速度与合外力成正比关系。

(2)保证物体合外力不变时,改变物体质量大小,测出不同质量和对应加速度大小,得出加速度与质量成反比的关系。

从而验证了加速度与合外力成正比,与质量成反比。

3、器材与装置:器材:带定滑轮的长木板、小车、平台、打点计时器、低压交流电源、纸带、细线、砂桶、天平。

装置如图:4、实验步骤:(1)验证小车质量不变时,加速度与合外力成正比关系。

①(1)用天平测出小车和砝码的总质量.②平衡摩擦:不挂砂桶,垫高长板右端,轻推小车,给小车一个初速,调长板倾角使小车匀速运动(或打出纸带上的点间隔均匀)③按上图所示作好连接,先接通打点计时器电源,让打点计时器稳定打点后,再放开小车,取下纸带编出号码,天平测出砂和桶的总质量m,作好记录。

④改变砂的质量,重复步骤3。

⑤对纸带求加速度a和小车受的合力F(小车受的合力等于砂和桶的重力F=mg)。

⑥以合力F为横坐标,以加速度a为纵坐标,描点画出图象,当图象为过坐标原点的直线,便证明了加速度与合外力成正比。

(2)验证小车合外力不变时,加速度与质量成反比。

⑦保证砂和桶的总质量m不变(合外力不变),改变小车上砝码来改变小车的质量,测出小车的不同质量和对应的加速度,把相应的小车质量和加速度填入表中。

并算出小车质量的倒数1 M。

⑧以1M为横坐标,以加速度a为纵坐标,描点画出图象,当图象为过坐标原点的直线便证明了加速度与质量成正比。

注意:①平衡小车摩擦是为了消除摩擦对小车的合力的影响,使小车的合力等于细线对小车的拉力。

使小车质量远大于砂和桶的总质量,是为了使细线的拉力等于砂和砂桶的总重力,这两措施是为了实验中,使小车的合外力等于砂和砂桶的总重力(F = mg),使得测合外力比较简单。

如果用气垫导轨代替滑板就不用平衡小车摩擦力,如果在拉线与小车间加一个力的传感器,直接读出线对小车拉力就不用满足小车质量远大于砂和桶的总质量的条件。

牛顿第二定律实验

牛顿第二定律实验

牛顿第二定律实验牛顿第二定律是经典力学中的重要定律之一,它描述了物体受力时所产生的加速度与所受力的关系。

为了验证这一定律,科学家们进行了一系列的实验。

本文将介绍牛顿第二定律的实验以及其背后的探索过程。

在实验中,科学家通常选择简单的实验装置来研究物体受力时的加速度变化。

其中,最常见的实验装置是动力小车。

动力小车由一个可调节力的发动机推动,同时它还可以测量小车的加速度。

科学家通过改变推力和质量来探究物体受力与其加速度的关系。

在实验中,科学家首先固定小车的质量,接着改变推力的大小。

他们发现,当推力增加时,小车的加速度也会增加。

这与牛顿第二定律的预测相吻合。

牛顿第二定律的数学表达式是F=ma,其中F代表力,m代表物体的质量,a代表物体的加速度。

实验结果证实了牛顿第二定律中的变量之间的关系。

然而,科学家们并未停止实验。

他们进一步改变小车的质量,想要观察在质量变化的情况下,小车的加速度是否发生变化。

实验结果表明,当质量增加时,如果推力保持不变,小车的加速度会减小。

这也与牛顿第二定律的预测相符。

这一系列实验揭示了物体受力时加速度的变化规律。

牛顿第二定律的实验结果表明,一个物体受到的力越大,或者质量越小,它受到的加速度就越大。

科学家们通过实验证明了牛顿第二定律的有效性,并巩固了牛顿的运动定律在力学领域的地位。

牛顿第二定律不仅适用于实验室中的小车,它也适用于宏观世界中的各种物体。

实际生活中,当我们掷出一颗篮球,它会受到一个向上的重力和一个向前的推力。

根据牛顿第二定律,这两个力决定了篮球的加速度。

如果我们用更大的推力将篮球扔出去,那么篮球的加速度将更大,飞得更远。

这又是一个应用牛顿第二定律的实际例子。

此外,牛顿第二定律也适用于宇宙中的天体运动。

例如,行星绕太阳运动的轨道取决于太阳对行星的引力和行星的质量。

根据牛顿第二定律,行星受到的引力越大,质量越小,它的轨道半径就越小,运动速度就越快。

综上所述,牛顿第二定律的实验验证了物体受力时加速度的变化规律。

牛顿第二定律的实验

牛顿第二定律的实验

牛顿第二定律的实验引言:牛顿第二定律是经典力学中的重要定律之一,它表明物体的加速度与作用于物体上的力成正比,与物体的质量成反比。

为了验证牛顿第二定律,科学家们进行了许多实验。

本文将介绍其中几个经典的牛顿第二定律实验,并解释实验结果与定律之间的关系。

实验一:斜面实验在斜面实验中,我们将一块小木块放在一个倾斜的平面上。

通过测量木块下滑的加速度和斜面的倾角,可以验证牛顿第二定律。

实验装置:- 斜面:具有一定倾角的平面。

- 小木块:质量为m的物体。

- 测量工具:包括测量斜面倾角的仪器和测量小木块加速度的装置。

实验步骤:1. 调整斜面的倾角,确保斜面保持稳定。

2. 将小木块放在斜面的顶端,并松开。

3. 记录木块下滑的时间t。

4. 根据木块的下滑距离和时间,计算出木块的加速度a。

实验结果:根据实验数据的分析,我们可以得到木块的加速度与斜面倾角成正比。

这与牛顿第二定律的预测相符,即物体的加速度与作用于物体上的力成正比。

实验二:弹簧实验在弹簧实验中,我们将一块质量为m的物体挂在弹簧上,并通过测量弹簧的伸长量和物体的加速度来验证牛顿第二定律。

实验装置:- 弹簧:具有一定的弹性系数。

- 物体:质量为m的物体。

- 测量工具:包括测量弹簧伸长量和物体加速度的装置。

实验步骤:1. 将物体挂在弹簧上,使其达到平衡位置。

2. 施加一个水平方向的力F,使物体开始运动。

3. 记录物体的加速度a和弹簧的伸长量x。

4. 根据弹簧的弹性系数k和伸长量x,计算出物体所受的力F。

实验结果:实验数据的分析显示,物体的加速度与所受的力成正比。

这与牛顿第二定律的预测一致,即物体的加速度与作用于物体上的力成正比。

实验三:自由落体实验在自由落体实验中,我们通过测量物体自由下落的加速度来验证牛顿第二定律。

实验装置:- 物体:质量为m的物体。

- 测量工具:包括计时器和测量下落距离的装置。

实验步骤:1. 将物体从一定高度h自由下落。

2. 记录物体下落的时间t。

牛顿第二定律实验

牛顿第二定律实验

思考:质量、力与加速度分别如何测量?
质 量 —天平 加速度 —— ? 恒 力 —— ?
方案一:小车、打点计时器、纸带、一端带滑 轮的长木板、细线、砝码、钩码、刻度尺、天 平为器材,研究小车运动。
从打点计时器打出 的纸带计算出小车 的加速度a
砝码的总重力G 当作小车受到的 拉力F
【思考讨论】 1.小车在运动方向上受几个力的作用?细绳对小 车的拉力等于小车所受的合力吗?
当钩码(或者沙桶)质量比小车质量小得多时,绳子 的拉力近似等于砝码的重力,即小车受到合外力近似 等于砝码的重力。
实验步骤
1.用天平测出小车的质量。 2.摆放好实验装置,平衡摩擦力。 3.把细线系在小车上并绕过滑轮悬挂钩码,将车拉 到打点计时器附近。 4.打开打点计时器电源,再释放小车,得到纸带, 并在纸带上计下钩码重量。 5.改变钩码的重量,重复以上的步骤2-3多次。 6.控制钩码质量不变,改变小车质量,再测几组数 据。 7.设计表格,记录实验数据。
结论: a∝1/m 0
m
1
m
注意事项
1. 平衡摩擦力时,不要将悬挂重物的细线系在小车上,即不要 给小车施加牵引力,并且让小车拖着打点的纸带运动.
2. 平衡摩擦力后,无论如何改变重物或小车和砝码的质量,都 不需要重新平衡摩擦力.但必须保证细绳与长木板平行.
3. 每条纸带必须在满足小车与车上所加砝码的总质量远大于重 物的质量的条件下打出.只有如此,重物的重力才可视为小车 受到的拉力.
D.在小车的后端也分别系上细绳,用一只夹子夹住这两根细绳;
E.在小车的前端分别系上细绳,绳的另一端跨过定滑轮各挂一 个小盘,盘内分别放着数目不等的砝码,使砝码盘和盘内砝码的 总质量远小于小车的质量.分别用天平测出两个砝码盘和盘内砝 码的总质量.

验证牛顿第二定律实验(经典实用)

验证牛顿第二定律实验(经典实用)

验证牛顿第二定律实验(经典实用)牛顿第二定律是物理学中最基本的定律之一,它描述了力、质量和加速度之间的关系。

根据牛顿第二定律,当一个物体受到某个力时,它将产生一个与该力成正比的加速度。

为了验证这个定律,我们进行了以下实验。

材料和设备:1. 测力计2. 密度计3. 弹簧锁定器4. 钩子5. 不同质量的球(如网球、篮球等)6. 直尺7. 计时器实验步骤:1. 将测力计连接到弹簧锁定器上,并挂在墙上。

确保测力计在水平位置上。

2. 将一个球放在钩子上,用密度计测量球的质量,记录下来。

3. 将钩子连接到测力计上,并使球悬挂在测力计下部。

4. 确保测力计和球都处于静止状态,开始记录时间。

5. 用手推动球,使其产生运动,同时用计时器记录球的运动时间。

6. 通过观察测力计的读数,记录下球运动时受到的力。

7. 重复以上步骤,使用不同质量的球进行实验。

8. 将记录的数据绘制成图表,将加速度与受力之间的关系进行对比。

实验结果:根据实验数据,我们得出以下结论:1. 受力和球质量之间具有线性关系,即受力越大,球的加速度越大。

这符合牛顿第二定律的描述。

2. 每种球的加速度都不相同,这是由于不同球的质量不同,受到的力也不同。

3. 当球的质量增加时,受到的力也相应增加,但加速度的增长速度较慢。

这与牛顿第二定律中的质量项有关。

结论:实验结果证实了牛顿第二定律的正确性。

根据实验数据,受力和加速度具有线性关系,为F=ma。

这个定律被广泛应用于物理学、工程学和其他领域,对于理解运动的本质和设计新技术发挥重要作用。

牛顿第二定律的实验验证

牛顿第二定律的实验验证

牛顿第二定律的实验验证牛顿第二定律是经典力学的基本定律之一,描述了物体所受力与物体加速度之间的关系。

为了验证牛顿第二定律的有效性,科学家们进行了一系列精确而详尽的实验。

本文将介绍其中几个重要的实验,并阐述其对牛顿第二定律的验证。

实验一:自由落体实验自由落体实验是验证牛顿第二定律的经典实验之一。

实验的基本原理是,当物体在重力作用下自由下落时,其加速度恒定且与物体的质量无关。

实验中,我们可以通过测量下落物体的加速度和质量来验证牛顿第二定律。

为了进行自由落体实验,我们可以选择一个平滑的斜面,在其上方固定一个轻质滑轮。

将一轻质物体(例如小球)系于滑轮上的细线上,使其通过轻质滑轮自由下落。

通过测量小球下落的时间和下落距离,我们可以得到加速度。

然后,我们可以通过改变小球的质量(例如更换不同重量的小球)来进一步验证牛顿第二定律的成立。

实验二:拉力实验拉力实验也是验证牛顿第二定律的重要实验之一。

在这个实验中,我们通过测量施加在物体上的拉力和物体的加速度来验证牛顿第二定律。

为了进行拉力实验,我们可以通过固定一个滑轮和一根细线将物体连接在一起。

在细线的另一端,我们可以施加一个恒定的拉力。

通过测量物体的加速度,并记录施加在物体上的拉力和物体的质量,我们可以得到拉力与加速度之间的关系。

实验结果将表明,牛顿第二定律在这种情况下成立。

实验三:弹簧实验弹簧实验也是验证牛顿第二定律的一种常见实验方法。

在这个实验中,我们通过测量受力物体的位移和加速度,以及弹簧的劲度系数来验证牛顿第二定律。

为了进行弹簧实验,我们可以利用一根弹簧,并将其固定在水平支架上。

通过将物体连接在弹簧的一端,并对物体施加一个恒定的力,我们可以观察到物体受力后的反弹位移,进而测量物体的加速度。

通过记录施加的力、物体的质量和位移,我们可以计算得到弹簧的劲度系数。

实验结果将进一步验证牛顿第二定律的有效性。

总结通过进行自由落体实验、拉力实验和弹簧实验等一系列实验,我们可以确信牛顿第二定律的真实性。

高中物理牛顿第二定律实验

高中物理牛顿第二定律实验
实验注意事项
在实验过程中:要确 保小车在轨道上做直 线运动,避免出现侧 滑或者转弯的情况
实验注意事项
在改变小车的受力或 者质量时:要保证其 稳定性,避免对实验
结果产生影响
注意安全问题:避免 在实验过程中受伤或
者损坏实验器材
x
x
x
xபைடு நூலகம்
x
确保力传感器和加速 度传感器的精度和稳 定性:以获得准确的
实验数据
-
感谢您的观看
重要的意义
结论与讨论
在未来的研究中,我们可以 进一步探索牛顿第二定律的 适用范围和局限性。例如, 在极端情况下(如接近光速的 速度或者高重力环境),这个 定律是否仍然适用?此外, 我们也可以研究其他物理量 (如能量、动量等)与力、质 量和加速度之间的关系。这 些研究将有助于我们更深入 地理解物理学中的基本原理
对实验数据进行准确 的记录和分析:避免 出现误差或者错误
5
实验结果与分析
实验结果与分析
通过实验,我们可以得出以下结论:当小车的受力或者质量发生变化时, 其加速度也会发生变化。根据牛顿第二定律,我们可以得出力、质量和加 速度之间的关系是线性的。即当力增加时,加速度也会增加;当质量增加 时,加速度会减小。这个结论符合牛顿第二定律的理论预测
为了进一步验证这个结论,我们可以对实验数据进行拟合,得出力、质量 和加速度之间的线性关系系数。如果实验数据符合这个系数,那么就说明 我们的实验结果是准确的。如果不符合这个系数,那么我们需要重新考虑 实验的误差来源,并重新进行实验
6
结论与讨论
通过本实验,我们验证了牛 顿第二定律的正确性。这个 定律是物理学中非常重要的 基本原理之一,它描述了力、 质量和加速度之间的线性关 系。这个定律可以用于描述 和预测物体运动的规律,对 于理解物理学中的基本概念 和解决实际问题都具有非常

实验 验证牛顿第二定律

实验 验证牛顿第二定律

外力成正比”的结论,下列说法正确的是________(填选项前的字母)。
A.三组实验中只有甲同学的实验需要平衡摩擦力
B.三组实验都需要平衡摩擦力
C.三组实验中只有甲同学的实验需要满足所挂钩码的总质量m远小于小车的质量M
的条件
D.三组实验都需要满足所挂钩码的总质量m远小于小车的质量M的条件
12
实验基础梳理
解析 (1)B 点的瞬时速度为 vB=AB4+TBC=(6.19+4×6.700.0)2 ×10-2 m/s≈ 1.6 m/s,由逐差法求解小车的加速度,a=(CD+D4E×)(-2T()A2B+BC) =(7.21+7.742×-(6.01.90-4)6.270)×10-2 m/s2≈3.2 m/s2。
答案 (1)控制变量法 (2)①平衡摩擦力 ②沙和沙桶的总重力 (3)B
8
实验基础梳理
实验热点突破
拓展训练1 如图3所示,某学生实验小组定量探究加速度与力、质量的关系。实验 时使小车在砝码和托盘的牵引下运动。
图3 (1)实验室准备了打点计时器及配套的电源、导线、复写纸及如图所示的器材。若 要完成该实验,必需的实验器材还有________________。 (2)为达到平衡摩擦力的目的,取下细绳和托盘,通过调节垫片的位置,改变长木 板倾斜程度,根据打出的纸带判断小车是否做________运动。
10
实验基础梳理
实验热点突破
拓展训练2 为了探究加速度与力、质量的关系,甲、乙、丙三位同学分别设计了如 图4所示的实验装置,小车质量用M表示(乙图中M包括小车与传感器,丙图中M 包括小车和与小车固连的滑轮),钩码总质量用m表示。

11

实验基础梳理
实验热点突破

验证牛顿第二定律的加速度测量实验

验证牛顿第二定律的加速度测量实验

验证牛顿第二定律的加速度测量实验引言:牛顿第二定律是经典力学的基石之一,描述了物体的加速度与作用在其上的合力之间的关系。

本文旨在详细解读验证牛顿第二定律的实验过程,包括实验准备、操作步骤以及实验结果的应用和其他专业性角度的讨论。

实验准备:首先,我们需要准备以下实验器材:1. 弹簧测力计:用于测量施加在物体上的力的大小。

2. 动态学实验器:包括一个光滑水平面,可拆卸的金属小车和一个会移动的轨道。

3. 不同质量的金属块。

4. 钢尺:用于测量物体的位移。

实验步骤:1. 打开实验器,将金属小车放在轨道上。

确保其运动无摩擦。

2. 将弹簧测力计固定在小车上,并调零以使其读数为零。

3. 将金属块放在小车上,使其增加质量。

4. 将小车以较小的速度推向一侧,然后迅速松开手。

5. 记录弹簧测力计所测得的合力大小,并以此计算合力对应的加速度。

6. 重复以上步骤,将金属块的质量逐渐增加。

实验结果的应用和专业性讨论:通过测量不同质量金属块下的加速度,我们可以验证牛顿第二定律在实验中的应用。

牛顿第二定律表明,物体的加速度与作用在其上的合力成正比,与物体质量成反比。

因此,我们可以通过实验数据的分析来检验这个关系。

1. 实验数据处理:收集到的实验数据包括金属块质量、合力大小以及小车的位移。

我们可以使用弹簧测力计的读数与其标定系数相乘,得到合力的实际值。

然后,我们可以根据位移的测量计算加速度。

在计算过程中,应注意将金属块的质量转换为其对应的质量单位。

2. 绘制关系图:绘制合力与加速度之间的关系图,可以直观地观察到它们之间的线性关系。

根据实验结果,我们预计发现加速度与合力成正比,与质量成反比。

3. 验证牛顿第二定律:根据实验结果,我们可以计算不同质量金属块下的加速度,并与预期的数值进行比较。

如果实验结果与理论相符,则说明本实验验证了牛顿第二定律。

4. 实验误差和提高精度:可以考虑实验中的误差来源,如弹簧测力计的精度、小车的非完全无摩擦、重力加速度的影响等。

验证牛顿第二定律实验

验证牛顿第二定律实验

实验:验证牛顿第二定律一、实验原理1.如下图装置,保持小车质量M 不变,改变小桶内砂的质量m ,从而改变细线对小车的牵引力F 〔当..m .<<..M .时,..F=mg ....近似成立〕.....,用打点计时器测出小车的对应加速度a ,由多组a 、F 数据作出加速度和力的关系a — F 图线,验证加速度是否与外力成正比。

2.保持小桶和砂的质量不变,在小车上加减砝码, 改变小车的质量M ,测出小车的对应加速度a , 由多组a 、M 数据作出加速度和质量倒数的关系ma 1-图线, 验证加速度是否与质量成反比。

▲平衡摩擦力.....的原理:〔在长木板的不带定滑轮的一端下面垫上垫块,使长木板倾斜,便用重力的分力来平衡摩擦力。

〕 对小车受力分析,小车受到G 、N 和摩擦力f 三力作用,处于平衡状态时,fG x =,y G N=。

故当木板倾斜一定角度时,可以用重力的分力x G 来平衡摩擦力。

故验证牛二时,小车受到的拉力F 即为小车的合力。

二、实验器材小车,砝码,小桶,砂, 细线,附有定滑轮的长木板,垫块,电火花打点计时器,220V 交流电源, 导线两根, 纸带,托盘天平及砝码,米尺。

三、实验步骤1.用调整好的天平测出小车和小桶的质量M 和m ,把数据记录下来。

2.按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。

...........................3.平衡摩擦力.....:在长木板的不带定滑轮的一端下面垫上垫块,反复移动垫块的位置,直至轻轻推一推小车,小车在斜面上运动时可以保持匀速直线运动状态〔可以从纸带上打的点是否均匀来判断〕。

4.在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量M'和m'记录下来。

把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。

5.保持小车的质量不变,改变砂的质量〔要用天平称量〕,按步骤4再做5次实验。

牛顿第二定律实验

牛顿第二定律实验

4-2 验证牛顿第二定律实验1.实验目的、原理实验目的:验证牛顿第二定律,即物体的质量一定时,加速度与作用力成正比;作用力一定时,加速度与质量成反比.实验原理:利用砂及砂桶通过细线牵引小车做加速运动的方法,采用控制变量法研究上述两组关系.如图3-14-1所示,通过适当的调节,使小车所受的阻力忽略,当M 和m 做加速运动时,可以得到 g m M m a += m M m mg T +⋅= 当M>>m 时,可近似认为小车所受的拉力T 等于mg .本实验第一部分保持小车的质量不变,改变m 的大小,测出相应的a ,验证a 与F 的关系;第二部分保持m 不变,改变M 的大小,测出小车运动的加速度a ,验证a 与M 的关系.2.实验器材打点计时器,纸带及复写纸,小车,一端附有滑轮的长木板,小桶,细绳,砂,低压交流电源,两根导线,天平,刻度尺,砝码.3.实验步骤及器材调整(1)用天平测出小车和小桶的质量M 和m ,把数值记录下来.(2)按图3-14-2所示把实验器材安装好.(3)平衡摩擦力:在长木板的不带滑轮的一端下面垫上一块薄木板,反复移动其位置,直至不挂砂桶的小车刚好在斜面上保持匀速运动为止.(4)将砂桶通过细绳系在小车上,接通电源放开小车,使小车运动,用纸带记录小车的运动情况,取下纸带,并在纸带上标上号码.(5)保持小车的质量不变,改变砂桶中的砂量重复步骤(4),每次记录必须在相应的纸带上做上标记,列表格将记录的数据填写在表内.(6)建立坐标系,用纵坐标表示加速度,横坐标表示力,在坐标系上描点,画出相应的图线以验证a 与F 的关系.(7)保持砂及小桶的质量不变,改变小车的质量(在小车上增减砝码),重复上述步骤(5)、(6)验证a 与M 的关系.4.注意事项(1)在本实验中,必须平衡摩擦力,方法是将长木板的一端垫起,而垫起的位置要恰当.在位置确定以后,不能再更换倾角.(2)改变m 和M 的大小时,每次小车开始释放时应尽量靠近打点计时器,而且先通电再放小车.(3)每次利用纸带确定a 时,应求解其平均加速度.5.数据处理及误差分析(1)该实验原理中T=mM M mg +⋅,可见要在每次实验中均要求M>>m ,只有这样,才能使牵引小车的牵引力近似等于砂及砂桶的重力.(2)在平衡摩擦力时,垫起的物体的位置要适当,长木板形成的倾角既不能太大也不能太小,同时每次改变M 时,不再重复平衡摩擦力.(3)在验证a 与M 的关系时,作图时应将横轴用l /M 表示,这样才能使图象更直观.图3-14-1图3-14-2[例1](2008·广州一模)用如图(甲)所示的实验装置来验证牛顿第二定律,为消除摩擦力的影响,实验前必须平衡摩擦力.(1)某同学平衡摩擦力时是这样操作的:将小车静止地放在水平长木板上,把木板不带滑轮的一端慢慢垫高,如图(乙),直到小车由静止开始沿木板向下滑动为止.请问这位同学的操作是否正确?如果不正确,应当如何进行?答: .(2)如果这位同学先如(1)中的操作,然后不断改变对小车的拉力F,他得到M(小车质量)保持不变情况下的a—F图线是下图中的(将选项代号的字母填在横线上).(3)打点计时器使用的交流电频率f=50Hz. 下图是某同学在正确操作下获得的一条纸带,A、B、C、D、E每两点之间还有4个点没有标出.写出用s1、s2、s3、s4以及f来表示小车加速度的计算式:a= . 根据纸带所提供的数据,算得小车的加速度大小为 m/s2(结果保留两位有效数字).★高考重点热点题型探究热点牛顿第二定律[真题1](2007·广东)如图3-14-7 (a)所示,小车放在斜面上,车前端拴有不可伸长的细线,跨过固定在斜面边缘的小滑轮与重物相连,小车后面与打点计时器的纸带相连.开始时,小车停在靠近打点计时器的位置,重物到地面的距离小于小车到滑轮的距离.启动计时器,释放重物,小车在重物牵引下,由静止开始沿斜面向上运动,重物落地后,小车会继续向上运动一段距离.打点计时器使用的交流电频率为50Hz. 图3-14-7(b)中a、b、c是小车运动纸带上的三段,纸带运动方向如图箭头所示.(1)根据所提供的纸带和数据,计算打c 段纸带时小车的加速度大小为 m/s 2(计算结果保留两位有效数字). (2) 打a 段纸带时,小车的加速度是 2.5m/s 2,请根据加速度的情况,判断小车运动的最大速度可能出现在b 段纸带中的 .(3) 如果重力加速度取2m/s 10,由纸带数据可推算出重物与小车的质量比为 .【真题2】(2008年宁夏卷).物理小组在一次探究活动中测量滑块与木板之间的动摩擦因数.实验装置如图,一表面粗糙的木板固定在水平桌面上,一端装有定滑轮;木板上有一滑块,其一端与电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与托盘连接.打点计时器使用的交流电源的频率为50 Hz.开始实验时,在托盘中放入适量砝码,滑块开始做匀加速运动,在纸带上打出一系列小点. (1)上图给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个打点(图中未标出),计数点间的距离如图所示.根据图中数据计算的加速度a = (保留三位有效数字).(2)回答下列两个问题:①为测量动摩擦因数,下列物理量中还应测量的有 .(填入所选物理量前的字母)A.木板的长度lB.木板的质量m 1C.滑块的质量m 2D.托盘和砝码的总质量m 3E.滑块运动的时间t②测量①中所选定的物理量时需要的实验器材是 .(3)滑块与木板间的动摩擦因数 = (用被测物理量的字母表示,重力加速度为g ).与真实值相比,测量的动摩擦因数 (填“偏大”或“偏小” ).写出支持你的看法的一个论据:.2.72 2.82 2.92 2.98 2.82 2.62 2.08 1.90 1.73 1.48 1.32 1.12单位:cma bc图3-14-7 (b) D 1 D 2 D 3 D 4 D 5 D 6 D 7参考答案例1 [解析](1)平衡摩擦力的要点是把有打点计时器的那一端适当抬高,给小车一个初速度,小车能匀速下滑,则小车所受摩擦力和小车的重力沿斜面向下的分力平衡,则小车所受绳子的拉力可认为小车所受的合外力,达到平衡摩擦力的作用.故第(1)问的答案应为:该同学的操作不正确,正确的操作应该为给小车一个初速度,小车能够匀速下滑.(2)该同学做实验时实际上是平衡摩擦力过度,故没有拉力F 之前已经有加速度,故C 正确.(3)采用分组法得计算加速度的表达式100)]()[(22143f s s s s a +-+=, 带入数据解得a = 0.60m/s 2.[方法技巧] 本题考查验证牛顿第二定律的实验方法即控制变量法、减小误差的因素、数据处理等基本知识.要求同学们对实验的基本原理、基本步骤、数据处理、误差分析都要理解清楚.真题1:[剖析](1)要求c 段的加速度,可直接用分组法,即把6段数据分成两组,所以 [])/(0.5)02.03(10)73.190.108.2()12.132.148.1(222s m a -=⨯⨯++-++=- 故加速度的大小为5.0m/s 2(2)由纸带可知,物体在D 4D 5区间的速度可能最大;(3)设重物的质量为m ,小车的质量为M ,重物拉小车时对车和重物所组成的整体有: 1)()sin cos (a m M Mg Mg mg +=+-θθμ重物落地后,小车减速运动时有:Ma Mg Mg -=+-)sin cos (θθμ联立解出1:1:=M m[名师指引]本题考查纸带求加速度、整体法和隔离法、牛顿第二定律.考查同学们的综合分析能力和推理能力,有较大的难度.真题2:解析:(1)去掉最开始的一个数据用分组法求加速度 222/497.0)1.03(10)]88.240.289.1()37.488.339.3[(s m a =⨯⨯++-++=-(0.495~0.497m/s 2均可)(2)① CD ,②天平(3)对托盘(含砝码)以及小车为一整体根据牛顿第二定律有:a m m g m g m )(3223+=-μ 解得gm a m m g m 2323)(+-=μ,测量值比真实值偏大,纸带与打点计时器的限位孔之间有摩擦阻力.[名师指引] 本题考查纸带求加速度、牛顿第二定律、误差分析.考查同学们的综合分析能力和推理能力,有一定的难度.关键在于对实验原理的理解.。

验证牛顿第二定律实验

验证牛顿第二定律实验

验证牛顿第二定律实验引言:牛顿第二定律是经典力学中的重要定律之一,它描述了物体运动时受到的力与物体加速度之间的关系。

为了验证牛顿第二定律,科学家们进行了一系列实验。

本文将介绍一种常见的实验方法,通过该实验可以直观地验证牛顿第二定律的正确性。

实验目的:通过实验验证牛顿第二定律,即力等于物体质量乘以加速度。

实验器材:1. 弹簧测力计2. 平滑水平桌面3. 一块小木块4. 弹簧5. 牛顿秤实验步骤:1. 将平滑水平桌面放置在实验台上。

2. 将弹簧测力计固定在实验台上,保证它处于竖直方向。

3. 将小木块放在水平桌面上,并将弹簧连接到小木块上。

4. 使用牛顿秤在弹簧上施加不同大小的力,并记录每个力的数值。

5. 记录小木块在不同施加力下的加速度。

6. 分别计算每个力下的加速度,并绘制出力与加速度的关系曲线。

7. 根据实验数据,验证牛顿第二定律的正确性。

实验原理:牛顿第二定律表明,物体所受合外力等于物体的质量乘以加速度。

即 F = m * a,其中 F 为物体所受合外力,m 为物体的质量,a 为物体的加速度。

在本实验中,通过施加不同大小的力后测量小木块的加速度,即可验证牛顿第二定律。

实验结果分析:根据实验数据,我们可以绘制出力与加速度的关系曲线。

根据牛顿第二定律的公式F = m * a,我们可以得到一条直线,斜率为小木块的质量。

如果实验结果符合这条直线,即表示牛顿第二定律得到了验证。

实验结论:通过实验,我们验证了牛顿第二定律的正确性。

实验结果表明,物体所受合外力等于物体质量乘以加速度。

这一定律在各种情况下都成立,是经典力学的基石之一。

实验误差分析:在实际实验中,由于外界环境的影响,很难完全消除误差。

例如,桌面的摩擦力、弹簧的弹性等都会对实验结果产生一定影响。

为了减小误差,我们可以采取一些措施,如使用更精确的实验器材、多次重复实验并取平均值等。

实验应用:牛顿第二定律在物理学中具有广泛的应用。

它可以用来解释和预测各种物体的运动行为,如机械系统的运动、天体运动、流体的运动等。

牛顿第二定律实验总结、习题(含答案)

牛顿第二定律实验总结、习题(含答案)

实验:验证牛顿第二定律【实验目的】验证牛顿第二定律,就是验证:(1)物体质量一定时,加速度与合外力成正比;(2)合外力一定时,物体的加速度与质量成反比。

【实验原理】1、保持研究对象(小车)的质量(M)不变,改变砂桶内砂的质量(m),即改变牵引力测出小车的对应加速度,用图像法验证加速度是否正比于作用力。

2、保持砂桶内砂的质量(m)不变,改变研究对象的质量(M),即往小车内加减砝码,测出小车对应的加速度,用图像法验证加速度是否反比于质量。

【实验器材】附有定滑轮的长木板、薄木垫、小车、细线、小桶及砂、打点计时器、低压交流电源、导线、天平(带一套砝码)、毫米刻度尺、纸带及复写纸等。

【实验步骤】1、用天平测出小车和小桶的质量M0和m0,并记录数值;2、按照要求安装实验器材,此时不把悬挂小桶用的细绳系在车上,即不给小车加牵引力;3、平衡摩擦力,在长木板不带定滑轮的一端下面垫薄木板,并反复移动其位置,直到打点计时器正常工作后,小车在斜面上的运动可以保持匀速直线运动状态为止。

4、记录小车及车内所加砝码的质量;称好砂子后将砂倒入小桶,把细绳系在小车上并绕过定滑轮悬挂小桶;此时要调整定滑轮的高度使绳与木板平行;接通电源,放开小车,待打点计时器在纸带上打好点后,取下纸带,做好标记。

5、保持小车的总质量不变,改变砂的质量(均要用天平称量),按步骤4中方法打好纸带,做好标记。

6、在每条纸带上选取一段比较理想的部分,分别计算出加速度值。

7、用纵坐标表示加速度,横坐标表示作用力(即砂和砂桶的总重力mg),根据实验结果画出相应的点,如果这些点在一条直线上,便证明了质量一定的情况下,加速度与合外力成正比。

8、保持砂和桶的质量不变,在小车上加砝码(需记录好数据),重复上面的实验步骤,求出相应的加速度,用纵坐标表示加速度,横坐标表示小车及砝码的总质量的倒数1M,根据实验结果画出相应的点,如果这些点在一条直线上,就证明了合外力一定的情况下,加速度与质量成反比。

牛顿第二定律实验总结

牛顿第二定律实验总结

牛顿第二定律实验总结牛顿第二定律是经典力学中一个极为重要的定律,它描述了力的概念和物体加速度之间的关系。

通过实验的方法,我们可以验证和探究这一定律的正确性和应用范围。

在本文中,我将总结我对牛顿第二定律实验的理解和观察,并探讨实验结果的意义和可能的影响。

实验一:不同质量物体的加速度比较我选择了两个不同质量的物体:一个小石头和一块大理石。

首先,我将它们分别放在光滑的水平桌面上,然后用一个恒力推动它们。

在相同的力作用下,我观察到这两个物体的运动情况。

结果显示,无论是小石头还是大理石,在作用力相同的情况下,它们都表现出了相同的加速度。

这与牛顿第二定律所预言的结果相符合。

根据牛顿第二定律的数学表达式F=ma,推导可知加速度和质量成反比,即质量越大,物体的加速度越小。

通过这个实验,我们验证了牛顿第二定律在质量不同的物体上的适用性。

实验二:不同力对物体的加速度影响在这个实验中,我选取了同样的物体,分别施加不同大小的力。

我用一个弹簧秤来测量施加的力,并通过观察物体的运动情况来记录加速度的变化。

根据实验结果,当作用力增大时,物体的加速度也随之增大。

这验证了牛顿第二定律中“力和加速度成正比”的关系。

实验中还观察到了一个有趣的现象,当力超过物体的摩擦力时,物体会出现急剧加速的情况。

这是因为摩擦力减小,物体所受的净力增大,从而加速度增大。

这个实验结果不仅与牛顿第二定律的理论相符合,也对我们理解力和加速度之间的关系有了更深的认识。

实验三:斜面上物体的加速度观察为了进一步探究牛顿第二定律的应用,我进行了如下实验:将一个小球从斜面上释放,观察它的加速度和角度之间的关系。

实验结果显示,小球的加速度随着斜面角度的增大而增大。

这与牛顿第二定律中角度与正弦函数成反比的结论相吻合。

这个实验也向我们展示了斜面的作用,当物体位于斜面上时,它的重力分解为两个分量:一个沿着斜面的分量和一个垂直斜面的分量。

斜面所施加的力使物体产生加速度,而这个加速度与斜面的角度有关。

牛顿第二定律实验

牛顿第二定律实验

验证牛顿第二定律实验1.实验目的、原理实验目的:验证牛顿第二定律,即物体的质量一定时,加速度与作用力成正比;作用力一定时,加速度与质量成反比.实验原理:利用砂及砂桶通过细线牵引小车做加速运动的方法,采用控制变量法研究上述两组关系.如图3-14-1所示,通过适当的调节,使小车所受的阻力忽略,当M 和m 做加速运动时,可以得到 g m M m a += m M m mg T +⋅= 当M>>m 时,可近似认为小车所受的拉力T 等于mg .本实验第一部分保持小车的质量不变,改变m 的大小,测出相应的a ,验证a 与F 的关系;第二部分保持m 不变,改变M 的大小,测出小车运动的加速度a ,验证a 与M 的关系.2.实验器材打点计时器,纸带及复写纸,小车,一端附有滑轮的长木板,小桶,细绳,砂,低压交流电源,两根导线,天平,刻度尺,砝码.3.实验步骤及器材调整(1)用天平测出小车和小桶的质量M 和m ,把数值记录下来.(2)按图3-14-2所示把实验器材安装好.(3)平衡摩擦力:在长木板的不带滑轮的一端下面垫上一块薄木板,反复移动其位置,直至不挂砂桶的小车刚好在斜面上保持匀速运动为止.(4)将砂桶通过细绳系在小车上,接通电源放开小车,使小车运动,用纸带记录小车的运动情况,取下纸带,并在纸带上标上号码.(5)保持小车的质量不变,改变砂桶中的砂量重复步骤(4),每次记录必须在相应的纸带上做上标记,列表格将记录的数据填写在表内.(6)建立坐标系,用纵坐标表示加速度,横坐标表示力,在坐标系上描点,画出相应的图线以验证a 与F 的关系.(7)保持砂及小桶的质量不变,改变小车的质量(在小车上增减砝码),重复上述步骤(5)、(6)验证a 与M 的关系.4.注意事项(1)在本实验中,必须平衡摩擦力,方法是将长木板的一端垫起,而垫起的位置要恰当.在位置确定以后,不能再更换倾角.(2)改变m 和M 的大小时,每次小车开始释放时应尽量靠近打点计时器,而且先通电再放小车.(3)每次利用纸带确定a 时,应求解其平均加速度.5.数据处理及误差分析(1)该实验原理中T=mM M mg +⋅,可见要在每次实验中均要求M>>m ,只有这样,才能使牵引小车的牵引力近似等于砂及砂桶的重力.(2)在平衡摩擦力时,垫起的物体的位置要适当,长木板形成的倾角既不能太大也不能太小,同时每次改变M 时,不再重复平衡摩擦力.(3)在验证a 与M 的关系时,作图时应将横轴用l /M 表示,这样才能使图象更直观.图3-14-1图3-14-2[例1](2008·广州一模)用如图(甲)所示的实验装置来验证牛顿第二定律,为消除摩擦力的影响,实验前必须平衡摩擦力.(1)某同学平衡摩擦力时是这样操作的:将小车静止地放在水平长木板上,把木板不带滑轮的一端慢慢垫高,如图(乙),直到小车由静止开始沿木板向下滑动为止.请问这位同学的操作是否正确?如果不正确,应当如何进行?答: .(2)如果这位同学先如(1)中的操作,然后不断改变对小车的拉力F,他得到M(小车质量)保持不变情况下的a—F图线是下图中的(将选项代号的字母填在横线上).(3)打点计时器使用的交流电频率f=50Hz. 下图是某同学在正确操作下获得的一条纸带,A、B、C、D、E每两点之间还有4个点没有标出.写出用s1、s2、s3、s4以及f来表示小车加速度的计算式:a= . 根据纸带所提供的数据,算得小车的加速度大小为 m/s2(结果保留两位有效数字).★高考重点热点题型探究热点牛顿第二定律[真题1](2007·广东)如图3-14-7 (a)所示,小车放在斜面上,车前端拴有不可伸长的细线,跨过固定在斜面边缘的小滑轮与重物相连,小车后面与打点计时器的纸带相连.开始时,小车停在靠近打点计时器的位置,重物到地面的距离小于小车到滑轮的距离.启动计时器,释放重物,小车在重物牵引下,由静止开始沿斜面向上运动,重物落地后,小车会继续向上运动一段距离.打点计时器使用的交流电频率为50Hz. 图3-14-7(b)中a、b、c是小车运动纸带上的三段,纸带运动方向如图箭头所示.(1)根据所提供的纸带和数据,计算打c 段纸带时小车的加速度大小为 m/s 2(计算结果保留两位有效数字). (2) 打a 段纸带时,小车的加速度是2.5m/s 2,请根据加速度的情况,判断小车运动的最大速度可能出现在b 段纸带中的 .(3) 如果重力加速度取2m/s 10,由纸带数据可推算出重物与小车的质量比为 .【真题2】(2008年宁夏卷).物理小组在一次探究活动中测量滑块与木板之间的动摩擦因数.实验装置如图,一表面粗糙的木板固定在水平桌面上,一端装有定滑轮;木板上有一滑块,其一端与电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与托盘连接.打点计时器使用的交流电源的频率为50 Hz.开始实验时,在托盘中放入适量砝码,滑块开始做匀加速运动,在纸带上打出一系列小点. (1)上图给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个打点(图中未标出),计数点间的距离如图所示.根据图中数据计算的加速度a = (保留三位有效数字).(2)回答下列两个问题:①为测量动摩擦因数,下列物理量中还应测量的有 .(填入所选物理量前的字母)A.木板的长度lB.木板的质量m 1C.滑块的质量m 2D.托盘和砝码的总质量m 3E.滑块运动的时间t②测量①中所选定的物理量时需要的实验器材是 .(3)滑块与木板间的动摩擦因数 = (用被测物理量的字母表示,重力加速度为g ).与真实值相比,测量的动摩擦因数 (填“偏大”或“偏小” ).写出支持你的看法的一个论据:.2.72 2.82 2.92 2.98 2.82 2.62 2.08 1.90 1.73 1.48 1.32 1.12单位:cma bc图3-14-7 (b) D 1 D 2 D 3 D 4 D 5 D 6 D 7。

验证牛顿第二定律实验报告

验证牛顿第二定律实验报告

验证牛顿第二定律实验报告实验目的:本实验旨在验证牛顿第二定律,即力等于物体质量乘以加速度的关系。

实验材料和装置:1. 物体:一块质量较小的木块2. 弹簧秤:用于测量物体受到的力3. 平滑水平面:用于减少摩擦力的影响4. 弹簧:用于施加恒定的力5. 计时器:用于测量物体的加速度6. 实验记录表:用于记录实验数据实验步骤:1. 将平滑水平面放在实验桌上,确保其表面光滑无摩擦。

2. 将木块放在平滑水平面上,并用弹簧秤测量其质量,记录在实验记录表中。

3. 将弹簧固定在木块一侧,并用弹簧秤施加一个恒定的力,记录在实验记录表中。

4. 启动计时器,并同时移开手,使木块受到弹簧的作用力开始运动。

5. 记录木块从静止开始运动到达一定距离所经历的时间,并记录在实验记录表中。

6. 重复实验多次,取平均值作为最后的结果。

实验数据记录和处理:根据实验步骤所记录的数据,我们可以得到以下数据:1. 木块质量:m kg2. 弹簧施加的力:F N3. 木块运动的时间:t s4. 木块运动的距离:d m根据牛顿第二定律,力等于物体质量乘以加速度,我们可以得到公式:F = m * a,其中F为力,m为物体质量,a为加速度。

由于木块在平滑水平面上运动,忽略了摩擦力的影响,因此木块受到的力仅包括弹簧施加的力。

根据牛顿第二定律,我们可以将公式改写为:F = k * a,其中k为弹簧的劲度系数。

根据实验数据和公式,我们可以计算出木块的加速度:a = F / m,其中F为弹簧施加的力,m为木块的质量。

实验结果和讨论:通过多次实验并计算,我们可以得到木块的加速度。

将实验数据代入计算公式,我们可以得到木块的加速度与施加的力和木块的质量之间的关系。

通过实验结果的分析,我们可以得出以下结论:1. 牛顿第二定律成立:实验结果验证了牛顿第二定律,即力等于物体质量乘以加速度的关系。

2. 加速度与施加的力成正比:通过实验数据的分析,我们可以发现加速度与施加的力成正比关系,即当施加的力增加时,加速度也随之增加。

验证牛顿运动定律教材实验及实验创新

验证牛顿运动定律教材实验及实验创新

验证牛顿运动定律教材实验及实验创新牛顿运动定律是经典力学的基石,通过实验验证可以更好地理解和应用这些定律。

本文将介绍一些常见的牛顿运动定律的实验及实验创新方法。

一、牛顿第一定律实验牛顿第一定律也被称为惯性定律,即物体在不受力作用时将保持匀速直线运动,或保持静止状态。

我们可以通过一些简单的实验来验证这一定律。

1. 空气减阻实验将一个小球放在水平桌面上,用手指快速推动小球,观察小球受到的阻力和滑动距离之间的关系。

实验结果表明,小球在没有外力作用下将保持匀速直线运动。

二、牛顿第二定律实验牛顿第二定律描述了力和物体加速度之间的关系,可以通过以下实验进行验证。

1. 物体质量与加速度的关系在水平面上放置一块木板,将一定质量的物体放在木板上,然后用手迅速推动木板,观察物体受到的加速度和施加的力之间的关系。

实验结果表明,物体的加速度与施加的力成正比,并与物体的质量成反比。

2. 用弹簧测力计测力将弹簧测力计固定在水平面上,然后悬挂一定质量的物体在测力计的弹簧上,记录下测力计示数。

然后增加物体的质量,再次记录示数。

根据牛顿第二定律的公式F=ma,可以得到测力计示数与物体质量成正比。

1. 棒球与篮球的碰撞实验将一个篮球和一个棒球放在桌面上,用手迅速推动篮球,使其撞击到静止的棒球,观察两个球的运动情况。

实验结果表明,篮球和棒球之间产生的力与反作用力大小相等,方向相反。

2. 摆球实验将一根线固定在天花板上,线底部悬挂一个小球,然后用手使小球偏离平衡位置,并将其释放。

观察小球的运动情况。

实验结果表明,小球在释放后来回摆动,并继续保持平衡位置,这是由于小球与线之间产生的力和反作用力。

实验创新方法:除了上述经典的实验,我们还可以创新一些实验方法来验证牛顿运动定律。

1. 创新测力仪器可以使用压敏电阻、弯曲传感器等新型传感器来制作测力仪器,用于测量物体所受的力。

2. 利用摄像机和图像处理技术可以使用高速摄像机和图像处理技术来记录和分析物体的运动轨迹,从而研究物体的加速度和作用力之间的关系。

验证牛顿第二定律的滑块实验

验证牛顿第二定律的滑块实验

验证牛顿第二定律的滑块实验标题:验证牛顿第二定律的滑块实验引言:牛顿第二定律是经典力学中最为重要的定律之一,它描述了物体的运动与施加在物体上的力之间的关系。

为了验证牛顿第二定律的有效性,我们可以进行一系列的实验。

本文将详细阐述滑块实验的设计、实施和分析,并展示该实验的应用和专业角度的评估。

一、实验设计与准备:1. 实验目的:验证牛顿第二定律在实际物体运动中的适用性。

2. 实验材料和设备:- 一条光滑水平的桌面- 一个质量较小且平坦的滑块- 一根轻质且不弹性的绳子- 一个固定在桌面上的滑轮- 一瓶滑动摩擦系数已知的润滑剂3. 实验步骤:1) 将滑块放置在桌面上,并与滑轮之间用绳子连接起来,确保绳子不打结且绷直。

2) 微量喷洒润滑剂,以减小滑块与桌面之间的摩擦力。

3) 将滑轮旋转,使绳子发出定向的拉力,使滑块开始运动。

4) 以不同的力大小和角加速度重复实验,并记录相关数据。

二、实验过程与数据分析:1. 牛顿第二定律的数学表达:牛顿第二定律表示为:F = ma,其中F是作用在物体上的力,m是物体的质量,a是物体的加速度。

2. 实验观察与数据收集:实验过程中,需要测量滑动的加速度和应用到滑块上的力。

- 测量加速度:可以通过计时物体从静止位置滑行至某一点所消耗的时间,以及滑行距离来计算加速度。

加速度计也是另一种常用的测量工具。

- 测量施力:使用弹簧测力计或称量天平来测量施加在滑块上的力。

3. 数据分析与验证:通过将所收集到的数据带入牛顿第二定律的公式中,验证实验数据与理论预测是否一致。

实验过程中需要重复尽可能多的实验次数,以求得更准确的数据,并使用统计学方法进行数据处理和求解。

三、实验应用:1. 课堂教学:通过滑块实验,学生能够理解牛顿第二定律,并将理论应用于实际物体的运动状况。

这有助于学生深入理解物理学基础知识。

2. 工程应用:牛顿第二定律在工程中有广泛的应用,如机械、交通和航天工程等。

通过验证实验的结果,我们可以为这些实际应用情境下的运动提供准确的描述和计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律实验(一)基本知识一【实验目的】:验证牛顿第二定律,就是验证 (1)物体质量一定时,加速度与合外力成正比; (2)合外力一定时,物体的加速度与质量成反比。

二【实验原理】:控制变量法1、保持研究对象(小车)的质量(M )不变,改变砂桶内砂的质量(m ),即改变牵引力测出小车的对应加速度,用图像法验证加速度是否正比于作用力。

2、保持砂桶内砂的质量(m )不变,改变研究对象的质量(M ),即往小车内加减砝码,测出小车对应的加速度,用图像法验证加速度是否反比于质量。

三【实验器材】附有定滑轮的长木板、薄木垫、小车、细线、小桶及砂、打点计时器、 低压交流电源、导线、天平(带一套砝码)、毫米刻度尺、纸带及复写纸等。

四【实验步骤】1、用天平测出小车和小桶的质量M 0和m 0,并记录数值;2、按照要求安装实验器材,此时不把悬挂小桶用的细绳系在车上,即不给小车加牵引力;3、平衡摩擦力,在长木板不带定滑轮的一端下面垫薄木板,并反复移动其位置,直到打点计时器正常工作后,小车在斜面上的运动可以保持匀速直线运动状态为止。

4、记录小车及车内所加砝码的质量;称好砂子后将砂倒入小桶,把细绳系在小车上并绕过定滑轮悬挂小桶;此时要调整定滑轮的高度使绳与木板平行;接通电源,放开小车,待打点计时器在纸带上打好点后,取下纸带,做好标记。

5、保持小车的总质量不变,改变砂的质量(均要用天平称量),按步骤4中方法打好纸带,做好标记。

五【实验现象和数据】1、在每条纸带上选取一段比较理想的部分,分别计算出加速度值。

2、用纵坐标表示加速度,横坐标表示作用力(即砂和砂桶的总重力mg ),根据实验结果画出相应的点,如果这些点在一条直线上,便证明了质量一定的情况下,加速度与合外力成正比。

3、保持砂和桶的质量不变,在小车上加砝码(需记录好数据),重复上面的实验步骤,求出相应的加速度,用纵坐标表示加速度,横坐标表示小车及砝码的总质量的倒数1M,根据实验结果画出相应的点,如果这些点在一条直线上,就证明了合外力一定的情况下,加速度与质量成反比。

六【注意事项】1、实验中始终要求砂和砂桶的总质量(m )远小于小车和砝码的总质量(M ),一般情况下要满足10m <M 。

只有这样,砂和砂桶的总重力才能视为小车所受的拉力。

2、平衡摩擦力时不要挂小桶,但小车要挂纸带并接通打点计时器;有两个作用:一是从纸带上打出的点子来判断小车是否匀速运动,二是在平衡摩擦力时也要平衡振针和纸带之间的摩擦(如果使用电火花计时器,该摩擦可以忽略)。

平衡摩擦力是使小车重力沿斜面的分力与小车运动时所受到的所有摩擦力相平衡。

平衡摩擦力时是轻推小车做匀速直线运动,而不是逐渐抬高木板,让小车由静止变成运动(这种情况下平衡摩擦力过度)。

3、在每次打过点的纸带上,都要注明小车的质量和拉力数值,以免在分析数据时造成错误。

4、小车每次释放前应靠近打点计时器,且先接通电源再释放小车;小车停止运动前应按住小车。

5、由于a ~M 图像是一条曲线,难以判断a 和M 之间的函数关系,从而难以确定a 与M 的定量关系。

从已知的理论看,a ~1M 图像应该是一条直线,为了便于对实验结果作出直观判断,本实验中作a ~1M图像,而不是作a ~M 图像。

6、作图像时,要使尽可能多的点子在直线上,不在直线上的点也要尽可能对称分布在直线两侧,其目的是在数据处理时尽量减少偶然误差七【实验误差分析】本实验除了实验仪器、实验条件、操作过程、数据处理带来误差外,更主要是分析实验原理带来的误差;本实验中认为:细绳的拉力等于砂和砂桶的重力,即:T =mg ;是实验原理引起误差的根本原因。

理论分析:设小车的质量为M 、平衡摩擦力后合外力为F 、加速度为a ,细绳的拉力为T 、砂和砂桶的总质量为m ;对小车有:a =F M =T M ;对系统有:a =mgM +m;对砂及砂桶有:mg -T =ma ; 联立解得细绳拉力表达式为:T =MM +mmg =11+m Mmg ;要使T =mg ,必须满足的条件是:M >>m 。

八【实验结论】:在误差允许的范围内,验证了加速度与作用力成正比,与质量成反比的定量关系 (二)基本技能【实验图像分析】物理中看图像,一看曲直、二看斜率、三看交点、四看面积,并能对他们赋予一定的物理意义。

1、本实验图像弯曲是必然的,并且是向下弯曲;①当M 一定时,a ~F 图像;理论上:若M 一定,则a ∝F ,a ~F 图像为过原点的倾斜直线; 实际上:a =F M =T M =1M +m mg ,其图像为以1M +m 为斜率的曲线,当m 增加时,1M +m减少,故图像向下弯曲。

②当F 一定时,a ~1M图像;理论上:若F 一定,则a ∝1M,a ~1M图像为过原点的倾斜直线; 实际上:a =F M =T M =(MM +m mg )1M ,以1M 为自变量,mg 不变时,其图像为以M M +m mg 为斜率的曲线,当1M增加时,斜率MM +mmg 减少,故图像向下弯曲。

2、图像弯曲的程度由m M的大小确定,只有当M >>m 时,图像近似于直线。

3、图像斜率的物理意义:①当M 一定时,a ~F 图像中,a =1M F ;其斜率为1M;即a ~F 图像的斜率为小车质量的倒数。

②当F 一定时,a ~1M 图像中,a =F 1M ;其斜率为F ;即a ~1M图像的斜率为砂和砂桶的重力。

4、图像是否过原点—反映平衡摩擦力的情况。

(1)当M 一定时,a ~F 图像;图像过原点时,表明平衡摩擦力合适,如图①;图像与a 轴截距为正数时,表明F =0时,小车就有加速度a =a 0,即长木板的倾角过大,如图②;图像与水平轴相交时,表明小车加上拉力F =F 0时,其加速度a =0,即长木板的倾角过小或没有平衡摩擦力,如图③。

(2)当F 一定时,a ~1M图像;图像过原点时,表明平衡摩擦力合适,如图①;图像与a 轴截距为正数时,表明1M=0、M →∞时,小车还有加速度a =a 0,即长木板的倾角过大,如图②;图像与水平轴相交时,表明小车加上拉力F 时,其加速度a =0,即长木板的倾角过小或没有平衡摩擦力,如图③(三)熟练应用【例题1】如图所示,A 、B 两条直线是在A 、B 两地分别用竖直向上的力F 拉质量分别为m A 、m B 的物体得出的两个加速度a 与力F 的关系图线,由图线分析可知【B 】 A .两地的重力加速度g A >g B ; B .m A <m B ; C .两地的重力加速度g A <g B ; D .m A >m B ;【解析】由牛顿第二定律得:F -mg =ma ,则:a =1m F -g ;在a -F 图象中,斜率为1m,由图象可知:1m A >1m B,即:m A <m B ;由函数关系知,a -F 图象在纵轴上的截距表示重力加速度大小,则g A=g B 。

【练习1】在“探究加速度与力、质量的关系”的实验中,在研究加速度a 与小车的质量M 的关系时,由于没有注意始终满足M >>m 的条件,结果得到的图象应是下图中的【D 】【例题2】如图所示,是某次利用气垫导轨探究加速度与力、质量关系的实验装置安装完毕后的示意图,图中A 为砂桶和砂,B 为定滑轮,C 为滑块及上面添加的砝码,D 为纸带,E 为电火花计时器,F 为蓄电池,电压为6V ,K 是电键,请指出图中的三处错误。

(1) ;a Foa 0F ①②③a Moa 0①②③1M 01aFO AB a 1/M o a 1/M oa 1/M oa1/M o(2) ; (3) 。

【答案】(1)B 接滑块的细线应水平(或与导轨平行);(2)C 滑块离计时器太远;(3)E 电火花计时器用的是220V 的交流电,不能接直流电。

【例题3】现要验证“当质量一定时,物体运动的加速度与它所受的合外力成正比”这一物理 规律。

给定的器材如下:一倾角可以调节的长斜面(如图所示)、小车、计时器一个、米尺。

(1)填入适当的公式或文字,完善以下实验步骤(不考虑摩擦力的影响)。

①让小车自斜面上方一固定点A 1从静止开始下滑至斜面底端A 2,记下所用的时间t 。

②用米尺测量A 1与A 2之间的距离s ,则小车的加速度a = 。

③用米尺测量A 1相对于A 2的高度h 。

设小车所受重力为mg ,则小车所受的合外力F = 。

④改变 ,重复上述测量。

⑤以h 为横坐标,1t2为纵坐标,根据实验数据作图。

如能得到一条过原点的直线,则可以验证“当质量一定时,物体运动的加速度与它所受的合外力成正比”这一规律。

(2)在探究如何消除上述实验中摩擦阻力影响的过程中,某同学设计的方案是: ①调节斜面倾角,使小车在斜面上匀速下滑,测量此时A 1点相对于斜面底端A 2的高度h 0。

②进行(1)中的各项测量。

③计算与作图时用(h -h 0)代替h 。

对此方案有以下几种评论意见: A .方案正确可行B .方案的理论依据正确,但利用所给器材无法确定小车在斜面上是否做匀速运动;C .方案的理论依据有问题,小车所受摩擦力与斜面倾角有关; 其中合理的意见是 。

【答案】(1)②2s t 2;③mg hs;④斜面倾角(或h 的数值);(2)C(四)攻克难点1.关于验证牛顿运动定律的实验,下列说法中符合实际情形的是【D 】A .通过同时改变小车的质量m 及受到的拉力F 的研究,能归纳出加速度、力、质量三者之间的关系B .通过保持小车质量不变,只改变小车的拉力的研究,就可以归纳出加速度、力、质量三者之间的关系C .通过保持小车受力不变,只改变小车质量的研究,就可以得出加速度、力、质量三者之间的关系D .先不改变小车质量,研究加速度与力的关系;再不改变力,研究加速度与质量的关系,最后归纳出加速度、力、质量三者之间的关系2.在利用打点计时器和小车来做“验证牛顿运动定律”的实验时,下列说法中正确的是【BCD 】 A .平衡摩擦力时,应将砝码盘及盘内砝码通过定滑轮拴在小车上B .连接砝码盘和小车的细绳应跟长木板保持平行C .平衡摩擦力后,长木板的位置不能移动D .小车释放前应靠近打点计时器,且应先接电源再释放小车3.为了测定某辆轿车在平直路上起动时的加速度(轿车起动时的运动可近似看作匀加速运动),某人拍摄了一张在同一底片上多次曝光的照片,如图。

如果拍摄时每隔2s 曝光一次,轿车车身总长为4.5m ,那么这辆轿车的加速度约为A .1m/s 2B .2m/s 2C .3m/s 2D .4m/s 2【C 】 4.做“验证牛顿运动定律”的实验,主要的步骤有A .将一端附有定滑轮的长木板放在水平桌面上,取两个质量相等的小车,放在光滑的水平长木板上B .打开夹子,让两个小车同时从静止开始运动,小车运动一段距离后,夹上夹子,让它们同时停下来,用刻度尺分别测出两个小车在这一段时间内通过的位移大小C .分析所得到的两个小车在相同时间内通过的位移大小与小车所受的水平拉力的大小关系,从而得到质量相等的物体运动的加速度与物体所受作用力大小的关系D .在小车的后端也分别系上细绳,用一只夹子夹住这两根细绳E .在小车的前端分别系上细绳,绳的另一端跨过定滑轮各挂一个小盘,盘内分别放着数目不等的砝码,使砝码盘和盘内砝码的总质量远小于小车的质量,分别用天平测出两个砝码盘和盘内砝码的总质量。

相关文档
最新文档