Transformation of Alumina Inclusions by Calcium Treatment

合集下载

文献翻译-钛合金相变超塑性连接技术研究

文献翻译-钛合金相变超塑性连接技术研究

外文资料翻译Transformation Super plasticity of Titanium AlloyTechnology Research ConnectionThe outstanding characteristic of titanium is its high specific strength and excellent corrosion resistance, while at the same time has good heat resistance and low temperature performance, and practical application of a wide range. As long as the materials properly, not only can greatly increase the effectiveness of equipment, but also can bring significant economic benefits. In regard to corrosion resistance, titanium alloys in oxidizing and neutral media is extremely stable, the corrosion rate in sea water is far below the stainless steel, compared with platinum, it is suitable for the petroleum, chemical, electric power, metallurgy, agricultural chemicals, paper-making, shipbuilding, food and medical applications and health departments.Due to the characteristics of titanium alloy with the above, it is particularly suitable for aircraft and spacecraft materials design is required. Aviation Industry Development and Application of titanium alloys is the first sector. The beginning of the fifties, the United States succeeded in the use of a titanium aircraft, although at the time of each aircraft being used for only 1% the weight of the structure of titanium, but titanium has opened up applications in the aviation industry in the broad road. Now, the titanium in the world has been widely used, small screws, nuts, such as connectors, up to the fuselage frame, every other frame, such as structural parts, and even more than 6 meters long, weighing two tons of the main support beam of the landing gear. For high-speed fighters, as a result of high-speed and high maneuverability, the aircraft structure as far as possible the requirements of light, heat capacity at the same time; practice has proved that titanium is the most appropriate material.Titanium is the world's recognized difficult-to-machine materials, but theuse of super plastic forming / diffusion bonding process (SPF / DB) can be produced by welding, riveting processes difficult to produce complex titanium aircraft parts and components to enable integration, light weight, and lower the cost.Use of materials under thermal cycle repeated phase-change role in the effects of pressure welding material so that the contact took place in super plastic flow, so that the surface in close contact and close to the inter-atomic forces to achieve the scope of , the realization of the material on both sides of the interface connected to a reliable welding method known as phase-change Super plastic diffusion bonding (Transformation Super plastic Diffusion Bonding). Super plastic conditions, the material under stress in the smaller plastic deformation has a very good ability to flow the process of super plastic materials in a highly activated state of atoms, these materials will help to remove the surface oxide film to improve the combination of the close connections and speed up the atomic diffusion, resulting in a short period of time to achieve a reliable connection. Be welded as long as the phase-change material, the use of such methods can be welded. Repeated phase-change material is produced by thermal cycling to achieve, and therefore thermal cycling method has become the core of this welding process links.Phase transformation super plastic diffusion bonding is a solid-phase welding method, a general proliferation of welding and the characteristics of welding deformation, deformation mechanisms and the proliferation of mechanisms in the formation of welded joints are equally important role in the process. Phase transformation super plastic diffusion bonding joints or less after the formation of three phases.First, physical contact with the formation of phases:To the formation of the actual physical contact, the material must be removed on the surface oxide film and the adsorbed layer, but in the welding process and welding can completely clear the oxide film is of utmost importance. Vacuum welding, the adsorbed layer and the oxide film under hightemperature description, distillation, evaporation, chemical reaction and dissolution methods can be eliminated.In the process of diffusion bonding, only the material near the surface of each other, reaching between atoms can be caused by physical distance, will it be possible to form a welded joint quality. In general, the solder materials were processed through sophisticated, from the micro-view of its surface is still uneven. Therefore, in the beginning stages of diffusion welding, the welding material contact surfaces can only form of local contacts, while the remainder of the full contact is required by the interface of the plastic deformation of solder material, there is no part of the full contact holes are formed, the holes on the formation of adverse effect on joint reliability.Phase change materials in the super plastic deformation resistance under conditions of low stress in the low to the high occurrence of plastic deformation, welding interface of the holes can exist in the role of high-plastic archeology to be filled rapidly. Phase-change material, the grains continue to migration and conversion, the surface oxide film to break down quickly broken. The use of phase-change method of super plastic diffusion bonding can be smaller under the pressure of the rapid realization of fully welded joint physical contact.Second, chemical interaction of stages:The formation of the actual contact and the surface is not enough to have a strong connection between atoms. In order to obtain the combination of atoms between the solid, it is necessary to activate the surface atoms. Activation of the surface atoms will lead to the original bond (for example, the chemical adsorption and oxygen level) of the tear, and then will it be possible to make the electronic interactions between atoms. Under the metal in the external force generated by shear stress and normal stress can cause the metal surface of the plastic deformation and flow, plastic deformation and flow of cause defects in the crystal structure (dislocations and hole) to move to the surface at this time, defect migration the release of atomic energy will activatethe surface, the formation of activation centers. If the higher temperature, the surface will activate the number of centers is increasing rapidly. Surface and then welded between the two has to activate the interaction between the atoms combine.Transformation Super plasticity make plastic welding surface archeology, the archeology of plastic to broken oxide film and increase the dislocation density and the hole with the speed of migration. After breaking the oxide film to form a "fresh, the surface, this surface has a higher degree of chemical activity. At the same time, phase change as a result of recrystallization and dynamic recrystallization of the repeated changes in the grain boundary and repeated migration, so that atoms have a high interface activity.Third, the interaction of body phases:Is through a combination of metal materials for the spread around the stage. In welding with the metal, the sign of the end of the third phase is generated in the joint of the recrystallization process, a common grain. Dissimilar metal welding, whether or not to limit the spread of the third phase of the process depends on the nature of the proliferation zone and the resulting nature of the new phase. Transformation Super plasticity of the tremendous role in promoting proliferation, could have been welding in a short time. Application of super plastic titanium alloy connectivity features: First, can the past by a number of parts by mechanical connection or welding together the major components assembled in a heated, pressurized process of forming the overall structure for large pieces, greatly reducing the number of parts and tooling to shorten the manufacturing cycle, reduced the manufacturing cost.Second, designers can provide greater flexibility to design a more rational structure to further improve the efficiency of the structural load to reduce the structural weight.Third, the use of this technology to create comprehensive maps of the structure, and material after the diffusion bonding interface completelydisappeared, so that the entire structure as a whole, has greatly improved the structure of the anti-fatigue and anti-corrosion properties; and through appropriate structural design can also improve the structure of the bending rigidity, and expand the scope of application of titanium alloys. Industrial base, such as air days of the titanium alloy used in cold forming and machining is very difficult to make it practical subject to certain restrictions, SPF / DB titanium technology enables a simple manufacturing process, can be achieved almost at the same time more than technology The precise amount of processing, improved material utilization, reduced production costs.Fourth, the material in the process of super plastic forming can withstand great deformation without rupture, you can shape the structure of a very complex matter, which is the conventional method of cold forming the basic shape can not do or need to be achieved on many occasions. Super plastic forming material in the course of flow stress is very small, this can be used in small tonnage of equipment forming the structure of large pieces of the structure and processing of non-resilient, non-residual stress, high-precision forming.U.S. aircraft manufacturer in the early seventies began to study the super plastic forming technology of titanium alloy (SPF), in 899 ~ 927 ℃high temperature and strain rate of 10-4 cm / s under the conditions so that an extension of titanium alloys rate of 60 to 1000%, the sample forming process a vacuum forming plastic board as the same does not occur in the case of necking and fracture under the uniform deformation of the complex.At present, the United States has in the four models using Ti-6AL-4V super plastic forming (SPF) components, the number reached 256. One of "AV-18" 74 pieces, "F-25" 77 pieces, "F-18" 29 pieces, "B1-B" 76 pieces. Using super plastic forming process for the "F-18" has produced 5000 parts, and the number is increasing, the company's three meters in diameter "F-20" body frame, is also planning the use of two semi (SPF) forming process. Titanium alloy in the super plastic forming process conditions, diffusionbonding can be carried out.In the mid-seventies, the U.S. Air Force commissioned a company in Rockville (SPF / DB) process "B1-B" beams framework engine aircraft, the 12 parts of Ti-6AL-4V sheet metal forming, reducing the weight than the original 39%, reduced costs by 43%, dispense with the fastener 81.At present, for the purpose of establishing the U.S. Air Force (SPF / BD) technology is pursuing a (BLATS) plan that is ready to create a low-cost structure of advanced titanium alloys plan. As part of the plan, Rockville Company has successfully created a lot of titanium aircraft parts. The largest component in the body has reached 454 kilograms, length of 102 centimeters, width of 429 centimeters, and the thickness of 25-71cm. After the body parts to achieve size 41x163x168cm, and the use of original parts manufacturing process compared to 32% weight, the cost dropped by 41%.In 1981, the U.S. Air Force component of the load under the assumption that the two tests to verify its reliability, testing 4000 hours to do the first time the successful conduct of the 8000 hours. In the second test, the parts intended to crack the main site of occurrence, the pilot process to intentionally damage, is still facing a test of 8000 hours. It can be seen, (SPF / DB) titanium alloy forming technology of high reliability components钛合金相变超塑性连接技术研究钛合金的突出特点在于它的高比强度及优良的耐腐蚀性,同时又具有良好的耐热性和低温性能,因而实用性强,应用面广。

稀土元素对2Cr13不锈钢的性能影响 英文

稀土元素对2Cr13不锈钢的性能影响   英文

FoundationItem: Item Sponsored by National Natural Science Foundation of China (50364001) Biography: LID Xiao(l981-), Male, Doctor; E-mail: xiaoliush@; Received Date: October 20, 2009
Mn
S
p
Ni
Cr
1 2
o. 19 o. 18
0.65 0.64
0.36 0.35
0.018 0.005
0.02 0.02
O. 15 o. 15
12.88 12.85
o
0.044
Bacontent of Ce in the table is the total amount in the steel.
1
Experimental
The compositions of the 2Crl3 stainless steel are shown in Table 1. The test materials (the same batch of continuous casting slab) were melted by a 25 kg vacuum medium frequency induction furnace. After deoxidization with Al at 1600 'C, the melt was poured with addition rare earth (RE) metal Ce into the ladle for modification before tapping. Scanning electron microscopy (Quanta400) was used to study the fracture surfaces and inclusions in the steels. Quantitative analysis of inclusions of the steels was undertaken by EDAX in SEM. The impact samples (10 mm X 10 mm X 50 mrn , V-notch) was performed for determining impact toughness with a ]B-30 impact test machine, and the temperature is -40, -20, 0 and 20 ·C. Before final machining, the following forging and heat treatment processes were performed: 1) the

Formation and Control of Inclusion during Smelting Process

Formation and Control of Inclusion during Smelting Process

! $ %%# # ' " # &
" ' $ %%# % / # ,-$..#
# # %$ % ,
# () *# % $ *பைடு நூலகம்# %
The variation of non-metallic inclusions and total oxygen contents in different steel grades were investigated by taking samples in steelmaking process, including gear steel, anchor chain steel, hard wire steel, bearing steel and spring steel. The inclusions mainly were Al2O3, MnS, and their composite inclusions in aluminum killed steel at the beginning of LF refining due to addition of FeAl alloy during the tapping from EAF and feeding of Al wire in LF process, and then Al2O3 inclusion changed to the Al2O3 - CaO composite inclusions after feeding of SiCa wire. The inclusions at the beginning of LF refining mainly were MnS, SiC and their composite inclusions in non-aluminum killed steel due to addition of the composite deoxidation and slagging agents (mainly including CaC2 and SiC) when EAF taping, while the inclusions in tundish mainly were MnS, CaO - SiO2 - Al2O3 composite oxide - sulfide inclusions. It is showed that the inclusions in bearing steel and spring steel samples were mainly globular oxide inclusions and silicate inclusions with higher rated results. Therefore, the refining process should be improved to remove globular oxide inclusions. The inclusions in molten steel were controlled by enhancing the diffusion deoxidation process, adjusting and controlling the basicity and composition of refining slags, respectively, and satisfactory results were obtained. The industrial test shows that the total oxygen content of the aluminum killed steel in the test heat after feeding wire reached the minimum value, which indicates that the optimized slag has a strong ability of absorbing Al2O3 inclusions. For non-aluminum killed steel, the total oxygen content was 0.0027 % to 0.0029 % in rolled products. The inclusions in the end of refining and rolled product were small and dispersed composite inclusions, and the separate Al2O3 inclusions can not be found in the non-aluminum killed steel after optimization of the refining process.

沉积型铝土矿的成因探讨及矿床形成模式分析

沉积型铝土矿的成因探讨及矿床形成模式分析

沉积型铝土矿的成因探讨及矿床形成模式分析一、引言沉积型铝土矿是一种重要的非金属矿产资源,广泛分布于全球许多地区。

对于这类矿床的成因及形成模式的深入研究,对于资源勘查和矿产开发具有重要意义。

本文旨在探讨沉积型铝土矿的成因机制,并分析相关的矿床形成模式。

二、沉积型铝土矿的成因机制1. 母岩的形成沉积型铝土矿通常形成于在特定环境条件下,母岩通过物理和化学作用发生磨损、侵蚀和风化而形成。

这些母岩通常是由长时间的风化作用、氧化还原作用和水力过程形成的。

2. 矿化过程沉积型铝土矿的矿化过程主要由母岩的物理和化学作用驱动。

在母岩的剥离和风化过程中,铝、铁等矿石元素逐渐释放并重新沉积形成矿床。

其中,铝元素的高浓度是形成铝土矿的重要因素。

3. 环境条件的影响环境条件对于沉积型铝土矿的形成起到至关重要的作用。

主要的环境条件包括气候、地质构造、水文条件等。

气候条件影响风化程度和速率,而地质构造与水文条件则对沉积过程和矿床的分布产生影响。

三、沉积型铝土矿的形成模式1. 平原型沉积型矿床模式平原型沉积型矿床的分布常见于河流冲积平原和湖泊平原地区。

母岩在长时间内受到水力、风力和化学作用的侵蚀和风化,释放出铝、铁等有价矿元素,并随沉积物一起沉积在平原地区。

2. 湖泊型矿床模式湖泊型矿床形成于断陷湖泊或内陆盆地中。

在这些湖泊中,湖水的环境条件和湖泊沉积物的特性决定了沉积型铝土矿的形成。

湖水中的铝、铁等元素通过溶解和沉积作用逐渐富集,最终形成铝土矿床。

3. 高原型矿床模式高原型矿床主要分布在高原和山地地区。

这些地区通常存在较强的风蚀作用,母岩经历长时间的风化作用后释放出铝、铁等元素,并随着风力将其转运到其他地方,最终形成铝土矿矿床。

四、沉积型铝土矿的勘查意义和前景1. 资源勘查意义沉积型铝土矿是一种非常重要的工业矿产资源,广泛应用于冶金、建筑材料等领域。

对其成因机制和矿床形成模式的深入研究,可以指导资源评价和勘查工作,提高勘查效率。

超高强铝合金研究进展与发展趋势

超高强铝合金研究进展与发展趋势

引用格式:邢清源,臧金鑫,陈军洲,等. 超高强铝合金研究进展与发展趋势[J]. 航空材料学报,2024,44(2):60-71.XING Qingyuan,ZANG Jinxin,CHEN Junzhou,et al. Research progress and development tendency of ultra-high strength aluminum alloys[J]. Journal of Aeronautical Materials,2024,44(2):60-71.超高强铝合金研究进展与发展趋势邢清源1,2*, 臧金鑫1,2, 陈军洲1,2, 杨守杰1,2, 戴圣龙1,2*(1.中国航发北京航空材料研究院 铝合金研究所,北京 100095;2.北京市先进铝合金材料及应用工程技术研究中心,北京100095)摘要:超高强铝合金具有密度低、比强度高等特点,广泛应用于航空、航天、核工业等领域。

合金的极限强度已从第四代铝合金的600 MPa级,逐步发展到650~700 MPa级、750 MPa级,甚至800 MPa级及以上第五代铝合金。

本文首先对超高强铝合金的发展历程和国内外发展现状进行概述;随后,从成分设计与优化、熔铸与均匀化技术、热变形技术、热处理技术、计算机辅助模拟计算共五个方面对近些年的研究进展和所遇到的问题进行了总结和讨论;最后,结合未来装备的发展需求和国内的技术现状,指出“深入研究基础理论,解决综合性能匹配等问题以及在特定应用场景下专用材料的推广应用”是超高强铝合金的发展趋势和重要方向。

关键词:超高强铝合金;Al-Zn-Mg-Cu系合金;熔铸法;高合金化doi:10.11868/j.issn.1005-5053.2023.000171中图分类号:TG146.21 文献标识码:A 文章编号:1005-5053(2024)02-0060-12Research progress and development tendency of ultra-highstrength aluminum alloysXING Qingyuan1,2*, ZANG Jinxin1,2, CHEN Junzhou1,2, YANG Shoujie1,2, DAI Shenglong1,2*(1. Aluminum Alloy Institute,AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China;2. Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications,Beijing 100095,China)Abstract: Ultra-high strength aluminum alloy has achieved extensive application in the nuclear,aerospace,and aviation industries because of its high specific strength and low density. The fifth generation of ultra-high strength aluminum alloy has been produced,and in comparison to the fourth generation’s 600 MPa level,its ultimate strength has been consistently redefined and increased from 650-700 MPa to 750 MPa or even 800 MPa. This paper reviews the history of the research on aluminum alloys with ultra-high strengths and introduces the current state of development both domestically and internationally. The key issues and recent research development are further explored,including computer simulation,thermal deformation,heat treatment,homogenization,melting,and casting,as well as composition design. Finally,combined with the development needs of future equipment and domestic technology status,it is pointed out that in-depth study of basic theory to solve the problem of comprehensive performance matching,the promotion and application of special materials in specific application scenarios are the development trend and important direction of ultra-high strength aluminum alloy.Key words: ultra-high aluminum alloy;Al-Zn-Mg-Cu alloy;ingot metallurgy;high alloying超高强铝合金属于7×××系(Al-Zn-Mg-Cu系)合金,是该系列合金中的一个重要分支,具有低密度、高比强度等特点,被广泛用于航空、航天、核工业、兵器等领域,按照航空铝合金代次的划分,超高强铝合金已发展至第五代合金。

铝合金的熔炼与铸造(Meltingandcastingofaluminumalloy)

铝合金的熔炼与铸造(Meltingandcastingofaluminumalloy)

铝合金的熔炼与铸造(Melting and casting of aluminum alloy)Melting and castingMelting and pouring of aluminum alloy is the main link in casting production. The whole process of melting and casting is strictly controlled, which plays an important role in preventing casting defects such as pinholes, inclusions, castings, cracks, porosity and shrinkage. Because the aluminum melt absorbs the hydrogen tendency, the oxidation ability is strong, dissolves the iron easily, in smelting and the casting process, must take the simple and careful preventive measure, obtains the high-quality casting.1 、 preparation and quality control of aluminum alloy burdenIn order to smelt high quality aluminum melt, the qualified raw material should be selected first. To carry out scientific management and proper processing of raw materials, otherwise it will seriously affect the quality of the alloy, the production practice has proved that the raw materials (including metal materials and auxiliary materials) lax control will make batch scrap castings.(1) raw materials must have qualified chemical composition and organization, and the specific requirements are as follows:In addition to the analysis of the main components and impurities in the alloy ingots, the microstructure and fracture of the alloy were examined. Practice has proved that the use of serious shrinkage cavity, pinhole, and bubbles of aluminum liquid, it is difficult to obtain dense castings, and even causethe whole furnace, batch castings scrapped.It was found in the study of Al Si alloy ingots of Aluminum Alloy pinhole, does not appear in the molten pure sand casting pinhole test block, when the aluminum silicon alloy ingot with low and unqualified specimens, pinhole serious, and the grain size large. The reason is the heredity of the material. The heredity of Al Si alloy and heredity increased with the increase of content and the amount of silicon reached 7%. Continue to increase silicon content to eutectic component, heredity decreases slightly again. In order to solve the casting defects caused by the heredity of the burden, aluminum ingots, intermediate alloys and other charging materials with high metallurgical quality must be selected. Specific standards are as follows:(1) there should be no pinholes or holes in the fracture surfacePinhole shall be within grade three, and local (not exceeding 25% of the inspected area) shall not exceed three grade. Over three grade shall be taken by means of heavy smelting to reduce the degree of puncture. Remelting refining method and the general Aluminum Alloy smelting, casting temperature should not exceed 660 degrees, for the original grain large aluminum ingot, alloy ingot, should be the first to use the lower mold temperature, making them rapid solidification, grain refinement.2 、 burden treatmentBefore using the burden, it should be treated by blowing sandto remove the surface rust, grease and other dirt. The time is not long, Aluminum Alloy ingot and metal scrap surface is clean without blowing sand, but should be in charge of the elimination of mixed iron filters and inserts, all shall be in charge of preheating furnace, to remove the surface of the water, shorten the melting time in 3 hours above.3 、 management and storage of burdenReasonable storage and management of burden is important to ensure the quality of alloy. The burden shall be stored in a dry warehouse with little change in temperature.2 、 preparation of crucible and melting tools(1) crucible casting aluminum alloy commonly used iron crucible, also can use cast steel and steel plate welding crucible.New and old is not for a long time in the crucible crucible, before use should be blowing sand, and heated to 700--800 degrees, to keep 2--4 hours, to burn water and attached to the inner wall of the crucible of combustible material, to be cooled to 300 degrees below, carefully clean the inside of the crucible, at a temperature not lower than 200 degrees when spraying paint.The crucible should be preheated to dark red (500--600 degrees) before use and kept warm for more than 2 hours. Before the new outer crucible melting, melting scrap with the best grades of a furnace.(two) preparation of smelting toolsZhong Zhao, press ladle, mixing spoon, ladleAt the other before use shall be preheated, and at 150 degrees ---200 degrees temperature, coated with a protective coating, and thorough drying, the drying temperature is 200--400 degrees, holding time of 2 hours, after use should be thoroughly removed attached on the surface of oxide and fluoride (preferably blowing sand).3, smelting temperature controlThe melting temperature is too low, is not conducive to the dissolution of alloying elements and gas inclusions, discharge, tendency segregation, cold shut, undercasting increase formation, but also because of insufficient heat riser, the casting without reasonable feeding, has information that,The melting temperature of all aluminum alloys should be up to 705 degrees and should be stirred. The melting temperature is too high, not only a waste of energy, more serious is because the higher the temperature, the hydrogen absorption of the grain becomes thick, aluminum oxide is more serious, some of the burning loss of alloy elements is more serious, which leads to a decrease in the mechanical properties of the alloy, casting the deterioration of mechanical properties and modification, weaken the effect of air the castings reduce.The production practice shows that the molten alloy rapid heating to high temperature, reasonable stirring to dissolve all alloy elements (especially refractory metals), scrapingscum down after the pouring temperature, so that the minimum degree of segregation, melting of hydrogen is less favorable, to obtain the uniform and compact alloy mechanical properties high. Because the aluminum melt temperature is difficult to determine with the naked eye, so no matter what type of the melting furnace, should use temperature control instrument. The instrument should be regularly checked and the maintenance cycle should thermowell with metal brush clean, coated with a protective coating, in order to ensure the accuracy and prolong the service life of the measurement result.4 、 control of smelting timeIn order to reduce the oxidation, gettering and dissolution of molten aluminum, the residence time and rapid melting of molten aluminum should be shortened. From the beginning of the melt to the end of the casting, the sand casting shall not exceed 4 hours, the die casting shall not exceed 6 hours, and the die casting shall not exceed 8 hours.In order to speed up the smelting process, should first join the scrap aluminum silicon intermediate alloy medium size, low melting point, in order to accompany the formation of molten pool as soon as possible in the crucible bottom, then add the returns for larger pieces and pure aluminum ingot, so that they can gradually expand slowly immersed in molten pool, fast melting. When the main part of the furnace is melted, the intermediate alloy with higher melting point and small quantity is melted and stirred to accelerate the melting. Finally, cool down and press the oxidizable alloy elements to reduce the loss.5, melt transfer and pouringAlthough the density of the solid alumina is similar to the density of the aluminum melt, it will take a long time to sink to the bottom of the crucible after entering the interior of the molten aluminum. Alumina film is oxidized and aluminum melt formation, but only in contact with the molten aluminum side is dense, and exposed to the air side loose and there is a lot of 60--100A diameter holes, its large surface area, strong adsorption, easy adsorption in water vapor, the tendency of anti floating. Therefore, in this film and aluminum melt proportion difference is small, be mixed with the melt, and the speed is very slow, it is difficult to exclude from the melt, porosity inclusion formation in castings too. Therefore, the key to transfer aluminum melt is to minimize the agitation of molten metal and minimize the contact between the melt and the air.By tilting the crucible melt injection, in order to avoid mixing melt and air, should be as far as possible by the ladle furnace nozzle, and inclined, melt down along the side wall of the ladle, no direct impact on the bottom of the bag, occurrence of agitation, splash.The proper and reasonable pouring method is one of the important conditions to obtain high quality castings. In the production practice, it is effective to prevent and reduce casting defects by paying attention to the following items.(1) the temperature of the melt, the capacity of the ladle and the degree of dryness of the coating on the surface shall beexamined carefully before pouring, and whether the preparation of other tools meets the requirements or not. The metal gate Cup before casting 3--5 minutes in the sand on a good place, the ladle with the temperature less than 150 degrees for premature or excessive temperature, pouring tract hold large amounts of gas, there is a danger of explosion when pouring.(two) not in the "draught" casting occasions, as well as strong melt oxidation, combustion, the casting defects such as oxide inclusions.(three) obtained by melt in the crucible, should first use of bottom oxide layer or the flux through gently melt surface, slowly immersed in the melt with the ladle, ladle a wide mouth melt, and then gently lift the ladle.(four) the end of the package should not be flat; the pace should be steady; the ladle should not be raised too high; the metal level in the ladle must be stable and free from movement.(five) to be cast, with net ladle slag should be,In order to avoid pouring slag, oxide, etc. into the mold.(six) in the casting, the melt flow is stable, can not be interrupted, not into the mouth with the bottom. Sprue should be full from beginning to end, liquid level shall not turn, casting speed should be properly controlled. Usually, the casting starts slightly slower, filling the melt, stabilizing it, then slightly faster, and keeping the casting speed constant.(seven) in the pouring process, pouring ladle and gate distance as close as possible, not more than 50 mm limit, so as not to melt too much oxidation.(eight) with a blocked gate, the plug cannot be dialed too early. After the melt has filled the gate, it is slowly tilted out so as to prevent the melt from producing eddy current when it is injected into the sprue.(nine) the melt less than 60 mm from the bottom of the crucible shall not be poured into the casting.Aluminum alloy casting (ZL)According to the main elements other than aluminum, silicon, copper, magnesium and zinc are divided into four kinds, and the codes are 100, 200, 300 and 400 respectively.In order to obtain high quality precision castings of various shapes and specifications, aluminum alloys for casting usually have the following characteristics.(1) a narrow slot filled with good liquidity part(2) there is a melting point lower than that of a general metal, but it can meet most of the requirements(3) the thermal conductivity is good, the heat of molten aluminum can be transferred rapidly to the mold, and the casting cycle is shorter(4) hydrogen and other harmful gases in the melt can be effectively controlled by treatment(5) Aluminum Alloy casting, no cracking and tearing cracking tendency(6) good chemical stability and strong corrosion resistance(7) it is not easy to produce surface defects, the casting surface has good surface finish and gloss, and easy to surface treatment(8) Aluminum Alloy casting processing performance is good, can die, die, sand and dry sand mold, gypsum type casting casting, vacuum casting, can also be used for low and high pressure casting, extrusion casting, semi-solid casting, centrifugal casting forming method, with different purposes, different varieties of production specifications and different properties of various castings.Cast aluminum alloy has been widely used in cars, such as cylinder head, intake manifold, piston, wheel hub, steering booster housing, etc.。

化学检测相关中英文对照

化学检测相关中英文对照

TEM: Subject indexAberration 像差chromatic 色差spherical 球差astigmatic像散Absorption coefficient 吸收系数abnormal 反常吸收系数uniform 均匀吸收系数Aperture 光阑objective aperture 物镜光阑selective area aperture 选区光阑condenser lens aperture 聚光镜光阑size 光阑尺寸Astigmatism 像散Anomalous absorption coefficient 反常吸收系数Alignment of electron microscope电子显微镜的对准Antiphase domains反相畴Antiphase domain boundaries 反相畴界Artefacts in specimens 样品中的人为缺陷Atomic scattering amplitude 原子散射振幅Back focal plane 后焦面Beam current density 束流密度Beam direction 电子束方向Bend contours 弯曲条纹Bend center 弯曲中心Bend extinction contours 弯曲消光条纹Bright field 明场Bright field image 明场像Burgers vector determinations柏氏矢量确定Calibration of electron microscope电子显微镜的校准Camera constant 相机常数Camera length 相机长度Cavities 空洞Characteristic images from a perfect crystal完整晶体特征图像thickness fringes 厚度消光条纹bend extinction contours 弯曲消光条纹bend contours 弯曲条纹bend center 弯曲中心Chemical polishing for specimen preparation试样的化学抛光Chromatic abberation色差Coherency of precipitates 沉淀相的共格性Coherency strain contrast 共格应变衬度Column approximation 晶柱近似Condenser lens 聚光镜Constrained strain 约束应变Dark field 暗场Dark-field images 暗场像Defocus 欠焦Deformation of specimen 试样变形Depth of field 景深Depth of focus 焦深Deviation parameter 偏移参量effective value of 有效偏移参量Diffraction contrast 衍射衬度Diffraction function 衍射函数Diffraction mode 衍射模式Diffraction pattern 衍射花样Diffraction theory 衍射理论Direct lattice images直接点阵像Dislocations 位错contrast from 位错衬度density of 位错密度determination of Burgers vector of位错柏氏矢量的确定displacement fields around 围绕位错的位移场nodes 位错结perfect (whole) 完全位错partial 不全位错Displacement fringe contrast from precipitates沉淀相粒子的位移条纹衬度Domain boundaries 畴界Double condenser lens 双聚焦透镜Double diffraction 双衍射Dynamical theory of electron diffraction电子衍射的动力学理论Edwald sphere 厄瓦尔德球Effective value 有效(值)deviation parameter 有效偏移参量extinction distance 有效消光距离Electron beam 电子束transmitted 透射(电子)束diffracted 衍射(电子)束Electron diffraction 电子衍射Electron diffraction patterns 电子衍射花样accuracy of 电子衍射花样的精度calibration of 电子衍射花样的校准effects of crystal shape电子衍射花样的形状效应indexing of 电子衍射花样的标定Kikuchi lines 菊池线花样polycrystalline ring 多晶环状衍射花样single crystal spot 单晶斑点衍射衍射streaks on 电子衍射花样的芒线Electron gun 电子枪Electron microscope 电子显微镜analytical 分析电镜attachments for 电子显微镜的附件high resolution 高分辩电镜magnification of 电子显微镜的放大倍数ray diagrams for 电子显微镜的光路图resolving power of 电子显微镜的分辩力transmission 透射电镜Electron microscopy 电子显微学(术) analytical 分析电子显微学(术) conventional 常规电子显微学high resolution 高分辩电子显微学(术) transmission 透射电子显微学Electron wavelengths 电子波长Electropolishing for specimen preparation电解抛光制备电镜试样Extinction 消光Extinction contours 消光条纹Extinction distance 消光距离Extrinsic插入型的Faults 缺陷Focus distance 焦距Foil thickness 薄膜厚度measurement of 膜厚测量Fringes 条纹displacement 位移条纹magnetic domain wall 磁畴壁条纹moire Moirre条纹precipitates, from 由沉淀相粒子引起的条纹stacking fault 层错条纹thickness 厚度条纹Goniometer stage 测角台Heating stages 加热台High order Laue Zone 高阶劳厄区High resolution electron microscopy 高分辩电镜Identification of precipitates沉淀相鉴别Illumination of specimen 试样照明contamination by 试样照明引起的污染damage by 试样照明引起的破坏Image 图像bright field 明场像dark field 暗场像intermediate 中间像rotation of 像转Image contrast 图像衬度origin of 图像衬度的来源antiphase domains, from 反相畴图像衬度antiphase domain boundaries, from反相畴界图像衬度cavities, from 空洞图像衬度dislocations, from, 位错的衬度dipoles 位错偶极子的衬度double images 位错双线衬度edges 刃型位错衬度general dislocation 一般位错的衬度inclined 倾斜位错的衬度invisibility criteria for 位错不可见位错loops 位错圈的衬度oscillation effects at 位错衬度的振荡效应partial 不全位错的衬度screws 螺型位错的衬度superdislocations 超位错的衬度surface relaxation effects位错衬度的表面松弛效应visibility rules for 位错不可见规律width of images 位错图像宽度partial dislocations 不全位错的衬度Frank Frank位错的衬度Schockley Schockley位错的衬度precipitates,from, 沉淀相粒子的衬度coherency strain field images沉淀相粒子的共格应变场衬度dislocation ring contrast沉淀相粒子的位错圈衬度displacement fringe contrast沉淀相粒子的位移条纹衬度matrix contrast 沉淀相粒子的基体衬度moire fringes 沉淀相粒子的Morrie条纹衬度orientation contrast 沉淀相粒子的取向衬度structure factor contrast沉淀相粒子的结构因子衬度visibility of 沉淀相粒子的可见性stacking faults, from, 层错引起的衬度determination of nature of 层错性质的确定twin boundaries, from 孪晶界的衬度Image force 镜像力Image formation 图像形成(成像) Ab by’s theory of Abby成像理论Image function 像函数Image mode 图像模式Image plane 像平面Image rotation 像转Inclusions 夹杂Indexing of electron patterns 电子衍射花样标定trier and error 尝试校核法known camera constant 已知相机长度standard diffraction patterns 标准衍射谱法computer simulation 计算机标定法ambiguous 不唯一性Inelastic scattering 非弹性散射Interface contrast 界面衬度Intermediate image 中间像Intermediate image plane 中间像平面Intrinsic 抽出型的Ion bombardment technique for specimen preparation 离子束轰击制样法Kikuchi pattern 菊池线花样Kikuchi lines 菊池线Kikuchi maps 菊池线图Kinematical theory of diffraction contrast运动学衍衬理论Lattice image 点阵像two beam 双束点阵(平面)像many beam 多束点阵像structure image 结构像Lattice plane spacing 点阵面间距Laue circle 劳厄园Laue zones 劳厄区high order 高阶劳厄区Line defect 线缺陷Line of no contrast 无衬度线Magnetic lens 电磁透镜aberrations of 电磁透镜的像差focal length of 电磁透镜的焦距pole-piece of 电磁透镜的极靴Many-beam effects 多束效应Measurements of; dislocation density,位错密度测量elastic strain fields of precipitates沉淀相粒子弹性应变场测量foil thickness 膜厚测量precipitate size, 沉淀相粒子尺寸测量stacking fault energy 层错能测量nodes, by 用位错结测量层错能ribbon widths, by 用层错带宽度测量层错能Microanalysis 微区分析Moire patterns Moire花样from precipitates 沉淀相粒子Moire花样mixed 混合Moire条纹parallel 平行Moire条纹rotation 旋转Moire条纹spacing of Moire条纹间距Nodes, extended threefold, 三维扩展位错结stacking fault energy from三维扩展位错结测量层错能Objective wave function 物波函数Objective lens物镜Operating vector 操作矢量Operation reflection 操作反射Orientation determination 取向确定Orientation relationship 取向关系Parallel moire patterns 平行Moire条纹Partial dislocations, contrast from平行位错的衬度determination of Burgers vectors of位错柏氏矢量的确定Frank Frank位错柏氏矢量确定Shockley Shockley位错柏氏矢量确定Particles 粒子Planar defect 面缺陷Point defects in specimen 试样中的点缺陷Pole-piece of magnetic lens 电磁透镜极靴Precipitates 沉淀相粒子contrast from 沉淀相粒子衬度size of 沉淀相粒子尺寸visibility of 沉淀相粒子可见性Precipitation contrast 沉淀相衬度Projective lens投影镜Reciprocal lattice 倒易点阵construction 倒易点阵的构筑definition of 倒易点阵的定义properties of 倒易点阵的性质Replica 复型Resolution 分辩率Ring diffraction patterns 环状衍射花样Rotation moirre patterns 旋转Moirre花样Satellites on electron diffraction patterns衍射花样卫星斑点Scattering amplitude 散射振幅Scattering of electrons 电子散射Second phase particles 第二相粒子Selected area diffraction 选区电子衍射accuracy of 选区电子衍射的精度Shape effect 形状效应Single crystal diffraction patterns单晶电子衍射花样Specimen 试样contamination of 试样污染cooling of 试样冷却deformation of 试样变形heating of 试样加热microanalysis of 试样微区分析orientation of 试样的取向preparation of 试样制备chemical machining 试样加工chemical polishing, by 用化学抛光制备试样ion bombardment, by 离子轰击制备试样electropolishing 电解抛光制备试样jet machining, by, 电解双喷制样法Specimen holder 试样台top enrty 顶插式试样台side entry 侧插式试样台Spherical aberration 球差Spinodal decomposition 拐点分解Stacking faults 层错contrast of 层错的衬度determination of nature of 确定层错的性质energy of 层错能types of 层错类型Sterogram 极图Stereomicroseopy 体视显微术Stigmator 消像散器Strain fields 应变场Streaks on electron diffraction patterns衍射花样的星芒线Structure factor 结构因子contrast from, 结构因子衬度Subsidiary fringe 副条纹Superlattice 超点阵reflections 超点阵反射Theory of diffraction contrast 衍射衬度理论kinematic 运动学衍衬理论dynamic 动力学衍衬理论Two beam approximation 双束近似Uniform absorption coefficient 反常吸收系数Viewing screen 荧光屏Weak beam technique 弱束技术Weak beam dark field image 弱束暗场象Zone 晶带Zone law晶带定理Zone axis 晶带轴Zone axis patterns 晶带轴花样HREMAiry disc Airy园(盘) Amplitude object 振幅物Amplitude contrast 振幅衬度Astigmatism 像散Astigmator 消像散器Axial 轴向照明Axial alignment 合轴调整Chromatic aberration coefficient色差系数Chromatic aberration 色差Chromatic aberration limited resolution色差限制的分辩率Cluster 偏聚区Coherence 相干性Defocus 欠焦Diffraction contrast 衍射衬度Diffraction limit 衍射极限Diffraction limited resolution 衍射限制的分辩率Diffused circle 弥散园Exact focus 准确聚焦Experimental condition 实验条件Exsolution 脱溶Focus 聚焦, 焦距, 焦点Focal length 焦距Frensnel fringes 菲捏尔条纹Grain boundaries晶界small angle 小角度晶界high angle 大角度晶界symmetrical 对称晶界asymmetrical 不对称晶界tilt 倾斜晶界Guinier-Preston zones GP区HREM images高分辩电镜图像interpretation 高分辩电镜图像的解释information available 高分辩电镜图像的信息image analysis of 图像分析computer simulation of 计算机模拟Illumination 照明axial 轴向照明tilted 倾斜照明Illumination semi-angle 照明半角Image analysis 图像分析Imaging mode 图像模式lattice plane 点阵平面像many beam 多束点阵像structure 结构像Image restoration 图像修复Incident wave 入射波Interaction constant 交互作用常数Interplanar spacing 面间距Internal standards 内标Line to line resolution 线分辩率Multi-slice approximation 多片近似Optical diffraction 光学衍射Optimum defocus 最佳欠焦(量) Optimum resolution 最佳分辩率Optimum illumination semi-angle 最佳照明半角Optimum aperture size 最佳光阑尺寸Order/disorder transition 有序/无序转变Orientation 取向Bragg Bragg取向Laue Laue取向Over focus 过焦Phase change 相位变化induced by defocus 欠焦引起的相位变化by spherical aberration 球差引起的相位变化Phase contrast 相位衬度Phase contrast transfer function 相位衬度传递函数Phase grating 相位光栅Phase grating approximation 相位光栅近似Phase object 相位物Phase object approximation 相位物近似Phase shift 相位变化Phase transition 相转变Phase transformation 相变Point source 点源Point to point 点分辩率Projected potential 投影势Propagation function 传递函数Polymorphism 多型性(转变) Resolution 分辩率line to line 线分辩率point to point 点分辩率Resolution limit 分辩率极限Scattered wave 散射波Spherical aberration 球差Spherical aberration coefficient 球差系数(C S) Spherical aberration limited resolution球差限制的分辩率Weak phase approximation 弱相位近似Tilted illumination 倾斜照明Through focus series 聚焦系列Two beam lattice plane imaging双束点阵平面像Two beam lattice fringe imaging双束点阵条纹像AEMAamorphous carbon 非晶碳EELS absolute quantification 用于EELS绝对定量analytical electron microscope 分析电镜alignment 对中calibration for EELS or EDS EELS或EDS定标analytical electron microscopy 分析电子显微学annular dark-field imaging 环状暗场像annular detector 环状探头apertures 光阑2nd condenser lens (C2) 第二聚光镜光阑effect on microanalysis 对微区分析的影响effect on microdiffraction 对微束衍射的影响effect on probe convergence 对探针会聚性的影响objective 物镜光阑selected area (SA) 选区光阑ultra-thick 超厚光阑Auger electrons俄歇electron spectroscopy 俄歇谱Bbackground spectrum 本底(背底)谱in EELS EELS背底谱subtraction in EDS 扣除EDS谱背底subtraction in EELS 扣除EDS谱背底X-rays 扣除X-射线背底(请参见bremsstrahlung 和continuum)backscattered electrons 背散射电子detector 背散射电子探头images 背散射电子像beam 电子束beam damage 电子束损伤beam-sensitive specimens 电子束敏感试样beam-specimen interactions 电子束-试样交互作用beam spreading 电子束扩展beryllium window 铍窗bremsstrahlung X-rays 背底辐射X-射线bright field detector 明场探头bright field image in STEM STEM 明场像brightness of electron source 电子源亮度Ccalibration 校准, 定标cathode ray tube 阴极射线管cathodoluminescence 阴极荧光(辐射)Cliff-Lorimer equation Cliff-Lorimer 公式condenser lens —first (C1) 第一聚光镜condenser lens —second (C2) 第二聚光镜condenser objective lens 聚光镜物镜contamination 污染use to determine thickness 用于厚度测定continuum X-rays 连续(背底)X-射线convergent beam diffraction 会聚束衍射use to determine thickness 用于厚度测定convergent beam diffraction patterns (CBDP)会聚束衍射花样convergent electron probe 会聚电子探针crystal point group (晶体)点群Ddark field detector 暗场探头dark field image in STEM STEM暗场像deconvolution 解谱, EDS或EELS of EDS spectrum, of EELS spectrumdiad symmetry 二次对称diffraction groups 衍射群diffraction maxima 衍射极大值EEDS (Energy Dispersive Spectroscopy) 能谱(能量色散谱)EDS defector能谱探头EELS spectrometer 电子能量损失谱仪EELS 电子能量损失谱 (electron energy loss spectrum) zero loss peak 零损失峰 plasmon peak 等离子振荡峰 energy loss peaks 能量损失峰 ionization edge 电离损失峰(边) background subtraction 背底扣除elastic scatter 弹性散射electron detectors 电子探头 collection angle 收集角electron energy loss spectrometer 电子能量损失谱仪electron energy loss spectrometry 电子能量损失谱 energy loss processes 电子能量损失过程 imaging/mapping 电子能量损失成象 ionization losses 电离损失 limitations 极限 plasmon losses 等离子振荡损失 spatial resolution 空间分辨率electron-hole pairs 电子-空位对electron probe 电子探针 brightness 亮度 convergence angle 会聚角 current 电流 diameter 直径energy dispersive spectrometer 能谱仪 (See X-ray energy dispersive 58spectrometer)energy filtered images 能量过滤图像extended absorption fine structure 广延吸收精细结构extraction replica 萃取复型 Ffirst order laue zone (FOLZ) 一阶劳厄区fine structure in ionization edge 电离峰(边)精细结构 post-edge (EXAFS) 峰后(EXAFS) pre-edge 峰前forbidden reflections禁止反射full width half maximum 半高宽Gg vector g 矢量Gaussian 高斯Hhard X-rays 硬X-射线higher order laue zone (HOLZ)高阶劳厄区indexing 标定lines高阶劳厄区线 reflections 高阶劳厄区反射 rings高阶劳厄区环HOLZ lines 高阶劳厄区线Iillumination system 照明系统imaging in STEM STEM 成像image enhancement 图像增强Indexing 标定 HOLZ lines 高阶劳厄区线 HOLZ patterns 高阶劳厄区花样 ZOLZ patterns 零阶劳厄区花样inelastic scatter 非弹性散射(See also electron energy loss) effect on EDS 对EDS 的影响 effect on EELS 对EELS 的影响ionization 电离ionization edges 电离损失峰(边) post-edge fine structure 峰后精细结构 pre-edge fine structure 峰前精细结构KKossel patterns (conditions) Kossel 花样Kossel-Möllenstedt fringes use to determine thickness K-M 条纹9用于确定试样厚度)Kossel-Möllenstedt (K-M) patterns K-M花样Llanthanum hexaboride gun 六硼化镧电子枪lattice parameter determination 点阵常数确定lattice strain 点阵应变effect on HOLZ lines 对高阶劳厄区线的影响lenses 透镜auxiliary 辅助透镜condenser 聚光镜condenser-objective 聚光镜-物镜intermediate 中间镜objective 物镜projector投影镜light element analysis by EDS EDS轻元素分析by EELS EELS轻元素分析limitations to X-ray analysis X-射线分析极限low loss electrons 低能量损失电子Mmicrodiffraction 微束衍射microprobe mode 微区探针模式minimum detectable mass 最小可探测质量minimum mass fraction 最小质量分数Nobjective aperture 物镜光阑objective lens 物镜Ppeak to background ratio 峰/背比in EDS spectrum EDS谱in EELS spectrum EELS谱(See also signal to noise ratio) 参见信/噪比phonon energy loss 声子能量损失plasmon energy losses 等离子振荡能量损失probe convergence angle 探针会聚角Qqualitative analysis 定性分析using EDS EDS定性分析using EE LS EE LS定性分析quantitative analysis 定量分析using E DS EDS定量分析using EE LS EE LS定量分析Rradial distribution function 径向分布函数radiation damage 辐射损伤resolution 分辨率of EDS spectrometer EDS谱仪分辨率ot EELS spectrometer EELS谱仪分辨率of STEM image STEM图像分辨率Riecke microdiffraction Riecke法微束衍射Sscanning electron microscope 扫描电镜scanning images 扫描图像scanning transmission electron microscope扫描透射电镜screw axis 螺旋轴second order laue zone (SOLZ) 二阶劳厄区secondary electrons 二次电子detectorsensitivity limits灵敏度极限in EDS EDSin EE LS EE LSspace group 空间群spurious effects 杂散效应signal processing 信号处理signal to noise ratio(See also peak to background ratio) 信/噪比spatial resolution 空间分辨率in EDS EDS in EE LS EE LSin microdiffraction 微束衍射in STEM image STEM图像spurious effects 杂散效应in EDS spectrum EDS谱杂散效应stationary diffraction pattern 稳定衍射花样strain measurements 应变测量symmetry (crystal) (晶体)对称changes 对称变化determination 对称确定systematic absences 系统消光Tterminology of CBDPs 会聚束衍射术语thickness determination 厚度确定transmitted electrons 透射电子triad symmetry 三重(次)对称tungsten hairpin filament 钨灯丝Uultra-thin window 超薄窗ultra-thick condenser apertures 超厚聚光镜光阑Vvalence electron interactions 价电子交互作用wwavelength dispersive spectrometer (WDS)波谱仪weak beam imaging 弱束暗场成象x X-ray(s) X-射线Absorption 吸收fluorescence generation 荧光的产生images/maps 像/成份分布ionization cross section 电离截面microanalysis 微区分析X-ray energy dispersive spectrometerX-射线能谱仪Calibration 校准, 定标collection angle 接收角dead layer 死层dead time 死时间efficiency 效率X-ray peak X-射线峰peak fitting in EDS 能谱峰位拟合X-ray spectrum X-射线谱background subtraction 背底扣除deconvolution 解谱digital filtering 数字过滤Yyttrium-aluminum garnet 钇铝石榴石yttrium-aluminum perovskite 钇铝钙钛矿zZ-contrast 原子序数衬度ZAF correction ZAF校正zero loss peak 零损失峰zero order laue zone (ZOLZ) 零阶劳厄区indexing 标定pattern symmetry 对称性zone axis 晶带轴patterns 晶带轴花样symmetry 对称性。

锅炉用铁基材料(英文)

锅炉用铁基材料(英文)

Code system
o SA106-A, T12, TP316
7
Designation – Stainless Steel
Series:
4xx: 马氏体Martensitic stainless steel / 铁素体stainless steel: Cr 3xx: 奥氏体Austenitic stainless steel: Cr, Ni 2xx: 奥氏体Austenitic stainless steel: Cr, Mn
Suffix
L: low carbon H: high carbon Ce, N, Cb…: corresponding element FG: fine grain F, S: ......
8
Specification Comparison
GB GB/T 699: 20 GB/T 700: Q235 GB/T 1591: Q345 GB/T 3077: 12Cr1MoV, 35CrMo, 40Cr GB/T 1220: 0Cr23Ni23 GB/T 1221: 0Cr23Ni23 GB 713: Q345R, 12Cr1MoVR GB/T 4237: 0Cr18Ni9, 0Cr13, 1Cr13 GB/T 4238: 0Cr18Ni9, 1Cr13 JB 4726: carbon and low alloy steel JB/T 9626: material of 699, 3077, 1220 ASME/ASTM A 575: M 1020 A 576: 1020 A 663: 60, 65 A 675: 65, 70 A 322: 4130 A 276: 309, 316L, 430 A 299: carbon steel - Mn, Si A 516: carbon steel – grade 55 A 387: grade 12, grade 22 A 240: 304 A 105: carbon steel A 182: F91, F22CL1, F347H A 210: carbon steel tube A 213: alloy and stainless steel tube A 106: carbon steel pipe A 335: alloy steel pipe A 312: stainless steel pipe A53: pipe, steel, welded and seamless

保护渣专用词汇英中对照

保护渣专用词汇英中对照

保护渣专用词汇英中对照连铸(continuous casting)钢种(steel grade)浇铸断面(casting format)拉速(casting speed)润滑(lubrication)传热(heat transfer)菜籽油(rape seed oil)热流(heat flow)浸入式水口(SEN-submerged entry nozzle)坯壳(steel sheel)保护渣渣膜(slag film)粉煤灰(fly ash)石灰石(limestone)苏打灰(soda ash)萤石(fluorite)硅酸盐(silicate)矿物质(mineral)合成渣(synthetic powder)熔点(melt point)成分(composition)性能(performance)炭黑(carbon black)微合金钢(microalloy steel)不锈钢(stainless steel)渣耗(powder consumption)粘结漏钢(sticker breakout)表面质量(surface quality)摩擦力(friction force)黏度(viscosity)熔化速度(melting rate)凝固系数(solidification coefficient)薄板坯(thin slab )异型坯(beam blank近终形连铸(near net shape continuous casting)石墨(black lead)焦炭(coke)硅灰石(CaO·SiO2)碱度(basicity)粉渣(granulated powder)实心颗粒渣(sincere granuled powder)预熔型保护渣(prefused powder)低碳铝镇静钢(LCAK-low carbon Alumina killed steel)针孔(pinhole)高碳钢(high carbon steel)弯月面(meniscus)振痕(oscillation mark)熔化温度(melting temperature)相图(phase diagram)伪硅灰石(wollastonite,又名tabular spar) 磷(phosphorus)硫(sulfur)助熔剂(fluxing agent)结晶(crystallizing)枪晶石(Cuspidine)钙黄长石(Akermanite)离子(ion)CaO(calcium oxide)氧化物夹杂物(oxide inclusion)玻璃性(vitrecence)CaF2(fluorite)枪晶石(3CaO。

北大考研-工学院研究生导师简介-王习东

北大考研-工学院研究生导师简介-王习东

爱考机构-北大考研-工学院研究生导师简介-王习东王习东目前任职:教授、博士生导师北京大学工学院能源与资源工程系、系主任北京大学资源高效与循环利用研究中心主任北京市“固体废弃物资源化技术与管理”重点实验室主任电话:86-10-82529083电子邮箱:教育经历:北京科技大学学士、硕士瑞典皇家工学院博士研究领域:(1)资源高效与循环利用(2)能源与环境材料背景资料:多年来,主要从事资源利用与环境材料的教学、研究工作。

先后主讲了本科生、硕士生、博士生课程等16门。

在资源综合利用物理化学与材料制备物理化学等领域做出了一定成绩。

承担或完成了包括国家杰出青年科学基金课题、国家“863”课题、国家“973”课题,国家攻关课题以及国家自然科学基金重点与面上课题在内的国家与省部级课题10余项,通过鉴定6项;申报国家发明专利30多项;获得国家与省部级科学技术奖励6项。

在国内外重要学术期刊发表学术论文100余篇,其中被“SCI”收录60余篇;出版学术专著2部。

2003年晋升教授,同年批准为博士生导师;2004年获得国家杰出青年科学基金;2005年获国务院颁发的政府特殊津贴,2006年入选“新世纪百千万人才工程”国家级人选。

获得荣誉:1996年,安徽省科技进步二等奖(排名第三)1997年,国家科技进步三等奖,(排名第三)2002年,北京市科技进步二等奖(排名第二)2002年,中国冶金科学技术二等奖(排名第二)2005年,北京市自然科学二等奖(排名第一)2006年,教育部提名国家自然科学二等奖(排名第一)发表论文(部分)[1]StudiesonthePEG-AssistedHydrothermalSynthesisandGrowthMechanismofZnOMicrorodandM esoporousMicrosphereArraysontheSubstrate,CRYSTALGROWTH&DESIGN2010,10(4):1500-15 07[2]EffectsofpretreatmentofsubstratesonthepreparationoflargescaleZnOnanotubearrays,RAREMETALS2010,29(1):21-25[3]ControllableSynthesisofHigh-puritybeta-SiAlONPowder,JOURNALOFINORGANICMATERI ALS2009,24(6):1163-1167[4]PreparationandCharacterizationofTiO2NanorodArraysviaHydrothermalApproach,RAREMETA LMATERIALSANDENGINEERING,2009,38:1060-1063[5]Thermodynamicstudyandsynthesesof-SiAlONceramics,ScienceinChinaSeriesE,2009,52(11):3122-3127[6]Copperextractionfromcopperorebyelectro-reductioninmoltenCaCl2-NaCl,ELECTROCHIMICA ACTA,2009,vol.54(18):4397-4402[7]ActivityofVO1.5inCaO-SiO2-MgO-Al2O3SlagsatLowVanadiumContentsandLowOxygenPress ures,STEELRESEARCHINTERNATIONAL,2009,Vol.80(4):251-255[8]ASimpleTwo-ParameterCorrelationModelforAqueousElectrolyteSolutionsacrossaWideRangeof Temperatures,JOURNALOFCHEMICALANDENGINEERINGDATA,2009,vol.54(2):179-186 [9]ThermodynamicActivityofChromiumOxideinCaO-SiO2-MgO-Al2O3-CrOxMelts,STEELRES EARCHINTERNATIONAL,2009,vol.80(3):202-208[10]HydrothermalsynthesisofSnO2nanoflowerarraysandtheiropticalproperties,SCRIPTAMATERI ALIA,2009vol.61(3):234-236[11]TheEffectoftheTextureandtheDensityofZnOSeedLayerontheOrientationofZnONanorodArrays, JOURNALOFNANOSCIENCEANDNANOTECHNOLOGY,2009,vol.9(10):5920-5926[12]HydrothermalPreparationandCharacterizationofNanocrystallinePorousTinDioxideThinFilms,J OURNALOFNANOSCIENCEANDNANOTECHNOLOGY,2009,vol.9(10):5770-5775[13]HydrothermalsynthesisandcharacterizationofTiO2nanorodarraysonglasssubstrates,MATERIA LSRESEARCHBULLETIN,2009,vol.44(6):1232-1237[14]PreparationandpropertiesofananoTiO2/Fe3O4compositesuperparamagneticphotocatalyst,RAR EMETALS,2009,Vol.28(5):423-427[15]EstimationofFreezingPointDepression,BoilingPointElevation,andVaporizationEnthalpiesofEle ctrolyteSolutions,INDUSTRIAL&ENGINEERINGCHEMISTRYRESEARCH,2009,vol.48(4):22 29-2235[16]Template-freehydrothermalsynthesisofsingle-crystallineSnO2nanocauliflowersandtheiroptical properties,RAREMETALS,2009,Vol.28(5):449-254[17]ThermalExpansionofMagnesiumAluminumOxynitride,HIGHTEMPERATUREMATERIALS ANDPROCESSES,2008,vol.27(2):97-101[18]EffectsofPVPonthepreparationandgrowthmechanismofmonodispersedNinanoparticles,RARE METALS,2008,vol.27(6):642-647[19]ThePreparationandCharacterizationofβ-SiAlONNanostructureWhiskers,JofNanomaterials,vol.2008,ArticleID282187[20]ExtensionoftheThree-Particle-InteractionModelforElectrolyteSolutions,MaterialsandManufact uringProcesses,23:737–742,2008[21]CorrelationandPredictionofThermodynamicPropertiesofSomeComplexAqueousElectrolytesby theModifiedThree-Characteristic-ParameterCorrelationModel,J.Chem.Eng.Data,2008,53,950–958[22]CorrelationandPredictionofThermodynamicPropertiesofNonaqueousElectrolytesbytheModifie dTCPCModel,J.Chem.Eng.Data2008,53,149–159[23]Effectsofpreparingconditionsontheelectrodepositionofwell-alignedZnOnanorodarrays,Electroc himicaActa,2008,53(14):4633-4641[24]ThermodynamicevaluationandhydrothermalpreparationofKxNa-xNbO3,RareMetals,2008,27(4) :371-377[25]Anewthree-particle-interactionmodeltopredictthethermodynamicpropertiesofdifferentelectroly tes,JournalofChemicalThermodynamics,v39,n4,April,2007,p602-612[26]Density-controlledhydrothermalgrowthofwell-alignedZnOnanorodarrays,Nanotechnology,v18, n3,Jan24,2007,p035605[27]Correlationandpredictionofactivityandosmoticcoefficientsofaqueouselectrolytesat298.15Kbyth emodifiedTCPCmodel;JournalofChemicalandEngineeringData,v52,n2,2007,p538-547[28]SynthesisandcharacterizationofMgAlON-BNcomposites,InternationalJournalofMaterialsResea rch,v98,n1,January,2007,p64-71[29]SynthesisandmicrostructureofLa-dopedCeriananoparticles,J.NanoscienceandNanotechnology, V.7No.8,2007,p2883-2888[30]Phaserelationshipofcomplexmulti-componentsystemchromatecleanerproduction,ProgressinNat uralScience,V17,No.72007,p838-844[31]SynthesisandthermodynamicanalysisofNan0-La2O3,ProgressinNaturalScience,V17,No.72007, p838-844[32]Compleximpedancestudyonnano-CeO2coatingTiO2,MATERIALS&DESIGN,2006,27(6):489-493[33]Optimizationofprocessparameterspreparinghollowfibrousnickelplaquebyweb-basedANN-GAs ystem,ACTAMETALLURGICASINICA,2005,41(12):1293-1297[34]Synthesis,evaluationandcharacterizationofaluminaceramicswithelongatedgrains,CERAMICSI NTERNATIONAL,2005,31(7):953-958[35]PropertiesandstructureofAlON-VNcompositessynthesizedbyhot-pressingtechnique,RAREME TALMATERIALSANDENGINEERING,2005,JUN.34:451-454[36]PreparationandferroelectricpropertiesofPZTfibers,CeramicsInternational,2005(31):281-286[37]Kineticstudiesofoxidationofγ-AlON-TiNcompositesJournalofAlloysandCompounds,2005,387(1-2):74-81[38]StudyoftheAlON-VNcompositeceramics,KeyEngineeringMaterials,Vols280-283,2005,1139-1 142[39]ManufactureandpropertiesofAlON-TiNparticulatecomposites,KeyEngineeringMaterials,Vols2 80-283,2005,1133-1138[40]ThermodynamicstudyofK2CrO4-K2AlO2-KOH-H2OandNa2CrO4-Na2AlO2-NaOH-H2Osys tems,J.ofUniv.Sci.Tech.Beijing,2004,(6):500-504.[41]Synthesis,MicrostructuresandPropertiesOfAluminumOxynitride,MaterialsScienceandEngineer ingA,2003,245-250[42]Influenceofdifferentseedsontransformationofaluminumhydroxidesandmorphologyofaluminagr ainsbyhot-pressing,MATERIALS&DESIGN,2003,24(3):209-214[43]SynthesisofTiN/AlONCompositeCeramics,J.Mineral,MetallurgyandMaterials,2003,10(1),49-5 3[44]Modelstoestimateviscositiesofternarymetallicmeltsandtheircomparisons,ScienceinChina,2003, (3):280-289[45]OxygenSwnsitivitynano-CeO2coatingTiO2materials,SensorsandActuatorsB,2003,92(1-2):167 -170[46]SilicaPhotonicCrystalswithQuasi-fullBandGapintheVisibleRegionPreparedinEthanol,Progressi nNaturalScience,2003,(9):717-720[47]Hightoughnessaluminaceramicswithelongatedgrainsdevelopedfromseeds,ScienceinChinaSerie sE2003,46(5):527-536[48]Kineticstudiesoftheoxidationof-aluminumoxynitride,MetallurgicalandMaterialsTransactionsB, V33B,April,2002:201~207[49]Estimationofviscosityofternary-metallicmelts,MetallurgicalandMaterialsTransactionsA,V33A, No.5,2002:201~207[50]SynthesisandcharacterisationofMgAlON,Z.Metallkde(InternationalJournalofMaterialsResearc handAdvancedTechniques),V93,No.6,2002,540-544[51]KineticstudyofoxidationofMgAlONandacomparisonoftheoxidationbehaviorofAlON,MgAlON, O’SiAlON-ZrO2andBN-ZCMceramics,Z.Metallkd(InternationalJournalofMaterialsResearchandAdv ancedTechniques),V93,No.6,2002,545-553[52]Slagcorrosionofgammaaluminumoxynitride,SteelResearch,V73,No.3,2002,91~96[53]PreparationofnanostructuredCeO2CoatedTiO2,MaterialsScienceandTechnology,V18,No.3,200 2,345~348[54]Investigationofconvertorsludgepelletsforsteelmaking,J.ofUniversityofSci.andTech.Beijing,No. 3,2002,266~269[55]Experimentalstudyandoptimizationofflamegunningparametersforsteelmakingfurnaces,Naihuo Cailiao,2002,36(6):318-321。

(完整版)无机非金属材料专业英语单词

(完整版)无机非金属材料专业英语单词

无机非金属材料专业英语单词abrasive [ ə'breisiv ]n. 磨料a. 磨蚀的,磨损的agate [ 'æɡət ]n. 玛瑙alite [ 'eilait ]n. 硅酸三钙石(C3A)alkali resistance [ 'ælkəlai ri'zistəns]耐碱性,抗碱能力alumina [ ə'lju:minə ]n. 氧化铝amorphous phase [ ə'mɔ:fəs feiz]无定形相,非晶相ampoule [ 'æmpju:l ]n. 小玻璃瓶,筒,安瓿anhydrite [ æn'haidrait ]n. 硬(无水)石膏,CaSO4 anion [ 'ænaiən ]n. 阴离子anisotropic [ æn,aisəu'trɔpik ] a. 各向异性的,非均质的anneal [ ə'ni:l ]n. & v. 退火anomaly [ ə'nɔməli ]n. 反常现象,不规则anorthite [ æ'nɔ:θait ]n. 钙长石CaO·Al2O3·2SiO2 apatite [ 'æpətait ]n. 磷灰石apparent porosity [ ə'pærənt pɔ:'rɔsiti]显气孔率asbestos [ æz'bestɔs ]n. 石棉asphalt [ 'æsfælt ]n. 沥青basicity [ bə'sisəti ]n. 碱度,碱性batch bin [ bætʃ bin]配合料料仓batch feeder [ bætʃ 'fi:də]投料机,加料器bauxite [ 'bɔ:ksait ]n. 矾土,铝矾土belite [ 'bi:lait ]n. 二钙硅酸盐(水泥)binder [ 'baində ]n. 粘胶剂,粘结剂biocompatibility [ 'baiəukəm,pætə'biləti ]n. 生物相容性biological [ ,baiəu'lɔdʒik,-kəl ] a. 生物学的,用生物(如病菌等)对付敌人的bisque firing [ bisk 'faiəriŋ]素烧(初次焙烧)body [ 'bɔdi ]n. 坯体body-centered lattice[ 'bɔdi 'sentəd 'lætis]体心格子borate [ 'bɔ:reit ]n. 硼酸盐borax [ 'bɔ:ræks ]n. 硼砂Na2B4O7·10H2Ocalcine [ 'kælsain ]v. & n. 烧结,烧成calcite [ 'kælsait ]n. 方解石calcium [ 'kælsiəm ]n. 钙capillary [ kə'piləri, 'kæpi- ] a. 细作用(的)n. 毛细管catalyst [ 'kætəlist ]n. 催化剂cation [ 'kætaiən ]n. 阳离子cellular [ 'seljulə ] a. 细胞的,由细胞组成的,多孔的cellulose [ 'seljuləus ]n. & a. 纤维素,含纤维素的ceramic [ si'ræmik ] a. 陶瓷、陶器checker [ 'tʃekə ]n. 格子砖checker chamber [ 'tʃekə 'tʃeimbə]蓄热室chemical durability [ 'kemikəl ,djuərə'biləti]化学稳定性chemical vapour deposition (CVD) [ 'kemikəl 'veipə ,depə'ziʃən]化学气相沉积cleavage [ 'kli:vidʒ ]n. 解理clinker[ 'kliŋkə ]n. 熟料、熔块coagulation[ kəuæɡju'leiʃən ]n. 凝结、凝固作用,聚集、角凝coating [ 'kəutiŋ ]n. 涂层,涂料,涂盖层collagen [ 'kɔlə,dʒen ]n. 骨胶原combustion flue [ kəm'bʌstʃən flu:]烟道complex [ 'kɔmpleks ]n. & a. 复合物,络合物;复杂的configuration [ kən,fiɡju'reiʃən ]n. 构形;(电子)排布constituent [ kən'stitjuənt ]n. 成分,组分contamination [ kən,tæmi'neiʃən ]n. 污染,杂质convection [ kən'vekʃən ]n. 对流,传递coordination numbers [ kəu,ɔ:di'neiʃən 'nʌmbəs]配位数coordination polyhedron [ kəu,ɔ:di'neiʃən ,pɔli'hi:drən]配位多面体cord [ kɔ:d ]n. 条纹,条痕(玻璃缺陷)cordierite [ 'kɔ:diərait ]n. 堇青石2MgO·2Al2O3·5SiO2 corrosion-resistant [ kə'rəuʒən ri'zistənt] a. 抗腐蚀的corundum [ kə'rʌndəm ]n. 刚玉α-Al2O3covalent [kəuˈveilənt] a. 共价的crazing[ 'kreiziŋ ]n. 细裂,龟裂,碎纹裂creep [ kri:p ]n. 蠕变cristobalite [ kris'təu,bəlait ]n. 方石英critical value [ 'kritikəl 'vælju:]临界值cross-fired glass melting furnace [ krɔ:s 'faiəd ɡlɑ:s'meltiŋ 'fə:nis]横火焰池窑crown [ kraun ]n. 炉顶,窑拱crown flint glass [ kraun flint ɡlɑ:s]冕火石玻璃crucible [ 'kru:sibl ]n. 坩埚crystallinity [kristəˈlinəti]n. 结晶度,结晶性crystallization [ ,kristəlai'zeiʃən ]n. 结晶(作用),晶化cubic [ 'kju:bik ] a. 立方晶系的cubic body-centered [ 'kju:bik 'bɔdi 'sentəd]体心立方(晶格)cubic face-centered[ 'kju:bik feis 'sentəd]面心立方(晶格)cullet [ 'kʌlit ]n. 碎玻璃,废玻璃(料)curing [ 'kjuəriŋ ]n. 固化,熟化,养护damper [ 'dæmpə ]n. 挡板,烟道闸板deflocculant [ di'flɔkjulənt ]n. 反絮凝剂,解凝剂deformation [ ,di:fɔ:'meiʃən ]n. 变形degrade [ 'di'ɡreid ]v. 降(裂,分)解,降低,衰变dendrite [ 'dendrait ]n. 树枝石,树枝状结晶densification [ ,densifi'keiʃən ]n. 密实化desiccator [ 'desikeitə ]n. 干燥器(皿)deteriorate [ di'tiəriəreit ]v. 1、(使)变坏,(使)恶化;2、损坏,消耗devitrify [ di:'vitrifai ]vt. 析晶devitrite [di:ˈvitrait]n. 失透石dielectric constant [ ,daii'lektrik 'kɔnstənt]介电常数differential thermal analysis (DTA) [ ,difə'renʃəl 'θə:məl ə'næləsis]差热分析diffraction [ di'frækʃən ]n. 衍射diffusion [ di'fju:ʒən ]n. 扩散dilatation [ ,dailə'teiʃən, dilə- ]n. 膨胀,扩展dilatometer [ ,dilə'tɔmitə ]n. 膨胀仪diode [ 'daiəud ]n. 二极管dipole moment [ 'daipəul 'məumənt]偶极矩dislocation [ ,disləu'keiʃən ]n. 位错,位移dispersion [ dis'pə:ʃən ]n. 色散,分散displacement [ dis'pleismənt ]n. 位移,易位,取代distortion [ dis'tɔ:ʃən ]n. 扭曲,变形dolomite [ 'dɔləmait ]n. 白云石MgCO3·CaCO3 domain [ dəu'mein ]n. 畴,域,范围,铁电体的均一极化区donor level [ 'dəunə 'levəl]施主能级dopant [ 'dəupənt ]n. 掺杂剂dotted line [ 'dɔtid lain]虚线drawability [ ,drɔ:ə'biləti ]n. 可纺性(玻璃纤维),可拉伸性ductile [ 'dʌktail, -til ] a. 可延展的,易变形的earthenware [ 'ə:θənwεə ]n. 陶(瓦)器eddy [ 'edi ]n. 涡流,漩涡,螺旋efflorescence [ ,eflɔ:'resəns ]n. 粉化、风化elastic modulus [ i'læstik 'mɔdjuləs]弹性模量electronegativity [ i'lektrəu,neɡə'tivəti ]n. 电负性electrophoretic [ i,lektrəfə'retik ] a. 电泳的electrostatic [ i,lektrə'stætik ] a. 静电的,静电学的embossing [ im'bɔsiŋ ]n. 浮雕,压花,压纹emulsifier [ i'mʌlsifaiə ]n. 乳化剂enamel [ i'næməl ]n. 搪瓷endothermic [ ,endəu'θə:mik,-məl ] a. 吸热的end-port furnace [ end pɔ:t 'fə:nis] (或horseshoe-fired furnace) 马蹄焰窑enstatite [ 'enstətait ]n. 顽火辉石enzyme [ 'enzaim ]n. 酶epitaxy [ 'epitæksi ]n. 外延,(晶体)取向生长epoxy [ ep'ɔksi ] a. 环氧的n. 环氧树脂erode [ i'rəud ]v. 腐蚀,受侵蚀ethylene[ 'eθili:n ]n. 乙烯eucryptite [ju:ˈkripˌtait]n. 锂霞石eutectic [ ju:'tektik ] a. 低共熔的,共晶的exothermic [ ,eksəu'θə:mik,-'θə:məl ] a. 放热的extrude [ ek'stru:d ]v. 挤压extrusion [ ek'stru:ʒən ]n. 挤出,挤压feldspar [ 'feldspɑ: ]n. 长石ferrite [ 'ferait ]n. 铁氧体ferroelectric [ ,ferəui'liktrik ] a. & n. 铁电体(性,的)filament [ 'filəmənt ]n. 细丝,灯丝filter press [ filtə pres]压滤机fineness [ 'fainnis ]n. 细度、精度、纯度fireclay [ 'faiəklei ]n. 耐火(粘)土,(耐)火泥firing [ 'faiəriŋ ]n. 烧成flaw [ flɔ: ]n. 裂纹,裂痕,瑕疵flexural strength [ˈflekʃərəl streŋθ]抗弯强度flexible [ 'fleksibl ] a. 挠性的,易柔曲的,韧性的float glass [ fləut ɡlɑ:s]浮法(平板)玻璃fluorescence [ fluə'resns ]n. 荧光,荧光性fluoride [ 'flu(:)əraid ]n. 氟化物fluorspar [ 'fluəspɑ: ]n. 萤石,氟石CaF2 fracture toughness [ 'fræktʃəˈtʌfnis]n. 断裂韧性frit [ frit ]n. 熔块、釉料garnet [ 'ɡɑ:nit ]n. 石榴石,石榴红色gel [ dʒel ]n. 凝胶germanium [ dʒə:'meiniəm ]n. 锗(Ge)glass fiber reinforced plastics[ɡlɑ:s'faibə,ri:in'fɔ:sd 'plæstiks ]玻璃纤维增强塑料(GFRP)glaze [ ɡleiz ]v. 上釉glost [ ɡlɔst ]n. 釉grain boundary [ ɡrein 'baundəri]n. 颗粒界面,晶界granulate [ 'ɡrænjuleit ]v. 粒化,成粒graphite [ 'ɡræfait ]n. 石墨green body [ ɡri:n 'bɔdi]n. 生坯,未烧坯grinding [ 'ɡraindiŋ ]n. 研磨,磨碎grit [ ɡrit ]n. 磨料gypsum [ 'dʒipsəm ]n. 石膏halide [ 'hælaid ] a. 卤化物(的),卤族的heterogeneous [ ,hetərəu'dʒi:njəs ] a. 异种的,非均质的hexagonal [ hek'sæɡənəl ] a. 六方的,六方晶系的host [ həust ]n. 基质,晶核homogeneity [ ,hɔməudʒe'ni:əti, ,həu- ]n. 均匀性,均一(性)homogeneous [ ,hɔmə'dʒi:niəs, ,həu- ] a. 均匀的,均一的humidity [ hju:'midəti ]n. 湿气,湿度hydrolysis [ hai'drɔlisis ]n. 水解(作用),加水分解immiscibility [ i,misə'biləti ]n. 不混溶性impediment [ im'pedimənt ]n. 妨碍,阻碍,障碍物impermeable [ im'pə:miəbl ] a. 不可渗透的,不透水的impurity [ im'pjuərəti ]n. 杂质,不纯物inclusion [ in'klu:ʒən ]n. 夹杂(物),掺杂index of refraction [ 'indeks ɔv ri'frækʃən]折射率inertness[iˈnə:tnis]n. 惰性infra-red spectrum [ 'inflə red 'spektrəm]红外光谱ingot[ 'iŋɡət ]n. 块料interferometer [ ,intəfə'rɔmitə ]n. 干涉仪interphase [ 'intəfeiz ]n. 界面,中间相a. 相间的interstitial [ ,intə'stiʃəl ] a. 间隙的intrinsic(al) [ in'trinsik,-kəl ] a. 内在的,固有的,本质的intrude [ in'tru:d ]v. 渗入isomorphic [ ,aisəu'mɔ:fik ] a. 同晶型的isostatic pressing [ ,aisəu'stætik 'presiŋ]n. 等静压成型isotherm [ 'aisəuθə:m ]n. 等温isotropic [ ,aisəu'trɔpik ] a. 各向同性的,均质的jiggering [ 'dʒiɡəriŋ ]n. 旋坯kaolinite [ 'keiəlinait ]n. 高岭土kiln [ kiln, kil ]n. 窑,炉lime [ laim ]n. 石灰,氧化钙limestone [ 'laimstəun ]n. 石灰石lithium [ 'liθiəm ]n. 锂lubrication [ ,lu:bri'keiʃən ]n. 润滑作用luster [ 'lʌstə ]n. 光泽v. 发光,使有光泽,给……上釉magnesium [ mæɡ'ni:ziəm, -ʃi- ]n. 镁magnesite [ 'mæɡnəsait ]n. 菱镁矿manganese[ 'mæŋɡə,ni:s]n. 锰(Mn)marls [ mɑ:l s ]n. 石灰泥matrix [ 'meitriks ]n. 基体,基质metallurgical [ ,melə'lə:dʒik,-kəl ] a. 冶金学的,冶金术的metastable [ ,metə'steibl ] a. 亚稳的,介稳的methane[ 'mi:θein ]n. 甲烷mica [ 'maikə ]n. 云母microcrack [ 'maikrəukræk ]n. 微裂纹microprobe [ 'maikrəuprəub ]n. 显微探针microstructure [ 'maikrəu,strʌktʃə ]n. 显微结构migrate [ mai'ɡreit, 'maiɡ- ]vi. 迁移mineralogy [ ,minə'rælədʒi ]n. 矿物学mineralizer [ 'minərəlaizə ]n. 矿化剂miscible [ 'misəbl ] a. 可混(合)的,可混(溶)的mixer [ 'miksə ]n. 混合机,混料机modification [ ,mɔdifi'keiʃən ]n. 更改,修改,变体modifier [ 'mɔdifaiə ]n. 调整体modulus [ 'mɔdjuləs, -dʒu- ]n. 模数,模量moldable [ˈməuldəbl] a. 可塑的,可模制的monoclinic [ ,mɔnəu'klinik ] a. 单斜的monolithic [ ,mɔnəu'liθik ]n. 单片(块)a. 整体的,单块的mortar [ 'mɔ:tə ]n. 砂(灰、泥)浆mullite [ 'mʌlait ]n. 莫来石multicomponent[ˌmʌltikəmˈpəunənt] a. 多成分的,多元的multiplicity [ ,mʌlti'plisəti ]n. 多样(性),多重性,大量mutrual orientation [ 'mju:tʃuəl ,ɔ:rien'teiʃən]相互取向needle-like [ 'ni:dl laik]针状neutralisation [ ,nju:trəlai'zeiʃən ]n. 中和(作用,法)nitridation [ ,naitri'deiʃən ]n. 氮化notch [ nɔtʃ ]n. 凹口,槽口observable [ əb'zə:vəbl ] a. 可观察到的,可以察觉的octahedral [ ,ɔktə'hedrəl, -'hi:- ] a. 八面体的octahedron [ ,ɔktə'hedrən, -'hi:- ]n. 八面体olivine [ ,ɔli'vi:n, 'ɔlivi:n ]n. 橄榄石opacity [ əu'pæsiti ]n. 乳浊,不透光性,浑浊度,不透明度opaque [ əu'peik ] a. 不透明的,模糊的optical flint [ 'ɔptikəl flint]火石光学玻璃optical crown [ 'ɔptikəl kraun]冕牌光学玻璃optics [ 'ɔptiks ]n. 光学optimum [ 'ɔptiməm ]n. 最佳条件orbital hybridation [ 'ɔ:bitəl haibriˈdeiʃən]轨道杂化organosilane [ 'ɔ:ɡənəu'silein]n. 有机硅烷orient [ 'ɔ:riənt, 'əu-, 'ɔ:rient ]n. 东方vt. 定……的方位orthorhombic [ ,ɔ:θə'rɔmbik ] a. 正交(晶)的,斜方(晶)的orthosilicate [ˌɔ:θəˈsiləkeit]n. 正(原)硅酸盐oscillate [ 'ɔsileit ]v. 振荡,振动overlap [ ,əuvə'læp, 'əuvəlæp ]vt. 与……重叠,与……部分一致overview [ 'əuvəvju: ]n. 综述,概述,概观oxalate [ 'ɔksəleit ]n. 草酸盐pelletization [ ,pelitai'zeiʃən ]n. 造球,球粒化作用particle size distribution [ 'pɑ:tikl saiz ,distri'bju:ʃən]粒径分布particulate [ pə'tikjulit ]n. & a. 粒子,细粒(的)peel [ pi:l ]v. 剥,削,剥落pellet [ 'pelit ]n. 片,粒化(料),丸permeation[ˌpə:miˈeiʃən]n. 渗入,透过permissible [ pə'misibl ] a. 容许的,许可的perpendicular [ ,pə:pən'dikjulə ] a. 垂直的petrochemical [ ,petrəu'kemikəl ] a. & n. 化工的,化工产品phase transition [ feiz træn'siʒən]相变phosphate [ 'fɔsfeit ]n. 磷酸盐photonic [ fəu-'tɔnik ] a. 光子的,光电子的piezoceramic [ pi:'eizəu si'ræmik ]n. 压电陶瓷pigment [ 'piɡmənt ]n. 颜(色)料pitch [ pitʃ ]n. 沥青placement [ 'pleismənt ]n. 放置,布局plasma [ 'plæzmə ]n. 等离子体,等离子区platinum [ 'plætinəm ]n. 铂plotter [ 'plɔtə ]n. 绘图器,测绘仪;制图员plunger [ 'plʌndʒə ]n. 活塞,园柱,插棒polarization [ ,pəulərai'zeiʃən, -ri'z- ]n. 极化,偏振polycrystalline [ ,pɔli'kristəlain, -lin ] a. 多晶的polyhedron [ ,pɔli'hi:drən, -he- ]n. 多面体polymorphic [ ,pɔli'mɔ:fik ] a. 多形的,多态的,多晶的porosity [ pɔ:'rɔsiti, pəu- ]n. 气孔率,多孔性postulate [ 'pɔstjuleit, -tʃə- ]n. 假定,假设potash [ 'pɔtæʃ ]n. 碳酸钾pottery [ 'pɔtəri ]n. 陶器厂,陶器(制造术)precursor [ pri:'kə:sə, pri- ]n. 前驱物premise [ pri'maiz, 'premis ]n. 前提vt. 预述(条件),提出……为前提prism [ 'prizm ]n. 棱镜prismatic [ priz'mætik ] a. 斜方晶系的probe [ prəub ]v. & n. 探针,探测器,(以探针等)探察,查明progressively [ prəu'ɡresiv li ]ad. 日益增多地,逐渐projection [ prəu'dʒekʃən ]n. 喷射prolong [ prə'lɔŋ, 'lɔ:ŋ ]vt. 拉长,延长prospective [ prəu'spektiv ] a. 预期的,有希望的prototype [ 'prəutətaip ]n. 原型,样品pseudomorph [ 'psju:dəumɔ:f ]n. 假象,假晶quarry [ 'kwɔri ]n. 采石场quartzite [ 'kwɔ:tsait ]n. 石英岩,硅岩quench [ kwentʃ ]vt. 1、把……淬火;2、熄灭ram [ ræm ]v. 猛击,填塞,撞reagent [ ri:'eidʒənt ]n. 试剂rearrangement [ 'ri:ə'reindʒmənt ]n. 重排reciprocal [ ri'siprəkəl ]n. 倒数reciprocate [ ri'siprəkeit ]v. 往复运动,上下移动,来回recycle [ ,ri:'saikl ]v. & n. 再循环,反复利用refining[riˈfainiŋ]n. (玻璃液)澄清reflectivity [ ,ri:flek'tiviti ]n. 反射性,反射系数refraction [ ri'frækʃən ]n. 折射refractive index [ ri'fræktiv 'indeks]n. 折射率refractoriness[ ri'fræktərinis]n. 耐火度refractory [ ri'fræktəri ]n. & a. 耐火材料,耐熔的,难熔的rigorous [ 'riɡərəs ] a. 严厉的,严酷的replica [ 'replikə ]n. 复制品,拷贝resonator [ 'rezəneitə ]n. 谐振器,共振器retract [ ri'trækt ]vt. 缩进,收缩retrieve [ ri'tri:v ]vt. 1、取回,恢复;2、补偿,弥补retrogression [ ,retrəu'ɡreʃən ]n. 逆反应rheology [ ri:'ɔlədʒi, ri- ]n. 流变性rhombohedral [ˌrɔmbəuˈhi:drəl] a. 菱形的,菱面体的ruby [ 'ru:bi ]n. 红宝石rupture [ 'rʌptʃə ]n. 断裂rutile [ 'ru:tail, -ti:l ]n. 金红石sagger [ 'sæɡə ]n. 闸体sanitaryware[ˈsænitəriwɛə]n. 卫生洁具schematically[ski:ˈmætikəli]ad. 用示意图,示意地,大略地scrap [ skræp ]n. 碎片,废料screw dislocation [ skru: ,disləu'keiʃən]螺旋位错cullet [ 'kʌlit ]n. 碎玻璃seam [ si:m ]n. 缝,接缝segregation [ ,seɡri'ɡeiʃən ]n. 分层sensor [ 'sensə, -sɔ: ]n. 传感器setting time[ 'setiŋ taim]硬化时间setup [ 'setʌp ]n. 1、组织,构造;2、装置,装配,创立shear [ ʃiə ]n. 剪切shrinkage [ 'ʃriŋkidʒ ]n. 收缩(性,量,率)shutdown [ 'ʃʌtdaun ]n. 关闭,熄灭sieve [ siv ]vt. & n. 筛分silicate [ 'silikit, -keit ]n. 硅酸盐silo [ 'sailəu ]n. 料仓,简仓sintering [ 'sintəriŋ ]n. 烧结skid [ skid ]n. 1、滑动,打滑;2、滑橇,划板slab [ slæb ]n. 板皮,石板岩,厚平板,厚片slag [ slæɡ ]n. (炉)渣slip casting [ slip 'kɑ:stiŋ]n. 注浆成型,泥浆浇注slurry [ 'slə:ri, 'slʌ- ]n. 稀泥浆,水泥浆soda ash [ 'səudə æʃ]苏打灰Na2CO3sodium [ 'səudiəm ]n. 纳(Na)solder [ 'sɔldə ]n. & vt. 焊料,焊接spall [ 'spɔ:l ]v. 研碎,散裂spark plug [ spɑ:k plʌɡ]n. 火花塞spatial orientations [ 'speiʃəl ,ɔ:rien'teiʃəns]空间取向spherically [ 'sferikəli]ad. 球地,球形地spindle [ 'spindl ]n. 1、轴,心轴;2、锭子,纺锤spine [ spain ]n. 脊柱spinel [ spi'nel, 'spinəl ]n. 尖晶石spodumene [ 'spɔdjumi:n ]n. 锂辉石Li2O·Al2O3·4SiO2 spray-drying[ sprei 'draiiŋ]n. 喷雾干燥sputter deposition [ 'spʌtə ,depə'ziʃən]溅射沉积stochastic [ stɔ'kæstik, stəu- ] a. 随机的,机遇的,推测的stoichiometric [ ,stɔikiə'metrik ] a. 化学计量的stoneware [ 'stəunwεə ]n. 石制品,粗陶瓷(器)stress-strain curve [ stres strein kə:v]应力-应变曲线subjective [ səb'dʒektiv ] a. 主观的submicrometer [ sʌb 'maikrəu mi:tə ]n. 亚微米suffice [ sə'fais ]v. 足够,使满足superconductor [ ,sju:pəkən'dʌktə ]n. 超导体superfine [ ,sju:pə'fain ] a. 特级的supersaturation [ 'sju:pə,sætʃə'reiʃən ]n. 过饱和(现象)surfactant [ sə:'fæktənt ]n. 表面活化剂suspension [ sə'spenʃən ]n. 悬浮液symmetry [ 'simitri ]n. 对称,匀称symposium [ sim'pəuziəm ]n. 1、专题讨论会;2、专题论文集talc [ tælk ]n. & vt. 滑石,用滑石处理tantalum [ 'tæntələm ]n. 钽tar [ tɑ: ]n. 焦油temporal [ 'tempərəl ] a. 1、暂时的,转瞬间的;2、时间的tensile strength [ 'tensail streŋθ]抗张强度ternary [ 'tə:nəri ] a. & n. 三元(的),三重(的)tetragonal [ te'træɡənəl ] a. 四方晶系的tetrahedron [ ,tetrə'hi:drət, -'he- ]n. 四面体tetravalent [ ,tetrə'veilənt, te'trævə- ] a. 四价的texture [ 'tekstʃə ]n. 织构,质地,结构thermalcouple [ 'θə:məl 'kʌpl]n. 热电偶thermal expansion coefficient[ 'θə:məl ik'spænʃən ,kəui'fiʃənt ]热膨胀系数thermal shock resistance[ 'θə:məl ʃɔk ri'zistəns ]抗热震(性)thermoplastic[ ,θə:məu'plæstik ] a. 热塑性的throwing[ 'θrəuiŋ ]n. 手工拉坯titania [ tai'teiniə, ti- ]n. 二氧化钛titanate [ 'taitəneit ]n. 钛酸盐tolerance [ 'tɔlərəns ]n. 公差,容许限度toughness[ tʌfnis ] n. 韧性toxicity [ tɔk'sisəti ]n. 毒性translucent [ trænz'lju:sənt, træns-, trɑ:n- ]n. 半透明的tridymite [ 'tridimait ]n. 磷石英trigonal [ 'triɡənəl, trai'ɡəunəl ] a. 三方的valency [ 'veilənsi ]n. 化合价,价,原子价varistor [ və'ristə ]n. 压敏电阻,可变电阻versatile [ 'və:sətail ] a. 1、通用的,万能的;2、活动的,万向的vertebra [ 'və:tibrə ]n. 椎骨,脊椎(pl. vertebrae)vinylalcohol [ 'vainil 'ælkəhɔl]n. 乙烯醇vitreous [ 'vitriəs ] a. 玻璃质的,玻璃态的vitrification [ ,vitrifi'keiʃən ]n. 玻璃化vitrify [ 'vitrifai ]v. 玻璃化,(使)成玻璃volatilization [ vɔ,lætilai'zeiʃən ]n. 挥发wetting[ 'wetiŋ ]n. (变、润、浸)湿whisker [ 'hwiskə ]n. 晶须whiteware [ 'hwaitwεə ]n. 白色(卫生)陶瓷wollastonite [ 'wuləstənait ]n. 硅灰石workability [ ,wə:kə'biləti ]n. 成型性zeolite [ 'zi:əlait ]n. 沸石zinc[ ziŋk ]n. 锌zirconia [ 'zə:kɔniə]n. 氧化锆zircon [ 'zə:kɔn ]n. 锆石,锆英石。

美国铝业协会2015年最新变形铝及铝合金化学成分

美国铝业协会2015年最新变形铝及铝合金化学成分
This registration record is not intended to address all regulatory requirements that may
be imposed by local, national or international governing bodies. Regulatory requirements, which vary by region and end use, can further restrict the chemical composition within the registered limits. When applicable, inclusion of such requirements in the sales agreement is advised.
© Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal.
Use of the Information
DECLARATION OF ACCORD .............................................................................. 31
FOREWORD
Listed herein are designations and chemical composition limits for wrought aluminum and
International Alloy Designations and

结晶氯化铝两步焙烧制备氧化铝的研究

结晶氯化铝两步焙烧制备氧化铝的研究

doi:10.3969/j.issn.1007-7545.2020.01.009结晶氯化铝两步焙烧制备氧化铝的研究李文清,邹萍,池君洲,刘大锐,吴永峰(神华准能资源综合开发有限公司,内蒙古鄂尔多斯010300)摘要:粉煤灰盐酸法生产氧化铝工艺中的结晶氯化铝经焙烧后转化为氧化铝产品,焙烧方式对氧化铝的理化性质有较大的影响。

研究了不同焙烧温度下结晶氯化铝的物相转化.并进行了低温、高温两步焙烧及烟气吸收试验。

结果表明,两步焙烧产生的氧化铝内部为多层片状结构,疏松多孔,晶型为rAi2o3,未生成a-Al2O3,产品粒度大于一步焙烧产出的氧化铝,有利于氧化铝电解;烟气中氯化氢回收率95.79%,吸收效率较高。

关键词:结晶氯化铝;两步焙烧;氧化铝中图分类号:TF821文献标志码:A文章编号:1007-7545(2020)01-0040-06Study on Preparation of Alumina by Two-Step Calcination ofCrystalline Aluminum ChlorideLI Wen-qing,ZOU Ping,CHI Jun-zhou,LIU Da-rui,WU Yong-feng(Shenhua Zhungeer Energy Resource Comprehensive Development Co.Ltd,Erdos010300»Inner Mongolia,China)Abstract:Crystalline aluminum chloride in alumina production process by fly ash hydrochloric acid method is calcined and converted into an alumina product,and calcination method has great influence on physical and chemical properties of alumina.Phase transformation of crystalline aluminum chloride at different calcination temperatures was studied,and two-step roasting at low temperature and high temperature and flue gas absorption tests were carried out.The results show that interior of alumina produced by two-step calcination has multi-layered sheet-like loose and porous structure w让h crystal form of y-Al2O3»and a-Al2O3is not formed・Particle size of product is bigger than that of alumina produced by one-step calcination,which is beneficial to alumina electrolysis.Recovery rate of hydrochloric acid is95.79%,and absorption efficiency of hydrogen chloride in calcined flue gas is high・Key words:crystalline aluminum chloride;two-step roasting;alumina粉煤灰是燃煤电厂产生的一种固体废弃物,利用盐酸浸岀粉煤灰中的氧化铝,盐酸浸出液蒸发浓缩得到结晶氯化铝,再经焙烧可获得氧化铝产品内蒙古准格尔矿区的煤炭燃烧后粉煤灰中Al2o3含量高达50%,被称为“高铝粉煤灰”,是提取氧化铝的理想原料⑷。

含硅氧化铝催化剂英语

含硅氧化铝催化剂英语

含硅氧化铝催化剂英语Silicon-alumina catalysts, also known as silica-alumina catalysts, are widely used in various catalytic reactions due to their excellent catalytic properties, high thermal stability, and good mechanical strength. These catalysts are typically prepared by combining silica and alumina in specific ratios, and then subjecting them to high-temperature calcination to form a homogeneous catalyst support.The catalytic activity of silicon-alumina catalysts is mainly attributed to their unique acid-base properties. Silica and alumina have different acid-base strengths, which can be adjusted by varying their composition and preparation methods. The presence of acidic and basic sites on the catalyst surface promotes the adsorption and activation of reactants, thereby enhancing the rate of catalytic reactions.Silicon-alumina catalysts are widely used inpetrochemical, fine chemical, and environmental protection industries. In the petrochemical industry, they are commonly used for catalytic cracking, isomerization, alkylation, and dehydrogenation reactions. In fine chemical synthesis, they are often used for esterification, dehydration, and hydrogenation reactions. In addition, these catalysts also play an important role in environmental protection, such as for the catalytic combustion of volatile organic compounds (VOCs) and the catalytic reduction of nitrogen oxides (NOx).The preparation of silicon-alumina catalysts involves several key steps, including raw material selection, mixing and grinding, shaping, drying, and calcination. The selection of raw materials is crucial, as it directly affects the physical and chemical properties of the final catalyst. Silica and alumina sources with high purity and uniform particle size are preferred. During the mixing and grinding process, the silica and alumina are uniformly dispersed in a suitable solvent to form a homogeneous slurry. The slurry is then shaped into pellets or extrudates using various molding techniques. The shapedcatalyst is then dried and calcined at high temperatures to remove volatile components and enhance the structural stability of the catalyst.The performance of silicon-alumina catalysts is evaluated based on various parameters such as catalytic activity, selectivity, stability, and regenerability. Catalytic activity is measured by the rate of reaction catalyzed by the catalyst, while selectivity refers to the ability of the catalyst to promote the desired reaction pathway over alternative, unwanted side reactions.Stability indicates the ability of the catalyst to maintain its performance over time and under various operating conditions. Regenerability refers to the ability of the catalyst to be regenerated or reused after being deactivated during the catalytic process.The deactivation of silicon-alumina catalysts can be caused by various factors such as coke deposition, sintering, and poisoning. Coke deposition occurs when carbonaceous species formed during the reaction accumulate on the catalyst surface, blocking active sites and reducingcatalytic activity. Sintering refers to the growth of catalyst particles during high-temperature operations, leading to a decrease in surface area and porosity, whichin turn reduces catalytic activity. Poisoning occurs when harmful species such as sulfur or phosphorus compounds adsorb on the catalyst surface and block active sites.To address these issues, various strategies have been developed to enhance the stability and regenerability of silicon-alumina catalysts. One common approach is to incorporate metal oxides or other promoters into the catalyst to modify its acid-base properties and improve catalytic performance. For example, the addition of transition metal oxides such as platinum, palladium, or nickel can enhance the catalytic activity and selectivity of silicon-alumina catalysts for specific reactions.Another strategy is to design catalyst supports with optimized pore structure and surface area. The pore size and shape of the support affect the distribution of active sites and the accessibility of reactants to these sites. By controlling the pore structure, it is possible to optimizethe catalytic performance of silicon-alumina catalysts for specific reactions.In addition, surface modification techniques such as acid or base treatment can be used to modify the acid-base properties of silicon-alumina catalysts. These treatments can enhance the adsorption and activation of reactants, thereby improving catalytic activity and selectivity.Overall, silicon-alumina catalysts play a crucial role in various catalytic reactions due to their excellent catalytic properties and stability. By optimizing their preparation methods, composition, and surface properties, it is possible to further enhance their performance and expand their applications in various industries.。

金属材料专业英语词汇

金属材料专业英语词汇

Material Science 材料科学Material Science Definition 材料科学定义Machinability[məʃi:nə'biliti]加工性能Strength .[streŋθ]强度Corrosion & resistance durability.[kə'rəʊʒən] &[ri'zistəns] .[ 'djʊrə'bɪlətɪ] 抗腐蚀及耐用Special metallic features 金属特性Allergic, re-cycling & environmental protection 抗敏感及环境保护Chemical element 化学元素Atom of Elements 元素的原子序数Atom and solid material 原子及固体物质Atom Constitutes 原子的组织图Periodic Table 周期表Atom Bonding 原子键结合Metal and Alloy 金属与合金Ferrous & Non Ferrous Metal 铁及非铁金属Features of Metal 金属的特性Crystal Pattern 晶体结构Crystal structure, Space lattice & Unit cell 晶体结构,定向格子及单位晶格X – ray crystal analytics method X线结晶分析法Metal space lattice 金属结晶格子Lattice constant 点阵常数Mill's Index 米勒指数Metal Phase and Phase Rule金相及相律Solid solution 固熔体Substitutional type solid solution 置换固熔体Interstitial solid solution 间隙固熔体Intermetallic compound 金属间化合物Transformation 转变Transformation Point 转变点Magnetic Transformation 磁性转变Allotropic Transformation 同素转变Thermal Equilibrium 热平衡Degree of freedom 自由度Critical temperature 临界温度Eutectic 共晶Peritectic [.peri’tekti k] Temperature包晶温度Peritectic Reaction 包晶反应Peritectic Alloy 包晶合金Hypoeutectic Alloy 亚共晶体Hypereutectic Alloy 过共晶体Plastic Deformation 金属塑性Slip Plan 滑动面Distortion 畸变Work Hardening 硬化Annealing 退火Crystal Recovery 回复柔软Recrystallization 再结晶Properties & testing of metal 金属材料的性能及试验Chemical Properties 化学性能Physical Properties 物理性能Magnetism 磁性Specific resistivity & specific resistance 比电阻Specific gravity & specific density比重Specific Heat比热热膨胀系数 Coefficient of thermal expansion导热度 Heat conductivity机械性能 Mechanical properties屈服强度(降伏强度) (Yield strength)弹性限度、杨氏弹性系数及屈服点 elastic limit, Young’s module of elasticity to yield point伸长度 Elongation断面缩率 Reduction of area破坏性检验 destructive inspections渗透探伤法 Penetrate inspection磁粉探伤法 Magnetic particle inspection放射线探伤法 Radiographic inspection超声波探伤法 Ultrasonic inspection显微观察法 Microscopic inspection破坏的检验 Destructive Inspection冲击测试 Impact Test疲劳测试 Fatigue Test蠕变试验Creep Test潜变强度 Creeps Strength第一潜变期 Primary Creep第二潜变期 Secondary Creep第三潜变期 Tertiary Creep主要金属元素之物理性质 Physical properties of major Metal Elements工业标准及规格–铁及非铁金属 Industrial Standard – Ferrous & Non – ferrous Metal磁力 Magnetic简介 General软磁 Soft Magnetic硬磁 Hard Magnetic磁场 Magnetic Field磁性感应 Magnetic Induction导磁率[系数,性] Magnetic Permeability磁化率 Magnetic Susceptibility (Xm)磁力(Magnetic Force)及磁场 (Magnetic Field)是因物料里的电子 (Electron)活动而产生抗磁体、顺磁体、铁磁体、反铁磁体及亚铁磁体 Diamagnetism, Paramagnetic, Ferromagnetisms, Antiferromagnetism & Ferrimagnetisms抗磁体 Diamagnetism磁偶极子 Dipole负磁力效应 Negative effect顺磁体 Paramagnetic正磁化率 Positive magnetic susceptibility铁磁体 Ferromagnetism转变元素 Transition element交换能量 Positive energy exchange外价电子 Outer valence electrons化学结合 Chemical bond自发上磁 Spontaneous magnetization磁畴 Magnetic domain相反旋转 Opposite span比较抗磁体、顺磁体及铁磁体 Comparison of Diamagnetism, Paramagnetic & Ferromagnetism反铁磁体 Antiferromagnetism亚铁磁体 Ferrimagnetism磁矩 magnetic moment净磁矩 Net magnetic moment钢铁的主要成份 The major element of steel钢铁用"碳"之含量来分类 Classification of Steel according to Carbon contents铁相 Steel Phases钢铁的名称 Name of steel铁素体Ferrite渗碳体 Cementitle奥氏体 Austenite珠光体及共析钢 Pearlite &Eutectoid奥氏体碳钢 Austenite Carbon Steel单相金属 Single Phase Metal共释变态 Eutectoid Transformation珠光体 Pearlite亚铁释体 Hyppo-Eutectoid初释纯铁体 Pro-entectoid ferrite过共释钢 Hype-eutectoid粗珠光体 Coarse pearlite中珠光体 Medium Pearlite幼珠光体 Fine pearlite磁性变态点 Magnetic Transformation钢铁的制造 Manufacturing of Steel连续铸造法 Continuous casting process电炉 Electric furnace均热炉 Soaking pit全静钢 Killed steel半静钢 Semi-killed steel沸腾钢(未净钢) Rimmed steel钢铁生产流程 Steel Production Flow Chart钢材的熔铸、锻造、挤压及延轧 The Casting, Fogging, Extrusion, Rolling & Steel熔铸 Casting锻造 Fogging挤压 Extrusion延轧Rolling冲剪 Drawing & stamping特殊钢以元素分类Classification of Special Steel according to Element特殊钢以用途来分类 Classification of Special Steel according to End Usage 易车(快削)不锈钢 Free Cutting Stainless Steel含铅易车钢 Leaded Free Cutting Steel含硫易车钢 Sulphuric Free Cutting Steel硬化性能 Hardenability钢的脆性 Brittleness of Steel低温脆性 Cold brittleness回火脆性 Temper brittleness日工标准下的特殊钢材 Specail Steel according to JIS Standard铬钢–日工标准 JIS G4104 Chrome steel to JIS G4104铬钼钢钢材–日工标准 G4105 62 Chrome Molybdenum steel to JIS G4105镍铬–日工标准 G4102 63 Chrome Nickel steel to JIS G4102镍铬钼钢–日工标准 G4103 64 Nickel, Chrome & Molybdenum Steel to JIS G4103高锰钢铸–日工标准 High manganese steel to JIS standard片及板材 Chapter Four-Strip, Steel & Plate冷辘低碳钢片(双单光片)(日工标准 JIS G3141) 73 - 95 Cold Rolled (Low carbon) Steel Strip (to JIS G 3141)简介 General美材试标准的冷辘低碳钢片 Cold Rolled Steel Strip American Standard – American Society for testing and materials (ASTM)日工标准 JIS G3141冷辘低碳钢片 (双单光片)的编号浅释 Decoding of cold rolled(Low carbon)steel strip JIS G3141 材料的加工性能 Drawing ability硬度 Hardness表面处理 Surface finish冷辘钢捆片及张片制作流程图表 Production flow chart cold rolled steel coil sheet冷辘钢捆片及张片的电镀和印刷方法 Cold rolled steel coil & sheet electro-plating & painting method冷辘(低碳)钢片的分类用途、工业标准、品质、加热状态及硬度表 End usages, industrial standard, quality, condition and hardness of cold rolled steel strip硬度及拉力 Hardness & Tensile strength test拉伸测试(顺纹测试) Elongation test杯突测试(厚度: 0.4公厘至 1.6公厘,准确至 0.1公厘 3个试片平均数 ) Erichsen test (Thickness: 0.4mm to 1.6mm, figure round up to 0.1mm)曲面(假曲率) Camber厚度及阔度公差 Tolerance on Thickness & Width平坦度(阔度大于 500公厘,标准回火 ) Flatness (width>500mm, temper: standard)弯度 Camber冷辘钢片储存与处理提示 General advice on handling & storage of cold rolled steel coil & sheet 防止生锈 Rust Protection生锈速度表 Speed of rusting焊接 Welding气焊 Gas Welding埋弧焊 Submerged-arc Welding电阻焊 Resistance Welding冷辘钢片(拉力: 30-32公斤/平方米)在没有表面处理状态下的焊接状况 Spot welding conditions for bared (free from paint, oxides etc) Cold rolled mild steel sheets(T/S:30-32 Kgf/ µ m2)时间效应(老化)及拉伸应变 Aging & Stretcher Strains日工标准(JIS G3141)冷辘钢片化学成份 Chemical composition – cold rolled steel sheet to JIS G3141冷辘钢片的"理论重量"计算方程式 Cold Rolled Steel Sheet – Theoretical mass 日工标准(JIS G3141)冷辘钢片重量列表 Mass of Cold-Rolled Steel Sheet to JIS G3141冷辘钢片订货需知Ordering of cold rolled steel strip/sheet其它日工标准冷轧钢片(用途及编号) JIS standard & application of other cold Rolled Special Steel电镀锌钢片或电解钢片Electro-galvanized Steel Sheet/Electrolytic Zinc Coated Steel Sheet电解/电镀锌大大增强钢片的防锈能力Galvanic Action improving Weather & Corrosion Resistance of the Base Steel Sheet上漆能力 Paint Adhesion电镀锌钢片的焊接 Welding of Electro-galvanized steel sheet点焊 Spot welding滚焊 Seam welding电镀锌(电解)钢片 Electro-galvanized Steel Sheet生产流程 Production Flow Chart常用的镀锌钢片(电解片)的基层金属、用途、日工标准、美材标准及一般厚度 Base metal, application, JIS & ASTM standard, and Normal thickness of galvanized steel sheet锌镀层质量 Zinc Coating Mass表面处理 Surface Treatment冷轧钢片 Cold-Rolled Steel Sheet/Strip热轧钢片 Hot-Rolled Sheet/Strip电解冷轧钢片厚度公差 Thickness Tolerance of Electrolytic Cold-rolled sheet热轧钢片厚度公差 Thickness Tolerance of Hot-rolled sheet冷轧或热轧钢片阔度公差 Width Tolerance of Cold or Hot-rolled sheet长度公差 Length Tolerance理论质量 Theoretical Mass锌镀层质量(两个相同锌镀层厚度) Mass Calculation of coating (For equal coating)/MM锌镀层质量(两个不同锌镀层厚度) Mass Calculation of coating (For differential coating)/MM镀锡薄铁片(白铁皮/马口铁) (日工标准 JIS G3303)简介 General镀锡薄铁片的构造 Construction of Electrolytic Tinplate镀锡薄钢片(白铁皮/马日铁)制造过程 Production Process of Electrolytic Tinplate锡层质量 Mass of Tin Coating (JIS G3303-1987)两面均等锡层 Both Side Equally Coated Mass两面不均等锡层 Both Side Different Thickness Coated Mass级别、电镀方法、镀层质量及常用称号Grade, Plating type, Designation of Coating Mass & Common Coating Mass镀层质量标记 Markings & Designations of Differential Coatings硬度 Hardness单相轧压镀锡薄铁片(白铁皮/马口铁) Single-Reduced Tinplate双相辗压镀锡薄钢片(马口铁/白铁皮) Dual-Reduction Tinplate钢的种类 Type of Steel常用尺寸 Commonly Used Size电器用硅 [硅] 钢片 Electrical Steel Sheet简介 General软磁材料 Soft Magnetic Material滞后回线 Narrow Hysteresis矫顽磁力 Coercive Force硬磁材料 Hard Magnetic Material最大能量积 Maximum Energy Product硅含量对电器用的低碳钢片的最大好处 The Advantage of Using Silicon low Carbon Steel晶粒取向(Grain-Oriented)及非晶粒取向(Non-Oriented) Grain Oriented & Non-Oriented电器用硅 [硅] 钢片的最终用途及规格 End Usage and Designations of Electrical Steel Strip电器用的硅 [硅] 钢片之分类 Classification of Silicon Steel Sheet for Electrical Use电器用钢片的绝缘涂层 Performance of Surface Insulation of Electrical Steel Sheets晶粒取向电器用硅钢片主要工业标准 International Standard – Grain-Oriented Electrical Steel Silicon Steel Sheet for Electrical Use晶粒取向电器用硅钢片 Grain-Oriented Electrical Steel晶粒取向,定取向芯钢片及高硼定取向芯钢片之磁力性能及夹层系数 (日工标准及美材标准) Magnetic Properties and Lamination Factor of SI-ORIENT-CORE& SI-ORIENT-CORE-HI B Electrical Steel Strip (JIS and AISI Standard)退火 Annealing电器用钢片用家需自行应力退火原因 Annealing of the Electrical Steel Sheet退火时注意事项 Annealing Precautionary碳污染 Prevent Carbon Contamination热力应先从工件边缘透入 Heat from the Laminated Stacks Edges提防过份氧化 No Excessive Oxidation应力退火温度 Stress –relieving Annealing Temperature绝缘表面 Surface Insulation非晶粒取向电力用钢片的电力、磁力、机械性能及夹层系数 Lamination Factors of Electrical, Magnetic & Mechanical Non-Grain Oriented Electrical电器及家电外壳用镀层冷辘 [低碳] 钢片 Coated (Low Carbon) Steel Sheets for Casing,Electricals & Home Appliances镀铝硅钢片 Aluminized Silicon Alloy Steel Sheet镀铝硅合金钢片的特色 Feature of Aluminized Silicon Alloy Steel Sheet用途 End Usages抗化学品能力 Chemical Resistance镀铝(硅)钢片–日工标准 (JIS G3314) Hot-aluminum-coated sheets and coils to JIS G 3314镀铝(硅)钢片–美材试标准 (ASTM A-463-77)35.7 JIS G3314镀热浸铝片的机械性能 Mechanical Properties of JIS G 3314 Hot-Dip Aluminum-coated Sheets and Coils公差 Size Tolerance镀铝(硅)钢片及其它种类钢片的抗腐蚀性能比较 Comparsion of various resistance of aluminized steel & other kinds of steel镀铝(硅)钢片生产流程 Aluminum Steel Sheet, Production Flow Chart焊接能力 Weldability镀铝钢片的焊接状态(比较冷辘钢片) Tips on welding of Aluminized sheet in comparasion with cold rolled steel strip钢板 Steel Plate钢板用途分类及各国钢板的工业标准包括日工标准及美材试标准 Type of steel Plate & Related JIS, ASTM and Other Major Industrial Standards钢板生产流程 Production Flow Chart钢板订货需知 Ordering of Steel Plate不锈钢 Stainless Steel不锈钢的定义 Definition of Stainless Steel不锈钢之分类,耐腐蚀性及耐热性 Classification, Corrosion Resistant & Heat Resistance of Stainless Steel铁铬系不锈钢片Chrome Stainless Steel马氏体不锈钢Martensite Stainless Steel低碳马氏体不锈钢Low Carbon Martensite Stainless Steel含铁体不锈钢Ferrite Stainless Steel镍铬系不锈钢Nickel Chrome Stainless Steel释出硬化不锈钢Precipitation Hardening Stainless Steel铁锰铝不锈钢Fe / Mn / Al / Stainless Steel不锈钢的磁性Magnetic Property & Stainless Steel不锈钢箔、卷片、片及板之厚度分类Classification of Foil, Strip, Sheet & Plate by Thickness表面保护胶纸Surface protection film不锈钢片材常用代号Designation of SUS Steel Special Use Stainless 表面处理 Surface finish 薄卷片及薄片(0.3至 2.9mm 厚之片)机械性能Mechanical Properties of Thin Stainless Steel(Thickness from 0.3mm to 2.9mm) – strip/sheet 不锈钢片机械性能(301, 304, 631, CSP) Mechanical Properties of Spring use Stainless Steel不锈钢–种类,工业标准,化学成份,特点及主要用途Stainless Steel – Type, Industrial Standard, Chemical Composition, Characteristic & end usage of the most commonly used Stainless Steel不锈钢薄片用途例End Usage of Thinner Gauge不锈钢片、板用途例Examples of End Usages of Strip, Sheet & Plate不锈钢应力退火卷片常用规格名词图解General Specification of Tension Annealed Stainless Steel Strips耐热不锈钢Heat-Resistance Stainless Steel镍铬系耐热不锈钢特性、化学成份、及操作温度Heat-Resistance Stainless Steel铬系耐热钢Chrome Heat Resistance Steel镍铬耐热钢Ni - Cr Heat Resistance Steel超耐热钢Special Heat Resistance Steel抗热超级合金Heat Resistance Super Alloy耐热不锈钢比重表Specific Gravity of Heat – resistance steel plates and sheets stainless steel不锈钢材及耐热钢材标准对照表Stainless and Heat-Resisting Steels发条片 Power Spring Strip发条的分类及材料 Power Spring Strip Classification and Materials上链发条 Wind-up Spring倒后擦发条 Pull Back Power Spring圆面("卜竹")发条 Convex Spring Strip拉尺发条 Measure Tape魔术手环 Magic Tape魔术手环尺寸图 Drawing of Magic Tap定型发条 Constant Torque Spring定型发条及上炼发条的驱动力 Spring Force of Constant Torque Spring and Wing-up Spring定型发条的形状及翻动过程 Shape and Spring Back of Constant Torque Spring定型发条驱动力公式及代号The Formula and Symbol of Constant Torque Spring边缘处理 Edge Finish硬度 Hardness高碳钢化学成份及用途 High Carbon Tool Steel, Chemical Composition and Usage每公斤发条的长度简易公式 The Length of 1 Kg of Spring Steel Strip SK-5 & AISI-301每公斤长的重量 /公斤(阔 100-200公厘) Weight per one meter long (kg) (Width 100-200mm) SK-5 & AISI-301每公斤之长度 (阔 100-200公厘) Length per one kg (Width 100-200mm) SK-5 & AISI-301每公尺长的重量 /公斤(阔 2.0-10公厘) Weight per one meter long (kg) (Width 2.0-10mm) SK-5 & AISI-301每公斤之长度 (阔 2.0-10公厘) Length per one kg (Width 2.0-10mm)高碳钢片 High Carbon Steel Strip分类 Classification用组织结构分类 Classification According to Grain Structure用含碳量分类–即低碳钢、中碳钢及高碳钢 Classification According to Carbon Contains弹簧用碳钢片 Carbon Steel Strip For Spring Use冷轧状态 Cold Rolled Strip回火状态 Annealed Strip淬火及回火状态 Hardened & Tempered Strip/ Precision – Quenched Steel Strip贝氏体钢片 Bainite Steel Strip弹簧用碳钢片材之边缘处理 Edge Finished淬火剂 Quenching Media碳钢回火 Tempering回火有低温回火及高温回火 Low & High Temperature Tempering高温回火 High Temperature Tempering退火 Annealing完全退火 Full Annealing扩散退火 Diffusion Annealing低温退火 Low Temperature Annealing中途退火 Process Annealing球化退火 Spheroidizing Annealing光辉退火 Bright Annealing淬火 Quenching时间淬火 Time Quenching奥氏铁孻回火 Austempering马氏铁体淬火 Marquenching高碳钢片用途 End Usage of High Carbon Steel Strip冷轧高碳钢–日本工业标准 Cold-Rolled (Special Steel) Carbon Steel Strip to JIS G3311电镀金属钢片 Plate Metal Strip电镀金属捆片的优点Advantage of Using Plate Metal Strip金属捆片电镀层 Plated Layer of Plated Metal Strip镀镍 Nickel Plated镀铬 Chrome Plated镀黄铜 Brass Plated基层金属 Base Metal of Plated Metal Strip低碳钢或铁基层金属 Iron & Low Carbon as Base Metal不锈钢基层金属 Stainless Steel as Base Metal铜基层金属 Copper as Base Metal黄铜基层金属 Brass as Base Metal轴承合金 Bearing Alloy轴承合金–日工标准 JIS H 5401 Bearing Alloy to JIS H 5401锡基、铅基及锌基轴承合金比较表 Comparison of Tin base, Lead base and Zinc base alloy for Bearing purpose易溶合金 Fusible Alloy焊接合金 Soldering and Brazing Alloy软焊 Soldering Alloy软焊合金–日本标准 JIS H 4341 Soldering Alloy to JIS H 4341硬焊 Brazing Alloy其它焊接材料请参阅日工标准目录 Other Soldering Material细线材、枝材、棒材 Chapter Five Wire, Rod & Bar线材/枝材材质分类及制成品 Classification and End Products of Wire/Rod铁线(低碳钢线)日工标准 JIS G 3532 Low Carbon Steel Wires ( Iron Wire ) to JIS G 3532光线(低碳钢线),火线 (退火低碳钢线 ),铅水线 (镀锌低碳钢线)及制造钉用低碳钢线之代号、公差及备注 Ordinary Low Carbon Steel Wire, Annealed Low Carbon Steel Wire, Galvanized low Carbon Steel Wire & Low Carbon Steel Wire for nail manufacturing - classification, Symbol of Grade, Tolerance and Remarks.机械性能 Mechanical Properites锌包层之重量,铜硫酸盐试验之酸洗次数及测试用卷筒直径 Weight of Zinc-Coating, Number of Dippings in Cupric Sulphate Test and Diameters of Mandrel Used for Coiling Test冷冲及冷锻用碳钢线枝 Carbon Steel Wire Rods for Cold Heading & Cold Forging (to JIS G3507) 级别,代号及化学成份 Classification, Symbol of Grade and Chemical Composition直径公差,偏圆度及脱碳层的平均深度 Diameter Tolerance, Ovality and Average Decarburized Layer Depth冷拉钢枝材 Cold Drawn Carbon Steel Shafting Bar枝材之美工标准,日工标准,用途及化学成份 AISI, JIS End Usage and Chemical Composition of Cold Drawn Carbon Steel Shafting Bar冷拉钢板重量表 Cold Drawn Steel Bar Weight Table高碳钢线枝 High Carbon Steel Wire Rod (to JIS G3506)冷拉高碳钢线 Hard Drawn High Carbon Steel Wire (to JIS G3521, ISO-84580-1&2)化学成份分析表 Chemical Analysis of Wire Rod线径、公差及机械性能(日本工业标准 G 3521) Mechanical Properties (JIS G 3521)琴线(日本标准 G3522) Piano Wires (to G3522)级别,代号,扭曲特性及可用之线材直径 Classes, symbols, twisting characteristic and applied Wire Diameters直径,公差及拉力强度 Diameter, Tolerance and Tensile Strength裂纹之容许深度及脱碳层 Permissible depth of flaw and decarburized layer常用的弹簧不锈钢线-编号,特性,表面处理及化学成份 Stainless Spring Wire – National Standard number, Characteristic, Surface finish & Chemical composition弹簧不锈钢线,线径及拉力列表Stainless Spring Steel, Wire diameter and Tensile strength of Spring Wire处理及表面状况 Finish & Surface各种不锈钢线在不同处理拉力比较表 Tensile Strength of various kinds of Stainless Steel Wire under Different Finish圆径及偏圆度之公差 Tolerance of Wire Diameters & Ovality铬镍不锈钢及抗热钢弹簧线材–美国材验学会 ASTM A313 – 1987 Chromium – Nickel Stainless and Heat-resisting Steel Spring Wire – ASTM A313 – 1987化学成份 Chemical Composition机械性能 Mechanical Properties305, 316, 321及 347之拉力表 Tensile Strength Requirements for Types 305, 316, 321 and 347 A1S1-302贰级线材之拉力表 Tensile Strength of A1S1-302 Wire日本工业标准–不锈钢的化学成份 (先数字后字母排列) JIS –Chemical Composition of Stainless Steel (in order of number & alphabet)美国工业标准–不锈钢及防热钢材的化学成份 (先数字后字母排列) AISI – Chemical Composition of Stainless Steel & Heat-Resistant Steel(in order of number & alphabet)易车碳钢 Free Cutting Carbon Steels (to JIS G4804 )化学成份 Chemical composition圆钢枝,方钢枝及六角钢枝之形状及尺寸之公差 Tolerance on Shape and Dimensions for Round Steel Bar, Square Steel Bar, Hexagonal Steel Bar易车(快削)不锈钢 Free Cutting Stainless Steel易车(快削)不锈钢种类 Type of steel易车(快削)不锈钢拉力表 Tensile Strength of Free Cutting Wires枝/棒无芯磨公差表 (μ) (μ = 1/100 mm) Rod/Bar Centreless Grind Tolerance易车不锈钢及易车钢之不同尺寸及硬度比较 Hardness of Different Types & Size of Free Cutting Steel 扁线、半圆线及异形线 Flat Wire, Half Round Wire, Shaped Wire and Precision Shaped Fine Wire 加工方法 Manufacturing Method应用材料 Material Used特点 Characteristic用途End Usages不锈钢扁线及半圆线常用材料 Commonly used materials for Stainless Flat Wire & Half Round Wire 扁线公差 Flat Wire Tolerance方线公差 Square Wire Tolerance。

一水硬铝石热分解动力学研究

一水硬铝石热分解动力学研究

第30卷第3期硅酸盐学报Vol.30,No.3 2002年6月JOURNAL OF THE CHINESE CERAMIC SOCIETY J u ne,2002一水硬铝石热分解动力学研究李浩群,邵天敏,陈大融(清华大学摩擦学国家重点实验室,北京 100084)摘 要:分别采用等温过程、非等温过程热重-差热联合法测定一水硬铝石(β-AlOOH)的TGA曲线.利用X射线衍射仪对分解前后试样进行了物相分析.经数据处理,得到了不同时段、不同方法下热分解反应的动力学参数E,A和相应的反应机制.结果表2明,一水硬铝石在400℃时开始缓慢反应,反应峰温在510℃附近.其热分解机制比较复杂,并且在转变分数0.85<α<0.90这一区段呈现一个目前无法解释的机制,这可能是两种反应机制同时控制的结果,或者需要建立新的模型.关键词:一水硬铝石;热分解;动力学分析;热重分析;差热分析;X射线衍射中图分类号:TQ170.1 文献标识码:A 文章编号:0454-5648(2002)03-0335-05KINETIC ANALYSIS OF DIASPORE THERMAL DECOMPOSITIONL I Haoqun,S HA O Tianmin,CHEN Darong(The State K ey Laboratory of Tribology,Tsinghua University,Beijing 100084)Abstract:The TG A curves of both isothermal and non-isothermal process of diaspore(β-AlOOH)are obtained by unite of thermo2 gravimetry(TG)and differential thermal analysis(DTA).The phase identification is carried out by X-ray diffraction(XRD)before and after the thermal treatments.The kinetic analysis is established by means of linear regression and twenty common reaction mech2 anism functions are examined.Reaction mechanisms and Arrhenius parameters corresponding to different sections of fraction reacted (α)are presented.It shows that the decomposition of diaspore takes place at temperature of400℃,the peak temperature is about 510℃.The mechanism of this reaction is complicated and within the section of0.85<α<0.90,the reaction mechanism can not be interpreted by any existing kinetic model.It is presumed that two reaction models controlled the reaction simultaneously in this section or a new model should be found.K ey w ords:diaspore;thermal decomposition;kinetic analysis;thermogravimetry;differential thermal analysis;X-ray diffraction α-Al2O3是一种性能优良的陶瓷材料,其工业生产主要是通过煅烧氧化铝水合物来制备.氧化铝水合物Al2O3・x H2O在加热过程中经过各种中间相变最终转化为α-Al2O3,其中,一水软铝石(boehmite,α-AlOOH)、拜尔石[bayerite,β-Al(OH)3]、三水铝石[gibbsite,α-Al(OH)3]的转化过程已经得到了广泛深入的研究[1,2],相比之下,收稿日期:2001-08-17.修改稿收到日期:2001-12-03.基金项目:国家自然科学基金资助项目(59775033).作者简介:李浩群(1973~),男,博士研究生.通信联系人:邵天敏(1963~),男,博士,副教授.人们对一水硬铝石(diaspore,β-AlOOH)的转化过程了解不多.一般认为,由于一水硬铝石和刚玉中的氧原子子晶格都为六方密排列结构,因而一水硬铝石不经任何中间相变直接转变为刚玉.在实际相变过程中,有1/4的氧原子发生迁移、重排形成六方子晶格[3].Carim等人[4]发现在真空条件下,人工合成的一水硬铝石向刚玉的转变过程中形成了过R eceived d ate:2001-08-17.Approved d ate:2001-12-03. Biography:L I Haoqun(1973—),male,postgraduate for doctor degree. Correspondent:SHAO Tianmin(1963—),male,doctor,associate professor.E-m ail:lihq@渡相,并将其命名为α’-Al 2O 3.在中国,绝大部分铝土矿为一水硬铝石型铝土矿[5],其中的一水硬铝石都是和脉石矿共生在一起的,鉴定一水硬铝石及其杂相的结构特征并分析其热分解机理,不仅对控制氧化铝的工业生产过程,而且对直接将一水硬铝石型矿石应用于表面工程领域,如制备氧化铝基复合陶瓷涂层,具有积极的理论指导作用.1 模型判别理论基础50年代以来,人们采用各种的热分析方法来研究固态反应动力学,如热重法(TG )、微分扫描量热法(DSC )、差热法(D TA )、质谱法(MS )、气相色谱法(GC )和X 射线衍射法(XRD )等.经典的固态反应动力学的基本理论是建立在等温过程和均相反应基础上的.对于均相反应,若假设物质的转变分数为α,则从反应开始到结束的整个期间内,α的数值就在0~1的范围之内作单调的变化,反应物的相对浓度应为(1-α),则反应速率方程通常遵循以下速率公式:d αd t=kf (α)(1)引入Arrhenius 方程k =A e -E R T和控温速率β=d T/d t ,方程变为d αd t =A βe -E R T f(α)(2)式中:t 为时间;k 为速率常数;T 为绝对温度;A 为频率因子;E 为反应活化能;R 为气体常数;f (α)为反应机制函数.在此基础上,通过对实验数据的处理,研究人员提出了多种分解机理,推导出一系列动力学方程式.对式(1)、式(2)进行移项积分或微分处理,总可以找到反应模式(机制函数)与时间或温度之间的线性关系,因此,将实验数据以不同反应模式对时间或温度作图,相应的线性关系最好的反应模式即为反应机制.研究中采用计算机处理,将实验数据与20种常用的反应模式(机制函数)进行拟合,由线性回归判断出与之符合最好的反应机制函数[6],在此基础上求出有关的动力学参数,提高了所求动力学参数的精度和机制函数的准确性.2 实 验免检一水硬铝石矿石经粉碎、研磨、酸洗处理、充分洗涤后于120℃烘干.经-200~+500目筛制成试样.其分析组成见表1.热分析实验在TG A92型高温综合热分析仪上进行,仪器热重分析灵敏度为0.001mg.差热分析灵敏度为1mV ,工作温度表1 试样元素组成 T able 1 E lement composition of sample%ElementO Al Si Ti Fe w 49.6942.67 1.13 4.93 1.59x63.9232.550.832.120.59区间为室温至2400℃.以光谱纯Al 2O 3粉作为参比物,气氛为空气,试样1:从室温升至400℃,保温1h ,升温速率β=10℃/min ;试样2:从室温升至500℃,保温0.5h ,升温速率β=10℃/min ;试样3:从室温升至1200℃,升温速率β=5℃/min.所得TG A 曲线分别如图1、图2、图3所示.热重数据漂移0.25~0.50mg ,在数据取值中均加以扣除.试样反应前后利用XRD 技术进行物相鉴定,其分析结果见图4.图1 β-AlOOH 在400℃下等温过程中分解的TG A 曲线Fig.1 TG A plot for β-AlOOH under isothermal processat 400℃图2 β-AlOOH 在500℃等温过程中分解的TG A 曲线Fig.2 TG A plot for β-AlOOH under isothermal processat 500℃・633・ 硅 酸 盐 学 报 2002年  图3 β-AlOOH 在1200℃非等温过程中分解的TG A 曲线Fig.3 TG A plot for β-AlOOH under non-isothermal pro 2cess at 1200℃图4 一水硬铝石试样XRD 分析Fig.4 XRD patterns of the diaspore samples 1———Before heat treatment ;2———Treated at 500℃; 3———Treated at 1200℃3 实验数据处理在反应中的某一时刻,转变分数可由下式求得:α=w 0-w tw 0-w ∞(3)式中:w 0为试样在反应前的初始质量;w t 为反应进行到t 时刻试样的质量;w ∞为反应结束后试样的质量,所得出的转变分数与时间的关系曲线见图5.从α数据中判断出反应起始温度(时间),并计算出质量损失率,与理论值相对照,如表2所示.图5 不同加热条件下转变分数α随时间变化曲线Fig.5 Plots of fraction reacted αagainst time under differ 2ent heating conditions 表2 一水硬铝石在不同条件下的反应起始温度和质量损失T able 2 DTA temperatures and m ass loss of diaspore samplesunder different conditionsConditions ofheat treatment DTA temperature /℃Start temperature Peak temperatureMass loss/%Experimental value Theoretic valueSample 1Mass loss is tiny and the re 2action proceed very slowlySample 242250411.5Sample 3First stage Second stage419915512117712.51.515.0对于等温过程实验数据,由公式(1)移项、积分可得F (α)=kt +c (4)式中:c 为积分常数.将实验数据分别代入各F (α)方程,以计算的F (α)数据对相应的t 数据作图,得出等温过程一水硬铝石的各种反应动力学曲线,如图6所示.对图6进行线性回归,将转变分数α图6 β-AlOOH 在等温过程中(500℃)反应的动力学曲线Fig.6 Reaction kinetic curves of β-AlOOH by isothermalprocess at 500℃・733・ 第30卷第3期 李浩群等:一水硬铝石热分解动力学研究 表3 一水硬铝石等温过程分解(500℃)热分析动力学线性回归结果T able 3 Linear regression results of therm al kinetic analysisby isotherm al process(500℃)αCode name of mechanismF (α)kCorrelation coefficient r[0.0,0.05]D 5[(1+α)1/3-1]20.013310.9968A 4[-ln (1-α)]1/40.001350.9943P 4α1/40.001330.9940[0.05,0.50]R 21-(1-α)1/20.000880.9992A 1.5[-ln (1-α)]1/1.50.002090.9991P 1α0.001490.9991[0.50,0.85]A 1-ln (1-α)0.002430.9998D 4(1-2α/3)-(1-α)2/30.000230.9996D 2α+(1-α)ln (1-α)0.000850.9992[0.85,1.0]A 3[-ln (1-α)]1/30.000480.9998A 2[-ln (1-α)]1/20.000800.9996D 4(1-2α/3)-(1-α)2/30.000180.9996分为不同的区段,分别找出相关性最好的3个动力学方程,如表3所示.对于非等温过程实验数据,由公式(2)移项、两边取对数可得ln{[f (α)]-1d α/d T }=ln (A /β)-ER(1/T )(5)将实验数据分别代入各f (α)方程,以计算的ln{[f (α)]-1d α/d T }数据对相应的1/T 数据作图,得出非等温过程一水硬铝石的各种反应动力学曲线,如图7所示.对图7进行线性回归,将转变分数分为不同的区段,找出相关性最好的3个动力学方程,如表4所示.对其中相关系数为正的区段,结合各种f (α)函数,假设反应模型如下:f (α)=αm(1-α)n [-ln (1-α)]p (6)将公式(4)代入(3)中,进行线性回归计算,搜寻负相关性最好的m ,n 和p 值,以此作为该区段的机制函数.搜索结果为:m =10.90,n =13.00,p =3.81,r =-0.9828.但该函数暂无明确的物理意义,有待于进一步研究.表4 一水硬铝石非等温过程分解(1200℃)热分析动力学线性回归结果T able 4 Linear regression results of therm al kinetic analysis by non-isotherm al process at 1200℃αCode name of mechanism f (α)E /(kJ ・mol -1)ACorrelation coefficient r [0.0,0.05]D 5 1.5(1+α)2/3[(1+α)1/3-1]-1626.900.490e +38-0.9971R 22(1-α)1/2286.920.837e +16-0.9907A 11-α287.830.196e +17-0.9905[0.05,0.50]L 6 1.5(1-α)4/3[(1-α)-1/3-1]-1746.27—-0.9943A 11-α305.400.728e +18-0.9786R 22(1-α)1/2257.080.197e +15-0.9611[0.50,0.85]L 6 1.5(1-α)4/3[(1-α)-1/3-1]-1469.500.948e +29-0.9911D 3 1.5(1-α)2/3[(1-α)1/3]-1208.170.230e +11-0.9362A 11-α115.340.137e +06-0.8787[0.85,0.90]All of the correlation coefficients are plus ,so none of the reaction models is suitable.[0.90,1.0]L 6 1.5(1-α)4/3[(1-α)-1/3-1]-1172.430.431e +08-0.9756A 11-α79.2230.346e +02-0.9741C 1.52(1-α)2/3139.280.310e +06-0.9741・833・ 硅 酸 盐 学 报 2002年 图7 β-AlOOH在1200℃非等温过程中反应的动力学曲线Fig.7 Reaction kinetic curves ofβ-AlOOH by non-isothermal process at1200℃4 结果与讨论从表2中可以看出,试样的分解反应起始温度在420℃左右,峰顶温度在510℃左右,在热重曲线上相应地出现较大的质量损失台阶,从质量损失分数可以计算出试样中一水硬铝石的含量约为83%.反应温度范围低于文献[7]中的一水硬(软)铝石的脱水吸热峰温(530~572℃),这可能是由于矿石中所含赤铁矿在过渡相晶格中提供异类晶核点[8]所致,也可能起因于矿物本身的特殊性质,如分散程度及结构完整程度.单纯依据峰温值,很难把一水铝石的两种晶型区分开来,尤其是软水型峰温明显受粒子大小和结晶好坏的影响,需要辅以其它分析手段进行鉴别,从图4曲线1的XRD分析结果中可以看出,试样的主相为一水硬铝石,杂相主要为金红石,锐钛矿等杂质,未标识峰可能对应于表1中元素Si,Fe的矿物杂质.500℃反应后试样的主相变为α-Al2O3,但杂质相没有发生变化(图4曲线2).相比之下,1200℃反应后α-Al2O3的峰比较锐,并且金红石、锐钛矿、Si和Fe等杂质已经发生了变化(图4曲线3).表3、表4分别为500℃等温过程和1200℃非等温过程试样热分析的动力学线性回归结果.由于机理模型的数学表达式之间存在的差异不是很大,因此在区分两个甚至更多个曲线拟合情况时,要在其中进行取舍有一定困难.表中所列为线性相关最好的前3个机制函数.综合两表,并结合实际反应过程,可以认为,在等温过程下,一水硬铝石分解反应初期由扩散过程控制,反应中期由相界面反应或形核长大控制,反应后期由形核长大控制;在非等温过程下,反应初期也由扩散过程控制,其它阶段由扩散过程或形核长大控制,而区段0.85<α< 0.90为过渡控制区.图1、图2、图3分别为试样在400℃等温过程,500℃等温过程,1200℃非等温过程中的TG A曲线.其中,图2、图3是非常典型的TG A曲线,差热峰和质量损失都非常明显,表明分解反应已经发生.在500℃等温过程中,分解反应后期出现了一个吸热峰,并且TG曲线没有相应的质量损失台阶,而在非等温过程中的这一区段,该吸热峰消失,且对应的线性相关系数为正(见表4),而公式(5)的线性相关为负相关,也就是说,反应机理没有合适的机制函数来解释.这可能是由于在这一区间段,反应由一种不均一的机理控制(两种机理共同控制).另外,从图3中可以看出,在930~1120℃之间,出现了一系列峰,对应TG曲线上出现质量损失台阶,质量损失约为1.5%左右.从上面的XRD分析可知,在这一区段,杂质相发生了相变或反应.其中980℃左右的峰可能对应于高岭石,高岭石在此温度下热分解形成莫来石或尖晶石,在更高温度下形成莫来石[9].从图1可以看出,试样虽然基本没有发生变化,但在开始时有少量的质量损失,与图2、图3中的反应起始温度接近.这说明反应此时可能已经发生,但由于反应初期由扩散过程控制,当保持温度不变,则扩散过程非常缓慢,反应速率很小.图6、图7分别为500℃等温过程和1200℃非等温过程下试样的各种反应动力学曲线.在图6中,除自催化过程和化学反应过程外,其它控制过程曲线比较接近,并且线性关系较好.在图7中,在不同的区段,各控制过程斜率(活化能)变化较大,线性关系相差较大,并且存在一个阶段,所有的曲线斜率为正,这与表4的结果相一致.5 结 论(1)采用计算机处理,将实验数据与各种选定的反应模式(机制函数)进行拟合,由线性回归判断出与之符合最好的反应机制函数,在此基础上求出有关的动力学参数,提高了所求动力学参数的精度和机制函数的准确性.(2)采用的一水硬铝石型铝土矿,品位高,一水硬铝石含量约为83.3%,分解反应起始温度为(continued on p.346)・933・ 第30卷第3期 李浩群等:一水硬铝石热分解动力学研究 3 结 论(1)B 2O 3-TiO 2-Mg -C 体系可利用SHS 技术合成出TiB 2-TiC 陶瓷复合粉.(2)热力学分析其化学反应机理为:Mg 先还原B 2O 3和TiO 2,新生的Ti 与B 和C 反应生成TiB 2和TiC ;TiO 2的还原经历了TiO 2Ti 3O 5TiOTi 2O Ti 的逐步还原过程.(3)B 2O 3-TiO 2-Mg -C 体系SHS 反应过程的产物结构形成机理分析表明:当燃烧区的能量传到预反应区时,B 2O 3首先熔化并均匀地包裹在Mg ,TiO 2和C 周围,Mg 熔化后加速了与B 2O 3和TiO 2反应,放出大量的热,随着预反应区温度的升高,B 2O 3与Mg 作用还原出B ,TiO 2与Mg 作用还原出Ti ,Ti 与B 或C 反应而形成TiB 2或TiC 晶核,最后TiB 2与TiC 及MgO 在持续高温下长大.参考文献:[1] LASZ LO J K ,THOMAS K ,ANDRUS N.Microstructural prop 2erties of combustion-synthesized and dynamically consolidated tita 2nium diboride and titanium carbide [J ].J Am Ceram Soc ,1990,73(5):1274—1282.[2] DAVIES T J ,O GWU A A.TiC plus TiB 2composite shows wearpromise [J ].Metal Powder Report ,1997,52(6):31—34.[3] YURIY A L ,EV GEN G A ,SHEV EIKO A.Electrochemicalcorrosion behavior of SHS -synthesized magnetron composite TiC -based targets and sputtered thin films [J ].Surf Coat Technol ,1997,90(1-2):42—52.[4] ZHAO H C ,YI B.Formation of TiB 2-TiC composites by reac 2tive sintering [J ].Ceram Int ,1999,25(4):353—358.[5] SU GIYAMA ,SHIGEA KI K ,MITSU HIKO A ,et al .Synthe 2sis of a TiB 2-TiC composite by reactive spark plasma sintering of B 4C and Ti [J ].J Jpn Soc Powder Powder Metall ,1998,45(11):1065-1070.[6] 梁英教,车荫昌主编(L IAN G Y ingjiao ,et al ).无机物热力学数据手册(Handbook of Thermodynamic Data of Inorganic Mat 2ters )[M ].沈阳:东北大学出版社(Shengyang :North East Uni 2versity Press ),1995.7—68.※※※※※※※※※※※※※※※(continued from p.339)420℃左右,峰顶温度为510℃左右.在等温过程和非等温过程中的反应机制不完全相同,在转变分数0.85<α<0.90区段,反应由两个机制共同控制.(3)对我国铝土矿主要矿型一水硬铝石,鉴定矿石中氧化铝及其杂相的结构特征并分析其热行为,对此矿石的开发应用,具有积极的理论指导作用.参考文献:[1] NOVA K C ,PO KOL G ,IZV EKOV V.Studies on the reactionsof aluminium oxides and hydroxides [J ].J Therm Anal ,1990,36:1895—1909.[2] PYZALSKI M ,WOJ CIK M.The dehydroxylation of aluminiumhydroxides and the kinetics of α-Al 2O 3formation [J ].J Therm Anal ,1990,36:2147—2151.[3] COLL IS D N.Thermal chemically formed ceramic coatings :theprocess and applications [J ].Trans Inst Met Finish ,1987,65:83—88.[4] CARIM A H ,ROHRER G S ,DANDO N R.Conversion of dias 2pore to corundum :A new α-alumina transformation sequence [J ].J Am Ceram Soc ,1997,80(10):2677—2680.[5] 毕诗文,杨毅宏,李殿锋,等(BI Shiwen ,et al ).铝土矿的拜耳法溶出(Bayer Process Stripping of Alumyte )[M ].北京:冶金工业出版社(Beijing :The Metallurgical Industry Press ),1997.17页.[6] 罗世永,张家芸,周 坪,等(LUO Shiyong ,et al ).固相反应合成Sr TiO 3的反应动力学[J ].硅酸盐学报(J Chin CeramSoc ),2000,28(5):458—461.[7] 黄佰龄(HUAN G Bailing ).矿物差热分析鉴定手册(MineralIdentification Manual via Differential Thermal Analysis )[M ].北京,科学出版社(Beijing :Science Press ),1987.50页.[8] MCARDL E J L ,MESSIN G G L.Solid-phase epitaxy ofboehmite -derived α-alumina on hematite seed crystals [J ].J Am Ceram Soc ,1989,72(5):864—867.[9] 刘长龄,刘钦甫,陈济舟,等(L IU Changling ,et al ).变高岭石的结构研究[J ].硅酸盐学报(J Chin Ceram Soc ),2001,29(1):63—67.・643・ 硅 酸 盐 学 报 2002年 。

铝率及液相性质对高硅酸三钙含量硅酸盐水泥熟料烧成过程的影响

铝率及液相性质对高硅酸三钙含量硅酸盐水泥熟料烧成过程的影响

2. 28 8. 3 1. 98 ±0. 02 0. 92 8. 4
为优秀论文 。
Received date : 2003 09 20. Approved date : 2003 12 20. Biography : GUO Suihua (1971 —) , male , senior engineer. E2mail :shguocbma @sohu. com
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
生料 片 于 120 ℃烘 干 。将 高 温 炉 温 度 升 至
800 ℃后 ,将生料片置于炉内 ,待炉温稳定约 5 min 后 ,开始升温至设定煅烧温度 ,保温 30 min 后出炉 。 采用风扇将出炉熟料试样冷却至室温 。
对所得熟料进行如下测试 : (1) 采用乙二醇酒精 溶液快速滴定法测试游离钙含量 ; (2) 测量其相对于 生料的线性收缩量 ,借以判断液相量的相对变化 ; (3) 采用 X 射线衍射 ( X2ray diff raction , XRD) 分析 确定矿物组成 ,分析熟料矿物形成的基本动力学过 程 ; (4) 分析烧成熟料试样的亚微观结构 ,判断熟料 亚微观结构的形成条件 。
1. 35 8. 8 2. 94 1. 46 1. 03 0. 72
1. 65 9. 69 4. 02 1. 39 1. 17 0. 86
1. 94 8. 2 3. 38 2. 05 1. 07 1. 47
2. 22 9. 9 2. 55 ±0. 02 0. 81 10. 92
4. 13 2. 19
5. 79 68. 18 14. 75 4. 58 2. 10 0. 83 2. 57 18. 40 3. 61 59. 00 6. 70 2. 77
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Transformation of Alumina Inclusions by Calcium Treatment MINNA LIND and LAURI HOLAPPAThe objectives of this study were to investigate reactions of calcium with Al2O3by differentmodel experiments both on the laboratory and on the industrial scale.Experiments with solidAl2O3and CaO were performed between1350°C and1600°C.Reaction rate constants weredetermined based on scanning electron microscopy/energy dispersive spectroscopy(SEM/EDS)observations of reaction products and weight measurements of the Al2O3reacted via dissolutionof the CaO bearing phases from the specimens after the annealing period.The results showedthat the formation of calcium aluminate phases proceeded rapidly at temperatures greater than1405°C when a liquid calcium aluminate was formed.In the lowest temperature range(1350°C–1405°C),when the formation of liquid phase ceased,the reaction rate was severalorders of magnitude lower.Industrial trials including Ca-alloy injection into steel,sampling andSEM/EDS analyses,as well as an inclusion rating in the samples show the concept of rapidtransformation of the alumina inclusions with Ca treatment.DOI:10.1007/s11663-009-9337-9ÓThe Minerals,Metals&Materials Society and ASM International2010I.INTRODUCTIOND URING the last30years,calcium treatment has become an established method for the desulfurization of aluminum-killed steels and to control the composition, morphology,and distribution of the remaining inclu-sions.A major benefit of this practice is that nozzle clogging in continuous casting can be eliminated;solid alumina inclusions are transformed to liquid calcium aluminates that do not clog the nozzle.Other benefits are realized in the mechanical properties of various steel grades.For example,the ductility and toughness of high-strength,low-alloy steel and high-quality structural steel are improved as the volume fractions of sulfides and of oxides are decreased.Inflat-rolled plate and sheet grades,manganese sulfide inclusions form string-ers or platelets when deformed,which results in poor through-thickness ductility and toughness.Calcium complexes the manganese sulfides into inclusions,which do not deform to elongated stringers.In free-machining grades,hard alumina inclusions cause excessive tool wear;calcium can transform these inclusions into softer calcium aluminates.[1]Liquid calcium aluminate inclu-sions act as cores for precipitating the sulfide shell.This concept was proposed based on experimental observa-tions in samples from industrial-scale heats.[2] Although the calcium treatment technology has been well established since the1980s,the basic mechanisms and kinetics of the calcium reactions with liquid steel are still poorly known.Clarification of these aspects was chosen as the objective of this work.Different types of ‘‘model experiments’’were designed and carried out.First,the reaction and dissolution rates between pure CaO and Al2O3were investigated at and below steel-making parable experiments have been reported by Kohatsu and Brindley[3]using sintered pellets of CaO and Al2O3.For1330°C and heating times of up to20days,they found all known com-pounds of the system CaO-Al2O3:C3A/C12A7/CA/CA2/ CA6.In these forms,C stands for CaO and A stands for Al2O3,respectively.Quantitatively,C12A7was the major phase in the reaction layer.The products C3A,C12A7, and CA had random orientations,whereas CA2and CA6had clear crystal orientation parallel to the reaction interface.More experiments with Pt markers indicated that the reaction occurred via Ca-ion diffusion into the Al2O3.[3]The observations are in accordance with the CaO-Al2O3phase diagram(Figure1[4,5]),which has (except for two pure oxide phases)four nearly stoichi-ometric compounds that can be called calcium alumi-nates.Jerebtsov et al.[6]studied the CaO-Al2O3system by using different analysis methods in the content interval from0to60mas pct CaO.They confirmed the absence of congruently melting compounds in an argon atmosphere and found an absence of12CaOÆ7Al2O3(C12A7)in a dry atmosphere.C12A7formed with less than1pct mass of the water absorbed in the solid. The existence of this compound in the presence of water traces was confirmed in their work by the appearance of C12A7,which contained eutectic peaks at1403±5°C on thefirst melting(synthesis)of the sample.CaO gained trace water during grinding in the air of the oxide mixture,but it was removed after melting.[6]In other experiments performed in this work,reac-tions and transformation rates of alumina inclusions to calcium aluminates were directly observed when a Ca-bearing addition was fed into the steel melt. Lu et al.[7]applied a similar principle to the one in this work to study kinetic phenomena in the calcium treatment of steel.They fed steel-covered wire(with calcium inside)into40kg heats of American Iron andMINNA LIND,Postdoctoral Researcher,and LAURI HOLAPPA, Emeritum Professor,are with the Laboratory of Metallurgy,Helsinki University of Technology,P.O.Box1000,FI-02015TKK,Otakaari1, FI-02150,Espoo,Finland.Contact e-mail:mlind@ Manuscript submitted July3,2009.Article published online January8,2010.Steel Institute1045steel with various sulfur and aluminum contents under an argon atmosphere.Sam-ples were taken frequently during and after the calcium injection for the chemical and the inclusion analyses. The authors assumed calcium vapor reacted and formed calcium oxide and sulfide in the melt.Calcium also dissolved into the melt and reacted with existing alumina inclusions to form calcium aluminates.The total Ca content reached a maximum after certain time period and then decreased because of the removal of oxide and sulfide inclusions as well as because of the vaporization of Ca.[7]Calcium can prevent nozzle blockage in aluminum-deoxidized steels.It has been suggested that the nozzle flow properties of the aluminum deoxidized steels did not improve until the ratio of pct calcium/pct aluminum in the tundish exceeded0.115.[8]In inclusions,the CaS content differed greatly because of the amount of added calcium as well as the time after it was added.The highest CaS content in the inclusions was only3minutes after the CaSi addition and with the calcium content in the steel analysis greater than 20ppm.Calcium dissolved in the melt and rapidly reacted with alumina inclusions to form calcium alumi-nates or calcium sulfide.The CaO and CaS contents in the inclusions decreased gradually as the dissolved calcium vaporized and decreased with the time.[9]A similar effect was calculated for when the oxygen content in steel was20ppm,and the CaS formed when the calcium content was20ppm(aluminum100ppm and sulfur250).With the same aluminum and sulfur contents,the CaS saturation occurred already when the calcium was around10ppm and the oxygen level was 10ppm.With an oxygen content of40ppm,it is only possible to form CaS with a calcium content greater than40ppm.[10]II.EXPERIMENTALThe reactions between Al2O3and CaO between 1350°C and1600°C were investigated in a resistance furnace.The furnace was heated by platinum-rhodium alloy windings.The temperature was controlled by a B-type thermocouple.The experiments were carried out in an air atmosphere.[11,12]CaO powder was prepared by calcinating CaCO3 powder at1050°C for2hours and afterwards pressing the powder into a cylinder shape with a diameter of 5.2mm.Alumina plates density were3790kg/m3, 3mm high,and had an Al2O3content greater than 99.5pct.The alumina plates were cut and ground into small cylinders with a similar diameter to the CaO samples.[11,12]When the furnace reached the desired temperature,a CaO cylinder(about0.140g)was put on an Al2O3 cylinder(about0.280g)and pushed into the high-temperature zone within2minutes.After annealing for a certain length of time,the sample was cooled by pulling it into the cooler end of the furnace.In low temperature experiments below1420°C,the CaO cyl-inder was pressed between two Al2O3cylinders with the aid of an alumina tube.The cylinders were lying on a platinum plate in the furnace.Two identical tests were made—one for scanning electron microscopy(SEM) analysis and another for the dissolution test.[11,12]Thefirst samples were cut and ground perpendicular to the original interface with silicon carbide polishing paper.Ethanol was used as a grindingfluid to avoid the dissolution of calcium aluminate inclusions.The pol-ished interface was observed by an optical microscope and an SEM to investigate the reaction mechanisms. For SEM/energy dispersive spectroscopy(EDS)analy-sis,the specimen was coated with carbon,which allowed for the composition of the reaction products(i.e., calcium aluminates)to be analyzed.The second set of samples were immersed in a10-wt pct HCl solution for 8hours.The un-reacted CaO as well as the calcium aluminates formed by the reaction between Al2O3and CaO all were dissolved into the acid solution,and only the unreacted alumina remained left.The mass of the alumina plate did not change after it was kept in the HCl solution for48hours.Therefore,based on the weight of the remaining residue,the mass of Al2O3(which had reacted and dissolved)was calculated.By combining the results of the dissolution experiments with the SEM observations,the reaction-rate constants were determined.[11,12]Experiments using the c-alumina powder and the similar CaO powder as in the previous experiments were performed.CaO and Al2O3powders of0.566g and 0.709g,respectively,were mixed and pressed into a cylinder with11.5mm in diameter.The specimen then was kept in a laboratory furnace in an air atmosphere for6hours at1400°C.Then,the specimen was cooled and polished for investigation of the structure.[12] Industrial samples were taken at Ovako Bar Imatra Steelworks after the Ca-treatment.The heat size was 77tons.Calcium was added via CaSi powder injection, which takes typically5minutes.Analysis of the steel just before casting was0.16pct C,0.23pct Si,1.22pct Mn, 0.03pct S,0.04pct Al,0.0021pct Ca,and0.0022pct O. Samples were taken with the standard lollypop-shaped sampler where the steel was sucked through a quartz tube into theflat oval-shaped steel container.Specimens Fig.1—CaO-Al2O3phase diagram.[4]were prepared by grinding and polishing and then were coated with carbon to get a good image without electrical charging.[12]Inclusions were analyzed with the SEM/EDS pro-gram,which automatically collected chemical and mor-phological data from the inclusions in steel.III.RESULTS AND DISCUSSIONA.Reaction Kinetics Between CaO and Al 2O 3The experimental results are discussed in the follow-ing two parts:a high-temperature range,1420°C–1600°C,in which the formation of liquid oxide was favored according to the CaO-Al 2O 3diagram,and a low-temperature range,below 1420°C,in which the reaction between the two oxides occurred in the solid state.The results of the high-temperature range are discussed first.[11]1.High-Temperature Range,1420–1600°CThe phases formed during the reaction between Al 2O 3and CaO were examined by SEM/EDS.The line-scan results of Ca and Al on the cross-section of a typical sample are shown in Figure 2.The sample was annealed at 1500°C for 10minutes.After which,a reaction layer of 1250l m was measured.Most of the layer seemed to have been liquid at the end of the trial.On either side of this apparently liquid layer,thin assumedly solid layers containing both aluminum and calcium oxides could be observed.The layer thicknesses calculated from the dissolution results were,in general,somewhat higher than those measured from the SEM image because the reaction layer was not necessarily a flat,uniform interface.Temperatures higher than 1500°C,the reac-tion was still faster,and at 1600°C,the CaO cylinderwas completely converted into calcium aluminate after 3minutes at temperature.[11]When considering the reaction between CaO and Al 2O 3,one of the following two steps could be rate-controlling during the interaction between the liquid calcium aluminate and the solid alumina:(1)diffusion of calcium and/or aluminum oxide in the liquid calcium aluminate layer,or (2)the chemical reaction at the alumina–calcium aluminate interface.If the rate was controlled by the diffusion in the liquid product layer,then significant concentration gradients should be in the liquid layer.However,calcium concentration in the liquid layer was homogenous.Numerous reaction layers were analyzed,but no clear gradients were detected.[11,12]Therefore,the chemical reaction (or dissolution)between the alumina and the calcium aluminate was assumed to be the rate-controlling step.However,by examining the cross section of the reacted samples,clear layers of CA 6,CA 2,or CA phases were not detected in the reaction product layers.These solid phases,if formed,were about 2l m thick.2.Low-Temperature Range Below 1420°CAs shown in Figure 1,the liquid composition region in the CaO-Al 2O 3phase diagram became narrow when approaching 1400°C,and at 1362°C no liquid can form.Observations of reaction kinetics showed an abrupt slow-down from 1390°C to 1370°C (Figure 3).At low temperatures (1370°C and below),extending the holding time did not greatly affect the thickness of the reaction layer,which must be because of the reduced content of the liquid calcium aluminate phase when the temperature decreased.In Figure 3,we can see that at the temperatures 1390(30minutes)and 1405°C (12minutes),the reacted amount (~1.5mg)of Al 2O 3was about the same,but the holding time was different.At 1405°C (12minutes)and 1420°C (10minutes),the holding time was about the same,but the reacted amount was different—1.55mg and 12mg,respectively.Line-scan analyses from the experiments at tempera-tures 1405°C for 12minutes is shown in Figure 4.Analyses were made with SEM/EDS to give the CaO and Al 2O 3contents at different points across the reaction layer.In this lower temperature range,differentFig.2—SEM (SE-image)showing a cross-sectional view of the inter-faces and the line scan results of Ca and Al concentrations in the reaction layer by EDS.Sample annealed at 1500°C for 10min.[11]Fig.3—Reacted amount of Al 2O 3as a function of time at five differ-ent temperatures.calcium aluminate phases could be determined from analysis of the EDS.From the forming phases,C12A7 was the dominant phase in the reaction layer.The next most common phase was C3A.Phases CA2,CA,and CA6could be detected clearly only in some samples less than3l m layers.3.Reactions Between CaO and Al2O3Powders Figure5shows results of the SEM/EDS analysis.The dark particle in the back scattered electron(BE)-image is an alumina grain that had reacted with CaO.The line scan shows the phase CA on the x-axis0-8l m,phase CA2on the x-axis8-13l m,and pure alumina on the x-axis13-22l m.Phases were verified by point-EDS analysis.The same samples also were analyzed by X-ray diffraction(XRD)to determine the relative amounts of the different phases present.The same calcium aluminate phases could be detected as with SEM/EDS analysis.The lowest melting phase C12A7was the major phase(41pct)followed by CA(36pct),CA2(11pct), CaO(2pct),Al2O3(9pct)and CaCO3(1pct).B.Industrial Experiments at SteelworksFigures7to10show the compositions and sizes of the 25biggest inclusions from different samples.The ana-lyzed area was2mm92mm,which then gave infor-mation on more than100inclusions.Data on the smallest inclusions,approximately below1.5l m,were not included in these bar-chartfigures.In thefigures,the inclusion analysis provided the oxide inclusions complex charter with the sulfur phase.The weight percentages of the inclusions are shown so that the eventual matrix(Fe) has been excluded from the analysis results.The fraction of the matrix(Fe)could be high in small inclusions.In bigger inclusions(>5l m),the matrix(Fe)had little or100µmCaO C3A C12A7 Calcium Ka1Oxygen Ka1Aluminum Ka1CA Al2O3k1 0.5050100µmFig.4—Reaction between CaO and Al2O3powders heated at 1405°C for12min.The upper picture shows a BE-image from the reaction layer.The lower picture shows the line scan analysis in detail.µm 032110CA CA2Al2O320Calcium Ka1Oxygen Ka1Aluminum Ka160µmFig.5—Reaction between CaO and Al2O3powders heated at 1400°C for6h.The upper picture shows the analysis line.The lower picture shows the line scan analysis in detail.no influence on the EDS analysis.Oxygen analysis also was seen in the bar-chart for Figures 7to 10;even EDS oxygen analysis did not have good certainty.Figure 6shows an element map of a heterogeneous inclusion with a calcium aluminate phase and a calcium sulfide phase.This inclusion was found in the same sample 6(27minutes,30seconds)but outside theanalysis area,which is presented in Figures 10and 11(sample 6).In Figure 7,the sample was taken only 55seconds after the CaSi injection.The Ca content was analyzed to be 37ppm.In this sample,the biggest 25inclusions analyses showed that more than half of the inclusions contained calcium in the form of either calcium alumi-nate or calcium sulfide.The rest of the inclusions showed the presence of aluminum oxides and manga-nese sulfides.This finding was clear evidence of a rapid calcium reaction and transformation of inclusions caused by the Ca injection.A few of the inclusions also contained some magnesium oxide.In Figure 8(2minutes,50seconds),calcium was present in each of the biggest inclusions.Inclusion characteristics in Figure 9(7minutes,20seconds)are similar in regardElectron image 1S Ka1Al Ka1Ca Ka1O Ka1Fig.6—One of the biggest inclusions (diameter 15l m)found from sample 6(27min 30s).The average analysis from the whole inclu-sion is:O 28wt pct,Al 14wt pct,Ca 33wt pct,and S 25wtpct.Fig.7—Industrial experiment.Sample was taken 55s afterCa-injection.Fig.8—Industrial experiment.Sample was taken 2min 50s afterCa-injection.Fig.9—Industrial experiment.Sample was taken 7min 20s after Ca-injection.to the inclusion size and the composition with the previous inclusion;the few biggest inclusions were larger with a higher oxygen content and a smaller manganese content.About 20minutes after the Ca addition,the alloying adjustments were made for Al,Mn,and Cr.The influence of the adjustments (shown in Figure 10,27minutes 30seconds)on the steel composition with greater values of Al and Mn.Even the inclusions were richer in aluminum than in the previous sample.It is also noteworthy that the Ca content gradually decreased from 37ppm (55seconds sample)to 21ppm (27min-utes,30seconds sample).Figure 11shows the inclusion paths in the same heat.For Figure 11,about 150inclusions were analyzed in each sample.The results were calculated so that the average amount of CaS,CaO,and Al 2O 3can be seen at different times after the Ca treatment.Although manganese sulfide formed first during the solidification and was not present in the inclusions at liquid-steel temperatures,it was taken into account when making the average inclusion analysis calculations.The calculation was done so that the amount of manganese sulfide was determined first from the manganese content of an inclusion.Second,the rest of the analyzed sulfur was assumed to form calcium sulfide.Third,the rest of the analyzed calcium was used to form calcium oxide.Finally,the amount of aluminum oxide was calculated from the aluminum content in the inclusion.Figure 11shows the inclusions analyses and average sizes presented at different times after the Ca treatment.According to Figure 11,it seems that the calcium reacted fast with both the oxides and the sulfur and formed calcium aluminates and sulfides.A reason for this strong tendency of CaS to form is the relatively high sulfur content (0.03pct)in the heat.The average inclusion size was small,under 2l m.At its lowest,it was about 1.3l m after the Ca addition (170seconds at sample 2).After that time,the inclusion size increased,so that the highest value (1.96l m)is in sample 5,whichwas taken 980seconds after the Ca treatment.After that time,two samples were taken,which both had average inclusion size smaller than 1.9l m.C.Evaluation of Reaction Kinetics and Mechanism In reference to the CaO-Al 2O 3reaction experiments (Figure 12),at temperatures 1350°C and 1370°C,only less than 10mg of alumina was reacted,although the holding time was more than 1hour.At temperatures of 1420°C and greater,the weight of alumina reacting with CaO was more than 100mg at a holding time of 1hour or less.By measuring the reaction area,reaction time,mass of product,and composition of the liquid product,it was possible to calculate the overall reaction rate constant k overall .This parameter for the reaction rate could be used to describe the kinetics of the alumina inclusion modification.The flux of CaO in the liquid calcium aluminate transferred through the boundary layer to the surfaceofFig.10—Industrial experiment.Sample was taken 27min 30s afterCa-injection.Fig.11—Industrial experiment.Change of inclusions composition after the Ca addition in the ladle.Each point represents the average of composition and size of about 150inclusions per sample.Samples from 1to 6arerepresented.Fig.12—Reacted amount of Al 2O 3as a function of time at seven different temperatures.alumina by diffusion.The reaction rate can be written as follows:r CaO ;1¼1S dN CaO dt ¼ÀD eff D x C lCaO ÀC i CaOÀÁ¼k D C l CaO ÀC i CaOÀÁ½1where C CaO l is the concentration of CaO in the liquid calcium aluminate and C CaO i is the concentration of CaO at the interface between liquid calcium aluminate and alumina.N is the number of moles in the reaction,and t is the reaction time.Assuming the reaction is of the first order with respect to CaO,the dissolution rate of CaO on unit surface S can be given as the following equation:r CaO ;2¼1S dN CaOdt¼k R C i CaO½2In our experiments,for the two cylinders in contact,the reacting surface area was 2.124910À5m 2.In a steady state,the flux to the surface was equal to the reaction rate at the surface.So,r CaO,1=r CaO,2,andfrom Eqs.[1]and [2],k D (C CaO l ÀC CaO i )=k R C CaO i,which results in the following equation:C i CaO ¼k Dk D þk RC l CaO½3Inserting Eq.[3]into either Eqs.[1]or [2],then elimi-nating C CaO i ,which cannot be measured,gives the fol-lowing equation:r ¼À11k D þ1k R C l CaO ¼k overall C lCaO mol m 2Ás !½4 Rate,r ,in Eq.[4]means that moles of CaO are reactingper unit volume per unit time.[13]When assuming that the liquid calcium aluminate is in the form of C 12A 7,the value of C CaO l is as follows:C l CaO¼q l CaO n CaO¼1338600ðg =m 3Þ56ðg =mol Þ¼23903:6ðmol =m 3Þ½5Table I shows the average values from several measure-ments at each temperature.Certain shifts of magnitudecan be seen in the temperature range between 1390and 1420°C.In this temperature region,the controlling mechanism of the reaction is evidently changing.The same phenomenon can be seen in Figure 13,where the results marked with a square (1405°C)and a rectangle (1390°C)are in this region.In this temperature region,the reaction rate is temperature sensitive,and the apparent activation energy has a high value,which indicates a transition in the controlling mechanism.[13]The rate-controlling mechanism in temperatures below this region is assumed to be Ca diffusion.[3]At temper-atures above the region,the chemical reaction between the alumina and the liquid calcium aluminate is assumed to be the rate-controlling mechanism.IV.CONCLUSIONSThe mechanism and kinetics of alumina inclusion modification were investigated by studying the reaction between CaO and Al 2O 3as well as between calcium and Al 2O 3inclusions in steel melts.Experiments were divided into two different groups that support each other;reactions between Al 2O 3and CaO were done in a laboratory resistance furnace,and Ca treatment was done on an industrial scale with melt sampling after the Ca addition.From the first type of experiments,it was possible to see how the reactions proceeded between CaO and Al 2O 3.The exact amount of reacted alumina was measured,and the reaction rate constants were calcu-lated between 1350°C and 1600°C.Reaction rate constants were drawn as a function of temperature so that the activation energies could be calculated from a straight line.The function showed that between 1370°C and 1420°C,a shift occurs in the controlling mechanism of the reaction,so linear dependence cannot be applied in this region.The result was interpreted to mean that,at lower temperatures,the reaction is diffusion con-trolled,but at higher temperatures,becomes chemical-reaction controlled.Concerning the interaction betweenTable I.Reaction Kinetics Between Solid CaO and Al 2O 3.Reaction Rate Constants Determined at Different Temperatures T(°C)135013701390140514201450150015501600k,m/s1.4910À101.9910À101.2910À95.8910À91.3910À62.0910À68.2910À61.4910À54.3910À5Fig.13—Logarithm of rate constant vs reciprocal temperature (1/K)that shows the temperature dependence of the reaction rate.Activa-tion energy E is shown between 1420°C and 1600°C.liquid calcium aluminate and an alumina inclusion,the chemical reaction between the solid alumina and the liquid calcium aluminate was assumed to be the rate-controlling step at temperatures greater than 1420°C.Also,experiments between mixed and pressed Al2O3 and CaO powders were performed.These samples were analyzed with SEM/EDS and XRD to identify the calcium aluminate phases formed.The phases formed at 1400°C in6hours were12CaO97Al2O3(41pct), CaO9Al2O3(36pct),CaO92Al2O3(11pct),and the rest were the initial materials CaO and Al2O3.The second groups of experiments were Ca treat-ments done in an industrial scale.The samples taken from the melt at certain intervals after the Ca addition were analyzed with SEM/EDS software,which auto-matically collected chemical and morphological data from inclusions in the steel.Figures showing the changes in the inclusion composition and size after the Ca treatment were produced.The results showed that even in industrial,77-ton,scale,calcium reactions take place rapidly;transformation of alumina inclu-sions to calcium aluminates was completed in a few minutes.During a longer delay time,calcium content gradually decreases.REFERENCES1.D.-Z.Lu,G.A.Irons,and W.-K.Lu:Scaninject VI,Lulea,Sweden,1992,pp.239–63.2.K.Ta htinen,R.Va ino la,and R.Sandholm:Scaninject II,Int.Conf.Injection Metallurgy,Lulea,Sweden,1980,pp.1–24.3.I.Kohatsu and G.W.Brindley:Zeitschrift fu¨r Physikalische Che-mie Neue Folge,1968,vol.60,pp.79–89.4.C.W.Bale,A.d.Pelton,W.T.Thompson,G.Erikson,K.Hack,P.Chartrand,S.Decterov,J.Melancon,and S.Petersen:FactSage5.4.1,.5.G.Eriksson and A.D.Pelton:Metall.Trans.B,1993,vol.24B,pp.807–15.6.D.A.Jerebtsov and G.G.Mikhailov:Ceram.Int.,2001,vol.27(1),pp.25–28.7.D.-Z.Lu,G.A.Irons,and W.-K.Lu:Ironmaking Steelmaking,1994,vol.21(5),pp.362–71.8.G.M.Faulring,J.W.Farrell,and D.C.Hilty:Iron Steelmaker,1980,vol.7(2),pp.14–20.9.Y.Higuchi,M.Numata,S.Fukagawa,and K.Shinme:ISIJ Int.,1996,vol.36,pp.S151–54.10.L.Holappa,M.Ha ma la inen,M.Liukkonen,and M.Lind:Iron-making Steelmaking,2003,vol.30(2),pp.111–15.11.Z.Han,M.Lind,and L.Holappa:Int.Conf.on Non-metallic Inclu-sions Control and Continuous Improvement of Processes based on Objective Measurement,STA˚L2004,Borla nge,Sweden,2004,p.13.12.M.Lind:PhD Dissertation,Helsinki University of Technology,Espoo,Finland,2006.13.O.Levenspiel:Chemical Reaction Engineering,3rd ed.,Wiley,New York,NY,1999,p.586.。

相关文档
最新文档