百年回顾COPD

合集下载

对慢性阻塞性肺病概念认识的百年“进化”

对慢性阻塞性肺病概念认识的百年“进化”

炎 ” 肺气 肿 ” 义 为 C D 。这 时 虽 然 已经 开始 和“ 定 OP 认识 到 了 C P O D与 哮 喘 的差 异 , 但仍 将 气道 阻塞 不
20 0 5年 的抽 样 调查 资 料 , O D是我 国城 市 居 民第 可逆 的哮喘归人 C P 。 同年 , CP OD 欧洲 呼吸协 会 ( uo E r . 四位 的 死 亡 病 因 , 农 村 则 是 第 一 位 的 死 亡 “ 在 杀 p a eprt ySce , R ) 发 表 了 C P enR si o oi y E S 也 ar t O D诊 治 4 将 O D定义 为“ j 最大 呼气流速 和肺排空 降 手” 。最 新 的流行 病学调 查显示我 国 4 0岁 以上 人群 指南 _ , C P 的CP O D发病率 高达 8 3 . %… 。 由此 估 计我 国大约 低 ” 与 A S的定义 不尽相 同 。 , T 有 40 3 0万 C P O D患 者 , 呼吸 系 统 的第 一 大 疾 病 。 是 20 0 1年美 国心 肺 血 液 研 究 所 和 世 界 卫 生组 织
A e t r ¨ v l to c n u y e o u i n¨ i n e sa d n h o c p fc r n c o s r c v n u d r t n i g t e c n e to h o i b t u t e i
p l o a y dsa e u m n r ie s
CP O D是 “ 预 防 ”和 “ 治 疗 ”的 疾 病 , 指 出 可 可 并 病名是 “ 慢性支 气 管 炎 ” “ 气 肿 ” 和 肺 。对其 发 病 机 C P O D具有 “ 外效 应 ” 肺 。该指 南 与 19 9 5年 A S的 T 制的 解 释 即 是 著 名 的 “ 国 假 说 ( ri yoh- 指南 不 同 , 英 B is hp te th 已不 再 将 不 可 逆 气 道 阻 塞 的 哮 喘 纳 入 s ) 和“ 国假 说 ( mei nh ptei) 。前 者 认 C P 但对 哮 喘 与 C P i ” 美 s A r a y o s ” c h s O D, O D的关 系并 没 有 给 予 阐述 。 为反 复呼 吸 道 感 染 是 慢 性 支 气 管 炎发 病 的 主要 原 此 外 , 指南还 明确 指 出 , 气 管 扩 张 、 结 核 等导 该 支 肺 因; 而后者认 为吸 烟是其 主要 病 因。 0世纪 5 2 0年 代 致 的气 流受 限不 能纳 入 C P 范畴 。同年发表 的新 OD 末开 始认识 到 , 由英 国和美 国医生所指 的所谓 “ 慢性 版 慢 眭阻塞 性 肺 疾 病 全 球 倡 仪 (h l a iia v t g b l nt te e o ii 支气 管炎” “ 气肿 ” 际是 同一 疾 病 , 有 相 似 fr ho i o su t eln i ae O D) 专 门 阐 和 肺 实 具 o rnc bt ci gds s ,G L c r v u e 的临床 表现 。同一个疾 病有不 同的病 名显 然不 利 于 述 了 C P 与哮 喘 的关 系 , 出哮 喘 的发 病 机 制和 OD 指 治疗 反应 明显不 同 , C P 与 O D是不 同的疾病 。 括慢 性 支气 管 炎 、 喘性 支 气 管 炎 ( s mac bo— 哮 at t rn h i 事实上 , O D与哮 喘 的关 系 一直 存有 争 议 , CP cis 和 肺 气 肿 , 予 了 C P 初 步 的 界 定 。1 9 早在 1 6 年荷 兰人 O i 提 出哮 喘 、 ht ) i 给 OD 95 91 r e 肺气肿 和慢 性 年 美 国胸 科 协 会 ( m r a hrc oit,A S 支气管 炎具有 相似 的特点 , A ei nT oai Sc y T ) c c e 应作 为一 个疾 病体 ( n — et i 发 表的“ O D诊 治标 准 ” , CP J 引入 肺 功 能作 为 主要 t) 考 虑 , 著 名 的 “ 兰 假 说 ( u h h pte y来 即 荷 D t yo . c h 诊 断依 据 。将 具有不 可逆 气 道 阻 塞 的“ 性 支 气 管 s ) 。 当时将 其称为 “ 慢 i ” s 慢性 非特 异性 肺疾 病 ( ho . c rn

COPD的防治

COPD的防治

GOLD Workshop Report
COPD 治疗的4个组成部分
1. 疾病的评价和监测 2. 减少危险因素 3. 稳定期COPD的治疗

教育


药物
非药物
4. 治疗加重
稳定期COPD治疗 :关键点

稳定期COPD治疗的全面的方法应该依据疾 病的严重性采取阶梯性增加的治疗方法。 对COPD患者,健康教育会在改善治疗技术、 提高处理疾病、健康状态的能力。Evidence A).


改善健康状态
预防和治疗加重( exacerbations) 预防和治疗并发症 减少死亡率 使治疗的副作用最小化
GOLD Workshop Report
COPD 治疗的4个组成部分
1. 疾病的评价和监测 2. 减少危险因素 3. 稳定期COPD的治疗

教育


药物
非药物
4. 治疗加重
16亿人。在低和中等收入国家,吸烟人数的增加 将达到危险的程度。
GOLD 的目标

在卫生工作者、卫生管理当局和公众之中 增加对COPD的知晓和知识。 改善来自断、治疗和预防促进研究
慢性支气管炎的概述



慢性支气管炎是我国的常见病和多发病,北方多 于南方,临床上以咳嗽、咯痰为主要症状。 当每年发作3个月以上,连续2年以上,排除了其 他呼吸道疾病者,即为慢性支气管炎(简称老慢 支);由于早期症状不重,而且病情进展缓慢,常 不引起人们重视。 慢性支气管炎但如得不到很好的治疗,5年内可以 并发阻塞性肺气肿,10年后可进一步发展成为肺 原性心脏病,不易根治,因此应引起注意。
–35% 1965 - 1998
+163% 1965 - 1998

copd发展史

copd发展史

copd发展史
COPD即慢性阻塞性肺疾病,是呼吸科常见的一类慢性气道疾病,也是全世界公认高发病率和高死亡率的慢性疾病之一。

COPD的发展历史可以追溯到古代,但直到19世纪末和20世纪初,人们才开始对COPD 的症状、病因和治疗方法进行深入研究。

20世纪60年代和70年代,人们对COPD的认识进一步加深,并开始重视预防和早期干预的重要性。

随着国际学术界对COPD认识的逐渐深刻,慢性阻塞性肺疾病全球倡议(GOLD)2022版报告首次提出了慢性阻塞性肺疾病前期(pre-COPD)的概念。

这是对现有COPD防治理念的拓展和延伸,充分认识与理解这个概念,不仅有助于指导相关发病机制和基础研究的方向,更有助于在临床工作中提高COPD的一级预防意识,进而降低COPD的患病率和死亡率,减轻家庭和社会的负担。

COPD的发展史是一个漫长的过程,人们对其认识不断深入,并逐渐意识到预防和早期干预的重要性。

目前,COPD的防治工作仍在不断探索和发展中。

COPD

COPD
支、肺气肿的病因
多种因素长期、反复作用所致。 外因: 1、吸烟: 2、感染: 反复感染是慢性支气管炎发生和加重的 重要因素。 3、理化因素:(有害气体、化学物质) 4、过敏因素: 内因: 1、自主神经功能紊乱,气道反应性较正常人高,副交感N功能 亢进。 2、局部防御功能降低。 老年人性腺、肾上腺皮质功能衰退,防御功能降低,免 疫球蛋白减少,吞噬功能下降。 营养不良:维生素A.C缺乏使粘膜上皮细胞修复功能减退, 利于慢支的发生和发展。
流量明显降低 气道狭窄或阻塞时:FEV1(一秒用力呼气容积)/FVC(用 力肺活量 )%<60%,MMV(最大呼吸量) <80%
痰涂片见大量中性粒细 胞及鳞状上皮细胞
From Murray & Nadel: Textbook of Respiratory Medicine, 3rd ed.
(二)支气管哮喘的临床特征

(一)慢支的临床特征

反复发作的咳、痰、喘。寒冷季节加重,重者四季不断,因反复发作而 使病情逐渐加重。
慢支分型
单纯型:咳嗽、咳痰 喘息型:咳嗽、咳痰伴喘息,可闻及哮鸣音
慢支分期
急性发作期:一周内任一症状加重或出现脓痰、痰量明显增
多、伴有发热。两肺或背部可闻及散在的干、湿性罗音。
慢性迁延期:不同程度的症状,迁延1月以上。 临床缓解期:症状基本消失或轻微咳嗽、咳痰,维持2月以上。
慢支的并发症:慢性阻塞性肺气肿;急性肺部感染;支气管扩张。
COPD肺功能分级
FEV1≥80%预计值 II级(中度) 50%≤FEV1<80%预计值 III级(重度) 30%≤FEV1<50%预计值 IV级(极重度) FEV1<30%预计值或 FEV1<50%预计值伴呼吸衰竭

COPD-PPT课件精选全文

COPD-PPT课件精选全文

Cigarette smoke
Alveolar macrophage
CD8+ T cell
?
Neutrophil chemotactic factors Cytokines (IL-8) Mediators (LTB4)
Proteases
Neutrophil elastase Cathepsins Matrix metalloproteases
慢性阻塞性肺病 Chronic Obstructive Pulmonary Disease COPD
COPD定义
慢性阻塞性肺病(COPD)是一种以不完全可逆的气流受限为特征的疾病状态。气流受限呈进行性,与肺对毒性颗粒或气体的异常炎症反应相关。 COPD主要包括慢性支气管炎(chronic bronchitis)和肺气肿(pulmonary emphysema)。
COPD的发病机制
毒性物质 (吸烟,污染物,职业性物质) COPD
遗传因子 呼吸道感染 其他
毒性颗粒 和气体
肺部炎症
宿主因子
COPD病理
蛋白酶
氧化应激
抗氧化剂
-
修 复 机 制
抗蛋白酶
COPD - Inflammatory mechanisms
外因(暴露)吸烟 职业粉尘和环境污染 感染因素 气候寒冷 过敏因素 内因(宿主)免疫功能降低 自主神经功能失调(迷走N) 基因(α1- 抗胰蛋白酶缺乏)
17.61
4.
Respiratory Diseases (COPD) 72.64
13.36
5.
Trauma and Toxication 31.92
5.87
6.
Digestive Diseases 17.18

COPD

COPD

COPD发病和治疗的新认识四川大学华西医院呼吸内科程德云教授慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)占全球人群中死亡原因的第4~5位,引起了世界各国的广泛关注。

据统计,我国COPD的年病死率,1990年男性为125.2/10万,女性为124.9/10万,而在2000年男性为142.5/10万,女性为136.1/10万,呈明显上升的趋势。

预计到2020年全球因COPD所致死亡者将上升到死因的第3位。

由于COPD危害的严重性,世界各国对COPD进行了广泛的研究和讨论,并制订了一些相应的对策和措施。

如美国胸科学会(ATS)、英国胸科学会(BTS)、欧洲呼吸学会(ERS)和中华医学会呼吸病学会(CSRD)等均制订了各自的COPD诊治指南。

这些指南中虽有较多的共同点,如多数指南用1秒钟用力呼气容积(FEV1)占预计值的百分比来判定病情的严重程度,但在具体判定界值上有明显差异,如A TS选择70%和35%作为界值,而ERS和CSRD则使用70%和50%作为界值。

为此,美国国立心、肺、血液学会(NHLBI)和WHO于1998年共同起草了“global initiative for chronic obstructive lung disease, GOLD”,经过历时3年的酝酿,于2001年4月形成了一致的工作报告并向全球公布,为全球的COPD防治提供了统一的指南[1]。

与此同时,有关COPD的研究亦取得了较大的进展,本文就近年来对COPD发病和治疗研究的进展进行介绍。

一、COPD的定义COPD是一种以气流受限为特征的疾病,其气流受限通常呈进行性发展且不完全可逆,多伴有肺部对有害颗粒物质或气体的异常炎症反应[1]。

在这个定义中,认为COPD的主要特征为气流受限(airflow limitation),以气流受限代替以往的气道阻塞,且认为其气道异常主要由炎症反应引起。

COPD治疗进展

COPD治疗进展

COPD治疗进展慢性阻塞性肺病(COPD)是一种以气流受限为特征的疾病,通常呈进行性发展,不完全可逆,多与肺部对有害颗粒物或有害气体的异常炎症反应有关。

老年人随着年龄的增长, 与呼吸有关的很多解剖结构也发生了变化,包括胸廓、肺容量、支气管及肺和血管壁均发生了改变进而影响了呼吸功能。

因此,老年人更易患COPD 或者患COPD 后临床表现更加严重。

近年来国内外对COPD 的研究及临床诊治日益重视。

2001 年世界卫生组织制定了关于COPD 的全球防治创议(GOLD),明确提出治疗的目标是:防止病情进展,缓解症状,提高运动耐量,改善健康状况,防治合并症,防治急性发作,以及降低病死率。

至今,所有治疗COPD 的方法都不能阻止肺功能的持续降低。

因此,药物治疗的重点在于改善症状和减少并发症。

除大力倡导戒烟、避免职业和环境污染及宣传教育外,治疗方面有以下进展:呼吸肌锻炼是COPD 缓解期康复治疗的有效手段一.COPD 发病机制及病理和生理特征COPD 是以气道、肺实质和肺血管的慢性炎症为特征,在肺的不同部位有巨噬细胞、T 淋巴细胞(尤其是CD8+)和中性粒细胞的增多。

激活的炎性细胞释放多种介质,包括白三烯B4(LTB4)、白细胞介素(IL)-8、肿瘤坏死因子(TNF)α和其他介质。

这些介质能破坏肺的结构和(或)促进中性粒细胞炎症反应。

除炎症外,肺部的蛋白酶和抗蛋白酶失衡及氧化作用也在COPD 发病中起重要作用。

吸人有毒颗粒或气体可导致肺部炎症。

吸烟能诱导炎症并直接损害肺脏。

COPD 特征性的病理学改变存在于中央气道、外周气道、肺实质和肺的血管系统。

中央气道,气管、支气管及内径>2-4mm 的细支气管,炎性细胞浸润表层上皮,黏液分泌腺增大和杯状细胞数量增多与黏液过度分泌有关。

外周气道中,内径<2mm 的小支气管和细支气管内,慢性炎症导致了重复性气道损伤和修复。

修复过程导致气道壁结构重构、胶原含量增加及瘢痕组织形成,结果使气道管腔狭窄,引起固定性气道阻塞。

1 请您关注COPD

1 请您关注COPD

49
其他药物
祛痰药
使痰液稀释,容易咳出,痰量逐步减少
抗氧化剂
降低急性加重频率
抗生素
主要用于合并细菌感染,尤其在急性加重期常见
中医中药
祛痰、止咳和调节免疫等
50
第九步:吸氧治疗
COPD患者在病情发展严重时就需要吸氧治疗
请您关注
慢性阻塞性肺疾病 (COPD)
2011-3
从电影《梅兰芳》说起
2008年末,一部关于京剧大师梅
兰芳的电影《梅兰芳》火热上映
电影中的孟小冬,作为梅兰芳身
边的重要人物,引起大家的关注 那么现实中孟小冬的最终归宿又 如何?
电影《梅兰芳》海报 现实生活中的 梅兰芳和孟小冬
2
孟小冬(1907年~1977年) ,著名京剧表演艺术家, 曾与京剧大师梅兰芳的一段爱情为世人赞叹。在1949年她 随杜月笙逃往香港,并与其结婚。
疾病负担第 五 位,并成为第 三 大
死亡原因
9
主要内容
什么是COPD?
COPD会带来什么负担?
什么原因会引起COPD?
10
COPD
Chronic Obstructive Pulmonary Disease 慢性阻塞性肺疾病
11
COPD概况
COPD是慢性阻塞性肺疾病的英文缩写
它是一种常见的肺病 患病者因为肺部损伤,而出现呼吸气流受限
16
呼吸困难
这是COPD的标志性症状,是使患者焦虑不安的主要原 因。 早期仅于劳力时出现,后逐渐加重,以致日常活动甚至 休息时也感气短。
17
呼吸困难的严重程度分级
等级数越大,呼吸困难程度越重 4级 3级 2级 1级 0级
18

ATS百年回顾

ATS百年回顾

100 Anniversary
100 Anniversary
支气管造影1922年
100 Anniversary
100 Anniversary 体容积描记仪1956年Duibois
1956年Dubois等应用了体容积 描记仪.1956年右心导管的引入, 肺动脉压的床边测定有了可能
100 Anniversary
100 Anniversary
100 Anniversary
SIDS1969年
婴儿猝死综合症
100 Anniversary
OSAS1993年
100 Anniversary
100 Anniversary
高血压与OSAS 1997年
100 Anniversary
SARS2003年
1981年AIDS的出现,也带来 了新的肺部疾病.2003年在 全球出现的SARS流行更引 起人们对病毒新病原体对人 类的新威胁的严重关注.
100 Anniversary
Байду номын сангаас
进展与思考 --- ATS 2005 百年回顾
100 Anniversary
100 Anniversary
成立于1905年
100 Anniversary
100 Anniversary 死于结核病第一位北美医生
1915年
自从Koch于1882年发现了结核菌后,进入 20世纪人类开始对危害人群的重要传染 病-结核病探索了卓有成效的诊断和治疗 方法.1907年Clement Von Pirquet等引入 了安全有效的诊断性结核菌素皮肤试验. 借助于这种方法,人类第一次在婴儿时期 即可做出结核感染的诊断,它也可用来在 成人中排除结核现行感染.1911年在美国 成功的将欧洲于1894年报道的人工气胸 术用于结核病的治疗.1934年纯蛋白衍化 物PPD也开始应用于结核诊断.

COPD

COPD

实验室及特殊检查
一、肺功能检查
二、胸部X线检查 三、胸部CT检查
是判断气流受限的主要指标 受限的肺主容量要扩指大标
肋骨平直 肺透光度增强、心脏悬垂狭窄
膈肌低平
四、血气分析
正常值为735-7.45,平均为7.4。
五、其他:血常规、痰菌培养等
COPD病程分期
• 急性加重期(AECOPO) • 指在疾病过程中,短期内咳嗽、咳痰和(或)喘息加重、痰量增多,呈脓性或粘液脓性,
• (四)用药护理:遵医嘱应用抗生素、支气管舒张药和祛痰药,注意观察疗效及不良反应。
• (五)呼吸功能锻炼:COPD病人需要增加呼吸频率来代偿呼吸困难,这种代偿多数依赖于辅助呼 吸机参与呼吸,即胸式呼吸。然而胸式呼吸的效能低于腹式呼吸,病人容易疲劳,因此,护士应指 导病人进行缩唇呼吸、膈式或腹式呼吸、吸气阻力器的使用等呼吸训练,以加强胸、膈呼吸机的肌 力和耐力,改善呼吸功能。
2018
COPD的护理查房
Small pure and fresh and beautiful report template
霍邱县第二人民医院 急诊科
主要内容
病史介绍
护理问题
护理措施
健康指导
WHO和世界银行共同主持的研究显示
&1990年COPD全球的发病率 ——男性 9.34/1,000 ——女性 7.33/1,000
护理措施

(一)一般护理
1、休息与活动: 早期活动应量力而行,以 不引起疲劳、不加重症状为度。病情严重时 应绝对卧床休息,取半卧位或坐位。冬季注 意保暖。
2、饮食护理 高热量、高蛋白、高维生素、 低盐、清淡易消化饮食、注意少食多餐、多 饮水。
(二)病情观察

COPD稳定期治疗进展

COPD稳定期治疗进展

11,744
9,000
6,000
3,000
4,200
0 门诊费用
7,120
住院费用
424 自购药物费用 直接医疗总费用
注:直接医疗费用包括门诊费用、住院费用以及自购药物费用等
精选ppt
12
主要发现-患者经济负担
直接非医疗费用和间接损失
城镇COPD患者每年人均支出直接非医疗费用1,570 元 (包括交通费、营养费以及护理费等);
精选ppt
14
主要发现-稳定期COPD患者随访效果
AECOPD恶性循环问题
COPD患 者只在疾病加重时 (即AECOPD)才就诊
病情一 旦缓解就迅速停药
疗效↓,医疗经费↑
病情逐渐复杂 治疗越来越困难
打破急性加重恶性循环的惟一办法就是必须把防控COPD的主要精力用在稳定期, 在稳定期促进机体各项功能稳定,延长稳定期,减少AECOPD发生频率。
在过去三个月内…
喘息发作
8%
13%
26%
一周中的绝大部分时间 一周中有几天 一个月中的几天
呼吸急促
15%
16%
24%
咳痰
24%
21%
23%
咳嗽
24%
21%
25%
0%
20%
40%
60%
80%
患者比例%
精选ppt
11
主要发现-患者经济负担
1: 城镇COPD患者年人均直接医疗费用约11,744元1
15,000 12,000
吸及缩唇呼吸锻炼等; 了解赴医院就诊的时机; 社区医生定期随访管理。
精选ppt
22
政策干预
目前对COPD的管理尚未到位 不及高血压、糖尿病的社会认知度 患者生活方式的监管 合理用药的指导 社会心理学干预都存在不足

速乐通用篇-2011

速乐通用篇-2011

Ref:GOLD Workshop Report (2009) :
为期1年噻托溴铵持续改善FEV 为期1年噻托溴铵持续改善FEV1
Day 1 Day 8 Day 92 Day 344
1.3
Tiotropium (n=518)
FEV1 (L)
1.2
1.1
1.0
Placebo (n=328)
0.9 -60
天晴速乐显著改善呼吸困难
100.0% 80.0% 60.0% 40.0% 20.0% 0.0% 痰量 呼吸困难和气短 喘息 干湿啰音
两组病人用药12周后症状累计减少率比较
对照组 天晴速乐组
天晴速乐显著改善临床症状 提高运动耐量
两组病人用药12周后临控率、有效率比较
70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00% 0.00% 5.05% 临控率 有效率 25.24% 30.30% 噻托溴铵组 安慰剂组 65.05%
细胞因子(IL-8)
乙酰胆碱释放
蛋白酶
肺泡壁受损 肺气肿) (肺气肿)
Barnes PJ (1999; 2000)
气道粘液过度分泌 慢性支气管炎) (慢性支气管炎)
平滑肌收缩 气道痉挛
COPD的病理生理变化 COPD的病理生理变化
气流受限和气体陷闭
气体交换异常
粘液高分泌
肺动脉高压
COPD
GOLD 2009
用药12周后临床症状总记分的下降率噻托溴铵组为 用药12周后临床症状总记分的下降率噻托溴铵组为 12周后临床症状总记分的下降率 48.48%,对照组只有13.59%( 13.59%(ITT分析) 48.48%,对照组只有13.59%(

copd国人高分文章

copd国人高分文章

copd国人高分文章一、定义与概述慢性阻塞性肺病(COPD)是一种常见的、可预防可治疗的疾病,其特点是由于气道和/或肺泡异常所导致的持续呼吸道症状和气流受限,通常是因为大量接触有害颗粒或气体所导致。

最常见的呼吸道症状包括呼吸困难、咳嗽和/或咳痰。

患者往往会漏报这些症状。

COPD最主要的危险因素是吸烟,但是其他环境暴露(如:生物燃料暴露和空气污染)也是可能原因之一。

除了上述原因,宿主因素也会导致个体进展为COPD,包括:基因异常、肺发育异常和加速老化等。

COPD可能会出现间歇性呼吸系统症状加剧,称为急性加重。

在大多数患者中,COPD往往合并其他有明显临床症状的慢性疾病,这会增加COPD发病率和病死率。

二、诊断与初始评估1.诊断过程任何有呼吸困难、慢性咳嗽或咳痰、反复发作下呼吸道感染病史和/或既往暴露于疾病危险因素,都应考虑COPD。

诊断时需进行肺功能检查。

使用支气管扩张剂后FEV1/FVC2.初始评估:COPD评估的目的是确定气流受限水平、疾病对于患者健康状况的影响程度以及未来事件(如:急性加重,住院或死亡)发生的风险,以指导治疗。

为了实现这些目标,慢阻肺的评估应包括:(1)气流受限严重程度。

(2)目前患者症状的性质和严重程度。

(3)COPD患者常合并有其他慢性疾病,包括:心血管疾病、骨骼肌功能障碍、代谢综合征、骨质疏松、抑郁、焦虑和肺癌。

当这些合并症出现时,应积极面对并恰当治疗,因为这些疾病可能会影响死亡率和住院率。

综上,将患者分为A,B,C和D的其中一类,采取不同的应对策略。

三、预防与维持治疗1.控烟:戒烟是关键。

药物治疗和尼古丁替代疗法能有效地提高长期戒烟率。

由医疗保健机构提供的立法戒烟和戒烟咨询可提高戒烟率。

目前尚不确定电子烟作为戒烟辅助手段的有效性和安全性。

2.疫苗:COVID-19疫苗在治疗SARS-CoV-2感染上非常有效。

COPD患者应根据各自国家推荐来接种COVID-19疫苗。

接种流感疫苗可降低下呼吸道感染发生率。

慢性阻塞性肺疾病(COPD)1学时

慢性阻塞性肺疾病(COPD)1学时

COPD的病理生理学改变: 以呼气困难为特征的异常呼吸模
式。
▲ 肺气肿为肺泡过度膨胀导致气 体交换障碍。
▲慢性支气管炎为大气道炎症, 常引起咳嗽和咳痰。
两者都是COPD病境因素
①吸烟:为COPD的重要发病因 素,长期吸烟损害支气管上皮纤 毛,降低局部抵抗力,又能引起 支气管痉挛,增加气道阻力。
(5)慢性肺原性心脏病史:COPD
康复治疗对象
凡慢性支气管炎肺气肿缓解期,或合 并肺原性心脏病,心功能Ⅱ,Ⅲ级以上 者或支气管哮喘患者均可进展康复治疗。 假设慢性支气管炎急性发作,肺心病心 功能Ⅳ级者应属于临床医学对象。
COPD80%以上为慢支炎,其次是支气 管哮喘,由于病程长,开场时病症通常 不被注意,但肺功能已经开场下降。一 旦病症出现,已经到了COPD的中晚期, 往往错过了治疗的最正确时机。
8 控制感染和减轻呼吸道阻塞
(1) 控制感染:
①预防为主:接种疫苗、紫外线全身穴 位照射、自我保健等。减少外感、副鼻 窦炎等诱发因素,并结合“社会康复〞 减轻大气污染和吸烟。
②保持呼吸道畅通。
(2) 、两手高过头,尽力左右开弓,各数十 次.
以上宜于轻度,中度COPD患者.动功训练 (五禽戏、八段锦、太极拳宜于缓解期进 展)
排痰训练
1、体位引流 2、胸部扣击、震颤 3、咳嗽训练 4、理疗
体位引流
概念:利用重力的作用促进各个肺
段内积聚的分泌物排出。
目的:使病变肺段的分泌物向主支
(3) 吹笛(哨)式呼吸法(PLB)
吹哨口形呼气,可使支气管内压增加, 防止支气管过早闭塞(由于慢性炎症侵袭, 抗压力降低,肺气肿加重其压力)。
⑷缓慢呼吸法 有助于减少解剖死腔,提高肺泡通气

COPD诊治新进展

COPD诊治新进展

2011年 GOLD 颁布 的COPD 新评估方法
分级
特征
肺功能分级 每年急性加重次数 CAT
A
低风险,症状少 GOLD 1-2
≤1
<10
B
低风险,症状多 GOLD 1-2
≤1
≥10
C
高风险,症状少 GOLD 3-4
2+
<10
D
高风险,症状多 GOLD 3-4
2+
≥10
Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Revised 2011.P33
蛋白酶
刺激迷走神经
乙酰胆碱释放
迷走神经 通路
正常人
肺泡壁受损 (肺气肿)
肺气肿
气道粘液过度分泌 (慢性支气管炎)
平滑肌收缩 气道痉挛
正常人
COPD
Barnes PJ .Chest.1999.
正常人的肺泡排空
COPD的肺泡排空
COPD 患者由于肺泡弹性的丧失,支持组织的破坏和小气 道狭窄等,导致气流受限和气体陷闭发生
CAT评分的评估标准
• 尽管CAT问卷中只有8个问题,但涵盖了症状、活
动能力、心理、睡眠和社会影响各方面问题,分 数计算也极其简单,每道问题分数为0~5分,总 分为0~40分,分数越高则疾病越严重。
COPD评估测试(CAT)
COPD评估测试 (CAT)
mMRC呼吸困难指数评分
• 改良英国MRC呼吸困难指数( modified british
前言
COPD在中国

COPD_一种伴有异常炎症反应的多因素构成的疾病

COPD_一种伴有异常炎症反应的多因素构成的疾病
▪ 虚弱无力 ▪ 萎缩
▪ 失去肺泡附着 ▪ 弹性回缩力丧失 ▪ 平滑肌收缩增强
IL = 白介素 LTB-4 = 白三烯 B4 TNF-α = 肿瘤坏死因子- α
结构改变 支气管痉挛
▪ 炎症细胞数量/活性增加 ▪ 炎症介质水平升高: IL-8, TNF-a,
LTB-4 和氧化剂 ▪ 蛋白酶/抗蛋白酶失衡
# Urban VS Rural: P<0.01
精选课件ppt
Nanshan Zhong et al. AJRCCM 2007 in11press
COPD是全球范围内致死的主要 原因
缺血性心脏病 脑血管病
COPD
下呼吸道感染 肺癌 交通事故 结核病 胃癌
1990
1 2
6
3 10 9 7 14
2020
气道炎症
肺泡腔中的巨噬细胞
炎症细胞数量/活性增加: - 中性粒细胞 - 巨噬细胞 - CD8+ T淋巴细胞
IL-8, TNF, LTB4升高 病情严重者B细胞数目增加 肥大细胞数目增加 急性加重时,嗜酸性粒细胞,
RANTES基因表达增加 引起蛋白酶/抗蛋白酶失衡
CD8+T细胞
精选课件ppt
中性粒细胞数目 (%)
100
*
90 80
70
60
50
40
0
> 30
20 - 30
< 20
* p < 0.01
FEV1 下降幅度(ml/年)
(数据是中位值,25%至75%百分位数)
精选课件ppt
Stanescu et al. Thora3x41996
炎症的严重程度与疾病严重程度的指标相关 -气道炎症与肺过度充气相关

copd——精选推荐

copd——精选推荐

copd对慢性阻塞性肺疾病(COPD)的简单认识⼀、概况慢性阻塞性肺疾病(chronic obstructive pulmoriary disease,COPD)简称慢阻肺,是⼀组以持续性⽓流受限为特征的肺部疾病,同样是⽼年⼈呼吸系统多发疾病,与吸烟有着密切关系。

近年来,COPD的发病率仍在不断地上升,现已位居全球⼈⼝死亡原因的第4位,据WHO预测,到2030年将升⾄第3位[1]。

其发病机制复杂,主要可分为个体因素与环境因素两⼤类。

病理改变主要表现为慢性⽀⽓管炎及肺⽓肿的病理变化。

临床表现可以有明显的症状与体征,但要与注意与其他通⽓性障碍肺疾病相互鉴别,这就要求临床医⽣对相关的实验室数据及辅助检查熟练掌握。

慢阻肺发病率⾼,以⽼年患者为主,临床治疗周期长,反复发作频率快,再⼊院病⼈多,且并发症多,长期服药与治疗已成为该患群的特点,⽬前临床上也没有较好的⽅案,故该病对医疗资源及社会资源造成了极⼤的浪费。

在治疗⽅⾯,抗⽣素与激素使⽤频率极⾼,⽤量⼤,故容易造成抗⽣素及激素的过度使⽤,不利于医疗规范。

社会⽅⾯,宣传⼒度⼩,⼈民群众重视率低,预防⼯作开展难度⼤。

⼆、病因与发病机制COPD确切的病因不清楚。

但认为与肺部对⾹烟烟雾等有害⽓体或有害颗粒的异常炎症反应有关。

这些反应存在个体易感因素和环境因素的互相作⽤。

就个体因素⽽⾔,吸烟、蛋⽩酶 - 抗蛋⽩酶失衡,氧化应激、炎症机制、感染因素等是其发病的主要因素;环境因素⽅⾯,⼤⽓污染、职业粉尘与化学物质,⽓温变化等具有重要的影响[2]。

三、病⽣理改变与临床表现慢阻肺病理改变主要表现为慢性⽀⽓管炎及肺⽓肿的病理变化,慢性⽀⽓管炎病理变化可见⽀⽓管上⽪细胞变性、坏死、脱落,后期出现鳞状上⽪化⽣,纤⽑变短、粘连、脱失;各级⽀⽓管壁均有炎症细胞浸润,严重者为化脓性炎症,黏膜充⾎、⽔肿;病情继续发展,炎症使⽀⽓管壁反复损伤、修复,重⽽使⽀⽓管壁胶原含量增加,瘢痕形成。

肺⽓肿病理改变可见肺过度膨胀,弹性减退,外表灰⽩或苍⽩,表⾯可见多个⼤⼩不⼀的⼤疱镜检见肺泡腔扩⼤、破裂或形成⼤疱⾎供减少,弹⼒纤维⽹破坏。

copd发展过程

copd发展过程

copd发展过程
慢性阻塞性肺疾病(COPD)是一种慢性疾病,它的发展过程是逐渐的。

最初,患者可能会感到呼吸急促和咳嗽,这些症状可能不那么明显,但在运动或刺激性气味的情况下会恶化。

随着病情的加重,患者可能会出现呼吸困难和胸闷感,甚至可能在进行日常活动时需要增加呼吸困难的药物。

在中晚期,症状可能会越来越明显,并且可能会影响到患者的日常生活。

最后阶段的COPD可能导致患者需要持续使用氧气治疗,并且可能需要住院治疗。

由于COPD的发生是逐渐的,因此早期诊断和治疗可以帮助患者控制病情并提高生活质量。

慢性阻塞性肺疾病年度回顾

慢性阻塞性肺疾病年度回顾

慢性阻塞性肺疾病年度回顾慢性阻塞性肺疾病(慢阻肺)是一种具有气流阻塞特征的慢性支气管炎和/或肺气肿,可进一步发展为肺心病和呼吸衰竭的常见慢性疾病,与有害气体及有害颗粒的异常炎症反应有关,致残率和病死率很高。

近20年来,随着基础研究的深入以及大规模循证医学研究的开展,慢阻肺的流行病学、临床诊疗以及病因学均有了非常大的变化。

本文总结2018年陈亚红研究团队慢阻肺的临床和基础研究工作。

大气污染与慢阻肺大气污染与健康的关系逐渐引起人们的关注。

细颗粒物(PM2.5)与多种气道疾病相关。

已有的研究显示高剂量PM2.5对支气管上皮细胞产生细胞毒性作用,导致基因表达发生变化,与慢阻肺发病率增高显著相关。

但是对于低剂量和反复接触PM2.5的效果研究较少。

课题组与北京大学公卫学院、密西根大学呼吸科团队合作,收集北京PM2.5,用不同剂量的PM2.5处理BEAS-2B细胞1~7 d,检测涉及气道疾病的多种基因的表达。

在高剂量时,PM2.5增加IL6、TNF、TSLP、CSF2、PTGS2、IL4R和SPINK5的表达。

然而,其他基因如ADAM33、ORMDL3、DPP10和CYP1A1则在接触较低剂量PM2.5(≤1μg/cm2)时表达增加。

每天1或5μg/cm2反复暴露于PM2.5,持续7天增加了上述所有基因的敏感性和变化幅度。

IL13和TGFB1基因的表达仅在细胞反复暴露于PM2.5时才增加。

用抗氧化剂、芳香烃受体抑制剂或NF-κB抑制剂可以减弱PM2.5的作用。

这些数据证明了PM2.5 通过影响对多种参与气道疾病发生的基因,在剂量和持续时间不同时,会发挥不同的作用。

已有的研究显示,环境污染物的吸入会导致呼吸系统及心血管系统发病率及病死率的增加。

不同粒径的颗粒物(PM)对健康状况的影响不同。

我们主要针对室内不同直径颗粒物及黑碳颗粒(BC)对慢阻肺患者心脏自主神经功能的影响进行了研究。

研究入组了8对稳定期慢阻肺患者及其健康配偶,测量24小时心率变异性(HRV)和心率(HR),在监测心率的当天和前一天监测实时监测室内不同直径PM和BC水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chronic obstructive pulmonary diseaseV .K. Vijayan *Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India **Received November 6, 2012The global prevalence of physiologically defined chronic obstructive pulmonary disease (COPD) in adults aged >40 yr is approximately 9-10 per cent. Recently, the Indian Study on Epidemiology of Asthma, Respiratory Symptoms and Chronic Bronchitis in Adults had shown that the overall prevalence of chronic bronchitis in adults >35 yr is 3.49 per cent. The development of COPD is multifactorial and the risk factors of COPD include genetic and environmental factors. Pathological changes in COPD are observed in central airways, small airways and alveolar space. The proposed pathogenesis of COPD includes proteinase-antiproteinase hypothesis, immunological mechanisms, oxidant-antioxidant balance, systemic inflammation, apoptosis and ineffective repair. Airflow limitation in COPD is defined as a postbronchodilator FEV1 (forced expiratory volume in 1 sec) to FVC (forced vital capacity) ratio <0.70. COPD is characterized by an accelerated decline in FEV1. Co morbidities associated with COPD are cardiovascular disorders (coronary artery disease and chronic heart failure), hypertension, metabolic diseases (diabetes mellitus, metabolic syndrome and obesity), bone disease (osteoporosis and osteopenia), stroke, lung cancer, cachexia, skeletal muscle weakness, anaemia, depression and cognitive decline. The assessment of COPD is required to determine the severity of the disease, its impact on the health status and the risk of future events (e.g., exacerbations, hospital admissions or death) and this is essential to guide therapy. COPD is treated with inhaled bronchodilators, inhaled corticosteroids, oral theophylline and oral phosphodiesterase-4 inhibitor. Non pharmacological treatment of COPD includes smoking cessation, pulmonary rehabilitation and nutritional support. Lung volume reduction surgery and lung transplantation are advised in selected severe patients. Global strategy for the diagnosis, management and prevention of Chronic Obstructive Pulmonary Disease guidelines recommend influenza and pneumococcal vaccinations.Key words A irflow limitation - air pollution - bronchodilators - chronic obstructive pulmonary disease - exacerbations - lung -pulmonary rehabilitation - smokingCentenary Review ArticleIndian J Med Res 137, February 2013, pp 251-269251IntroductionChronic obstructive pulmonary disease (COPD) is a name coined for the diseases that were previouslyPresent address : *Advisor to Director General, ICMR Bhopal Memorial Hospital & Research Centre & National Institute for Research inEnvironmental Health, Bhopal known as chronic bronchitis and emphysema. The British Medical Research Council (BMRC) defined chronic bronchitis as “daily productive cough for at least three consecutive months for more than two**Former Directorsuccessive years1. American Thoracic Society (ATS) in 1962 defined emphysema as an “anatomic alteration of the lung characterized by an abnormal enlargement of the air spaces distal to the terminal, non-respiratory bronchiole, accompanied by destructive changes of the alveolar walls”2. The definition of emphysema put forth by the National Heart, Lung and Blood Institute in 1984 is as “a condition of the lung characterized by abnormal, permanent enlargement of airspaces distal to the terminal bronchiole, accompanied by the destruction of their walls, and without obvious fibrosis”3. Reid reported that “the diagnosis of emphysema by itself is incomplete unless it is taken into account the presence or absence of chronic bronchitis and vice versa”4. McDonough et al5have recently reported extensive obliteration of terminal bronchioles in patients with COPD who have emphysema, suggesting that “the permanent enlargement of the distal airspaces may serve only as a structural biomarker, being a secondary result of small airway inflammation and destruction”6. Thus, COPD has both airway (central and small airways) and airspace abnormalities. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) recently defined COPD as “a common preventable and treatable disease characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patient7”. It is worthwhile to mention that William Osler in 1892 in his “Textbook of Medicine” has described hypertrophic emphysema as “a well-marked clinical affection, characterized by enlargement of the lungs due to distension of the air cells and atrophy of their walls, and clinically by imperfect aeration of the blood and more or less dyspnea”8, a beautiful clinical description of emphysema. Epidemiology(i) Global scenarioThere are wide variations in the prevalence of COPD across countries. This variation in the estimated prevalence is due to the method of diagnosis and classification of COPD9. It has been observed that the prevalence estimates were higher when COPD has been diagnosed by spirometry compared with methods using symptoms10. COPD is common in older population and is highly prevalent in those aged more than 75 yr. The global prevalence of physiologically defined chronic obstructiv e pulmonary disease (GOLD stage 2 or more) in adults aged ≥40 yr is approximately 9-10 per cent11. The Burden of Obstructive Lung Disease (BOLD) study from 12 sites involving 9425 subjects who had completed post bronchodilator spirometry testing found that the overall prevalence of COPD of GOLD stage II or higher was 10.1 per cent and the prevalence was 11.8 per cent for men and 8.5 per cent for women12. This study had also revealed that there were differences between countries, the prevalence ranging from 9 per cent in Reykjavik, Iceland to 22 per cent in Cape Town, South Africa for men and from 4 per cent in Hannover, Germany to 17 per cent in Cape Town for women.The multicentre PLATINO study that described the burden of COPD in five Latin American countries using post-bronchodilator spirometry had reported that the prevalence of airway obstruction was 14.3 per cent and the proportion of subjects in stages II- IV of the GOLD classification was 5.6 per cent13. The reported prevalence of COPD in China varied between 5 and 13 per cent in different provinces/cities14. (ii) Indian scenarioOne of the earliest studies to know the prevalence of COPD in India was carried out by Wig et al in 196415 in rural Delhi. The prevalence was 3.36 per cent in males and 2.54 per cent in females in this study. Viswanathan in 196616 reported 2.12 per cent prevalence in males and 1.33 per cent in females in Patna. Radha and colleagues18 noticed that the prevalence in New Delhi in 1977 was 8.1 per cent in men and 4.6 per cent in women17. Jindal in 199318 reported that the prevalence was 6.2 per cent in men and 3.9 per cent in women in rural area, and 4.2 and 1.6 per cent, respectively in urban area. All these studies were from north India and information from south India was scanty. Thiruvengadam et al in 197719 from Madras (south India) reported the prevalence of COPD of 1.9 per cent in males and 1.2 per cent in females. However, Ray et al in 199520 from south India found that the prevalence was 4.08 per cent in males and 2.55 per cent in females. Recently, the Indian Study on Epidemiology of Asthma, Respiratory Symptoms and Chronic Bronchitis in Adults (INSEARECH) involving a total of 85105 men, 84470 women from 12 urban and 11 rural sites was reported21. This study had shown that the overall prevalence of chronic bronchitis in adults >35 yr was 3.49 per cent (ranging 1.1% in Mumbai to 10% in Thiruvananthapuram). Thus there are wide variations in the prevalence of COPD in India subcontinent. Based on this study, the national burden of chronic bronchi tis was estimated as 14.84 million.252 INDIAN J MED RES, FEBRuARy 2013Risk fa ctorsThe development of COPD is multifactorial and the risk factors of COPD include genetic and environmental factors. The interplay of these factors is important in the development of COPD.(i) Genetic factorsΑlpha1-antitrypsin deficiency is an established genetic cause of COPD especially in the young and it has been reported that α1-antitrypsin deficiency occurs in 1-2 per cent of individuals with COPD22. Alpha1- antitrypsin is mainly produced in the liver and normal alpha1 antitrypsin is due to the M allele. Severe alpha1-antitrypsin deficiency results from mutation in the SERPINA 1 gene [located on the long arm of chromosome 14 (14q31-32.3)] and this gives rise to the Z allele23.Genome-wide association (GWA) study has identified three loci (CHRNA3/CHRNA5/IREB2, HHIP, and FAM13A) that are associated with COPD susceptibility24-26. A new COPD locus has also been identified on chromosome 19q13, which harboured the RAB4B, EGLN2, MIA, and CYP2A6 genes27. GWA study on forced expiratory volume in 1 second (FEV1)and FEV1/FVC (forced vital capacity) ratio has identified five genome-wide significant loci for pulmonary function, three [2q35 (TNS1), 4q24 (GSTCD), and 5q33 (HTR4)] for FEV1, and two for FEV1/FVC [6p21 (AGER) and 15q23 (THSD4)]28. Another GWA study found significant associations with FEV1/FVC ratio for SNPs located in seven previously unrecognized loci: 6q24 (GPR126), 5q33 (ADAM19), 6p21 (AGER and PPT2), 4q22 (F AM13A), 9q22 (PTCH1), 2q36 (PID1), and 5q33 (HTR4). One new locus for FEV1 on 4q24 annotated by three genes (INTS12, GSTCD, and NPNT) was identified for FEV128. 4q24 (GSTCD), 5q33 (HTR4) and 6p21 (AGER) were common in both studies28,29. The first GWA study on lung-function decline has recently reported one locus on chromosome 13q14.3 containing the DLEU7 gene that is strongly associated with FEV1 decline30.(ii) Environmental factorsTobacco smoking is the main cause of obstructive pulmonary disease31. Other important environmental factors associated with COPD are outdoor air pollution, occupational exposure to dusts and fumes, biomass smoke inhalation, exposure to second-hand smoke and previous tuberculosis32.(a)Tobacco smoking:Though tobacco smoking is the most important cause of COPD, the population-attribu table fraction for smoking as a cause of COPD ranged from 9.7 to 97.9 per cent32. A Swedish cohort study had observed that population-attributable fraction for smoking as a cause of COPD was 76.2 per cent33. In another Denmark study, the reported population-attributable fraction as a cause of COPD was 74.6 per cent34. Thus, a significant proportional subjects with COPD had causes other than tobacco smoking. In our country, bidi smoking is an important factor in addition to cigarette smoking that causes COPD35.(b) Outdoor air pollution: Outdoor air pollution mainly from emission of pollutants from motor vehicles and industries is an important public health problem36. In a community-based study, it has been observed that higher traffic density was significantly associated with lower FEV1 and FVC in women37. In the Danish Diet, Cancer and Health cohort study involving 57,053 participants, it has been shown that COPD incidence was significantly associated with nitrogen dioxide levels38. Particulate pollutants, ozone and nitrogen dioxide can produce bronchial hyper reactivity, airway oxidative stress, pulmonary and systemic inflammation36. However, a causal relationship between outdoor air pollution and COPD is still not established.(c) Indoor air pollution: Important indoor air pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens37. Among these, environmental tobacco smoke39,40 and biomass smoke exposure are related to the development of COPD42. Globally, it has been estimated that about 2.4 billion people (about 50% of world’s population) use biomass fuel as the primary energy source for domestic cooking, heating and lighting43. Biomass (wood, crop residue and animal drug) are burnt in rural areas using substandard stoves in poorly ventilated indoors. Women, spending more time indoors for cooking than men, are exposed to biomass fuel combustion products and are prone to develop COPD41,42,44. A meta-analysis has shown that biomass smoke exposure was a risk factor for developing COPD in both women and men44.(d) Other risk factors: Other risk factors associated with COPD and reduced FEV1 are occupational exposure to dusts and fumes, previous tuberculosis, maternal smoking, childhood asthma and childhood respiratory infections45.PathologyPathological changes in COPD are observed in central airways, small airways and alveolar space46.VIJAYAN: CHRONIC OBSTRUCTIVE PULMONARY DISEASE253Mucus glands and goblet cells are found in the lining of trachea-bronchial tree in normal individuals and mucus is produced by these cells. In chronic bronchitis patients, the mucus glands are enlarged and goblet cells undergo metaplasia. The excess mucus secreted by these cells as a result of irritation from cigarette smoke, air pollutants, etc. and cough are the cardinal features of chronic bronchitis. The size of the mucus glands can be determined by the Reid index which is measured by calculating the ratio of bronchial gland to the thickness of bronchial wall4. Narrowing and destruction of terminal bronchioles (airways <2 mm in diameter) are characteristic changes in COPD. Small airways offer <20 per cent of the total resistance below the larynx47and the resistance of the small airways is increased 4- to 40-fold in lungs from patients with COPD48. Thus, the small airways are the major site of increased resistance in persons with COPD. The cellular events that occur in the small airways in COPD include replacement of Clara cells with mucus-secreting and infiltrating mononuclear cells and goblet cell metaplasia46. Smooth muscle hypertrophy is also an important finding. As a result of excess mucus secretion, oedema formation and cellular infiltration and the resultant fibrosis cause airway narrowing. Pathological changes that occur in alveolar space include accumulation of macrophages and neutrophils. There is also an increase in T-lymphocytes particularly CD8+ T cells. Chronic inflammation and destruction of alveolar space lead to either cetriacinar or panacinar emphysema.PathogenesisThe proposed pathogenesis of COPD includes proteinase-antiproteinase hypothesis, immunological mechanisms, oxidant-antioxidant balance,systemic inflammation, apoptosis and ineffective repair46. (i) The proteinase-antiproteinase hypothesisThe proteinase-antiproteinase hypothesis is based on the assumption that tissue destruction and emphysema occur due to an imbalance between the proteinases and their inhibitors. It has been proposed that there is an increase in the quantity of elastic-degrading enzymes compared to their inhibitors in emphysema. This concept has been suggested in emphysema that has been described in α1antitrypsin (α1AT) deficiency, first reported by Laurell and Eriksson in 196349. The patients with α1AT deficiency have mutations in the α1AT gene. Z mutation is the common mutation and these mutations impair secretion of the protein from hepatocytes. As a result, there is markedly decreased circulating level of serine proteinase inhibitor. PiZ-α1AT is less effective than the normal PiM-α1AT. It has been recently reported that PiZ-α1AT is prone to polymerization which can inhibit hepatic secretion, impair neutrophil elastase (NE) inhibition and promote inflammation46. Chronic cigarette smoke exposure leads to accumulation of activated macrophages, neutrophils and CD8+ T lymphocytes in the distal airways and alveolar spaces50. Macrophages and neutrophils are the main sources of proteases in lungs. Excess neutrophil elastase produced by the activated neutrophils overwhelms the serine proteinase inhibitors leading to the development of emphysema. Cigarette smoke also activates airway epithelium to trigger airway remodelling51. Studies have demonstrated that there are correlations between the degree of macrophage and neutrophil inflammation and severity of airflow obstruction52.Matrix metalloproteinases (MMP), increased in many lung diseases including COPD, have the capacity to cleave structural proteins such as collagen and elastin and these MMPs are linked to the pathogenesis of COPD53. Increases in many MMPs are reported in smoking-related emphysema and three MMPs (MMP-2, -9, and 12) are shown to degrade elastin53. MMP-9 and MMP-12 are expressed in alveolar macrophages from COPD patients. Cigarette smoke causes macrophages to produce MMP-12 which can cleave elastin into fragments. Elastin fragments are chemotactic to monocytes and fibroblasts and this increases the inflammatory and protease burden in the lung and leads to subsequent lung destruction. This creates a positive feedback loop that results in continuous destruction of lung parenchyma54. A single-nucleotide polymorphism in MMP-12 has been identified as a protective factor for COPD55. Other proteases that play important roles in COPD are cathapsins S, L (in macrophages), and G, and proteinase-3 (in neutrophils)56. However, subsequent studies have unravelled a more complex pathogenesis in emphysema57.(ii) Immunological mechanismsCOPD is associated with an abnormal inflammatory response of the lungs to noxious particles or gases, most commonly cigarette smoke7. Patients with COPD have been reported to have increased numbers of neutrophils in sputum, lung tissue and bronchoalveolar lavage (BAL)58and neutrophils are important cells in the pathogenesis of COPD. Serum levels of254 INDIAN J MED RES, FEBRuARy 2013immunoglobulin free light chains (IgLC) were found to be increased in smoking-induced COPD59. IgLC were found to bind neutrophils and cross-linking of IgLC on neutrophils results in increased production of IL8/CXCL8 which is a selective attractant of neutrophils. B cells have been found to be increased in COPD and these cells produce IgCL, in addition to IgG and IgA in COPD60. It has also been reported that serum IgE levels are increased in patients with COPD and this may be related to smoking61. Both IgE and IgLC can exert similar proinflammatory effects via neutrophils59. However, the role of immunoglobulins in the pathogenesis of COPD is not understood. (iii) Oxidant-antioxidant balanceAbnormally accumulated inflammatory cells including neutrophils and macrophages and cigarette smoke produce reactive oxygen species which play an important role in the pathogenesis of COPD. Oxidative stress can impair vasodilation and endothelial cell growth. When the oxidant load exceeds the antioxidant capacity of the lung, modification of proteins, lipids, carbohydrates and DNA occurs in the local milieu resulting in tissue injury. Though the oxidants cannot degrade extracellular matrix, these can modify elastin. Modified elastin is then more susceptible to proteolytic cleavage. Cigarette smoke can inactivate histone deacetylase (HDAC2) and this leads to NF-kB-mediated transcription of neutrophil chemokines/cytokines (TNF-α and IL-8) and MMPs. Neutrophil elastase and MMPs overwhelm their respective inhibitors. This can augment the matrix-degrading capacity which can promote emphysema formation46.(iv) Systemic inflammationIn addition to the pulmonary component, COPD has several extrapulmonary manifestations. It has been postulated that persistent pulmonary inflammation may promote the release of pro-inflammatory chemokines and cytokines into the circulation62. These mediators can stimulate liver, adipose tissue and bone marrow to release excessive amounts of leucocytes, C-reactive protein (CRP), interleukin (IL)-6, IL-8, fibrinogen and tumour necrosis factor-α (TNF-α) into the circulation62,63. This may lead to a persistent low-grade systemic inflammation62. Systemic inflammation may initiate or worsen comorbid diseases, such as ischaemic heart disease, heart failure, osteoporosis, normocytic anaemia, lung cancer, depression and diabetes64. Two Danish population studies involving 8656 COPD patients had revealed that simultaneously elevated levels of CRP, fibrinogen, and leukocyte count were associated with a 2- to 4-fold increased risk of major comorbidities (myocardial infarction, heart failure, diabetes, lung cancer and pneumonia) in COPD65. (v) ApoptosisRecent studies have highlighted that apoptosis is involved in the development of COPD and it has been demonstrated that there is an increase in apoptotic alveolar epithelial and endothelial cells in the lungs of COPD patients. Since this is not counterbalanced by an increase in proliferation of these structural cells, the net result is destruction of lung tissue and the development of emphysema. It has been suggested that there is a role for vascular endothelial growth factor (VEGF) in the induction of apoptosis of structural cells in the lung. Other mediators involved in apoptosis are caspase-3 and ceramide51,66-68.(vi) Ineffective repairThere is ineffective repair in emphysema and this is due to the limited ability of the adult lung to repair the damaged alveoli. Studies have shown that treatment of normal rats with all-trans-retinoic acid increases the number of alveoli and this prompted the investigators to study whether a similar effect would occur in rats with emphysema. In experimentally produced emphysema in rats, it has been shown that treatment with all-trans-retinoic acid reversed the changes associated with emphysema. A similar effect in humans is a possibility69. Advances in regenerative medicine and stem cell biology may answer some of these issues.(vii) Endothelial microparticlesPulmonary vascular disease is an important consequence of COPD. Endothelial microparticles (EMPs) which are microvesicles released from apoptotic endothelial cells are increased in smokers with normal spirometry and low diffusing capacity70. The majority of microparticles are angiotensin-converting enzyme positive and this observation suggests that EMPs are of pulmonary vascular origin. EMPs can be a potential biomarker for pulmonary vascular disease associated with COPD. PathophysiologyPathophysiological changes in COPD are due to the pathological changes seen in central airways, small peripheral airways, pulmonary parenchyma and pulmonary vasculature. Mucus hypersecretionVIJAYAN: CHRONIC OBSTRUCTIVE PULMONARY DISEASE255is common in patients with predominant central airway involvement. Chronic obstructive pulmonary disease is characterized by an accelerated decline in FEV171. Airflow limitation in COPD is defined as a postbronchodilator FEV1 (forced expiratory volume in 1 sec) to FVC (forced vital capacity) ratio <0.70, usually without reversibility to bronchodilators. Bronchodilator reversibility and bronchial hyper-reactivity are variable in COPD and, therefore, have limited value in distinguishing COPD from bronchial asthma72. Overall 23 to 42 per cent of patients with COPD have responsiveness to bronchodilators and 59 per cent of men and 85 per cent of women with moderate COPD have airway hyper responsiveness73,74. The severity of airflow limitation in COPD is classified based on post-bronchodilator FEV1value into four groups (GOLD 1, GOLD 2, GOLD 3 and GOLD 4). In patients with FEV1/FVC <70, if FEV1 >80 per cent predicted, they are classified as mild (GOLD 1), if FEV1 predicted < 80 per cent and > 50 per cent as moderate (GOLD 2), if FEV1 predicted <50 per cent and >30 per cent as severe (GOLD 3) and if FEV1 predicted <30 per cent as very severe (GOLD 4) airflow limitation7. The Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study has shown that the rate of decline in FEV1 over a 3-year period was highly variable76. In this study, the mean rate of change in FEV1 was a decline of 33 ml per year with significant variation and only 38 per cent of patients had an estimated decline in FEV1 of more than 40 ml per year. The rate of decline in FEV1 in this study in more than half of the patients was no greater than that observed in subjects without lung disease suggesting that COPD is not invariably progressive. Current smokers, patients with bronchodilator reversibility, and patients with emphysema had increased rates of decline in FEV175. The ECLIPSE study further observed that Clara cell protein (CC-16) was significantly associated with a greater decline in FEV1 of 4 ± 2 ml per year for each decrease in one standard deviation of the CC-16 level75. Patients with COPD have pulmonary hyperinflation characterized by an increase in functional residual capacity and a decreased inspiratory capacity. Patients with emphysema have low carbon monoxide diffusing capacity. Low arterial oxygen and high carbon dioxide levels are observed in patients with COPD with respiratory failure. Pulmonary arterial hypertension (PAH) develops late in the course of the natural history of patients with COPD. This can be associated with the development of severe hypoxaemia and is a major cardiovascular complication of COPD. Chronic pulmonary hypertension leads to the development of right ventricular hypertrophy and cor pulmonale and has a poor prognosis76. Wells et al77observed that computerised tomography-detected pulmonary artery enlargement defined as a ratio of the diameter of the pulmonary artery to the diameter of the aorta (PA: A ratio of >1) was independently associated with acute exacerbations of COPD77.Co-morbiditiesExtrapulmonary manifestations in COPD, in addition to pulmonary component, are common. It has been observed in the ECLIPSE study that comorbidities were significantly higher in patients with COPD than in smokers and never smokers78. The important comorbidities associated with COPD are cardiovascular disorders (coronary artery disease and chronic heart failure, hypertension), metabolic diseases (diabetes mellitus, metabolic syndrome and obesity), bone disease (osteoporosis and osteopenia), stroke, lung cancer, cachexia, skeletal muscle weakness, anaemia, depression and cognitive decline79. Risk factors such as advancing age, cigarette smoking and environmental pollution are common to both COPD and ischaemic heart disease. The potential mechanisms of increased risk of cardiovascular disease in COPD are systemic inflammation, increased oxidative stress, neurohumoral disturbances and increased thrombotic tendency62. A systematic review of literature had shown that reduced FEV1 nearly doubles the risk for cardiovascular mortality independent of age, sex and cigarette smoking80. It has been reported that a 10 per cent decrease in FEV1 among COPD patients increases the cardiovascular event rate 28 per cent81. COPD patients were 1.76 times more likely to have arrhythmias, 1.61 times more likely to have angina, 1.61 times more likely to develop acute myocardial infarction and 3.84 times more likely to develop congestive heart failure82. There was also an inverse relationship between lung function and ischaemic stroke in subjects who had never smoked83. In a study of 12,04,110 patients aged >35 yr, COPD patients (n=29870) were five times more likely to have a cardiovascular disease compared with those without COPD (n=11,74,240)84. Analysis of data from 20,296 subjects aged ≥45 yr at baseline in the Atherosclerosis Risk in Communities Study (ARIC) and the Cardiovascular Health Study (CHS) has revealed that subjects with GOLD stages 3 or 4 COPD had a higher prevalence of diabetes, hypertension and cardiovascular disease85. Lucas-Ramos et al86in a study of 1200 COPD patients and 300 control subjects showed that the COPD group had a significantly higher256 INDIAN J MED RES, FEBRuARy 2013。

相关文档
最新文档