narrow band filter design
滤波器设计-4
2、3腔耦合系数和本征频率计算
1、建立41*41*200mm 的滤波器腔体; 2、中间十字型隔板,厚度1mm; 3、耦合窗口大小立方体,高100mm, 宽W23,厚度穿过隔板; 4、隔板减去耦合窗口大小立方体; 5、腔体减去隔板。 6、在2腔和3腔的中心建立半径5mm长度为 L2的金属棒
模型参数化 输出变量的设定 参数扫描和优化
显然的,修正后的准椭圆函数带内没有等波纹特性,需 要做出等波纹修正,此处我们采用数值修正的方法。 取 导数为零的点,得到(-1,1)内各点的最 大 ,有
注:此处得到的是近似的等波纹特性。
15
3阶椭圆函数与准椭圆函数带内曲线比较
16
3阶椭圆函数与准椭圆函数增益曲线比较
17
4阶准椭圆函数
4阶椭圆函数修正得到准椭圆函数
[4] Smain Amari, Synthesis of Cross-Coupled Resonator Filters Using an Analytical Gradient-Based Optimization Technique, IEEE MTT, Vol.48, No.9, Sept. 2000,pp.1559-1563
K
Z=K12+d12*(F/f r-1) P=c/(4*F)
K
Z=K23+d23*(F/f r-1) P=c/(4*F)
K
Z=K12 + d12*(F/f r - 1) P=c/(4*F)
K
Z=K01 P=c/(4*F)
Port2 0
39
谐振回路计算
1、建立20*20*200mm 的滤波器腔体;
2、中间圆柱高度设为 L2=180mm;
[3] Smain Amari, Uwe Rosenberg, and Jens Bornemann, Adaptive Synthesis and Design of Resonator Filters With Source/LoadMultiresonator Coupling, IEEE MTT, Vol.50, No.8, Aug 2002
布拉格光栅反射光谱的数值仿真
题 专 班 学 学 目 光纤布拉格光栅反 射光谱的数值仿真 业 光信息科学与技术 级 光信 091 号 3090242007 生 丽 副教授
指导教师 汪
二○一三 年
I
布拉格光栅反射光谱的数值仿真 摘 要
光纤布拉格光栅(fiber Bragg grating,FBG)是一种利用光纤材料的光敏性,在纤芯 内形成空间相位的光栅,其作用实质是在纤芯内形成一个窄带的(透射或反射)滤波器或反 射镜。从上世纪七十年代末诞生以来,经过三十年的发展,它凭借体积小、易与光纤耦合、 可与其它光器件兼容成一体、低耗传输、工作稳定性高、带宽更窄且不受环境尘埃影响等一 系列优异性能,在光纤通信、光纤传感和光信息处理等领域广泛应用。对于反射式光栅布拉 格光栅来说,反射率谱是其特性的重要指标和评估指标,反射率谱的性能是光栅布拉格光栅 的重要性能参数。通过使用耦合模理论推导和传输矩阵推导,我们已经得出了光栅布拉格光 栅反射率谱的理论算方法,可以看出光栅布拉格光栅反射率谱是多个参量的函数,反射率谱 是各个制作参量共同作用的结果。因此,分析不同参数对光栅布拉格光栅反射率谱的影响, 并对不同参数对光栅布拉格光栅反射率谱的影响进行比较,可以帮助我们得到清晰的认识, 获得一种理想的光栅布拉格光栅设计方法,更容易得到想要获取的光栅布拉格光栅的参数。 例如:地球动力学、航天器及船舶航运、民用工程结构、电力工业、医学和化学行业等。正 是基于它独特的工作特性以及广泛的应用,对于FBG的特性研究显得十分重要。 关键词:光纤布拉格光栅、光敏性、光栅、FBG
I
目录
布拉格光栅反射光谱的数值仿真...........................................................................
三阶锁相环环路滤波器参数设计
[8]
3
2
2
2
2
2
2 锁相环线性模型
锁相环的线性模型如图 1 所示 , 图中 K, F ( s ) ,
1 / s分别是环路总增益 、 环路滤波器 、 VCO 环节
[ 8, 9 ]
;
由图可以得到系统的开环传递函数 、 闭环传递函数 [ 8, 9 ] 和误差传递函数 。
利用伯德法则 : 当开环增益为 1 时 ,其相位余 量必须大 于 0, 闭环 才 能 稳 定 。根 据 开 环 方 程 式 ( 5 ) ,计算出增益临界频率为 τ 2 ωT = K 2 ( 7) τ 1 环路稳定的相位条件 : ωTτ 2a rc tg + 180 °> 0 2 - 270 ° 由上式可求得稳定条件 : 2 τ 1 K > 3 τ 2 令
3
摘 要 : 锁相环在通信 、 遥测 、 导航等领域有着广泛的应用 ,三阶锁相环由于其频率斜率跟踪能力 ,越 来越受到重视 ,特别是深空探测的极窄带应用 。利用系统稳定性分析方法和高阶系统分析理论 ,分 别对两种模型的二阶环路滤波器 ,即理想二阶滤波器和三参数滤波器模型 ,推导了参数设计公式 ,给 出三阶锁相环设计参数的模拟及数字环路公式 , 并与 JPL 数字锁相环 ( DPLL ) 的设计参数经验公式 进行比较 。仿真结果表明 , 3 种设计方法近似相同 ,而所推导的参数设计方法优点在于可以灵活配 置系统的零 、 极点的位置以及阻尼系数等多种参数 ,为各种变带宽和自适应算法提供理论和应用基 础。 关键词 : 深空探测 ; 数字锁相环 ; 环路滤波器 ; 稳定条件 ; 高阶系统分析 ; 参数设计 中图分类号 : TN713 文献标识码 : A
其地面锁相接收机中的应用
IT行业专用英语单词荟萃
IT行业专用英语单词荟萃IT行业专用英语单词荟萃machine 机械;机器machine address 机器地址machine code 机器代码machine control system (MCS) 机械控制系统machine dependent 从属于机器的machine efficiency 机器效率machine language 机器语言machine, arbitration state 判优状态机器machine, asynchronous state 异步状态机器machine, auto answering 自动电话接听机machine, component placement 元件置放机machine, in-line placement 顺序式元件置放机machine, perfect 理想机器machine, pick-and-place 取放机器machine, state 状态机器machine, wave soldering 波峰式焊锡机machine, write-state (WSM) 写入状态机器machine-dependent 从属于机器machine-independent 独立于机器macro 宏指令macro cell 宏小区macro diversity 宏分集macro function 宏功能macro library 宏程序库macro, key 关键宏macro-assembler 宏汇编程序macro-blocks 宏模块macrophysics 宏观物理学magnesium titanate 钛酸镁magnet 磁石;磁铁钛酸体magnet, artificial 人造磁铁magnet, bar 条形磁铁magnet, molecular 分子磁magnet, permanent 永久磁体magnet, plastic 塑料磁体magnet, rubber 橡胶磁体magnet, temporary 暂时磁体magnetic axis 磁轴magnetic bubble memory 磁泡存储器magnetic circuit 磁路magnetic core memory 磁心存储器magnetic declination 磁偏角magnetic dip 磁力线magnetic domain 磁畴magnetic equator 磁赤道magnetic field 磁场magnetic field intensity 磁场强度magnetic flux 磁通量magnetic flux density 磁通量密度magnetic force 磁力magnetic hysteresis 磁滞现象magnetic induction 磁感应magnetic materials 磁性物质magnetic meridian 磁子午线magnetic moment 磁矩magnetic monopole 磁单极magnetic resistance 磁阻magnetic saturation 磁饱和magnetic shielding 磁屏magnetic susceptibility 磁化率magnetic tunnel junction (MTJ) 磁性隧道连接magnetic variation 磁变magnetic wave 磁波magnetic-flux density 磁通量密度magnetic-north pole 磁北极magnetic-south pole 磁南极magnetically soft material 软磁材料magnetism 磁性;磁学magnetism, residual 剩磁magnetism, terrestrial 地磁magnetite 磁铁矿magnetization 磁化magneto 磁力magneto signaling 磁电机信令magneto-optical disk 磁光盘magneto-optical drive 磁光驱动magnetometer 磁强针magnetometer, deflection 偏转磁强针magnetomotive force 磁动势magnetoresistive 磁阻的magnetron 磁控管magnetron gauge 磁控管计量器magnification power 放大率magnification, angular 角放大率magnifying power 放大率magnitude 大小;强度;等级mail server 邮件服务器mail store 邮件存储;邮箱mail, electronic 电子邮递mail, voice 声音邮递mailbox 邮箱mailbox service 邮箱服务main anode 主阳极main board 主机板main cross-connect 主群组交叉连接main distribution frame (MDF) 主配线架main exciter 主激发器main terminal 主终端mainframe 大型电脑mainframe computer 大型电脑mains 总线;电源maintainability 维修能力maintenance 维修;检修maintenance, preventative (PM) 预防性检修major diatonic scale 自然音阶major failure 主要故障majority carrier 多数载流子make-break operation 通-断操作malfunction 故障;失灵malicious call identification (MCI) 恶意呼叫识别man-machine interface 人机接口man-machine language (MML) 人机语言managed network services (MNS) 受控网络服务managed objects for IP mobility support (MOIPS) 为IP移动支持的管理对象management information base (MIB) 管理信息基本原则management information format (MIF) 管理信息格式management information system (MIS) 管理信息系统management, configuration 配置管理management, distributed data (DDM) 分布式数据管理management, dynamic storage 动态存储器管理management, file transfer access and (FTAM) 文件传送存取及管理management, integrated network (INM) 综合网络管理management, library 程序库管理management, network 网络管理management, on-chip dynamic memory 片上动态存储器管理management, power 功率管理management, process 过程管理;工艺管理management, station (SMT) 站管理management, total quality (TQM) 整体品质管理manager, expanded memory (EMM) 扩充存储器管理器manager, presentation 表示管理程序mandatory extension mechanism 强制扩充机制manometer 流体压强计manual 手动;人工控制manufacturability 可生产性manufacturability analysis tool (MAT) 工艺性分析工具;可制造性分析工具manufacturability, design-for- (DFM) 使设计具可制造能力manufacturing automation protocol (MAP) 制造自动化协定manufacturing defects analyzer 制造缺陷分析程序(分析器)manufacturing for reliability (MFR) 可靠性制造manufacturing phase 制造阶段manufacturing planning and control system 制造规划及控制系统manufacturing resources planning (MRP) 制造信息规划manufacturing, computer-aided (CAM) 电脑辅助生产manufacturing, computer-integrated (CIM) 电脑综合制造manuscript 原图;加工图map 映射;图;图像;变换map, attach 附带变换map, bit- 位映射图map, detach 分离变换map, numerical 数值变换mappable 可变换mapped, direct- 直接变换mapper 变换器mapping 映射;变换mapping, function 功能变换mapping, sequential 顺序映射mapping, topological 拓朴绘图margin 边缘;界限margin, noise 噪音容限margin, phase 相位边缘marginal timing error 边际定时错误mark 记号mark scanning 特徵扫描mark, fiducial 定位标记;基准标志marker 记号;标记markup language 标识语言; 记帐语言maser 微波激射mask 掩膜mask programmable 掩模可编程mask tooling 掩膜加工mask, flat-tension (FTM) 固定张力掩膜mask, solder 阻焊剂;焊锡掩膜;绿漆masked gate array 掩膜式门阵列maskless array synthesizer (MAS) 无掩膜的阵列合成器mass 质量mass flow controller 大流量控制器mass number 质量数mass rest, 静止质量mass, atomic 原子质量mass, center of 质量中心mass, critical 临界质量mass, gravitational 引力质量mass, inertial 惯性质量mass, spectrum 质谱mass, thermal 热质量mass-energy relation 质能关系mass-flow controller (MFC) 主流动控制器master 主;主控;主控器;控制master antenna (MATV) 主天线[电视]master device 主控器件;主器件master switch 主开关master telemetry unit (MTU) 主遥测设备master, bus 总线主控器master-slave determination 主从判断master-slave synchronization 主从同步master/slave operation 主从操作matched condition 匹配条件matching device 匹配器件material handling 物料处理material management system 物料管理系统material safety data sheet (MSDS) 材料安全数据表material, encapsulating 灌封材料material, passivation 钝化物料materials, magnetic 磁性物质math coprocessor 算术协处理器matrix 矩阵matrix circuit 矩阵电路matrix, active (AM) 动态矩阵matrix, adjacency 相邻矩阵matrix, diode 二极管矩阵matrix, high-quality (HQM) 高品质矩阵matrix, lower-triangular 下三角形矩阵matrix, simple 简单矩阵matrix, symmetric 对称矩阵matrix, transpose 转置矩阵matrix, upper-triangular 上三角形矩阵max‘s algorithm 最大值算法maximal displacement 最大位移,最大偏差maximal length 最大长度maximum average power 最大平均功率maximum capacity 最大容量maximum demand 最大需求maximum distance separable (MDS) 最大距离可分的maximum friction 最大摩擦maximum load 最大负载maximum power transfer 最大功率输送maximum time interval error (MITE) 最大时间间隔误差maximum transmission unit (MTU) 最大传输单元maxwell 麦克斯韦maze router 迷宫路由器mean free path 平均自由通路mean free time 平均自由时间mean terrain level 平均地面高度mean time between failures (MTBF) 平均失效时间mean time to repair (MTTR) 平均维修时间mean value 平均值mean-squared error (MSE) 均方差误means, electrochemical 电化学方法measling 生白点,生白斑measurement 测量;量度measurement, parametric 参数式测量measurement, phase-coherent 相位一致测量mechanical 机械的mechanical advantage 机械利益mechanical consideration 机械特性考虑mechanical deformation 机械变形mechanical efficiency 机械效率mechanical energy 机械能mechanical equivalent of heat 热功当量mechanical filter 机械式滤波器mechanical force 机械力mechanical strength 机械强度mechanical wobble 机械晃动mechanical, electro- 机电式mechanics 力学mechanics, quantum 量子力学mechanics, wave 波动力学mechanism 机制;机械装置;机构mechanism, decision 决策机能mechanism, image transfer (ITM) 图像转移机制mechanism, trap 陷阱机制mechanism, write-through 透写式机制media 媒介;媒体media access control (MAC) 媒体存取控制media access unit (MAU) 媒体存取单元media control interface (MCI) 媒体控制接口media streaming 媒体数据流式传输media-dependent interface (MDI) 媒体独立接口median 中线medium 介质;媒体medium attachment unit (MAU) 媒体附属单元IT专业英语词典-37n-well diode n阱二极管nack (negative acknowledgement) 否定应答name server 名称服务器nano- (n) 毫微:纳nanobot 毫微瓦,纳级泥塞nanocode 纳代码nanoinstruction 纳指令nanometer (nm) 毫微米nanophase materials 纳相材料nanosecond (ns) 毫微秒nanotechnology 纳 (10-9 ) 技术narrow band 窄频带narrow-band amplifier 窄频放大器narrow-band axis 窄频轴narrow-band filter 窄频带滤波器national ISDN-1 国家综合业务数字网-1national center for supercomputing applications (NCSA) 国家超级计算应用中心, 国家计算中心national society of cable television engineers (nscte) 国家有线电视工程师协会nationwide paging network 全球寻呼网络natural air cooling 自然空气冷却natural frequency 自然频率natural glitch filter 自然干扰过滤器natural oscillation 自然振荡navigation 导引;导航navigation software 导引软体;导航软体near infrared 近红外线near video on demand (NVOD) 近似视频点播,仿视频点播near-body capacitance 近体电容near-end crosstalk 近端交越干扰near-letter quality 接近优质字符near-letter-quality printing 接近优质字符打印nearly instantaneous companded audio multiplexing(NICAM) 近瞬时压缩扩展音频多工技术;丽音广播系统negate 否定;非negation 否定;非negative acknowledge character 否认字符negative bias 负偏压negative charge 负电荷negative electrode 负电极negative feedback 负反馈negative gate drive 非门驱动negative ion 负离子negative logic 负逻辑negative potential 负电位negative pressure 负压力negative regulator 负[压]调节器negative resist 负电阻,负阻negative resistance 负电阻negative sequence 负序列negative supply generator 负供应产生器negative temperature coefficient (NTC) 负温度系数negative transient 负瞬态negative-edge (脉冲)负沿,(脉冲)下降沿negative-true 假-真(逻辑)nematic 向列nematic, twisted (TN) 扭曲向列neodymium 钕neon 氖neper 奈培nested 嵌套nesting 箝套net 网net force 净力net moment 净力矩net pattern 网模式net, parasitic 寄生网netcitizen 网民; 网上公民netiquette 网上礼仪netizen 从事网络的人netlist 排线表列netlist comparator 排线表列比较器network 网络network access points (NAP) 网络接入点network access server 网络接入服务器network adapter 网络适配器network address translator (NAT) 网络地址转换器,网络地址翻译器network administrator 网络管理员network architecture 网络结构network attached resource computer (ARCnet) 附加资料电脑网络network computing system (NCS) 网络运算系统network control program (NCP) 网络控制程序network control protocol (NCP) 网络控制协议network element 网络部件network file system (NFS) 网络文件系统network function 网络函数network information center (NIC) 网络信息中心network interface card (NIC) 网络接口卡network interface unit (niu) 网络接口单元network layer 网络层network linear bus 网络线性总线network management 网络管理network management system 网络管理系统network management unit (NMU) 网络管理单元network master 网络主机network model 网络模型network news transfer protocol (nntp) 网络新闻传输协议network node interface (NNI) 网络节点接口network operating system (NOS) 网络操作系统network processing unit (NPU) 网络处理单元network server 网络伺服器network service provider (NSP) 网络服务提供者network station 网络站network subsystem (NSS) 网络子系统network terminal unit (NTU) 网络终端单元network termination (NT) 网络终端network termination - level 1 (NT1) 第一层次网络终端network termination - level 2 (NT2) 第二层次网络终端network time protocol (NTP) 网络时间协议network user identification (NUI) 网络用户标识network, backbone 中枢网络network, baseband 基频带网络network, branch 分支网络network, broadband 宽频带网络network, circuit switched data (CSDN) 电路交换数据网络network, digital 数字网络network, distributed 分布式网络network, distributed operating multi-access interactive(DOMAIN) 分布式作业多重存取交谈网络network, distributed system (DSN) 分布式系统网络network, enterprise 企业网络network, ethernet 以太网络IT专业英语词典-36mode, answer 回应模式mode, asynchronous balanced (ABM) 异步平衡模式mode, asynchronous receiving 异步接收模式mode, asynchronous response (ARM) 异步反应模式mode, asynchronous sending 异步发送模式mode, asynchronous transfer (ATM) 异步传输模式mode, auto-detect 自动检测模式mode, auto-zero 自动归零模式mode, block 区块模式;资料段模式mode, burst 脉冲模式;资料组模式mode, command 命令状态mode, continuous current 连续电流模式mode, control 控制状态;控制模式mode, current 电流模式mode, dot join 光点汇集模式mode, dot roll 光点延伸模式mode, doze 休止模式mode, exception 异常状态;异常模式mode, freeze 冻结状态;冻结模式mode, global 通用模式mode, graphics 图像模式mode, hibernation 冬眠模式mode, interactive 互动模式;交谈模式mode, kernel 核心模式mode, normal 正常状态;正常模式mode, originate 发信状态mode, power-down 省电状态;省电模式mode, privileged 特许状态;特许模式mode, protected 保护状态;保护模式mode, real 真实状态;真实模式mode, realtime 实时状态mode, receiving 接收模式mode, ring 环状模式mode, saturation 饱和状态mode, sending 发送模式mode, sleep 休止模式mode, standby 候命状态;预备状态mode, switch 开关式mode, tandem 复式状态mode, text 文字模式mode, virtual 虚拟状态;虚拟模式model 模式;模型model verification 模型验证model, basic access 基本存取模式model, behavioral simulation 性能模拟模型model, detailed 精细模型model, ideal gas 理想气体模型model, reference 参考模型model, state-average 状态平均模型model-based spectral analysis (MBSA) 基于模型的光谱分析modem 调制解调器modem pooling 公用MODEM组modem, dumb 基本型调制解调器modem, intelligent 智能型调制解调器modem, optical 光学调制解调器modem, smart 聪敏型调制解调器modification 改进;修正;修改modified modified-frequency modulation (MMFM) 改进修改频率调制modified modular jack (MMJ) 改进型模块插座modified refractivity 修正的折射率modified-frequency modulation (MFM) 改进频率调制modifier 修改程序modifier, address 地址修改程序modular 模数的,模块的modular connector 模块式连接器modulation 调制modulation rate 调制[速]率modulation reference level 调制参考水平modulation section 调制部分modulation transfer function (MTF) 调制传输功能modulation, adaptive differential pulse code (ADPCM) 配接差动脉冲编码调制modulation, amplitude (AM) 振幅调制modulation, collector 集极调制modulation, differential pulse code (DPCM) 差动脉冲编码调制modulation, frequency (FM) 频率调制modulation, intensity 密度调制modulation, modified modified-frequency (MMFM) 改进修改频率调制modulation, modified-frequency 改进频率调制modulation, phase (PM) 相位调制modulation, pulse (PM) 脉冲调制modulation, pulse code (PCM) 脉冲编码调制modulation, pulse frequency (PFM) 脉冲频率调制modulation, pulse length (PLM) 脉冲长度调制modulation, pulse width (PWM) 脉冲宽度调制modulation, quadrature 正交调制modulation, quadrature amplitude (QAM) 正交振幅调制modulation, residual frequency 残留的频率调制modulation, self-phase (SPM) 自相位调制modulatior 调制器modulator, differential phase shift-keyed 差动相位变换调制器modulator, electro-optic 电光调制器modulator, pulse 脉冲调制器module 模组module generation 模块生成module identification line (MODID) 模组识别线路module, audio mixing (AMU) 声频混合模组module, multichip (MCM) 多芯片模组module, single-in-line memory (SIMM) 单列存储器模组module, sub- 次模组module, translator 转换程序模组modulo (mod) 模数modulus 模数modulus of elasticity 弹性模数modulus, bulk 容变弹性模数modulus, shear 切变模量molar heat capacity 克分子热容mold flash 模子溢料;模子毛刺mole (mol) 克分子molecular action 分子作用molecular beam 分子束molecular force 分子力molecular kinetic theory 分子运动理论molecular magnet 分子磁molecular theory 分子理论molecular weight 分子量molecular-beam epitaxy 分子束外延molecule 分子molecule, polar 极向分子molten carbonate fuel cell (MCFC) 熔融碳酸盐燃料电池moment arm 力矩臂moment of couple 力偶moment of force 力矩moment of momentum 动量矩moment, anti-clockwise 反时针力矩moment, clockwise 顺时针力矩moment, effective magnetic 有效磁矩moment, electric dipole 电偶极矩moment, magnetic 磁矩moment, net 净力矩momentum 动量momentum, angular 角动量momentum, conservation of 动量守恒momentum, conservation of angular 角动量守恒momentum, moment of 动量矩monitor 监视器monitor, black-and-white 黑白监视器monitor, color 彩色监视器monitor, power waveform 电子波形监察仪mono-channel universal serial controller (MUSC) 单通道通用串行控制器mono-mode optical fiber 单模光纤monochromatic 单色monochromatic light 单色光monochrome 单色monochrome display adapter (MDA) 单色显示配接器monochrome super-twisted 单色超级扭曲monolithic 单片monolithic microwave integrated circuit (MMIC) 单片式微波集成电路monomer 单基体monopole 单极子monopole, magnetic 磁单极moore‘s law 摩尔定律morphology, surface 表面形态mosaic 马赛克most significant bit 最大有效数字motherboard 母板motion 运动motion Picture Experts Group 1 (MPEG-1) 活动图象专家组规范1motion Picture Experts Group 2 (MPEG-2) 活动图象专家组规范2motion Picture Experts Group 4 (MPEG-4) 活动图象专家组规范4motion estimator 运动估算量,移动估算器motion vector 运动矢量motion, acceleration in circular 圆运动中之加速度motion, angular 角运动motion, angular harmonic 角谐运动motion, circular 圆周运动motion, curvilinear 曲线运动motion, period 周期运动motion, projectile 抛体运动motion, rectilinear 直线运动motion, relative 相对运动motion, simple harmonic 简谐运动motion, uniform circular 均匀圆周运动motion, wave 波动motor 马达;电动机motor controller 电动机控制器;马达控制器motor, brushless 无刷式马达motor, direct current 直流马达motor, disc spindle 碟式转轴马达motor, servo 伺服马达motor, spin 旋转马达motor, step 步进马达motor, voice coil 音圈马达mount 安装;装设;装置mounter, chip 芯片安装器;片式元件组装机mounting hole 安装孔mouse 鼠标器mouse, optical 光学鼠标器move 搬移movement, substrate dopant 基板渗染运动moving standard deviation (MSD) 移动标准偏差,移动标准漂移moving-coil galvanometer 圈转电流计multi-block transfer 多重资料组传送多信道, 多点分布业务multi-dimensional 多维multi-gap color filter 多隙彩色滤波器multi-layer transient voltage suppressor 多层瞬态电压抑制器multi-physical media 多重实体媒介multi-protocol 多重协定multi-protocol operation 多重协定作业multi-protocol serial communication interface (MSCI) 多重协定串行通讯接口multi-protocol serial communications 多重协定串行通讯multi-purpose 多用途multi-range 多量程multi-register 多重暂存器multi-register bank 多重暂存器组multi-register set (MRS) 多重暂存器集multi-segmented 多重分区的multi-slope conversion 多重斜率转换multi-station access unit (MAU) 多站存取单元multi-tone power ratio (MTPR) 多路音调功率比,多音功率比multi-user 多用户multi-user dimension (MUD) 多用户空间multi-user domain 多用户域multi-vendor interface protocol (MVIP) 多制造商接口协议multiburst 多重脉冲multicast 多路广播,多播,组播multicast address resolution server (MARS) 多播地址解析服务器multicast address resolution service (MARS) 多播地址解析服务multichip integrated circuit 多芯片集成电路multichip module (MCM) 多芯片模组multidrop 分支multidrop connection 分支式连接multidrop parallel bus 分支平行总线multifiber cable 多纤光缆multifrequency (MFC) 多频率multifrequency dialing 多频率拨号multifrequency signaling 多频率信令multifunction 多功能multifunction card 多功能卡multifunction channel 多功能通道multilayer 多层的multilayer board 多层板multilayer ceramic 多层陶瓷multilayer substrate 多层基片,多层衬底multimaster 多控制multimaster arbitration 多控制判优multimedia 多媒体multimedia cable network system (MCNS) 多媒体电缆网络系统multimedia personal computer 多媒体个人电脑multimeter 万用表multimeter, digital (DMM) 数字万用表multimode fiber 多模光纤multipath 多径干扰multipath error 多径误码multiple algorithm 多重算法multiple apertur 多孔径multiple array programmable logic (MAPL) 多阵列可编程逻辑multiple backbone network 多重中枢网络multiple bus master device 多重总线控制器件multiple channel 多通道multiple channel access (MCA) 多通道存取multiple channel amplifier 多通道放大器multiple configuration 复式配置multiple instruction/multiple data (MIMD) 多重指令/多重数据multiple memory planes 多重存储器层multiple metal layer tape 多金属层带multiple passes 多次通过multiple reflection 多次反射multiple reuse pattern (MRP) 多重使用模式multiple service-class support 多重服务级支持multiple system operator 多系统操作员, 复联系统操作员multiple time programmable 可多次编程的multiple track 多磁道multiplex 多工;多路multiplexed analog component (MAC) 多工模拟元件multiplexed analog compression (MAC) 多工模拟压缩multiplexed non- 非多工式multiplexed pixel input port 多工图素输入端口multiplexer (MUX) 多工器multiplexer, two-input 双输入多工器multiplexing, frequency-division (FDM) 分频多工multiplexing, nearly-instantaneously companded audio(NICAM) 近瞬时压缩扩展音频多工技术multiplexing, statistical 统计多工multiplexing, time division (TDM) 划时多工multiplexing, time-compression (TCM) 时间压缩多工multiplexing, variable-rate adaptive (VRAM) 可变速率配接多工multiplexing, wavelength-division (WDM) 分波长多工multiplication factor 倍增因素multiplier 乘法器;倍加器multiplier, current 电流倍增器multiply and accumulate unit (MAU) 乘法及累积单元multiply instruction 乘法指令multiplying converter 乘法转换器multipoint 多点连接multipoint control unit (MCU) 多点控制单元multipole 多极multiprocessing, Parallel Reduced Instruction Set (PRISM) 并行的精简指令集多处理方式multiprocessor 多处理器multiprocessor architecture extension (MPAX) 多处理器延伸架构multiprocessor synchronization 多处理器同步化multiprogramming 多重编程multipulse LPC (MPLPC) 多脉冲线性预测编码multipulse maximum likelihood quantization (MP-MLQ) 多脉冲最大似然量化,多脉冲最大可能量化multipurpose internet mail extensions (MIME) 多用途Internet 邮件扩展multirate DSL (MDSL) 多速率数子用户线multisystem 多线路系统multisystem extension interface (MXI) 多系统延伸接口multisystem extension interface bus (MXIbus) 多系统延伸接口总线multitasking 多任务multitasking operating system 多任务作业系统multitasking system 多任务系统multiturn rotary encoder 多匝旋转编码器,多圈回转编码器multiuser 多用户music synthesizer 音乐合成器musical instrument digital interface (MIDI) 乐器数字接口musical scale 音阶mute 哑音muting 噪声抑制mutual inductance 互感mutual synchronization 互同步myopia 近视IT专业英语词典-35medium density polyethylene (MDPE) 中等密度聚乙烯medium wave (MW) 中波medium, optically denser 光密介质medium, optically thinner 光疏介质medium-scale integrated circuit (MSI) 中规模集成电路mega- (M) 百万mega-cycle 百万周期megabit (Mb) 百万位megabyte (MB) 百万字节megacell 百万储存单元megapixel 百万图素megger 高阻表,高阻计melting point 溶点;熔点melting, latent heat of 溶解潜热member, full 正式会员membrane switch 薄膜开关memorandum of understanding (MoU) 谅解备忘录memory 存储器memory available 可用存储器memory bank 存储器组memory bank interleaving 存储器组交错memory bus 存储器总线memory cell 存储器存储单元memory cell array 存储器存储单元阵列memory control unit (MCU) 存储器控制单元memory controller (MEMC) 存储器控制器memory counter 存储器计数器memory device 存储器器件memory effect 记忆效应memory integrated circuit 存储器集成电路,内存集成电路memory management unit (MMU) 存储器管理单元memory mapped input/output 存储器映射输入/输出memory plane 存储器层memory pointer 存储器指标memory reference 存储器参考memory refresh 存储器更新memory resident 存储器驻留memory segmentation 存储器分段memory space 存储器空间memory subsystem 存储器子系统memory word 存储[器]字memory, associative 关联存储器memory, bubble 磁泡存储器memory, byte-oriented 面向字节存储器memory, compact disc read only (CD ROM) 光碟只读存储器memory, content addressable (CAM) 内容可定址存储器memory, conventional 常规存储器memory, demand-paged virtual 需求分页虚拟存储器memory, dual-access 双重存取存储器memory, dual-port 双端口存储器memory, dual-port random access 双端口随机存取存储器memory, dynamic random access (DRAM) 动态随机存取存储器memory, electrically erasable programmable read only(EEPROM) 电气拭除式可编程只读存储器memory, electrically erasable read only (EEROM) 电气拭除式只读存储器memory, erasable programmable read only (EPROM) 可拭除式可编程只读存储器memory, error correcting 错误纠正存储器memory, expanded 扩充存储器memory, extended 延伸存储器memory, external 外存存储器;外置存储器memory, ferroelectric random access (FRAM) 铁电随机存取存储器memory, flash 快闪存储器memory, four-way interleaved 四路交错存储器memory, frame buffer 画面缓冲器存储器memory, high 高地址存储器memory, interleaving 存储器交错memory, internal 内存存储器;内置存储器memory, least recently used (LRU) 最近最少使用存储器memory, magnetic bubble 磁泡存储器memory, magnetic core 磁心存储器memory, nonvolatile random access 非易失性随机存取存储器memory, page 分页存储器memory, physical 实质存储器memory, processor specific (PSM) 特殊处理器存储器memory, programmable read only (PROM) 可编程只读存储器memory, random access (RAM) 随机存取存储器memory, read only (ROM) 只读存储器memory, shadow random access 阴影随机存取存储器memory, shared 分享存储器memory, static random access (SRAM) 静态随机存取存储器memory, static-column page-mode 静态纵列分页式存储器memory, tag 标志存储器memory, vector 向量存储器memory, video 视频存储器memory, video random access (VRAM) 视频随机存取存储器memory, virtual 虚拟存储器memory-mapped input/output 存储区标示输入/输出memory-resident database (MRD) 存储器驻留数据库memory-resident program 存储器驻留程序meniscus 月形透镜,凹凸透镜menu 功能表;操作指引menu, hierarchical 层次结构式操作指引menu, pop-up 弹出式操作指引menu, pull-down 下拉式操作指引menu-driven 操作指引驱动mercury lamp 水银灯merge 合并merge sort 合并式排序meridian, magnetic 磁子午线merit figure 效益指数mesh 网;网孔mesh network topology 网格网络技术,网状网络技术mesh pattern 网状mesh porosity 网孔孔隙度mesh size 网目大小,筛眼大小,筛孔尺寸mesochronous 均步的,平均同步的mesomorphic 多相的mesomorphic substances 多相物质meson 介子message 信息message descriptor list 信息描述符列表message digest algorithm (MD5) 报文分类算法message identifier 信息识别码message protocol 信息协定message sequence charts (MSC) 报文序列表,报文流水卡message switching 报文交换,报文转接message transfer part (MTP) 报文传送部分message unit 信息单元message-based device 信息类器件message-oriented middleware 面向报文的中间设备(中间件)messaging application programming interface (MAPI) 信息应用编程接口meta signaling 元信令meta-stable 元稳定性的,亚稳定的`,准稳的metabase 元数据库metadata 元数据metafile 元文件metal composition 金属复合物metal content 金属含量metal electrode face bonding (MELF) 金属电极表面黏合metal electrode leadless face (MELF) 金属电极无引线面metal fatigue 金属疲劳metal interconnect 金属互连metal, double-layer (DLM) 双层金属metal, single-layer (SLM) 单层金属metal, triple-layer (TLM) 三层金属metal-core board 金属芯板metal-in-gap (MIG) 金属夹层metal-oxide semiconductor (MOS) 金属氧化半导体metal-oxide surge arrestor (MOSA) 金属氧化浪涌稳定器metal-oxide varistor (MOV) 金属氧化压敏电阻metalanguage 元语言metalization layer 金属化层metallic bond 金属键metallic thermometer 金属温度计metallization 金属化metallized polyester-film capacitor 金属聚脂膜电容器metallized polypropylene capacitor 金属聚丙烯电容器meter 表;计;仪表meter (m) 米meter, panel 面板仪表meter, phase 相位表meter, signal-level (SLM) 信号电平计metering 测光method, access 存取方法method, basic telecommunications access (BTAM) 基本远程通讯存取法method, boundary tag (BTM) 边缘标志法method, boundary-element (BEM) 临界元素法method, common access (CAM) 共同存取方法method, gradient projection 梯度投影法method, index sequential access 索引顺序存取法method, queued telecommunications access (QTAM) 队列远程通讯存取法method, telecommunications access (TCAM) 远程通讯存取法method, teleprocessing access (TPAM) 远程信息处理存取法method, virtual telecommunications access (VTAM) 虚拟远程通讯存取法methodology 方法论;方法学metric 公制的metric system 十进制metrology 度量衡学;计量学metropolitan area network (MAN) 域网络mho 姆欧mica sheet 云母片micro cell 微小区micro connectors 微连接器micro electromechanical systems (MEMS) 微机电系统micro imaging 缩微成像,显微摄像micro- 微micro-channel autodecode bus controller 微通道自动解码总线控制器micro-channel bus architecture (MCA) 微通道总线架构micro-instruction 微指令microarchitecture 微体系结构microbend 微弯曲,微型弯头microcellular 微型蜂窝电话microchip 微芯片microcode 微编码microcomputer 微电脑microcomputer, single-chip (SCM) 单芯片微电脑microcontroller 微控制器microdrive 微驱动,微动microfarad 微法拉microhenry 微亨利micrometer 测微计micron 微米microphone 传声器;微音器microphonics 低颤噪效应microphysics 微观物理学microprocessor 微处理器microprocessor without interlocked pipeline stages(MIPS) 没有互锁管线阶段的微处理器microprocessor, digital signal 数字信号微处理器microprocessor, digital tuning 数字调频微处理器microprogramming 微编程microscope 显微镜microscope, electron 电子显微镜microscope, scanning electron 扫描式电子显微镜microscope, scanning tunneling (STM) 扫描隧道显微镜microsecond 微秒microstructure of material 材料的微观结构microvia 通过微波microvolt 微伏特microwatt 微瓦microwave 微波microwave communications 微波通信microwave control interface 微波控制接口microwave integrated circuit (MIC) 微波集成电路microwave link 微波链路microwave radio 微波无线电[通信]microwire 微细线middle wave (MW) 中波middleware 中件migration, stress 应力迁移milli- (m) 毫milliampere (mA) 毫安millibar 毫巴milligram (mg) 毫克millihenry (mH) 毫亨利milliliter (ml) 毫升millimeter (mm) 毫米milling system 研磨系统million floating-point operations per second (MFLOPS) 每秒百万次浮点运算million instruction bytes per second (MIBS) 每秒百万指令字节million instructions per second (MIPS) 每秒百万条指令million samples per second 每秒百万次取样millisecond (ms) 毫秒millivolt (mV) 毫伏特milliwatt (mW) 毫瓦mime 多用途Internet邮件扩充mini-circular connector 迷你圆型连接器mini-computer 小型电脑miniature small-outline package (MSOP) 超小型外形封装,微型外形封装minimal encapsulation 最小封装,最小包装minimal phase 最小相位minimum bend radius 最小弯曲半径minimum deviation 最小偏向minimum distance code 最小远程代码minimum load 最小负载minimum mean square error (MMSE) 最小均方差minimum-shift keying (MSK) 最小变换调制minor cycle 次周期minor failure 轻微故障minute 分mirror 镜mirror effect 镜像效应mirror, aspherical 非球面镜mirror, concave 凹镜mirror, convergent 会聚镜mirror, convex 凸镜mirror, divergent 发散球面镜mirror, spherical 球面镜mirroring 反射misalignment 移位misfire 点火不良mismatch 不匹配misorientation 极向错误misregistration 定位失准misrouted calls 错误指向呼叫miss 落空;错失miss ratio 失配率;落空率;错失率missing bit 缺失位mission-critical application 临界任务应用程序mission-critical server 临界任务服务程序;临界任务服务器mixed logic 混合逻辑。
斜入射滤光片的偏振相关损耗抑制技术
斜入射滤光片的偏振相关损耗抑制技术俞侃;包佳祺;黄德修;吴长发【摘要】多腔窄带薄膜滤光片在倾斜入射时由于偏振光的中心波长会出现分离,会导致其偏振相关损耗迅速增加,严重影响光通信系统的性能.从理论上分析了斜入射时产生偏振相关损耗的原因,并提出了通过优化膜系的方法有效的实现了偏振光中心波长的对准,有效的降低了其通带内的偏振相关损耗.同时还提出了使用偏振分束器的方法,对单偏振光进行调制,在整个透射带内都实现了对偏振相关损耗的抑制.实验结果表明,两种消偏方式都能将窄带滤光片斜入射时的偏振相关损耗减小至0.2dB内,根据实际需要可以应用于不同的场合.【期刊名称】《光电工程》【年(卷),期】2010(037)001【总页数】5页(P101-105)【关键词】薄膜物理学;窄带滤光片;斜入射;偏振相关损耗【作者】俞侃;包佳祺;黄德修;吴长发【作者单位】华中科技大学,文华学院,武汉,430074;武汉光电国家实验室,武汉,430074;华中科技大学,文华学院,武汉,430074;华中科技大学,文华学院,武汉,430074;武汉光电国家实验室,武汉,430074;华中科技大学,文华学院,武汉,430074【正文语种】中文【中图分类】TN929.10 引言薄膜干涉滤光片由于具有通带窄、插入损耗低、温度稳定性好等诸多优异的特性,所以在微电子和光电子学领域,尤其是在密集波分复用(DWDM)系统中得到广泛的应用[1]。
常规的滤光片基本都是应用于正入射的,但在某些特定场合需要其处于斜入射状态。
而随着入射角的增加,滤光片的偏振相关损耗(Polarization Dependent Loss, PDL)会迅速增大[2],影响器件乃至整个系统的性能。
常规窄带滤光片在入射角度上超过5°时其PDL数值就会超过系统限制(小于0.2 dB)。
本文在理论上分析了斜入射时滤光片PDL产生的原因,并提出了通过膜系改进或者使用偏振分束器和半波片的方法,对斜入射时窄带滤光片产生的PDL进行了抑制。
电子信息工程专业外文翻译--滤波器
外文原文一、a question for study or discussion1.Research background and purpose1.1 conceptualizeElliptic filter (Elliptic filter), also known as the Call filter (Cauer filter), is in the passband and stopband ripple of a filter. Elliptic filter when compared to other types of filters, in order under the same conditions with minimal fluctuations in the passband and stopband. Same as its wave in passband and stopband, which distinguish it from the Butterworth filter with flat passband and stopband and flat passband and the stopband ripple or resistance with flat, cut than the snow filter passband ripple.A low-pass filter with a frequency response range of the ellipse:Four-order low-pass elliptic filter frequency response。
1.2 scientific researchIn the low-frequency (600Hz=500KHz) commonly used in band-pass filter, large LC filters, poor stability, stability of Crystal filters, but can only be made of narrow-band filter, bad shock and vibration resistance. Active filters are small, but stability and decay characteristics are often poor, and debugging easy. Ceramic filter is poor and low-frequency seismic performance of low temperature coefficient. And than snow filter Butterworth filter transfer function is a polynomial divided by a constant, for the whole network, all zeros in infinite, only infinite stopband attenuation is infinite, and the elliptic filter in both with zeros and poles on the limited frequency. Zero ripple in the passband, that it has a minimum across the passband and stopband ripple, This is distinguished from Butterworth filter with flat passband and stopband。
Matlab设计FIR滤波器
FIR Nyquist (L-th band) Filter DesignThis example shows how to design lowpass FIR Nyquist filters. It also compares these filters with raised cosine and square root raised cosine filters. These filters are widely used in pulse-shaping for digital transmission systems. They also find application in interpolation/decimation and filter banks.Magnitude Response ComparisonThe plot shows the magnitude response of an equiripple Nyquist filter and a raised cosine filter. Both filters have an order of 60 and a rolloff-factor of 0.5. Because the equiripple filter has an optimal equiripple stopband, it has a larger stopband attenuation for the same filter order and transition width. The raised-cosine filter is obtained by truncating the analytical impulse response and it is not optimal in any sense.NBand = 4;N = 60; % Filter orderR = 0.5; % Rolloff factorTW = R/(NBand/2); % Transition Bandwidthf1 = fdesign.nyquist(NBand,'N,TW',N,TW);f2 = fdesign.pulseshaping(NBand,'Raised Cosine','N,Beta',N,R);heq = design(f1,'equiripple','Zerophase',true,'SystemObject',true);hrc = design(f2,'window','SystemObject',true);hfvt = fvtool(heq,hrc,'Color','white');legend(hfvt,'Equiripple NYQUIST design','Raised Cosine design');In fact, in this example it is necessary to increase the order of the raised-cosine design to about 1400 in order to attain similar attenuation.Impulse Response ComparisonHere we compare the impulse responses. Notice that the impulse response in both cases is zero every 4th sample (except for the middle sample). Nyquist filters are also known as L-th band filters, because the cutoff frequency is Pi/L and the impulse response is zero every L-th sample. In this case we have 4th band filters.f1.FilterOrder = 38;f2.FilterOrder = 38;h1 = design(f1,'equiripple','Zerophase',true,'SystemObject',true);h2 = design(f2,'window','SystemObject',true);hfvt = fvtool(h1,h2,'Color','white','Analysis','Impulse');legend(hfvt,'Equiripple NYQUIST','Raised Cosine');title('Impulse response, Order=38, Rolloff = 0.5');Nyquist Filters with a Sloped StopbandEquiripple designs allow for control of the slope of the stopband of the filter. For example, the following designs have slopes of 0, 20, and 40 dB/(rad/sample)of attenuation:set(f1,'FilterOrder',52,'Band',8,'TransitionWidth',.05);h1 = design(f1,'equiripple','SystemObject',true);h2 = design(f1,'equiripple','StopbandShape','linear','StopbandDecay',20,...'SystemObject',true);h3 = design(f1,'equiripple','StopbandShape','linear','StopbandDecay',40,...'SystemObject',true);hfvt = fvtool(h1,h2,h3,'Color','white');legend(hfvt,'Slope=0','Slope=20','Slope=40')Minimum-Phase DesignWe can design a minimum-phase spectral factor of the overall Nyquist filter (a square-root in the frequency domain). This spectral factor can be used in a similar manner to the square-root raised-cosine filter in matched filtering applications. A square-root of the filter is placed on the transmiter's end and the other square root is placed at the receiver's end.set(f1,'FilterOrder',30,'Band',NBand,'TransitionWidth',TW);h1 = design(f1,'equiripple','Minphase',true,'SystemObject',true);f3 = fdesign.pulseshaping(NBand,'Square Root Raised Cosine','N,Beta',N,R);h3 = design(f3,'window','SystemObject',true);hfvt = fvtool(h1,h3,'Color','white');legend(hfvt,'Minimum-phase equiripple design',...'Square-root raised-cosine design');Decreasing the Rolloff FactorThe response of the raised-cosine filter improves as the rolloff factor decreases (shown here for rolloff = 0.2). This is because of the narrow main lobe of the frequency response of a rectangular window that is used in the truncation of the impulse response.set(f1,'FilterOrder',N,'TransitionWidth',.1);set(f2,'FilterOrder',N,'RolloffFactor',.2);h1 = design(f1,'equiripple','Zerophase',true,'SystemObject',true);h2 = design(f2,'window','SystemObject',true);hfvt = fvtool(h1,h2,'Color','white');legend(hfvt,'NYQUIST equiripple design','Raised Cosine design');Windowed-Impulse-Response Nyquist DesignNyquist filters can also be designed using the truncated-and-windowed impulse response method. This can be another alternative to the raised-cosine design. For example we can use the Kaiser window method to design a filter that meets the initial specs:set(f1,'TransitionWidth',TW);hwin = design(f1,'kaiserwin','SystemObject',true);The Kaiser window design requires the same order (60) as the equiripple design to meet the specs. (Remember that in contrast we required an extraordinary 1400th-order raised-cosine filter to meet the stopband spec.)hfvt = fvtool(heq,hrc,hwin,'Color','white');legend(hfvt,'Equiripple design',...'Raised Cosine design','Kaiser window design');Nyquist Filters for InterpolationBesides digital data transmission, Nyquist filters are attractive for interpolation purposes. The reason is that every L samples you have a zero sample (except for the middle sample) as mentioned before. There are two advantages to this, both are obvious by looking at the polyphase representation.fm = fdesign.interpolator(4,'nyquist');Hm = design(fm,'kaiserwin','SystemObject',true);hfvt = fvtool(Hm,'Color','white');set(hfvt,'PolyphaseView','on');The polyphase subfilter #4 is an allpass filter, in fact it is a pure delay (select impulse response in FVTool, or look at the filter coefficients in FVTool), so that: 1. All of its multipliers are zero except for one, leading to an efficient implementation of that polyphase branch. 2. The input samples are passed through the interpolation filter without modification, even though the filter is not ideal.。
超宽带微带带通滤波器的设计
超宽带微带带通滤波器的设计袁伟强;宋树祥;程洋;张勇敢【摘要】为了设计小型化、低插入损耗、宽阻带的滤波器,本文基于缺陷微带结构(defected microstrip structure,DMS)提出一种新型H形DMS结构微带滤波器,利用DMS结构与1/4波长终端短路谐振器设计制作一种小型超宽带微带带通滤波器,并用ADS(advanced design system)软件对该滤波器进行分析及仿真验证,且对所设计的滤波器进行实物加工测试.测试结果表明,该滤波器的相对带宽达到了116%,阻带在-20 dB以下的频段为12~19 GHz,其宽度达到了7 GHz,与理论分析基本一致.该滤波器尺寸为13.7 mm×6.8 mm,同时还具有插入损耗小、结构简单紧凑等优点.%Based on the defected microstrip structure (DMS),a new H-shaped DMS microstrip filter is proposed.A small ultra-wideband microstrip bandpass filter is designed and fabricated using the DMS structure and the 1/4 wavelength shorted resonator.The filter is analyzed and simulated by ADS software.The designed filter is tested by physical processing.The test results show that the relative bandwidth of the filter reaches 116%,and the band with -20 dB is 12-19 GHz and its width is 7 GHz, which is consistent with the theoretical analysis.The size of the filter is 13.7 mm× 6.8 mm,with a small insertion loss,simple structure,and other advantages.【期刊名称】《广西师范大学学报(自然科学版)》【年(卷),期】2017(035)004【总页数】7页(P32-38)【关键词】带通滤波器;缺陷微带结构(DMS);超宽带;短路枝节;ADS【作者】袁伟强;宋树祥;程洋;张勇敢【作者单位】广西师范大学电子工程学院,广西桂林 541004;广西师范大学电子工程学院,广西桂林 541004;广西师范大学电子工程学院,广西桂林 541004;广西师范大学电子工程学院,广西桂林 541004【正文语种】中文【中图分类】TN713近些年,超宽带技术蓬勃发展,自2002年美国通信委员会(federal communications commission,FCC)批准超宽带可以商业使用以来,各种超宽带器件的研究逐渐增加。
直线电机定位力波动的辨识及迭代补偿方法
直线电机定位力波动的辨识及迭代补偿方法陈兴林;杨天博;刘杨【摘要】针对直线电机在运动过程中受定位力波动影响而在高精度领域应用受限的问题,采用定位力补偿控制的方法提高直线电机的定位精度.在不改变系统结构的情况下,首先利用加速度计采集电机全程定位力波动数据,经过谱分析确定了波动力的模型结构,而后通过递推最小二乘法获取了具体的模型参数,并在模型基础上设计了基于位置的补偿控制器和迭代学习控制器对定位力进行补偿.经仿真和实验结果证明,所提方法可显著降低直线电机运动过程中的定位误差.【期刊名称】《电机与控制学报》【年(卷),期】2015(019)002【总页数】6页(P60-65)【关键词】迭代学习控制;模型辨识;直线电机;定位力;补偿控制【作者】陈兴林;杨天博;刘杨【作者单位】哈尔滨工业大学航天学院,黑龙江哈尔滨150001;哈尔滨工业大学航天学院,黑龙江哈尔滨150001;哈尔滨工业大学航天学院,黑龙江哈尔滨150001【正文语种】中文【中图分类】TM359.40 引言作为执行元件,直线电机在工作过程不需要如丝杠、蜗轮蜗杆等中间转换环节,因此克服了传统伺服系统中由机械转换机构带来的效率低、体积大、精度低等缺陷。
据此明显的优势,直线电机广泛应用于精密运动系统。
然而,直线电机在运行过程中也受到各种干扰的作用:除电流纹波扰动之外,由于直线电机本身的机械结构限制导致磁场畸变,还会受到诸如齿槽推力波动、边端效应、磁阻推力波动、端部效应等。
为了实现更高精度的直线电机伺服系统,必须对这些干扰进行抑制。
其中,齿槽力波动和边端效应由于只与电机初级和次级的相对位置有关,通常合称为直线电机的定位力。
定位力通常呈周期性变化,在单边平板铁芯式直线电机的运动过程中影响尤为严重[1-2]。
以某光刻机系统为例,由直线电机定位力为主的扰动造成的轨迹误差可达40 μm以上[3]。
因此在高精度运动系统中,直线电机定位力的补偿控制方法对于提高其运动性能不容忽视。
微带低通滤波器的仿真设计
微带低通滤波器的仿真设计陕西理工学院毕业设计微带低通滤波器的仿真设计王艳磊(陕西理工学院电信工程系电子信息工程专业 2007级5班陕西汉中723000)指导教师:贾建科[摘要] 在实际的应用中~射频信号的频率范围非常广~通常所用的有用信号只是在很小的频段内~因此需要通过滤波器来实现。
滤波器是用来选择性地通过或抑制某一频段信号的装置。
在高频是滤波器通常由分布参数元件构成~因为其成本低且有较高的可重复性~而绝大部分分布参数滤波器都是用微带线设计的~通过在电路板上构成电路回路来实现滤波特性。
本文简要介绍了采用高低阻抗微带线实现分布参数低通滤波器的方法~并且着重通过一个具体设计实例给出微带滤波器的整个设计过程和AWR 仿真结果。
[关键词] 微带低通滤波器 AWR 仿真Design and Simulation of Microstrip Low-pass FilterWang Yan lei(Grade 07,Class 5,Major electronics and information engineering ,Electronics and informationengineering Dept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi)Tutor: Jia Jian Ke[Abstract]: In practical projects, the range of frequency is very wide. Useful signal is usually used only in a narrow band, so it needs filters. Filter is a device which is used to select frequency required. At high frequency, the filter is normallycomposed of distributed parameter components because of low cost and high repeatability. Most distributed parameter filters are designed by the microstrip line and achieve performance by constituting loop on the circuit board. This article briefly describes the method of achieving low-pass filter of distribution parameters with Stepped-Impedance, L-C Ladder Type Low-pass Filters and mainly gives the entire design process and the AWR simulation results based on a specific example.[Key words]: Microstrip Low-pass Filter AWR simulation陕西理工学院毕业设计目录第一章引言 (1)1.1研究的意义 (1)1.2滤波器的发展史 (1)国内外的研究动态 ........................................... 2 1.31.4 本设计主要完成的任务 (4)第二章微波滤波器及微带电路的基本理论 ......................... 5 2.1 微波网络 ................................................... 5 2.1.1 二端口网络 ............................................... 5 2.2 滤波器的传输函数 ........................................... 6 2.2.1 Butterworth响应 (7)Chebyshev2.2.2 响应 (7)Elliptical2.2.3 Function响应 ......................................8 2.3微波滤波器的参数 (9)2.4微带线的基本理论 ............................................ 9 第三章归一化原型滤波器设计 ................................. 12 3.1归一化低通原型滤波器 ....................................... 12 3.2切比雪夫低通原型 ........................................... 13 第四章微带低通滤波器的设计与仿真............................ 15 4.1 理论计算各元件的真实值 .................................... 15 4.2 理论计算微带低通滤波器的实际尺寸 .......................... 15 4.3 AWR软件的介绍 ............................................. 16 4.4仿真与实验结果 ............................................. 16 小结 ........................................................ 21 致谢 ........................................................ 22 [参考文献] (REFERENCES) . (23)陕西理工学院毕业设计附录(A)英文文献 (24)附录(B)英文文献的中文翻译 (30)陕西理工学院毕业设计第一章引言1.1研究的意义无线通信业务的迅猛发展,在给人们的沟通和生活带来方便的同时,无线通信系统也对无线电频谱资源的需求不断增加,使得目前适宜于无线通信的频谱资源变得越来越紧张。
关于微波器件的 英文翻译
Microwave FiltersA filter is a two-port network used to control the frequency response at a certain point in an RF or microwave system by providing transmission at frequencies within the passband of the filter and attenuation in the stopband of the filter. Typical frequency responses include low-pass, high-pass, bandpass, and band-reject characteristics. Applications can be found in virtually any type of RF or microwave communication, radar, or test and measurement system.The development of filter theory and practice began in the years preceding World War II by pioneers such as Mason, Sykes, Darlington, Fano, Lawson, and Richards. The image parameter method of filter design was developed in the late 1930s and was useful for low-frequency filters in radio and telephony. In the early 1950s a group at Stanford Research Institute, consisting of G. Matthaei, L. Young, E. Jones, S. Cohn, and others, became very active in microwave filter and coupler development. A voluminous handbook on filters and couplers resulted from this work and remains a valuable reference . Today, most microwave filter design is done with sophisticated computer-aided design (CAD) packages based on the insertion loss method.Because of continuing advances in network synthesis with distributed elements, the use of low-temperature superconductors and other new materials, and the incorporation of active devices in filter circuits, microwave filter design remains an active research area.We begin our discussion of filter theory and design with the frequency characteristics of periodic structures, which consist of a transmission line or wave guide periodically loaded with reactive elements. These structures are of interest in themselves because of their application to slow-wave components and traveling-wave amplifier design, and also because they exhibit basic passband-stopband responses that lead to the image parameter method of filter design.Filters designed using the image parameter method consist of a cascade of simpler two-port filter sections to provide the desired cutoff frequencies and attenuation characteristics but do not allow the specification of a particular frequency response over the complete operating range. Thus, although the procedure is relatively simple, the design of filters by the image parameter method often must be iterated many times to achieve the desired results.A more modern procedure, called the insertion loss method, uses network synthesis techniques to design filters with a completely specified frequency response.The designs simplified by beginning with low-pass filter prototypes that are normalized in terms of impedance and frequency. Transformations are then applied to convert the prototype designs to the desired frequency range and impedance level.Both the image parameter and insertion loss methods of filter design lead to circuits using lumped elements (capacitors and inductors). For microwave applications such designs usually must be modified to employ distributed elements consisting of transmission line sections. The Richards transformation and the Kuroda identities provide this step.The subject of microwave filters is quite extensive due to the importance of these components in practical systems and the wide variety of possible implementations. Here we can treat only the basic principles and some of the more common filter designs .1、Bandstop and Bandpass Filters Using Quarter-Wave ResonatorsWe know that quarter-wave open-circuited or short-circuited transmission line stubs look like series or parallel resonant circuits, respectively. We can therefore use such stubs in shunt along a transmission line to implement bandpass or bandstop filters,as shown in Figure1. Quarter-wavelength sections of line between the stubs act as admittance inverters to effectively convert alternate shunt resonators to series resonators.The stubs and the transmission line sections are λ/4 long at the center frequency, ω0.For narrow bandwidths the response of such a filter using N stubs is essentially the same as that of a coupled line filter using N + 1 sections. The internal impedance of the Stub filters Z0,while in the case of he coupled line filter end sections are required to transform the impedance level. This makes the stub filter more compact and easier to design.A disadvantage, however, is that a filter using stub resonators often requires characteristic impedances that are difficult to realize in practice.We first consider a bandstop filter using N open-circuited stubs, as shown in Figure 1a. The design equations for the required stub characteristic impedances, Z0n, will be derived in terms of the element values of a low-pass prototype through the use of an equivalent circuit. The analysis of the bandpass version, using short-circuited stubs, follows the same procedure, so the design equations for this case are presented without detailed derivation.FIGURE1 Bandstop and bandpass filters using shunt transmission line resonators (θ= π/2)at the centerfrequency). (a) Bandstop filter. (b) Bandpass filter.As indicated in Figure 2a, an open-circuited stub can be approximated as a series LC resonator when its length is near 90◦. The input impedance of an open-circuitedFIGURE 2 Equivalent circuit for the bandstop filter of Figure 8.47a. (a) Equivalent circuit of an open-circuited stub for θ near π/2. (b) Equivalent filtercircuit using resonatorsand admittance inverters. (c) Equivalent lumped-element bandstop filter.transmission line of characteristic impedance Z0n isZ = −jZ 0n cot θ,where θ = π/2 for ω = ω0. If we let ω = ω0+ ∆ω, where ∆ω<<ω0, then θ = (π/2),(1 + ∆ω/ω0), a nd this impedance can be approximated asZ = jZ 0n tan02ωωπ∆≈0002)(ωωωπ-n jZ (1) for frequencies in the vicinity of the center frequency, ω0. The impedance of a series LC circuit is)(22)(10000ωωωωωωωωωωω-≈-=≈-=+=n n n n n n n jL C L j C L j C j L j Z (2)where LnCn= 1/ω02 .Equating (1) and (2) gives the characteristic impedance of the stub in terms of the resonator parameters:πωn L Z 004= (3) Then, if we consider the quarter-wave sections of line between the stubs as ideal admittance inverters, the bandstop filter of Figure 1a can be represented by the equivalent circuit of Figure 2b. Next, the circuit elements of this equivalent circuit can be related to those of the lumped-element bandstop filter prototype of Figure 2c. With reference to Figure 2b, the admittance Y seen looking toward the L 2C 2 resonator is .10110222)1/11(1)/1(1-++++=Z C j L j C j L j Y Z ωωωω (4)The admittance at the corresponding point in the circuit of Figure 2c is10'1'1'2'2)/11(/11-++++=Z L j C j C j L j Y ωωωω (5) These two results will be equivalent if the following conditions are satisfied:'2'222'1'11120,1C L C L L C C L Z == (6) Since L n C n = L n ’C n ’=1/ω02,these results can be solved for Ln'22'120201,L L L Z L ==ω (7)Using (3) and the impedance-scaled bandstop filter elements gives the stub characteristic impedances as∆==∆==20'200210'10200144,44g Z L Z g Z L Z Z ππωππω (8)where ∆ = (ω2− ω1)/ω0is the fractional bandwidth of the filter. It is easy to show that the general result for the characteristic impedances of abandstop filter is . ∆=n n g Z Z π004 (9)For a bandpass filter using short-circuited stub resonators the corresponding result is n n g Z Z 400∆=π (10)These results only apply to filters having input and output impedances of Z0 and so cannot be used for equal-ripple designs with N even.EXAMPLE 1 BANDSTOP FILTER DESIGNDesign a bandstop filter using three quarter-wave open-circuit stubs. The center frequency is 2.0 GHz, the bandwidth is 15%, and the impedance is 50Ω. Use an equal-ripple response, with a 0.5 dB ripple level.SolutionThe fractional bandwidth is ∆ = 0.15.Then the characteristic impedances of the stubs can befound from (9). The results are listed in the following table:n gn Z0n(Ω)1 1.5963 265.92 1.0967 265.93 1.5963 265.9The filter circuit is shown in Figure1a, with all stubs and transmission line sections λ/4 long at 2.0 GHz. The calculated attenuation forthis filteris shown in Figure 3;the ripplein the passbands is somewhat greaterthan 0.5 dB as aresult of the approximations involved in the development of the design equations.FIGURE3 Amplitude response of the bandstop filterof Example 1.The performance of quarter-wave resonator filters can be improved by allowing the characteristic impedances of the interconnecting lines to be variable; then an exact correspondence with coupled line bandpass or bandstop filters can be demonstrated.2、Bandpass Filters Using Capacitively Coupled Series Resonators Another type of bandpass filter that can be conveniently fabricated in microstrip or stripline form is the capacitive-gap coupled resonator filter shown in Figure 4. An Nth-order filter of this form will use N resonant series sections of transmission line with N + 1 capacitive gaps between them. These gaps can be approximated as series capacitors; The flter can then be modeled as shown in Figure 4(b).FIGURE4 Development of the equivalence of a capacitive-gap coupled resonator bandpass filter to the coupled line bandpass filter (a) The capacitive-gap coupled resonator bandpassfilter. (b)Transmission line model. (c) Transmission line model with nagative-sectionsforming admittance inverters (φi/2 < 0) (d) Equivalent circuit using inverters and λ/2 resonators (φ= πat ω0).The resonators are approximately λ/2 long at the centerfrequency, ω0.Next, we redraw the equivalent circuit of Figure 8.50b with negative-length transmission line sections on either side of the series capacitors. The lines of lengthφ will be λ/2 long at ω0, so the electrical length θiof the ith section in Figures 4a, b is12121+Φ+Φ+=i i i πθ N i ...,3,2,1= (11) with φi< 0. The reason for doing this is that the combination of series capacitor and negative-length transmission lines forms the equivalent circuit of an admittance inverter, as seen from Figure 4c. In order for this equivalence to be valid, the following relationship must hold between the electrical length of the lines and the capacitive susceptance:)2arctan(0i i B Z -=Φ (12)T hen the resulting inverter constant can be related to the capacitive susceptance as 20)(1i i i J Z J B -= (13) T he capacitive-gap coupled filter can then be modeled as shown in Figure 4d. Now consider the equivalent circuit shown in Figure 8.45b for a coupled line bandpass filter.Since these two circuits are identical (as φ = 2θ = π at the center frequency), we can use the results from the coupled line filter analysis to complete the present problem. Thus,we can use (10) to find the admittance inverter constants, Ji, from the low-pass prototype values, gi, and the fractional bandwidth, Ω. As in the case of the coupled line filter,there will be N + 1 inverter constants for an Nth-order filter. Then (13) can be used to find the susceptance, Bi, for the ith coupling gap. Finally, the electrical length of the resonator sections can be found from (11) and (12):)]2arctan()2[arctan(21100++-=i i i B Z B Z πθ EXAMPLE 8.9 CAPACITIVEL Y COUPLED SERIESRESONATOR BANDPASSFILTER DESIGND esign a bandpass filter using capacitive coupled series resonators, with a 0.5 dB equal-ripple passband characteristic. The center frequency is 2.0 GHz, the band-width is 10%, and the impedance is 50Ω. At least 20 dB of attenuation is required at 2.2 GHz.SolutionWe first determine the order of the filter to satisfy the attenuation specification at2.2 GHz. Using formula to convert to normalized frequency gives91.1)2.20.20.22.2(1.01)(100=-=-∆←ωωωωω Then ⎢cωω⎢-1=1.91-1.0=0.91F rom the Figure , we see that N = 3 should satisfy the attenuation specification at2.2 GHz. The low-pass prototype values are given in this Table .The calculated amplitude response is plotted in Figure 5. The specifications of this filter are the same as the coupled line bandpass filter of Example1.FIGURE5 A mplitude response for the capacitive-gap coupled seriesresonator bandpass filter of example 23、Bandpass Filters Using Capacitively Coupled Shunt ResonatorsA related type of bandpass filter is shown in Figure 6, where short-circuited shunt resonators are capacitively coupled with series capacitors.FIGURE6 A bandpass filter using capacitively coupled shunt stub resonatorsAn N th-order filter will use N stubs, which are slightly shorter than λ/4 at the filter center frequency. The short-circuited stub resonators can be made from sections of coaxial line using ceramic materials having a very high dielectric constant and low loss, resulting in a very compact design even at UHF frequencies . Such filters are often referred to as ceramic resonator filters and are among the most common types of RF bandpass filters used in portable wireless systems.Most cellular telephones, GPS receivers, and other wireless devices employ two or more filters of this type.微波滤波器微波滤波器的理论和实践始于第二次世界大战前几年,开拓者有Mason, Sykes, Darlington, Fano, Lawson,和Richards。
微带线
2.DC-800MHz 低通,1100MHz 处抑制-35dBc,插损小于等于 3dB, 带内纹波小于等于 2dB,输入输出端口驻波比小于等于 1.5。
利用电磁波通过 λ 2 短路线之后,短路负载的反射系数是-1,驻波比无穷大。如图 9,
可知 λ 2 = 25mm 时,电磁波频率为 3.57GHz。根据公式计算电磁波的传播速度:[5]
v = λf = 0.05* 3.57 *109 = 1.785*108 m / s
(8)
-6-
中国科技论文在线
0 引言
本课题研究的是微带低通滤波器的设计,应用于宽带本振电路的滤波。由于器件的非线 性,本振电路会产生很多谐波和杂散,而系统是宽带的,本振信号的谐波及一些非谐波杂散 可能落入所用频带内。而这种由器件非线性产生的谐波和杂散会对整个射频电路造成严重的 影响,所以需要滤波器来降低谐波的幅度,从而保证信号质量。[1]
5.DC-2200MHz 低通,3200MHz 处抑制-35dBc,插损小于等于 3dB, 带内纹波小于等于 2dB,输入输出端口驻波比小于等于 1.5。
6.DC-2800MHz 低通,4400MHz 处抑制-35dBc,插损小于等于 3dB, 带内纹波小于等于 2dB,输入输出端口驻波比小于等于 1.5。
图 9 电磁波传播波长仿真结果
从而可以计算并联短线长度为:
l = λ0 8 = v 8 f = 1.785 *108 /(8 * 2.2 *109 ) = 10.14mm
原始电路
YC=S/Z2
单位元件 Z1
基于5G频段的发夹型滤波器设计
基于5G频段的发夹型滤波器设计李佳旺;王毅敏;黄钰鹏【摘要】随着通信频率的提高,以往的LC元件由于尺寸和生产工艺的问题已经难以适应5G通信技术的发展需要.因此,对滤波器提出了更严格的要求,包括更高的性能、更小的尺寸、更轻的重量和更低的成本,于是微带滤波器应运而生.针对5G通信的需求,采用ADS射频仿真软件辅助,设计了一款3.3~3.6 GHz的5阶0.1 dB 等纹波Chebyshev微带发夹式带通滤波器.设计结果表明,插入损耗小于2 dB,回波损耗最大可达近30 dB.它不仅体积小巧、成本低廉,而且具有较低的插入损耗和较高的矩形系数,对日后5G的推广具有较高的应用价值.【期刊名称】《通信技术》【年(卷),期】2018(051)005【总页数】5页(P1212-1216)【关键词】Chebyshev;发夹式;带内纹波;ADS【作者】李佳旺;王毅敏;黄钰鹏【作者单位】哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨 150001;哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨 150001;哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨 150001【正文语种】中文【中图分类】TN7130 引言1 理论分析及参数计算通信系统中,时常需要选定电磁波频段中特定的频段。
例如,在接收机中需要得到有用的信息,从而将滤除与信息无关的噪声或干扰信号。
滤波器作为一个双端口组件,在许多射频微波应用中发挥着重要作用。
随着通信频率的提高,以往的LC元件由于尺寸和生产工艺的问题已经难以适应技术发展的需要,而通信产业的发展又对滤波器提出了更严格的要求,包括更高的性能、更小的尺寸、更轻的重量和更低的成本。
于是,微带滤波器应运而生。
1.1 微带发夹式滤波器模型发夹式微带滤波器是半波长耦合微带滤波器的一种演变形式,通过将半波长微带线等长为U字形,大大缩小滤波器的设计尺寸,使电路结构更加紧凑。
借助于微波仿真软件,能够极大地缩短设计的时间,提高设计效率。
本科毕设滤波器方面的中英文翻译
Abstract:A modification of the filter design described in Arcetri Technical Report N5/2002 is presented. The overall structure is similar, but the the digital local oscillator is moved after the rst lter and after the frequency decimation. With this modification the design proposed here presents some advantage in terms of gate usage and spectral dynamic range.1. IntroductionIn the hybrid correlator proposed for ALMA, a large fraction of the total logic and correlator cost is represented by the digital filter bank. Since the circuit is replicated in a large number of copies, even a modest reduction in complexity may have a relatively large impact on overall system cost. In report [8] a two stage tunable filter has been presented. The design, shown in fig. 2, is composed by a complex oscillator and mixer, a first decimating broad filter, a second sharp filter, and a complex to real conversion stage. The first filter has a road transition region, and thus a short FIR response time (128 taps).The second filter operates at the decimated frequency, allowing for a long response, and a sharp transition region, with only 64 taps. Both filters have complex samples and real coefficients.Figure 1: Structure of the original digital BBCThe signal is down converted by a digital LO/mixer, filtered by a first broad filter,re-quantized to 10 bit, filtered by a second sharp filter,converted to real representation, rescaled and re-quantized to a final resolution of 3 or 4 bits. Total power meters are used tomonitor signal level.A modified architecture (fig. 2), with almost identical performance and response, may be obtained moving the LO/mixer after the first filter. The first filter has a band pass corresponding to the desired portion of the input spectrum (without restrictions due to decimation), and is obtained from a the low pass prototype used in the previous approach, translated by a frequency equal to the LO setting.Figure 2: Structure of the modified digital BBCThe signal is first filtered by the broad filter, decimated, and then frequency converted by a full complex mixer. The second filter and output section is identical to the previous case. The filter is thus depending on the sub band position, and its coefficients must be reloaded every time the tuning change. To avoid aliasing, it must discriminate between positive and negative frequencies, It has therefore real input, complex (hermitian) tap coefficients, and complex output. The mixer/LO is fully complex, with 4 multipliers and 2 adders. The second filter and complex-to-real conversion stage is identical to the previous design.The main advantage of this design is that the mixer operates at the decimated frequency. Since a time multiplexed mixer is composed of 32 identical multipliers, even considering for the increased complexity in the multi-bit complex multiplier this results in a drastic simplification. It is possible to use a much better multiplier,thus increasing the global quantization efficiency (although by a small value, about 0.5%) and spurious free dynamic range.Another advantage is that the first filter operates on the 3-bit input data representation, instead of the 6-bit mixer output. This reduces the total filter size by a considerable amount (30-40%).A further advantage is that the mixer does not see any DC component that can beproduced by an offset in the sampler thresholds, as this is effectively filtered by the first filter. This DC component is equivalent to a strong monochromatic line, and may produce undesired spurs as it beats with the LO harmonics.2 Theory of operationFigure 3: Spectral processing exampleFor readability, a x8 multiplexing factor has been assumed, instead of x32. From top: (a) Input real signal, divided into 10 sub bands; (b) Undecimated and (c) decimated broad filter output; (d) Mixer output; (e) Sharp filter output.Signal processing for an hypothetical 1:8 decimated signal is shown in fig. 3 The real input, divided in 10 overlapped sub-bands, is shown in (a). The broad filter selects sub-band 6, with guard bands from sub-bands 5 and 7 (b). After decimation, (c) the band of interest occupies half the complex decimated bandwidth, with sub-bands 5 and 7 aliased in the remaining half. In the particular case, the band of interest folds from positive back to negative frequencies. After complex mixing the band of interest is centered on frequency zero (d), and the unwanted sub-bands are rejected by the sharp filter (e).The processing of a real simulated signal, with the desired 1:32 decimation factor, is shown in fig. 4 and 5.The signal is the same used in the previous report. The complex spectrum of the (real) input signal is shown in fig. 4a. The signal is composed of white noise, a strong out-of-band tone (-20dB), and a weaker (-30dB) in-band tone. The simulated signal is 2.5 ms long.After filtering, the signal is shown in fig. 4b. Only one side of the complex spectrum is preserved, thus avoiding undesired aliasing in the decimation operation.After decimation, the signal has the spectrum shown in fig. 4c. Even if the spectrum folds from positive to negative frequencies, no undesired alias of the strong input line can be seen.Figure 4: Spectral processing of a simulated signalFrom top: (a) Input real signal; (b) Undecimated and (c) decimated broad filter output Graphs have a logarithmic (dB) scale.The complex mixer rotates the filtered spectrum in order to present the desired passband to the sharp filter centered on frequency zero (fig. 5a). The low pass sharp filter then selects the desired passband and removes the undesired passbands (5b). This signal is then converted to real (5c), and re-quantized for correlation. The filter real output is exactly equal to that of the filter described in the previous report (apart from quantization effects).2.1 Broad band filterThe filter is a complex passband (real samples, complex coefficients) derived by the low pass prototype used in the previous design. The prototype has a bandpass equal to 1/64 the input bandwidth, and a guard region twice as large. After decimation, both the complexresponse and the two guard bands have a total width of 1/32 the initial band, or 1/2 the decimated complex band. The two guard bands fold in the same region of thedecimated band.The prototype is shifted by the desired center frequency. For 34 sub bands, the rotation for channel i(i =0,33) is (i-05)34*2 GHz, but arbitrary shift is possible. Thus, filter tuning is accomplished by calculation of a new set of coe?cients (no filter optimization is necessary) and reloading of the coe?cient memory.The real part of the filter is symmetric, while the complex one is antisymmetric. In both cases, filter structure may exploit this symmetry to reduce the number of multiplications. Filter conceptual schematic for the real (symmetric) branch is shown in fig 6. The demultiplexed inputs are fied to 32 identical groups of four taps each. Direct and inverse taps are summed together before multiplication. Folding and summing corresponding samples may present problems in a few-bit representation. The input samples are not actual values, but arbitrary codes. Summing the codes obviously does not work. The code is neither monotonic, nor equispaced. The signal must therefore be converted to a monotonic, equispaced code before the filter. This imposes a limitation on the possible quantization codes, resulting in a slightly reduction in quantization efficiency. A equispaced code (values 1, 3, 5, 7) has an quantization loss of 3.??%, against a loss.Figure 5: Spectral processing of a simulated signalFrom top: (a) mixer output; (b) Sharp filter output; (c)Real signal sent to the correlator.All plots are on a logarithmic vertical scale.The result of the sum of two codes (1, 3, 5, 7) can be any even number from -14 to 14, representable with a 4 bit, signed quantity. For 8 bit signed coe?cients, product size is 11 bit. Filter multipliers are therefore implemented with 16x11 bit RAM blocks.The filter has been designed using the filter from the previous design as a low-pass template, and multiplying each coefficient by the appropriate exponential.The same considerations about coefficient precision truncation apply for here. The actual filter shape,however, depends very much on the local oscillator setting. Truncation is an intrinsically nonlinear procedure, and only statistical properties of the filter shape can be anticipated. An alternative approach would be to use a nonlinear minimization program to adjust filter coefficients on the desired shape after filter rotation, instead of blindly truncate them. This approach would probably give a better stop band rejection (by 2-3 dB), at the expense of a much higher computational effort during filter reprogramming.2.2 Complex Local OscillatorThe local oscillator is greatly simpli?ed with respect to the previous approach. It is composed by a DDS.register, similar to the previous one, that generates a 10 bit phase value. No phase offset is needed, apart from the 90/180 degree phase switching. The 10 bit value is fed to asine/cosine lookup table, that produces a high resolution sine and cosine value. A complex multiplier, implemented with four hardwired multipliers and two adders, compute the expression y(t) = x(t)exp(2j t).The mixer does not select the bandwidth, it must only compensate for the unwanted rotation of the filtered band, and for its possible folding from positive to negative frequencies (as in the example shown in fig. 4). The complex mixing rotates the decimated band in order to have the frequency scale monotonically ordered from-625 MHz to +625 MHz. After conversion, the desired band is centered around frequency zero, and therefore.Figure 6: Coarse FIR schematicSignals from I and Q mixers are multiplied by coefficient taps in LUT tables. Input is from 32 time multiplexed streams, output is to 2 (I and Q) streams.can be filtered by alow-pass filter.The local oscillator value is programmed to the desired LO frequency modulus 125 MHz. The remaining part of the LO frequency affects only first filter coefficients, as bandwidth selection is done in this filter.The phase quantizationstep affects LO harmonicscontent. With 1024phase bins, the first harmonic appears Atharmonic number 1024,with an amplitude of approximately-60dB. Amplitude quantization in the sine/cosine table also generates harmonics, but with 8 bitsine/cosine representation the spur free dynamic range is around -70 dB.To reduce harmonic content, a small (few phase bins) pseudo-random noise can be added to the DDS phase.The resulting phase jitter is of the order of 1 degree, but is multiplied by the harmonic number, completely washing out the harmonics due to phase quantization.The lookup table can be simplified if only first quadrant values are stored, and the sign is treated separately. In this way, lookup table size is reduced to 1/4, and one more bit is available for the result.2.3 Sharp lter and output sectionThis section is identical to the design described in [8]Figure7: Complex localoscillator. A DDS register generatesa phasevalueSine andcosine values aregenerated in a lookup table. The complex multiplication is implemented in 4 hardwired multipliers and two adders.3 Considerations on FPGA resource usageImplementation of this filter require considerably less resources than the previous design. The broad filter has 3 bit input, instead of 6. This requires about half the resources in terms of configurable blocks, lookup tables. The saving in the adder chain is not so high, since most of the adder tree size is dictated by the coefficients size, not by the samples size. The lookup tables must be writable. This increases its complexity,especially in terms of routing resources. The mixer multiplier must be implemented using hard multipliers, not lookup tables. A single large look up table to hold sine/cosine values is still needed. Especially for Altera FPGAs, this is a large advantage, as these chips have smaller RAM blocks, but also one or two large RAMs.Re-tuning the band is relatively slower, the filter has no capability for frequency hopping. This is not a requirement, and tap reloading is in any case faster than for a full 1024 tap filter. Some intelligence is needed in the control processor to recalculate filter taps from thelow-pass prototype, but this is within the capabilities of any current microprocessor.摘要:它是一种Arcetri技术报告提出修改方案并设计的滤波器。
爱丁堡仪器RM5紧凑型全自动拉曼显微镜说明书
RM5PHARMACEUTICALSPOLYMERS NANO-MATERIALSCHEMICALS BIOSCIENCES MOLECULAR SPECTROSCOPY SINCE 1971 CIRCLE Photoluminescence CIRCLE Raman CIRCLE UV-Vis CIRCLE Transient AbsorptionEDINBURGH INSTRUMENTSEdinburgh Instruments has been providing high performance instrumentation in the Molecular Spectroscopy market for almost 50 years. Our commitment to offering the highest quality, highest sensitivity instruments for our customers has now expanded to include the best Raman microscopes for all research and analytical requirements.As always, Edinburgh Instruments provides world-class customer support and service throughout the lifetime of our instruments.1PRECISIONRAMANSEMICONDUCTORS GEOLOGYFORENSICS ART & MUSEUM COSMETICSRM5 RAMAN MICROSCOPEThe RM5 is a compact and fully automated Raman microscope for analytical and research purposes. The truly confocal design of the RM5 is unique to the market and offers uncompromised spectral resolution, spatial resolution, and sensitivity.The RM5 builds on the expertise of robust and proven building blocks, combined with modern optical design considerations; and a focus on function, precision and speed. The result is a modern Raman microscope that stands alone in both specifications and ease of use.Truly Confocal – with variable slit and multiple position adjustablepinhole for higher image definition, better fluorescence rejection and application optimisation Integrated Narrowband Raman Lasers – up to 3 computer-controlled lasers for ease of use, enhanced stability and reduced footprint 5-Position Grating Turret – for unrivalled spectral resolutionof 1.4 cm -1 (FWHM) and optimisation over the full spectral range 50 cm -1 - 4000 cm -1 Integrated Detectors – up to 2, including high efficiency CCD,EMCCD and InGaAs arrays for low noise, increased speed, high sensitivity and wide spectral range Internal Standards and Auto-Calibration – to ensure thehighest quality data at all times 4-Position Raman Filter Turret – fully automated notch and edgefilters to match the Raman range to excitation laser wavelength Ramacle ® Software – one powerful software package forcomplete system control, data acquisition, analysis and ease of upgrade High Performance Microscope – compatible with all thelatest accessories2D E S I G N F E A T U R E SRM5DESIGN FEATURESLaser excitation, from one of three possible lasers (1), is directed to the microscope and sample stage via a series of motorised mirrors with laser power at the sample controlled through an adjustable attenuator. The beam is focussed onto the sample that sits on an XYZ-movable stage (3) through a microscope objective, and can be viewed live on screen thanks to an integrated CMOS camera (4). The scattered light produced is then collected by the same objective before being passed through a filter to remove unwanted laser light. The Raman scattered light passes through an adjustable confocal pinhole (5) before entering the spectrograph. One of five possible diffraction gratings splits the light into its constituent wavelengths (6) which are then focussed onto the detector(s) (7) and displayed to the user as a spectrum.1Multiple LasersUp to 3 integrated and computer-controlled lasers with choice of wavelengths, combined with a computer-controlled continuous laser beam attenuator to allow control over laser power at the sample position.3High Performance MicroscopeThe latest generation research-grade upright microscope (Olympus BX53series), allows the RM5 to benefit from all modern sample visualisation and contrast enhancement techniques availableincluding brightfield, darkfield, polarised light, Nomarski differential interference contrast (DIC) and fluorescence. A manual or computer-controlled XYZ stage provides movement to locate and map areas of interest on the sample.2Automated CalibrationFor recalibration and validation, the RM5 comes with integrated Raman reference materials. Internal standards are included for spectrograph calibration and for laser wavelength calibration and adjustment. All calibration and validation routines are part of the instrument’s operating software, Ramacle ®, and allow for complete ease-of-use and user-friendliness.3535Automated Optical RoutingThis compartment contains a 4-position turret of dichroic laser rejection filters, computer-controlled beam splitter and an adjustable confocal pinhole. Auto-alignment of the instrument is achieved by two embedded piezo-controlled mirrors. An optional polariser and analyser accessory is available for advanced analysis of polarised Raman scattering.microscope for higher resolution and image stitching of Raman mapping.7Multiple Detector PortsThermo-electrically cooled spectroscopic CCD cameras are used for low noise and fast image detection. A second CCD camera port is available for a camera with complementary spectral coverage,increased speed, higher spectral sampling or sensitivity, pushing the flexibility of the RM5.6High Resolution SpectrographA high resolution 225 mm focal lengthspectrograph of asymmetric Czerny-Turner design is integrated. This includes acontinuously adjustable precision slit and a grating turret with up to 5 pre-aligned gratings for wide spectral coverage. The spectrograph undergoes comprehensive calibration and validation procedures at the factory.2Triptycene triplet, excited by 785 nm laser, 600 g/mm grating (blue) and 1800 g/mm grating (red), arbitrary scaled1 μm Polystyrene bead scanned over a distance 12 μm, excited with 532 nm laserSilicon, excited with 785 nm laserL-Histidine,excited with 785 nm laserThe software provides control, visualisation, data acquisition, analysis and presentation of the RM5 whether it is used for generating Raman spectra or with advanced upgrades suchas Raman mapping.Ramacle enables sample visualisation, live signal monitoringand parameter optimisation before every measurement. The instrument status and signal are displayed and constantly updated during measurements.Data generated by Ramacle have a proprietary file format. This contains all measurement and instrumental properties, allowing the user to retrieve important information whenever neededand ensures data traceability. Simple input and output functions provide the required compatibility with third party data analysis or presentation packages.KnowItAll TM Raman Identification Pro spectral library is availablefor material identification and advanced analysis. Data acquisition methods such as single measurements, multiple and accumulated scans, kinetic scans and generation of maps (accessory dependent)Cyclohexane, excited with 785 nm laser. Parallel polarised intensity (orange), perpendicular polarised intensity (blue). Inset: Depolarisation ratio. Raman spectrum of 1,2(4-pyridyl)ethylene 40 nm Au, recorded over time, showing the significant enhancement of the signal intensity of this SERS sample.Benzonitrile, excited with 532 nm laser. Multiple spectra joined together. The resulting spectrum contains 6700 data points with 3500 cm-1 spectral coverage and a resolution of 0.54 cm-1 per pixel.Paracetamol / Caffeine / Phenylephrine Hydrochloride tablet, excited with 638 nm laser (blue) and 785 nm laser (red).Raman spectra of the constituents of a commercial pharmaceutical tablet, excited with 785 nm laser.White light image of the tablet under investigation.Using a 10x objective, the image has been composed of 1,650 (55 x 30) individual white light images automatically acquired and stitched together into one large image by Ramacle. The blue grid scale shows the frame size of the individual images.Raman map superimposed on the white light image.Using the same 10x objective, 785 nm laser excitation, and a 50 μm pinhole, spectra were collected at 100 μm steps along the X and Y axes. This results in over 18,000 individual Raman acquisitions.The matrix of spectra was then analysed and superimposed onto the white light image using Ramacle software. The colours in the resulting map represent Aspirin (red), Caffeine (blue) and Paracetamol (green) demonstrated by their Raman spectra above. The red grid scale shows the area that was scanned for Raman with 1 mm graduation.8U P G R A D E O P T I O N SLASERSThe RM5 is built with flexibility in mind. A choice of excitation lasers and associated laser rejection filters (both edge and notch) are available depending on application requirements.GRATINGSGratings are chosen for optimum resolution for each laser excitation, with up to a maximum of five gratings per system.DETECTORSA choice of CCD, EMCCD and InGaAs detectors are also available dependent on requirements, with a maximum of two detectors being integrated per system.ACCESSORIES AND LASER SAFETYOther accessories such as a polarisation kit and a Class Ilaser safety enclosure are also available to further expand the capabilities, flexibility and safety of your RM5 system.MICROSCOPEThe RM5 uses one of the most modern microscopes on the market for first class Raman microscopy. You can use the microscope beyond pure Raman microscopy; the RM5 has been designed to maintain the full capability of the microscope allowing all the necessary tools to be added for exceptional visualisation and contrast of your samples. Brightfield, darkfield, polarised light, differential interference contrast (DIC) and fluorescence are all available. Alongside a choice of high quality microscope objectives, a highperformance camera can be added to the microscope to ensure pictures of your samples (and associated Raman maps) are captured with excellent quality and resolution.SAMPLE STAGESA choice of microscope stages, including manual and an XYZ motorised stage which allows ease of navigation around your samples and stage area. Automated Raman maps can be obtained and generated through Ramacle.Heating/cooling of stages is also available.SPECIFICATIONS – RM5LASERS Up to 3 narrow-band lasers including: 532 nm, 638 nm, 785 nmOther wavelengths available on requestLaser selection is fully computer-controlledLASER REJECTION FILTERS Up to 3 laser rejection filters includedFilter exchange is fully computer-controlledLASER ATTENUATION 4 orders of magnitude, continuousFully computer-controlledSPECTRAL RESOLUTION From 1.4 cm-1 *SPECTRAL RANGE50 cm-1 - 4000 cm-1 *SPECTROGRAPH T ype Asymmetric Czerny-TurnerFocal Length225 mmGratings5-position grating turret, fully computer-controlledSlits Continuously adjustable, fully computer-controlledCONFOCAL IMAGING Adjustable confocal pinhole, fully computer-controlledDETECTORS Standard Detector High sensitivity ultra low noise CCD1650 x 200 pixels, TE-cooled -60o C (standard) OR2000 x 256 pixels, TE-cooled -60o C (enhanced sensitivity and spectral range)Optional Second Detector EMCCD detector, InGaAs and others available on requestSelection of detectors, fully computer-controlledRAMAN POLARISATION Optional Polarisation kit available, fully computer-controlledINTERNAL CALIBRATION Wavelength calibration standard (Neon)Raman shift standard (Silicon)Sensitivity validation standard (Silicon)Automated laser alignmentMICROSCOPE SYSTEM Functionality Full upright microscope with brightfield and darkfield illuminatorOptional Polarisation, Differential Interference Contrast (DIC) capability and fluorescence imagingObjective(s)10x and 100x objective included as standard; up to 5 can be includedSample Viewing Trinocular eyepiece, embedded CMOS video camera, second video camera optionalSample Stage XY manual stageOptional XYZ motorised stage (75 mm x 50 mm XY), confocal Raman mappingT emperature-controlled sample stages availableSOFTWARE Ramacle®Comprehensive all-in-one, intuitive software packageOperating System Windows®Functionality Data acquisition, spectrograph control, graphical display, data processingOptional Chemometric, spectral library packages - KnowItAll TMLASER SAFETY Without Laser Enclosure Class 3BWith Laser Enclosure Class 1DIMENSIONS W x D x H †600 mm x 800 mm x 600 mmWeight †63 kg*depending on grating, laser and CCD selection† without laser enclosure9EDINBURGHINSTRUMENTS2 Bain Square,Kirkton Campus,Livingston, EH54 7DQUnited KingdomTel: +44 (0)1506 425 300Fax: +44 (0)1506 425 320****************U.S. OFFICECONTACT:Tel: +1 800 323 6115******************Registered in England and Wales No: 962331 VAT No:GB 271 7379 37 ©Edinburgh Instruments Ltd 2019F / 06.2019MANUFACTURED WITH PRIDE IN THEUNITED KINGDOMCustomer support isavailable worldwideP h o to lu m ine s c e n c e CIRCLE R a m a n CIRCLE U V -V i s CIRCLET ransie nt Abso rp tionEXPERTS IN MOLECULAR SPECTROSCOPY S I N C E 1971。
电子信息工程专业英语单词1
digital↔analog 数字↔模拟hardware↔software↔firmware硬件↔软件↔固化软件building block 标准部件development 开发debug 调试refer to as 称为random access 随机储存scale 规模passive↔active 有源的↔无源的component 元件Fig. figure 图Open 开路current↔voltage↔potential 电流↔电压↔电位transistor↔diode 三极管↔二极管anode↔negativepole 正极↔负极inversion↔non-invert 倒相↔正相stage 级circuitry 电路系统element 元件truth table 真值表positive ↔ negative 正↔负in terms of === take advantage of 利用power consumption === power dissipation功耗property↔performance 性能inverter 反相器with respect to 关于specification 参数device 器件semiconductor 半导体toggle frequency 触发频率in series ↔ in parallel 串联↔并联response 响应capacitance↔inductance↔resistor 电容↔电感↔电阻pull-up resistor 负载电阻operating frequency 工作频率come in 分类power dissipation==powerconsumption 功耗tradeoff 折衷sensitive ↔ insensitive 敏感↔不敏感spike ↔ glitch 尖脉冲↔短时脉冲act as 充当noise susceptibility 噪声敏感度breakdown voltage 击穿电压supply pin 电源引脚microfarad 微法emitter input 射极输入pin compatible 引脚兼容flip-flop 触发器mediumspeed device 中等速度器件toggle frequency 触发频率superior to 优于noise immunity 抗噪drive capability 驱动能力input impedance 输入阻抗for short 简称output stage 输出级package 封装function generator 函数发生器square-wave 方波tunable 可调的signetics 芯片timer 定时器counter 计数器synchronous counter 同步计数器logical operation 逻辑运算block diagram 框图oscilloscope 示波器oscillator 振荡器symmetrical waveform 对称波形synchronous ↔ asynchronous 同步↔异步synchronous counter 同步计数器latch 锁存器Divider 分频器programmable counter 可编程计数器4-bit device 4位器件multistage operation 多级运算timing waveform 时序波形preset value 预设值Bi-direction 双向的parallel ↔ serial 并行↔串行coder ↔ decoder 编码器↔译码器comparator 比较器cascade 级联monostable 单稳态trigger↔retrigger↔nonretrigger触发↔再触发↔非触发noise rejection 抗噪transmitter↔receiver 发射机↔接收机modulate↔demodulate 调制↔解调filter 滤波器amplipy↔ amplifier 放大↔放大器superheterodyne receiver 超外差接收机narrow band 窄带incoming signal 接收信号local oscillator 本振difference frequency 差频block diagram 框图tuned circuit 调谐电路image signal 噪声系数spurious signal 镜像信号reject =prevent=suppress 抑制intermoulate 互调antenna 天线mixer 混频器gain↔loss 增益↔损益conversion gain 变换增益drift 漂移product 分量sideband noise 边带噪声moudulator↔demodulator 调制器↔解调器bandwidth 带宽signal strength 信号强度specification 参数discrete channel 离散信道phase-looked loop 锁相环synthesizer 合成器sensitivity 灵敏度navigation receiver 海事接收机atmospheric noise 大气噪声skirt characteristics 边带特性communication 通信audio-frequency response 音频响应intermodulate↔crossmodulate 互调↔交调image rejection 镜像抑制spurious rejection 寄生抑制nonlinear circuit 非线性电路detector 检波器harmonics 谐波square-law 平方律amplitude 幅值be proportional to 与…….成比例作业7:14.03.20noise figure 噪声系数resistive 阻性的impedance 阻抗short circuit 短路negative feedback 负反馈thermal noise 热噪声image frequency 镜像频率noise factor 噪声因子third-order component 三阶分量passband ↔ stopband 通带↔阻带component 分量even (偶) ↔ odd (奇)even harmonics 偶次谐波distortion 失真transfer characteristic 转换特性bias 偏置potentiometer 分压器Constant 常量Attenuator 衰减器thermal noise 热噪声distortion 失真narrow-band noise 窄带噪声broadband 边带odd-order distortion 奇数阶失真bipolar 双极性scalar-valued 标量independent variable 独立变量variable ↔ argument 变量,自变量discrete-time signal 离散时间信号sample 抽样quantization 量化sequence 序列impulse function 冲激函数eigenfunction 特征函数complex exponential 复指数sinusoidal sequence 正弦序列Map 映射principle of superposition 叠加原理shift invariance 移不变indepengdent property 独立特性convolution 卷积convolution sum 卷积和If and only if 当且仅当necessary and sufficient condition 充要条件system response 系统响应linearity 线性stability 稳定性causality 因果性time domain 时域frequency domain 频域periodic sequence 周期序列snthesis equation 综合等式analysis equation 解析等式coefficient 系数duality 对偶time-aliasing 时间折叠algebraic expression 代数表达式contour integral 围线积分Z-transform Z变换inverse Z-transform Z 的逆变换finite-duration sequence 有限长序列interval 区间algorithm 算法arithmetic operation 算术运算convolution sum 卷积和Nth-order difference equation N 阶差分方程homogeneous solution 齐次解zero state 零状态recursion 递归linear signal flow graph 线性信号流图weight 加权rearrange 重排second-order factor 二阶因子transfer function 传输函数dynamic range 动态范围polynomial 多项式the tapped delay line structure 抽头延迟线结构linear phase 线性相位lowpass filter 低通滤波器passband 通带stopband 阻带iteration 迭带方程digital filter 数字滤波器analog filter 模拟滤波器cascade 级联parallel 并行spectrum 谱eigenvalue 特征值eigenfunction 特征函数phase response 相位响应unit circle 单位圆imaginary axis 虚轴functional approximation 函数近似polynomial approximation 多项式近似edge frequency 截止频率lowpass filter 低通滤波器passband 通带stopband 阻带phase response 相位响应unit circle 单位圆imaginary axis 虚轴functional approximation 函数近似ploynomial approximation 多项式近似iterative procedure 迭带方程digital filter 数字滤波器S-plane S平面Z-plane Z平面map 映射aliasing 混迭bandlimit 限带objective 目的impulse invariant design 冲激不变法设计impulse response 冲激响应step response 阶跃响应sampling period 抽样周期frequency response 频率响应successive terms 连续项alternative 可替代的parameter 参数distortion 失真numerator 分子denominator 分母criterion 准则exploit 利用bilinear transformation 双线性变换piecewise-constant-frequency characteristics分段恒定频率特性Piecewise-constant-magnitude characteristics分段恒定幅度特性time domain 时域frequency domain 频域finite -length impulse response sequence有限长冲激响应序列frequency response 频率响应periodic convolution 周期卷积passband 通带stopband 阻带transition bandwidth 过度带宽linear phase factor 线性相位因子trigonometric polynomial 三角多项式sysmenetry property 对称性质signal processing 信号处理noisy measured signal 含噪测量信号Integration range 积分范围smoother filter 平滑滤波器constant signal 常量信号mean 均值variance 方差Caussian noise 高斯噪声DC frequency 直流频率unity reponse 单位响应geonetric series 几何级数noise component 噪声分量objective criterion 客观准则partial derivative 偏导mean-square 均方image enhancement 图像增强restoration 复原Mathematical criteria 数学准则rectification 修正gray level 灰度级uniform distribution 均匀分布histogram 直方图contrast 对比lumiance 亮度light intensity 光强度optical density 光密度development 成像opaque 不透明的transmittance 透明性,传递函数visual system 视觉系统symmetrical response 对称响应contrast ratio 对比度nonnegtive function 非负函数scaling transform 比例变换scanner 扫描仪random varible 随机变量probability distribution 概率分布transfer function 传递函数coarse quantization 粗量化false contouring 伪轮廓quantization noise 量化噪声piecewise-linear transformation 分段线性变换compress 压缩expand 扩展segment slope 分段斜率histogram 直方图threshold 阀值be proportional to 与......成比例logarithmic transformation 对数变换electronic signal 电信号log amplifier circuit 对数放大器exponential transformation 指数变换quantization noise 量化噪声histogram equalization 直方图均衡化multiplicative noise 乘性噪声operational amplifier 运算放大器feedback loop 反馈环probalilty distribution 概率分布random varigble 随机变量uniform distribution 均匀分布lemma 引理jump function 阶跃函数inequality 不等式subinterval 子区间gray level 灰度级empirical distribution function 经验分布函数truncation function 截断函数rounding 舍入telecommunication 电信prerequisite 前提voice tube 话筒acoustic system 声学系统simplex communication 单工通信simplex 单工duplex 双工input source 信源output destination 信宿speech recognition 语音识别transmitter terminal 发射终端transmission channel 传输信道transducer 传感器microphone 麦克风loudspeaker 扬声器communicator 通信员transmitter 发射机receive 接收机property 性能terminology 术语signal-to-noise ratio 信噪比bandwidth 带宽capability 性能sensitivity 敏感度attenuation 衰减passive 无源active 有源termal noise 噪声sky noise 大气噪声deterioration 恶化principle of homogeneity 均匀原理principle of superposition 叠加原理dynamic range 动态范围subset 子集generating set 生成集hi-fi high-fidelity 高保真tune 调谐degradation 亮度intelligibility 可理解性transmission channel 传输信道delay 延时electrical conduction 电导体optical fibres 光纤lectromagnetic radiation 电磁辐射microwave 微波satellite 卫星electromagnetic and magnetic field 电磁场crosstalk 串话equaliser 均衡器repeater 中继器coaxial cable 同轴电缆insulator 绝缘体upper frequency 上限频率diameter 直径submitrine cable 海底电缆transatlantic telephone (越洋电话)multiplexing 复用base-band signal 基带信号multiplex 复用demultiplexing 解复bounded transmission 有界传输ratiowave 无线电波wavelength 波长waveguide 波导ionosphere 电离层diffraction 衍射refraction 折射radio broadcasting 无线广播multipath propagation 多径传播selective fading 选择衰退station 基站direct wave 直达波line-of-sight 视距directional antennae 定向天线full-duplex 全双工half duplex 半双工simplex 单工echo 回声impirment 损失decibel 分贝instantaneouspower 瞬时功率earphone 耳机telegraphy 电信技术telephony 电话学commutator 交换机synchronism 同步timing jitter 计时抖动regeneration 再生cumulative distortion 累积失真sampling 采样quanfising 量化companding 压缩coding 编码periodic sampling 周期采样sample-and-hold 采样保持pedestal 基准电平integration 积分Nyquist 奈奎斯特reservior capacitor 存储电容quantisting error 误差。
DWDM中窄带F-P型薄膜滤光片的设计(不带翻译)
目录摘要 (X)ABSTRACT (XI)引言......................................................................................................... X II 第一章绪论 . (1)1.1DWDM中薄膜滤光片的历史背景和研究现状 (1)1.1.1历史回顾 (1)1.1.2研究现状 (2)1.2DWDM中薄膜滤光片研究的意义及前景 (4)第二章光学薄膜特性的理论计算 (6)2.1偏振光和部分偏振光 (6)2.2 P偏振和S偏振 (7)2.3单层薄膜的干涉原理 (7)2.4单层薄膜的反射率 (8)2.5多层薄膜的反射率 (13)第三章F-P型薄膜滤光片的设计 (16)3.1干涉滤光片 (16)3.2F-P腔以及它为何具有频率选择性 (17)3.3密集波分复用(DWDM)干涉滤光片的设计要求 (17)3.4基板和薄膜材料的选择 (19)3.5DWDM窄带F-P薄膜滤光片的设计 (20)3.6DWDM窄带F-P薄膜滤光片的寻优设计 (23)3.6.1对称周期膜法 (23)3.6.2主体参数寻优法 (25)3.6.3结论 (26)第四章总结 (27)致谢 (29)参考文献 (30)摘要随着密集波分复用技术的发展,滤光片做为其中很重要的一种光学器件其技术也得到了突飞猛进的发展。
本文将会介绍密集波分复用系统中窄带F-P薄膜滤光片的设计。
首先介绍了DWDM系统中窄带F-P薄膜滤光片的历史背景和研究现状以及发展前景。
作为背景知识,介绍了光的传输矩阵,光的偏振状态,干涉滤光片,F-P腔的工作原理,DWDM系统对薄膜干涉滤光片的基本要求,为了满足设计要求一方需要精心选择基板和薄膜材料,另外一方面要寻找性能优良的膜系。
接下来,先给出了几种常见的膜系结构,然后通过MATLAB仿真得出其透射曲线。
通过其透射曲线分析得出设计滤光片的的几条结论。
采用cic的frm滤波器的system generator实现
62
李
杰等:采用 CIC 的 FRM 滤波器的 System generato,通过在 Matlab 的 Simulink 环境中搭
插因子,θ和φ分别为滤波器的通带截止频率和阻带
模型转换成 FPGA 可执行的模型,直接生成 FPGA
FRM 滤波器形成的两种情况。图(a)表示由插值后
建模型,然后调用 System generator 自动将 Simulink
可执行的代码,然后经过综合、仿真以及相应芯片
的配置后下载到硬件环境中进行测试。
本 文 通 过 使 用 ISE 软 件 中 的 System generator
工具库,结合 Matlab/Simulink 库搭建相应的模块来
验证采用 CIC 的 FRM 低通滤波器设计方法的硬件
波器,进一步降低 FRM 滤波器所需乘法器的数量,
进而降低了复杂度,且 CIC 多应用在窄过渡带低通
FRM 滤波器中。
System generator[10~12]是 Xilinx 公司推出的 DSP
收稿日期:2019 年 9 月 15 日,修回日期:2019 年 10 月 20 日
作者简介:李杰,男,硕士研究生,研究方向:水声对抗技术。汪海涛,男,研究员,研究方向:水声对抗技术。
系统级设计,可产生硬件可执行的模型,进而在相应的芯片上进行测试。通过使用 System generator 对采用 CIC 滤波器设计
的 FRM 低通滤波器进行验证,提出了一种新的降低 FRM 滤波器复杂度的方法,可将其应用于窄过渡带低通滤波器的设
计中。
关键词
FRM 技术;CIC 滤波器;System generator;复杂度
FRM 技术是目前常用的设计窄过渡带滤波器的方法,在满足窄过渡带要求的同时,降低了设计所需要的复杂
具有宽频特性带通频率选择表面的设计
具有宽频特性带通频率选择表面的设计李育青;裴志斌;屈绍波;徐卓;周航;李均盛【摘要】基于高阶特性的频率选择表面(FSS)有更好的带宽展宽性,提出了利用高阶带通FSS的方法来设计具有宽频特性的带通FSS.设计了一种基于圆结构具有五层结构的FSS,利用仿真软件对FSS单元进行计算和分析.分析结果表明:此五层结构的FSS具有三阶单通带性能,其绝对带宽达到6.07 GHz,相对带宽达到72%,通带平稳光滑,通带内插损小,对不同角度、不同极化方式入射的电磁波保持很好稳定性.此FSS具有很稳定的宽频特性,从而验证了此宽频带通FSS设计方法的可行性.【期刊名称】《电讯技术》【年(卷),期】2012(052)003【总页数】4页(P371-374)【关键词】频率选择表面;宽频;带通;稳定性【作者】李育青;裴志斌;屈绍波;徐卓;周航;李均盛【作者单位】空军工程大学理学院,西安710051;空军工程大学理学院,西安710051;空军工程大学理学院,西安710051;西安交通大学电子陶瓷与器件教育部重点实验室,西安710049;西安交通大学电子陶瓷与器件教育部重点实验室,西安710049;空军工程大学理学院,西安710051;空军工程大学理学院,西安710051【正文语种】中文【中图分类】TN0151 引言频率选择表面(Frequency Selective Surfaces,FSS)[1-2]是由大量相同单元周期性排列构成的平面结构,能在特定的频率上实现带阻反射或者带通滤波性能。
目前它在微波、红外乃至可见光频段都有广泛的应用,在微频段的一个具体应用就是采用FSS技术制作的隐身雷达罩,它可以有效地减小飞机的雷达截面积(Radar Cross Section,RCS),从而实现对探测雷达波的隐身。
FSS的研究应用主要集中在设计实现具有高性能的带通选择[3-5]和带阻反射[6]这两大类型结构上,而实现带通选择性能的FSS因选择通带的不同可分为窄带FSS[3]、多通带FSS[5]和宽带FSS。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
105
TABLE 1. Chebyshev lowpass prototype. .036-dB Ripple, 20.8 dB Return Loss, 1.20 VSWR
N g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
N i =1
gi
2 3 4 5 6 7 8 9
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Narrow-Band Microwave Filter Design
Daniel G. Swanson, Jr.
A
s early as 1951, Dishal [1] recognized that any narrow-band, lumped-element, or distributed bandpass filter could be described by three fundamental vari ables: the synchronous tuning frequency of each resonator, f 0 ; the couplings between adjacent resonators, K r, r+1 ; and the singly loaded or external Q of the first and last resonators, Q e x . He also demonstrated that filter hardware could be tuned or aligned using knowledge of these fundamental parameters. For purposes of this discussion, “narrow band’’ is defined to be up to 10% relative bandwidth and perhaps as high as 20% relative bandwidth. In a later paper, Dishal [2] outlined a design procedure for tapped interdigital filters using the f 0 , 1.PHOTOCREDIT K r, r+1 , and Q e x parameters. Once the required K s and Q e x s are known, Dishal’s method uses measured experimental hardware to generate a design curve for each parameter. Almost 15 years later, after microstrip technology became more popular, Wong [3] demonstrated how Dishal’s method could be applied to the design of microstrip distributed filters with tapped inputs and outputs. Again, experimental data was used to generate design curves for coupling between resonators and external Q . Before electromagnetic (EM) field solvers became widely available, generating these two design curves required a rather tedious process of measuring, modify-
1.0000 0.8215 1.4615
1.1999 0.9921
1.1592 2.7265 4.4733 6.3831 8.2836 10.2739 12.2173 1.0000 14.2340
to several different planar filter topologies. The discussion of coupling concepts for planar filters in [7] is the most complete one currently available. In this article, we will combine Dishal’s concepts, EM simulation, and the port-tuning concept [8], [9] to outline a very general and powerful procedure for narrow-band filter design. When applied to an EM-based filter prototype, port tuning gives a direct indication of the magnitude and direction of the tunings needed to correct coupling errors and resonator frequency errors. An EM-based filter prototype potentially captures all the physics of the real hardware and includes secondorder effects that may be impossible to describe using analytical models. After iteratively reducing all the errors in the EM-based prototype, we can be confident that the first hardware prototype that we build will meet our performance goals. This design methodology can be applied to simple all-pole Chebyshev filters and to more complex cross-coupled filters that place transmission zeros in the stopbands.
0.6323 0.8185 0.8989 0.9393 0.9622 0.9763 0.9857 0.9921
0.5269 1.0895 1.2843 1.3677 1.4104 1.4353 1.4509 1.4615
1.1999 0.8185 1.5410 1.7691 1.8636 1.9115 1.9392 1.9568
mating filter order. Note that the graphs and equations assume an ideal, symmetrical Chebyshev response. Very few microwave filters have symmetrical stopband responses, so the required order may be higher or lower than what we originally estimate. With the ripple level and order N determined, we can go to the tables or equations for the normalized lowpass prototype values. Table 1 lists the normalized element values for a .036-dB ripple, Chebyshev lowpass prototype. At this point, we can estimate the midband filter loss using the expected average unloaded Q for the resonators Loss( f0 ) = 4.343 f0 f Qu
© ARTVILLE
ing, and remeasuring a set of experimental hardware. In the last few years, it has become more common to generate coupling and external Q curves using data from an EM field solver. Puglia [4], [5] and Rhea [6] have published excellent tutorials on combining Dishal’s concepts with EM simulation. Hong and Lancaster [7] also present examples of how these concepts can be applied
N i=1
gi (dB),
(1)
Dishal’s Method
A bandpass filter specification generally includes the desired center frequency, percentage bandwidth, maximum insertion loss in the passband, and several required rejection levels in the stopbands. There will also be a specification on the minimum return loss in the passband. A return loss of 26.4 dB (1.10 VSWR) corresponds to a prototype ripple level of .01 dB. A return loss of 20.8 dB (1.20 VSWR) corresponds to a prototype ripple level of .036 dB. Many mechanical filters with tuning screws can eventually be tuned to their designed return loss level. In printed filters, which are much harder to tune, we might design for 20-dB return loss and hope that we achieve a minimum of 15 dB in practice. At the system level, we would like to have components with a minimum return loss around 15 dB to avoid mismatch ripple when components are cascaded. Once the prototype ripple level has been determined, the filter order N can be estimated based on the desired stopband rejection. The graphs and equations in Matthaei, Young, and Jones [10] are very useful for esti-