树人南师附中树人学校2015-2016学年度(下)期中试卷八下数学

合集下载

【三套打包】南京师范大学附中树人学校八年级下学期期中数学试题含答案

【三套打包】南京师范大学附中树人学校八年级下学期期中数学试题含答案

八年级下学期期中考试数学试题(含答案)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤3 3.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等6.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接AF,若△ABF的周长为6,则▱ABCD的周长为()A.6B.12C.18D.247.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a8.(3分)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.9.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,4),则△AOC的面积为()A.6B.12C.18D.2410.(3分)观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得()A.a2013=n B.a2013=C.a2013=D.a2013=二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是.15.(3分)若关于x的方程=6+有增根,则m=.16.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.18.先化简,再求值.,其中a=2.19.解方程=+2.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.23.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.24.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)25.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD 的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.2017-2018学年福建省泉州五中八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.【分析】根据分式的定义即可求出答案.【解答】解:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,故选:C.【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由y=,得3﹣x<0,解得x<3,故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平方数非负数的性质判断出点的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,∴a2+1≥1,∴点(a2+1,﹣1)一定在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等【分析】根据平行四边形的性质即可判断.【解答】解:平行四边形的对角线互相平分.故选:C.【点评】本题考查平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考常考题型.6.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接AF,若△ABF的周长为6,则▱ABCD的周长为()A.6B.12C.18D.24【分析】根据线段垂直平分线的性质可得AF=FC,那么由△ABF的周长为6可得AB+BC =6,再根据平行四边形的性质可得AD=BC,DC=AB,进而可得答案.【解答】解:∵对角线AC的垂直平分线分别交AD,BC于点E,F,∴AF=CF,∵△ABF的周长为6,∴AB+BF+AF=AB+BF+CF=AB+BC=6.∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,∴▱ABCD的周长为2(AB+BC)=12.故选:B.【点评】此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等,平行四边形对边相等.7.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【分析】将各数化简后即可比较大小.【解答】解:由题可知:a=,b=1,c=﹣1∴b>a>c,故选:B.【点评】本题考查零指数幂以及负整数指数幂的意义,解题的关键是正确理解零指数幂以及负整数指数幂的意义,本题属于基础题型.8.(3分)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.【分析】根据一次函数及反比例函数的图象与系数的关系作答.【解答】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,故A选项正确;B、因为y=kx+3的图象交y轴于正半轴,故B选项错误;C、因为y=kx+3的图象交y轴于正半轴,故C选项错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,故D选项错误.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,4),则△AOC的面积为()A.6B.12C.18D.24【分析】由点D为线段OA的中点可得出D点的坐标,将点D的坐标代入双曲线解析式中解出k值,即可得出双曲线的解析式,再令x=﹣8可得点C的坐标,根据边与边的关系结合三角形的面积公式即可得出结论.【解答】解:∵点D为线段OA的中点,且点A的坐标为(﹣8,4),∴点D的坐标为(﹣4,2).将点D(﹣4,2)代入到y=(k<0)中得:2=,解得:k=﹣8.∴双曲线的解析式为y=﹣.令x=﹣8,则有y=﹣=1,即点C的坐标为(﹣8,1).∵AB⊥BO,∴点B(﹣8,0),AC=4﹣1=3,OB=8,∴△AOC的面积S=AC•OB=×3×8=12.故选:B.【点评】本题考查了反比例函数系数k的几何意义、中点坐标公式以及三角形的面积公式,解题的关键是找出点C、D的坐标.解决该题型题目时,求出点的坐标由待定系数法求出反比例函数解析式是关键.10.(3分)观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得()A.a2013=n B.a2013=C.a2013=D.a2013=【分析】归纳总结得到一般性规律,即可得到结果.【解答】解:由a1=n,得到a2=1﹣=1﹣=,a3=1﹣=1﹣=﹣=,a4=1﹣=1﹣(1﹣n)=n,以n,,为循环节依次循环,∵2013÷3=671,∴a2013=.故选:D.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为8.1×10﹣8.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 081=8.1×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=120°.【分析】利用平行四边形的邻角互补,和已知∠A﹣∠B=60°,就可建立方程求出两角.【解答】解:在平行四边形ABCD中,∠A+∠B=180°,又有∠A﹣∠B=60°,把这两个式子相加相减即可求出∠A=∠C=120°,故答案为:120°.【点评】本题考查了平行四边形的性质:邻角互补,对角相等,建立方程组求解.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=80°.【分析】依据尺规作图的痕迹,可得EF是AB的垂直平分线,根据线段垂直平分线的性质得出EA=EB,根据等边对等角得到∠EAB=∠B=50°,利用三角形内角和定理求出∠AEB=180°﹣∠EAB﹣∠B=80°,再根据平行四边形的对边平行以及平行线的性质求出∠DAE=∠AEB=80°.【解答】解:∵EF是AB的垂直平分线,∴EA=EB,∴∠EAB=∠B=50°,∴∠AEB=180°﹣∠EAB﹣∠B=80°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB=80°.故答案为80°.【点评】本题考查了平行四边形的对边平行的性质,线段垂直平分线的性质,等边对等角的性质,三角形内角和定理以及平行线的性质.求出∠AEB的度数是解题的关键.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是y=2x+2.【分析】根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(1,4)代入即可得出直线的函数解析式.【解答】解:设平移后直线的解析式为y=2x+b.把(1,4)代入直线解析式得4=2×1+b,解得b=2.∴平移后直线的解析式为y=2x+2.故答案为:y=2x+2.【点评】本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y =kx+b(k≠0)平移时,k的值不变是解题的关键.15.(3分)若关于x的方程=6+有增根,则m=6.【分析】把所给方程转换为整式方程,进而把可能的增根代入求得m的值即可.【解答】解:最简公分母为x﹣6,当x﹣6=0时,x=6,去分母得:x=6(x﹣6)+m,因为方程有增根,所以增根为x=6当x=6时,m=6,故答案为:6【点评】本题考查增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为(,).【分析】过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,求出∠MCP=∠DPN,证△MCP≌△NPD,推出DN =PM,PN=CM,设AD=a,求出DN=2a﹣1,得出2a﹣1=1,求出a=1,得出D的坐标,在Rt△DNP中,由勾股定理求出PC=PD=,在Rt△MCP中,由勾股定理求出CM=2,得出C的坐标,设直线CD的解析式是y=kx+3,把D(3,2)代入求出直线CD的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.【解答】解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,),②当点C在y轴的负半轴上时,作PN⊥AD于N,交y轴于H,此时不满足BD=2AD,故答案为:(,).【点评】本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定,解方程组,勾股定理,旋转的性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但是有一定的难度.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.【分析】分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=5+1﹣2+2=6.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、绝对值的性质是解答此题的关键.18.先化简,再求值.,其中a=2.【分析】先把除法运算转化为乘法运算以及把各分式的分子和分母因式分解得到原式=•﹣,约分后得到原式=﹣,再通分得,接着把a=2代入计算.【解答】解:原式=•﹣=﹣=,当a=2时,原式==2.【点评】本题考查了分式的化简求值:先把除法运算转化为乘法运算和把各分式的分子或分母因式分解,然后进行约分得到最简分式或整式,最后把满足条件的字母的值代入进行计算.19.解方程=+2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3+4x﹣4,移项合并得:2x=1,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?【分析】关键描述语是:“这两个小组的每一名学生就要比原计划多做4面彩旗”.等量关系为:实际每个学生做的彩旗数﹣原来每个学生做的旗数=4.【解答】解;设每个小组有x名学生,根据题意得:,解之得x=10,经检验,x=10是原方程的解,且符合题意.答:每组有10名学生.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.【分析】(1)证出AC=BD,由SAS证明△ACE≌△DBF即可;(2)由全等三角形的性质得出CE=BF,∠ACE=∠DBF,得出CE∥BF,即可得出结论.【解答】(1)证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△DBF中,,∴△ACE≌△DBF(SAS)).(2)证明:∵△ACE≌△DBF,∴CE=BF,∠ACE=∠DBF,∴CE∥BF,∴四边形BFCE是平行四边形.【点评】此题主要考查了平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.【分析】根据提示,先设比值为k,再利用等式列出三元一次方程组,即可求出k的值是2,然后把x+y=2z代入所求代数式.【解答】解:设===k,则:,(1)+(2)+(3)得:2x+2y+2z=k(x+y+z),∵x+y+z≠0,∴k=2,∴原式===.【点评】本题主要考查分式的基本性质,重点是设“k”法.23.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.【分析】(1)利用待定系数法即可解决问题;(2)分三种情形讨论①当PA=PB时,可得(n+1)2+4=(n﹣2)2+1.②当AP=AB 时,可得22+(n+1)2=(3)2.③当BP=BA时,可得12+(n﹣2)2=(3)2.分别解方程即可解决问题;【解答】解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,∴反比例函数的解析式为y=﹣.∵B(m,﹣1)在y=﹣上,∴m=2,由题意,解得,∴一次函数的解析式为y=﹣x+1.(2)∵A(﹣1,2),B(2,﹣1),∴AB=3,AP2=22+(n+1)2,BP2=12+(n﹣2)2,∵△ABP为等腰三角形①当PA=PB时,(n+1)2+4=(n﹣2)2+1,∴n=0,②当AP=AB时,∴AP2=AB2,∴22+(n+1)2=(3)2,∴n=﹣1±.③当BP=BA时,∴BP2=BA2,∴12+(n﹣2)2=(3)2,∴n=2±.综上所述,P(0,0)或(﹣1+,0)或(﹣1﹣,0)或(2+,0)或(2﹣,0).【点评】本题是反比例函数综合题,主要考查了一次函数的性质、待定系数法、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.24.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)【分析】(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;(2)根据利润=(售价﹣成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.【解答】解:(1)当1≤x≤10时,设AB的解析式为:y=kx+b,把A(1,300),B(10,120)代入得:,解得:,∴AB:y=﹣20x+320(1≤x≤10),当10<x≤30时,同理可得BC:y=14x﹣20,综上所述,y与x之间的函数表达式为:;(2)当1≤x≤10时,w=(10﹣6)(﹣20x+320)=﹣80x+1280,当w=1040元,﹣80x+1280=1040,x=3,∵﹣80<0,∴w随x的增大而减小,∴日销售利润不超过1040元的天数:3,4,5,6,7,8,9,10,一共8天;当10<x≤30时,w=(10﹣6)(14x﹣20)=56x﹣80,56x﹣80=1040,x=20,∵56>0,∴w随x的增大而增大,∴日销售利润不超过1040元的天数:11,12,13,14,15,16,17,18,19,20,一共10天;综上所述,日销售利润不超过1040元的天数共有18天;=﹣80×5+1280=880,(3)当5≤x≤10时,当x=5时,w大当10<x≤17时,当x=17时,w=56×17﹣80=872,大∴若5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次方程,解题的关键是:(1)利用待定系数法求AB和BC的解析式;(2)熟练掌握一次函数的增减性;(3)分5≤x≤10和10<x≤17时,确定各分段函数的最大值.25.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD 的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.【分析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D (1,t),由DC∥AB,可知C(2,t﹣2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k=4可知反比例函数的解析式为y=,再由点P在双曲线y=上,点Q在y轴上,设Q(0,y),P(x,),再分以AB为边和以AB为对角线两种情况求出x的值,故可得出P、Q的坐标;(3)连NH、NT、NF,易证NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH =90°,MN=HT由此即可得出结论.【解答】解:(1)∵+(a+b+3)2=0,∴,解得:,∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵DC∥AB,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1,若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2,若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3,当AB为对角线时,AP=BQ,且AP∥BQ;∴,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)的值不发生改变,理由:如图4,连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴.【点评】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,难度较大,解本题(1)的关键是求出a,b的值,解(2)的关键是分类讨论,解(3)的关键是判断出△BFN≌△BHN.八年级(下)数学期中考试题(答案)一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是(A)A. 5B.8C.12 D.0.32.(2016·泸州)如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是(B)A.10 B.14 C.20 D.22,第2题图),第5题图),第8题图),第9题图) 3.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是(D) A.a=9,b=41,c=40 B.a=5,b=5,c=5 2C.a∶b∶c=3∶4∶5 D.a=11,b=12,c=154.(2016·南充)下列计算正确的是(A)A.12=2 3B.32=32 C.-x3=x-x D.x2=x5.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC的周长是(C)A.8 B.10 C.12 D.146.(2016·益阳)下列判断错误的是(D)A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形7.若x-1-1-x=(x+y)2,则x-y的值为(C)A.-1 B.1 C.2 D.38.如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF 的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A) A.2 3 B.3 3 C.4 D.4 39.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=52,如果Rt△ABC的面积为1,则它的周长为(D)A.5+12 B.5+1 C.5+2 D.5+310.(2016·眉山)如图,在矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE∶S△BCM=2∶3.其中正确结论的个数是(B)A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.若代数式xx-1有意义,则x的取值范围为__x≥0且x≠1__.12.如图,在平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于点F,则CF=__2__.,第12题图) ,第13题图),第14题图) ,第15题图) 13.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=__16__时,∠ACB=90°.14.如图,它是一个数值转换机,若输入的a值为2,则输出的结果应为3.15.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件__答案不唯一,如:OA=OC__,使ABCD成为菱形.(只需添加一个即可) 16.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,则线段DH的长为__1__.,第16题图),第17题图),第18题图)17.(2016·南京)如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为__13__ cm.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标__(2,4)或(8,4)__.三、解答题(共66分)19.(8分)计算: (1)8+23-(27-2); (2)(43-613)÷3-(5+3)(5-3). 解:(1)32- 3 (2)020.(8分)已知a =7-5,b =7+5,求值: (1)b a +a b ; (2)3a 2-ab +3b 2. 解:a +b =27,ab =2,(1)b a +a b =(a +b )2-2ab ab=12 (2)3a 2-ab +3b 2=3(a +b )2-7ab =7021.八年级下学期期中考试数学试题(含答案)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是( )A .B .C .D . 2.(3分)函数y =自变量的取值范围是( ) A .x ≥﹣3 B .x <3 C .x ≤﹣3 D .x ≤33.(3分)在平面直角坐标系中,点(a 2+1,﹣1)一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.(3分)下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )A .B .C.D.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等6.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接AF,若△ABF的周长为6,则▱ABCD的周长为()A.6B.12C.18D.247.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a8.(3分)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.9.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,4),则△AOC的面积为()A.6B.12C.18D.2410.(3分)观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得()A.a2013=n B.a2013=C.a2013=D.a2013=二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是.15.(3分)若关于x的方程=6+有增根,则m=.16.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.18.先化简,再求值.,其中a=2.19.解方程=+2.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:。

扬州树人期中数学试卷

扬州树人期中数学试卷

2015-2016学年江苏省扬州市树人学校八年级(下)期中数学试卷一、选择题(24分)1.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列调查中,适合普查的是()A.调查中学生最喜爱的电视节目B.调查某张试卷上的印刷错误C.调查某厂家生产的电池的使用寿命D.调查中学生上网情况4.(3分)下列说法正确的是()A.在367人中至少有两个人的生日相同B.一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个不透明的袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性5.(3分)正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4 C.8 D.166.(3分)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x 轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2 D.48.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.2 B.C.2 D.4二、填空题(30分)9.(3分)对八(2)班的一次考试成绩进行统计,已知75.5~85.5分这一组的频数是9,频率是0.2,那么该班级的人数是人.10.(3分)若要了解某校八年级800名学生的数学成绩,从中抽取50名学生的数学成绩进行分析,则在该调查中,样本指的是.11.(3分)如图,点A、B、C、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD 的位置,则旋转角为.12.(3分)若反比例函数的图象过点(﹣1,2),则这个函数图象位于第象限.13.(3分)如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.14.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为.15.(3分)从点A(﹣2,3)、B(1,﹣6)、C(﹣2,﹣4)中任取一个点,在y=﹣的图象上的概率是.16.(3分)如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM 的面积为1,则反比例函数的解析式为.17.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是.18.(3分)如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB 为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,则a=.三、解答题(96分)19.(8分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D 四个等级,其中相应等级的里程依次为200 千米,210 千米,220千米,230 千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?20.(8分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=8,∠BCD=120°,求四边形AODE的面积.21.(8分)某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是.22.(8分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.23.(8分)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD 于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.24.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程kx+b﹣<0的解集(请直接写出答案).25.(10分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?26.(12分)如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN ∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.27.(12分)在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.(1)已知点A(1,2),B(﹣3,1),P(0,t).①若A,B,P三点的“矩面积”为12,求点P的坐标;②直接写出A,B,P三点的“矩面积”的最小值.(2)已知点E(4,0),F(0,2),M(m,4m),N(n,),其中m>0,n >0.①若E,F,M三点的“矩面积”为8,求m的取值范围;②直接写出E,F,N三点的“矩面积”的最小值及对应n的取值范围.28.(12分)如图,菱形ABCD中,E、F分别是边AD,CD上的两个动点(不与菱形的顶点重合),且满足CF=DE,∠A=60°.(1)写出图中一对全等三角形:;(2)求证:△BEF是等边三角形;(3)若菱形ABCD的边长为2,设△DEF的周长为m,则m的取值范围为(直接写出答案);(4)连接AC分别与边BE、BF交于点M、N,且∠CBF=15°,试说明:MN2+CN2=AM2.2015-2016学年江苏省扬州市树人学校八年级(下)期中数学试卷参考答案一、选择题(24分)1.D;2.A;3.B;4.A;5.A;6.B;7.D;8.A;二、填空题(30分)9.45;10.抽取50名学生的数学成绩;11.90°;12.二、四;13.5cm;14.2;15.;16.y=﹣;17.3;18.2;三、解答题(96分)19.;20.;21.8;0.08;;22.;23.;24.;25.;26.;27.;28.△BDE≌△BCF;2+≤m<4;。

江苏省南京师范大学附属中学树人学校2014-2015学年八年级下学期期中考试数学试题(无答案)

江苏省南京师范大学附属中学树人学校2014-2015学年八年级下学期期中考试数学试题(无答案)

2015年初二下树人期中一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.从标号分别为2,4,6,8,10的5张卡片中,随机抽出1张,下列事件中,必然事件是()A .标号为奇数B .标号大于10C .标号是4的倍数D .标号是不大于10 2.下列分式变形中,正确的是()A .22a a b b= B .a ab b ab =C .()202a a c c b b c +=≠+D .()0a ac c b bc=≠3.在下列四个图案中,既是轴对称图形,又是中心对称图形()ABCD4.下列判断正确的是()A .四边相等的四边形是正方形B .四角相等的四边形是正方形C .对角线互相垂直的平行四边形是正方形D .每条对角线平分一组对角的矩形是正方形5.施工队为抢修其中一段120米的铁路,每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?设原计划每天修x 米,所列方程正确的是()A .12012045x x -=+ B .12012045x x -=+ C .12012045x x -=-D .12012045x x-=- 6.如图,ABC △中,AB AC =,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若2cm DE =D ,则AC 的长为()A.B .4cmC.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)B G F CED A7.使12x +有意义的x 的取值范围是. 8.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共100个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在25%和45%,则口袋中可能有黄球个. 9.分式34b a-与16abc 的最简公分母是. 10.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,指针指向偶数区域的可能性指针指向奇数区域的可能性(填“>”“<”或“=”).11.菱形的两条对角线的长分别为10和24,则这个菱形的周长为.12.已知112a b-=,求333a ab ba ab b --+-的值. 13.如图,在平行四边形ABCD 中,69A =︒∠,将平行四边形ABCD 绕顶点B 顺时针旋转到平行四边形111A BC D ,当11C D 首次经过顶点C 时,旋转角1ABA =∠︒.14.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点A 的坐标是()14-,,则点C 的坐标是.15.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,只要添加条件,就能保证四边形EFGH是菱形.C 1D 1A 1CDA B16.如图,在正方形ABCD 中,点E 在边DC 上,4AD =,1CE =,把线段AE 绕点A 旋转后使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为.三、解答题(本大题共11小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)化简⑴2222463ab c c a b-⋅; ⑵221239a a ---. 18.(6分)解分式方程:⑴31011x x -=+-; ⑵31322x x x -+=--. 19.(4分)先化简:22201511211a a a a a +⎛⎫+ ⎪-+-⎝⎭÷,再选择一个你喜欢的数代入求值. 20.(8分)已知:如图,在平行四边形ABCD 中,AE 、CF 分别平分BAD ∠、BCD ∠,AE 、CF 分别交BC 、AD 于点E 、F . 求证:⑴ABE △是等腰三角形; ⑵AE CF ∥.21.(6分)矩形ABCD 的对角线相交于点O ,DE AC ∥,CE DB ∥,DE 、CE 交于E ,求证:四边形DOCE 是菱形.22.(5分)某种玉米种子在相同条件下的发芽实验结果如下表:F H CGBDEA ECBDAB E CA E DOB ACDE⑴计算并完成表格;⑵请估计,当n 很大时,频率将接近;⑶这种玉米种子的发芽概率的估计值是?请简要说明理由. 23.(5分)已知线段AB ,分别按下列要求画图(或作图),并保留痕迹.⑴如图1,线段AB 与A B ''关于某条直线对称,点A 的对称点是A ',只用三角尺画出点B 的对称点B ';⑵如图2,平移线段AB ,使点A 移到点A '的位置,用直尺和圆规作出点B 的对应点B ';⑶如图3,线段AB 绕点O 顺时针方向旋转,其中OB OA =,点A 旋转到点A '的位置,只用圆规画出点B 的对应点B ',并写出画法;图1图2图324.(6分)甲、乙两个工程队共同铺设某段铁路,6天可以完成任务.如果甲工程队单独铺设,完成这项任务所需的时间是乙工程队单独铺设所需时间的2倍.求这两个工程队单独铺设完成这项任务各需要多少天? 25.(6分)D 、E 分别是不等边三角形ABC (即AB BC AC ≠≠)的边AB 、AC 的中点,O 是ABC△平面上的一动点,连接OB 、OC ,G 、F 分别是OB 、OC O 的中点,顺次连接点D 、G 、F 、E .⑴如图,当点O 在ABC △内时,求证:四边形DGFE 是平行四边形;⑵若四边形DGFE 是矩形,点O 所在位置应满足什么条件?(直接写出答案,不需说明理由.)26.(8分)如图,四边形ABCD 是正方形,ABE △是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN 、AM 、CM . ⑴求证:AMB ENB △△≌;⑵①当M 点在何处时,AM CM +的值最小;②当M 点在何处时,AM BM CM ++的值最小,并说明理由.A'A'BBBG FCBOEDA27.(8分)⑴动手操作:如图①,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点c '处,折痕为EF ,若20ABE =︒∠,那么EFC '∠的度数为. ⑵观察发现:小明将三角形纸片ABC (AB AC >)沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图②);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后连接DE 、DF 得到四边形AEDF (如图③),小明认为四边形AEDF 是菱形,你同意吗?图① 图② 图③⑶实验与运用:将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF ,折痕与AD 边交于点E ,与BC 边交于点F ;将矩形ABFE 与矩形EFCD 分别沿折痕MN 和PQ 折叠,使点A 、点D 都与点F 重合,展开纸片,此时恰好有MP MN PQ ==(如图④),求MNF ∠的度数.图④EB CA DA DB CENM AAFEB D CB D CCFC'BA E DB N F Q CA M E P D。

江苏省扬州中学教育集团树人学校2015-2016学年八年级数学下学期期末考试试题 苏科版

江苏省扬州中学教育集团树人学校2015-2016学年八年级数学下学期期末考试试题 苏科版

江苏省扬州中学教育集团树人学校2015-2016学年八年级数学下学期期末考试试题一、选择题:(本大题共8题,每题3分,共24分) 1.下列电视台的台标,是中心对称图形的是( )A .B .C .D .2.下列调查适合用普查的是 ( )A .了解某市学生的视力情况B .了解某市中学生课外阅读的情况C .了解某市百岁以上老人的健康情况D .了解某市老年人参加晨练的情况 3. 已知反比例函数xky =的图象经过点P(一2,1),则这个函数的图象位于 ( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 4.下列各式中,一定能成立的是 ( )A .22)5.2()5.2(=- B .22)(a a =C .122+-x x =x-1D .3392+⋅-=-x x x5.下列各式中属于最简二次根式的是 ( )A B . C D 6.如图,已知AB =2AD ,AC =2AE ,则下列结论错误的是( )A .△ABD ∽△ACEB .∠B=∠C C .BD=2CED .AB ·EC=AC ·BD(更正:本图B 、E 交换位置) 7.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且1x <2x <0,则21y y -的值是 ( )A.正数B. 负数C.非正数D.不能确定8.如图,在平面直角坐标系xOy 中,已知第一象限内的点A 在反比例函数y=x2的图象上,第二象限内的点B 在反比例函数的图象上,连接OA 、OB ,若OA ⊥OB ,OB =OA ,则k 的值为( )A.1B. -21 C.-1 D. -23 二、填空题(本大题共有10小题,每小题3分.共30分.) 9.计算8-12的结果为 .10.已知反比例函数y =k x的图象经过点A (-3,2),则当x =-2时,y = .11.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是 .12,则x 的取值范围是 . 13.已知21a b =,则2a b a b+-的值是 . 14.如图,在△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 的中点,若△ABC 的周长为12cm ,则△DEF 的周长是 cm .15.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示D 等级的学生所占的百分比的大小为________.16.当a=________17.已知函数满足下列两个条件:①当0x >时,y 随x 的增大而增大;②它的图象经过点(1,-2),请写出一个符合上述条件的函数的表达式______________.18. 如图,在四边形ABDC 中,∠BAC =90°,AB =2,AC =4,E 、F 分别是BD 、CD 的三等分点,连接AE 、AF 、EF .若四边形ABDC 的面积为7,则△AEF 的面积为 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答)19.(本题8分)计算:(1)0)13(27)13)(13(--+-+20.(本题8分)如图,▱ABCD 中,点O 是AC 与BD 的交点,过点O 的直线与直线BA 、DC 的延长线分别交于点E 、F .(1)求证:△AOE ≌△COF ;(2)请连接EC 、AF ,则EF 与AC 满足什么条件时,四边形AECF 是矩形,并说明理由.21.(本题8分)我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:根据图表解决下列问题: 图2(1)本次共抽取了 名学生进行体育测试,表(1)中,a = ,b= c = ;(2)补全图(2);(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?22.(本题8分)如图,直线n x y +=2与双曲线)0(≠=m xmy 交于A ,B 两点,且点A 的坐标为(1,4). (1) 求m ,n 的值;(2) 当x >0时,根据图像,直接写出xmn x ≥+2时x 的取值范围.23. (本题10分)如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为()3,3A , ()1,2B ()4,1C ,点E 坐标为()1,1.(1)在网格内画出和△AB C 以点E 为位似中心的位似图形 △A 1B 1C 1,且△A 1B 1C 1 和△ABC 的位似比为2:1;(2)分别写出A 1、B 1、C 1三个点的坐标.A 1 ;B 1 ;C 1 (3)求△A 1B 1C 1的面积; 24.(本题8分)如图,E 、F 分别是□ABCD 的边BC 、AD 且BE =DF(1)求证:四边形AECF 是平行四边形;(2)若BC =10,∠BAC =90°,且四边形AECF 是菱形,求BE 的长. 25.(本题10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =(k >0,x >0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y =(k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.26.(本题10分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点, 当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,并请说明理由.27.(本题12分)如图,一次函数b kx y +=的图像分别与反比例函数xay =的图像在第一象限交于点)3,4(A ,与y 轴的负半轴交于点B ,且OB OA =.(1)求函数b kx y +=和xay =的表达式; (2)已知点C 在X 轴上,且ABC ∆的面积是8,求此时点C 的坐标;(3)反比例函数xay =(1≤x ≤6)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,则C 1平移至C 2处所扫过的面积是 。

江苏南京师大附中树人学校15-16学年八年级下期中试卷--数学(解析版)

江苏南京师大附中树人学校15-16学年八年级下期中试卷--数学(解析版)
12.已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S=cm2,AE=cm.
13.若x﹣ = ,则x2+ =.
14.分式方程的解题步骤是:(1)去分母(2)去括号(3)移项(4)合并同类项(5)“系数化为1”(6)验根,其中可能产生增根的步骤是,产生增根的原因是.
2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )
8.分式 与 的最简公分母是.
9.如图,D、E、F分别是△ABC各边的中点,AH是高,如果ED=5cm,那么HF的长为.
10.如图是一枚图钉被抛起后钉尖触地频率和抛掷次数变化趋势图,则一枚图钉被抛起后钉尖触地的概率估计值是.
11.为鼓励学生课外阅读,某校制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形图,则赞成该方案所对应扇形的圆心角的度数为°.
(1)求证:GC=ED
(2)求证:△EHG是等腰直角三角形;
(3)若将图1中的射线PB连同正方形PDHK绕点P顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG还是等腰直角三角形吗?若是,给予证明;若不是,请说明理由.
2015-2016学年江苏省南京师大附中树人学校八年级(下)期中数学试卷
21.2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:
频率分布表
分数段
频数
频率
50~60
16

2015-2016年江苏省扬州市树人学校八年级(下)期中数学试卷(解析版)

2015-2016年江苏省扬州市树人学校八年级(下)期中数学试卷(解析版)

2015-2016学年江苏省扬州市树人学校八年级(下)期中数学试卷一、选择题(24分)1.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列调查中,适合普查的是()A.调查中学生最喜爱的电视节目B.调查某张试卷上的印刷错误C.调查某厂家生产的电池的使用寿命D.调查中学生上网情况4.(3分)下列说法正确的是()A.在367人中至少有两个人的生日相同B.一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个不透明的袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性5.(3分)正方形的一条对角线长为4,则这个正方形的面积是()A.8B.4C.8D.166.(3分)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x 轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B 两点,则菱形ABCD的面积为()A.2B.4C.2D.48.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB 方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.2B.C.2D.4二、填空题(30分)9.(3分)对八(2)班的一次考试成绩进行统计,已知75.5~85.5分这一组的频数是9,频率是0.2,那么该班级的人数是人.10.(3分)若要了解某校八年级800名学生的数学成绩,从中抽取50名学生的数学成绩进行分析,则在该调查中,样本指的是.11.(3分)如图,点A、B、C、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD 的位置,则旋转角为.12.(3分)若反比例函数的图象过点(﹣1,2),则这个函数图象位于第象限.13.(3分)如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.14.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为.15.(3分)从点A(﹣2,3)、B(1,﹣6)、C(﹣2,﹣4)中任取一个点,在y=﹣的图象上的概率是.16.(3分)如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM 的面积为1,则反比例函数的解析式为.17.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是.18.(3分)如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB 为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k ≠0)上的点D1处,则a=.三、解答题(96分)19.(8分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D 四个等级,其中相应等级的里程依次为200 千米,210 千米,220千米,230 千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?20.(8分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=8,∠BCD=120°,求四边形AODE的面积.21.(8分)某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是.22.(8分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.23.(8分)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD 于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.24.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程kx+b﹣<0的解集(请直接写出答案).25.(10分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?26.(12分)如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN ∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.27.(12分)在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.(1)已知点A(1,2),B(﹣3,1),P(0,t).①若A,B,P三点的“矩面积”为12,求点P的坐标;②直接写出A,B,P三点的“矩面积”的最小值.(2)已知点E(4,0),F(0,2),M(m,4m),N(n,),其中m>0,n >0.①若E,F,M三点的“矩面积”为8,求m的取值范围;②直接写出E,F,N三点的“矩面积”的最小值及对应n的取值范围.28.(12分)如图,菱形ABCD中,E、F分别是边AD,CD上的两个动点(不与菱形的顶点重合),且满足CF=DE,∠A=60°.(1)写出图中一对全等三角形:;(2)求证:△BEF是等边三角形;(3)若菱形ABCD的边长为2,设△DEF的周长为m,则m的取值范围为(直接写出答案);(4)连接AC分别与边BE、BF交于点M、N,且∠CBF=15°,试说明:MN2+CN2=AM2.2015-2016学年江苏省扬州市树人学校八年级(下)期中数学试卷参考答案与试题解析一、选择题(24分)1.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大【解答】解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D选项正确;故选:D.2.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.3.(3分)下列调查中,适合普查的是()A.调查中学生最喜爱的电视节目B.调查某张试卷上的印刷错误C.调查某厂家生产的电池的使用寿命D.调查中学生上网情况【解答】解:A、调查中学生最喜爱的电视节目,适合抽样调查,故A错误;B、调查某张试卷上的印刷错误,精确度高,适合普查,故B正确;C、调查某厂家生产的电池的使用寿命,调查具有破坏性,适合抽样调查,故C错误;D、调查中学生上网情况,调查范围广,适合抽样调查,故D错误;故选:B.4.(3分)下列说法正确的是()A.在367人中至少有两个人的生日相同B.一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个不透明的袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性【解答】解:因为如果二月不是闰月,1年365天,如果二月闰月就是一年366天,故在367人中至少有两个人的生日相同是正确的,故选项A正确;一次摸奖活动的中奖率是1%,那么摸100次不一定会中一次奖,故选项B错误;一副扑克牌中,随意抽取一张是红桃K,这是随机事件,故选项C错误;一个不透明的袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性小于摸到白球的可能性,故选项D错误;故选:A.5.(3分)正方形的一条对角线长为4,则这个正方形的面积是()A.8B.4C.8D.16【解答】解:∵正方形的一条对角线长为4,∴这个正方形的面积=×4×4=8.故选:A.6.(3分)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【解答】解:∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,∴,,,∵﹣2<3<6,∴y3<y2<y1,故选:B.7.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x 轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B 两点,则菱形ABCD的面积为()A.2B.4C.2D.4【解答】解:∵点A、B在反比例函数y=的图象上,且A,B两点的纵坐标分别为3、1,∴点A(1,3),点B(3,1),∴AB==2.∵四边形ABCD为菱形,BC与x轴平行,∴BC=AB=2,=BC•(y A﹣y B)=2×(3﹣1)=4.∴S菱形ABCD故选:D.8.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB 方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.2B.C.2D.4【解答】解:∵∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∴∠ABC=45°,∵点P的速度是每秒cm,点Q的速度是每秒1cm,∴BP=tcm,BQ=(6﹣t)cm,∵四边形QPBP′为菱形,∴t×=,解得t=2.故选:A.二、填空题(30分)9.(3分)对八(2)班的一次考试成绩进行统计,已知75.5~85.5分这一组的频数是9,频率是0.2,那么该班级的人数是45人.【解答】解:总人数为:9÷0.2=45.故答案为:45.10.(3分)若要了解某校八年级800名学生的数学成绩,从中抽取50名学生的数学成绩进行分析,则在该调查中,样本指的是抽取50名学生的数学成绩.【解答】解:若要了解某校八年级800名学生的数学成绩,从中抽取50名学生的数学成绩进行分析,则在该调查中,样本指的是抽取50名学生的数学成绩,故答案为:抽取50名学生的数学成绩.11.(3分)如图,点A、B、C、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD 的位置,则旋转角为90°.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.12.(3分)若反比例函数的图象过点(﹣1,2),则这个函数图象位于第二、四象限.【解答】解:设y=,图象过(﹣1,2),∴k=﹣2<0,∴函数图象位于第二,四象限,故答案为:二、四.13.(3分)如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为5cm.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=5cm.故答案为:5cm.14.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则AC的长为2.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,BD=AC,∴OA=OB=1,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=1,∴AC=2OA=2,故答案为:2.15.(3分)从点A(﹣2,3)、B(1,﹣6)、C(﹣2,﹣4)中任取一个点,在y=﹣的图象上的概率是.【解答】解:∵A、B、C三个点,在函数在y=﹣的图象上的点有A和B点,∴随机抽取一张,该点在y=﹣的图象上的概率是.故答案为:.16.(3分)如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM 的面积为1,则反比例函数的解析式为y=﹣.【解答】解:由于A是图象上任意一点,则S=|k|=1,△AOM又反比例函数的图象在二、四象限,k<0,则k=﹣2.所以这个反比例函数的解析式是y=﹣.故答案为:y=﹣.17.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是3.【解答】解:∵D、E分别是BC、AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF为角平分线,∴∠ABF=∠FBD,∴∠FBD=∠BFD,∴DF=DB,∵DB=DC,∴DF=BC=3.故答案为:3.18.(3分)如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB 为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k ≠0)上的点D1处,则a=2.【解答】解:对于直线y=﹣3x+3,令x=0,得到y=3;令y=0,得到x=1,即A(0,3),B(1,0),过C作CE⊥x轴,交x轴于点E,过A作AF∥x轴,过D作DF垂直于AF于F,如图所示,∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∴∠OAB+∠ABO=90°,∠ABO+∠EBC=90°,∴∠OAB=∠EBC,在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴BE=AO=3,CE=OB=1,∴C(4,1),把C坐标代入反比例解析式得:k=4,即y=,同理得到△DFA≌△BOA,∴DF=BO=1,AF=AO=3,∴D(3,4),把y=4代入反比例解析式得:x=1,即D1(1,4),则将正方形ABCD沿x轴负方向平移2个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,即a=2,故答案为:2.三、解答题(96分)19.(8分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D 四个等级,其中相应等级的里程依次为200 千米,210 千米,220千米,230 千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?【解答】解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),等级为A的电动车有:100﹣30﹣40﹣20=10(辆),补全的统计图如右图所示,(2)这种电动汽车一次充电后行驶的平均里程数为:=217(千米),即这种电动汽车一次充电后行驶的平均里程数为217千米.20.(8分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=8,∠BCD=120°,求四边形AODE的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,又∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∴四边形AODE是矩形.(2)解:∵∠BCD=120°,四边形ABCD是菱形,∴∠BAD=∠BCD=120°,∴∠BAO=120°÷2=60°,∴AO=AB•cos60°=8×=4,∴BO=AB•sin60°=8×=4,∴DO=BO=4,∴四边形AODE的面积=4×4=16.21.(8分)某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=8,b=0.08;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是.【解答】解:(1)根据频数分布图中每一组内的频数总和等于总数据个数,且知总人数为50人,故a=50﹣2﹣20﹣16﹣4=8,根据频数与频率的关系可得:b==0.08;(2)如图:(3)小华得了93分,不低于90分的学生中共4人,故小华被选上的概率是:.22.(8分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【解答】(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.23.(8分)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD 于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.【解答】(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.24.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程kx+b﹣<0的解集(请直接写出答案).【解答】解:∵B(2,﹣4)在反比例函数y=的图象上,∴m=﹣8,∴反比例函数解析式为:y=﹣,则n=2,由题意得,,解得,,∴一次函数的解析式为y=﹣x﹣2;(2)当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=×2×2+×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,kx+b<,∴kx+b﹣<0的解集为:﹣4<x<0或x>2.25.(10分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO 的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?【解答】解:(1)因为爆炸前浓度呈直线型增加,所以可设y与x的函数关系式为y=k1x+b(k1≠0),由图象知y=k1x+b过点(0,4)与(7,46),则,解得,则y=6x+4,此时自变量x的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)∵爆炸后浓度成反比例下降,∴可设y与x的函数关系式为(k2≠0).由图象知过点(7,46),∴,∴k2=322,∴,此时自变量x的取值范围是x>7.(2)当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h).(3)当y=4时,由y=得,x=80.5,80.5﹣7=73.5(小时).∴矿工至少在爆炸后73.5小时才能下井.26.(12分)如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN ∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.【解答】解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE=∠ACB,同理,∠ACF=∠ACG,∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACG)=×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.27.(12分)在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.(1)已知点A(1,2),B(﹣3,1),P(0,t).①若A,B,P三点的“矩面积”为12,求点P的坐标;②直接写出A,B,P三点的“矩面积”的最小值.(2)已知点E(4,0),F(0,2),M(m,4m),N(n,),其中m>0,n >0.①若E,F,M三点的“矩面积”为8,求m的取值范围;②直接写出E,F,N三点的“矩面积”的最小值及对应n的取值范围.【解答】解:(1)由题意:a=4.①当t>2时,h=t﹣1,则4(t﹣1)=12,可得t=4,故点P的坐标为(0,4);当t<1时,h=2﹣t,则4(2﹣t)=12,可得t=﹣1,故点P 的坐标为(0,﹣1);②∵根据题意得:h的最小值为:1,∴A,B,P三点的“矩面积”的最小值为4;(2)①∵E,F,M三点的“矩面积”为8,∴a=4,h=2,∴.∴0≤m≤.∵m>0,∴0<m≤;②∵当n≤4时,a=4,h=,此时S=ah=,∴当n=4时,取最小值,S=16;当4<n<8时,a=n,h=,此时S=ah=16;当n≥8时,a=n,h=2,此时S=ah=2n,∴当n=8时,取最小值,S=16;∴E,F,N三点的“矩面积”的最小值为16,此时n的取值范围为4≤n≤8.28.(12分)如图,菱形ABCD中,E、F分别是边AD,CD上的两个动点(不与菱形的顶点重合),且满足CF=DE,∠A=60°.(1)写出图中一对全等三角形:△BDE≌△BCF;(2)求证:△BEF是等边三角形;(3)若菱形ABCD的边长为2,设△DEF的周长为m,则m的取值范围为2+≤m<4(直接写出答案);(4)连接AC分别与边BE、BF交于点M、N,且∠CBF=15°,试说明:MN2+CN2=AM2.【解答】(1)解:如图1,△BAE≌△BDF,△BDE≌△BCF,△BAD≌△BCD,共三对;证明:△BDE≌△BCF.在△BDE和△BCF中,,∴△BDE≌△BCF(SAS).故答案可以是:△BDE≌△BCF.(2)证明:如图1,∵由(1)知,△BDE≌△BCF,∴∠DBE=∠CBF,BE=BF,∵∠DBC=∠DBF+∠CBF=60°,∴∠DBF+∠DBE=60°即∠EBF=60°,∴△BEF为正三角形;(3)解:如图1,由(2)知,△BEF是等边三角形,则EF=BE=BF.则m=DE+DF+EF=AD+BE.当BE⊥AD时,BE最短,此时△DEF的周长最短∵在Rt△ABE中,sin60°=,即=,∴BE=.∴m=2+.当点E与点A重合,△DEF的周长最长,此时m=2+2=4.综上所述,m的取值范围是:2+≤m<4;故答案是:2+≤m<4;(4)证明:如图2,把△BNC绕点B逆时针旋转120°,使CB与AB重合,N对应点为N′,连接MN′.则∠NBC=∠N′BA.∴∠N′BA+∠EBA=60°=∠EBF.在△N′BM与△NBM中,,∴△N′BM≌△NBM(SAS),∴N′M=NM,∠MN′B=∠MNB=45°.又∵∠AN′B=∠BNC=180°﹣(15°+30°)=135°,∴∠AN′M=135°﹣45°=90°,∴MN2+CN2=AM2.。

【精品】南京市XX中学2015-2016年八年级下期中数学试卷含答案解析

【精品】南京市XX中学2015-2016年八年级下期中数学试卷含答案解析

南京市XX中学2015-2016年八年级下期中数学试卷含答案解析一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.156.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°二、填空题.(共10小题,满分20分)7.当x时,分式有意义.8.已知分式的值为0,那么x的值为.9.分式,的最简公分母是.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性(选填“大于”“小于”或“等于”)是白球的可能性.11.化简:=.12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为cm.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=.15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为.16.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC 上有一点P,使PD+PE最小,则这个最小值为.三、解答题(共68分)17.计算:(1)÷(﹣6x2y);(2)•;(3)+(4)﹣.18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n很大时,频率将会接近.假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是.(结果精确到0.1)19.如图,点E是正方形ABCD边BC延长线上的一点,且CE=AC,求∠E的度数.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据,易证△AFG≌,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.2015-2016学年江苏省南京XX中学八年级(下)期中数学试卷参考答案与试题解析一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、B、C选项中,因涉及人数较少,范围较小,适用普查;D、考察一批炮弹的杀伤半径,调查具有破坏性,所以适用抽样调查,故选:D.2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为0的数分式的值不变,可得答案.【解答】解:若把分式中的x、y都扩大3倍,则分式的值不变,故选:C.3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a【考点】随机事件.【分析】随机事件就是可能发生,也可能不发生的事件,依据定义即可判断.【解答】解:A、在标准大气压下,温度低于0℃时冰融化是不可能事件,选项不符合题意;B、小明骑车经过某个十字路口时遇到红灯,是随机事件,选项符合题意;C、地球上海洋面积大于陆地面积,是必然事件,选项不符合题意;D、如果a、b都是实数,那么a+b=b+a是必然事件,选项不符合题意.故选B.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【考点】旋转的性质.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.15【考点】频数(率)分布直方图.【分析】根据频数分布直方图第三组数据可得.【解答】解:由频数分布直方图知,人均收入在1 200~1 240元的频数是13,故选:B.6.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°【考点】翻折变换(折叠问题);菱形的性质.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.二、填空题.(共10小题,满分20分)7.当x≠﹣3时,分式有意义.【考点】分式有意义的条件.【分析】直接利用分式的定义分析得出答案.【解答】解:∵分式有意义,∴x+3≠0,解得:x≠﹣3.故答案为:≠﹣3.8.已知分式的值为0,那么x的值为2.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣2=0,且x+1≠0,再解可得答案.【解答】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故答案为:2.9.分式,的最简公分母是6x3y2z.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是3xy2、2x3z,故最简公分母是6x3y2z;故答案为6x3y2z.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.11.化简:=.【考点】约分.【分析】直接利用平方差公式将分母分解因式,进而化简即可.【解答】解:==.故答案为:.12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为8cm.【考点】菱形的性质.【分析】根据菱形的性质,先求菱形的边长,利用勾股定理求另一条对角线的长度.【解答】解:如图,菱形ABCD中,BD=6,∴AC⊥BD,∵菱形的周长为20,BD=6,∴AB=20÷4=5,BO=3,∴AO==4,∴AC=8.则这个菱形的另一条对角线长为8 cm.故答案为:8.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况,故答案为:抽取25名学生的视力情况.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=3.【考点】三角形中位线定理;矩形的判定与性质.【分析】由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为(+1,1).【考点】菱形的性质;坐标与图形性质.【分析】根据菱形的性质,作CD⊥x轴,先利用三角函数求出OD、CD的长度,从而得出C点坐标,然后利用菱形的性质求得点B的坐标.【解答】解:由题意可得OA=OC=,∠AOC=45°,∴CD=0Csin45°=1,OD=OCcos45°=1,点C的坐标为(1,1),则点B的坐标为(+1,1).故答案为:(+1,1).16.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC 上有一点P,使PD+PE最小,则这个最小值为2.【考点】轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=2,连结BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长.【解答】解:连结BP.∵ABCD为正方形,面积为4,∴正方形的边长为2.∵△ABE为等边三角形,∴BE=AB=2.∵ABCD为正方形,∴△ABP与△ADP关于AC对称.∴BP=DP.∴PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=2.故答案为:2.三、解答题(共68分)17.计算:(1)÷(﹣6x2y);(2)•;(3)+(4)﹣.【考点】分式的混合运算.【分析】(1)根据分式除法法则即可求出答案.(2)先将分子分母进行因式分解,然后利用分式的基本性质即可求出答案(3)利用分式加减法则即可求出答案(4)根据分式的加减运算法则即可求出答案.【解答】解:(1)原式=×=﹣(2)原式=×=(3)原式=﹣==a+b(4)原式=﹣=﹣18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n很大时,频率将会接近0.6.假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是0.6.(结果精确到0.1)【考点】利用频率估计概率.【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;【解答】解:(1):(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6,472;0.6,0.6.19.如图,点E是正方形ABCD边BC延长线上的一点,且CE=AC,求∠E的度数.【考点】正方形的性质;等腰三角形的性质.【分析】根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°.【解答】解:∵CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=×45°=22.5°.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.【考点】分式的化简求值.【分析】首先对括号内的分式进行通分相减,然后把除法转化为乘法,计算乘法即可化简,最后代入数值计算即可.【解答】解:原式=•﹣1=•﹣1=x﹣1.∵x≠0或1或﹣2或2.且﹣2≤x≤2而x是整数.∴x=﹣1.当x=﹣1时,原式=﹣1﹣1=﹣2.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为108度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢跳绳的人数除以其所占的百分比,即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用360度乘以样本中喜欢足球人数占总人数的比例;(4)用样本估计总体,即可确定最喜爱篮球的人数.【解答】解:(1)观察条形统计图与扇形统计图可知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;(2)喜欢足球的有40×30%=12人,喜欢跑步的有40﹣10﹣15﹣12=3人,故条形统计图补充为:(3)扇形统计图中“足球”所对应扇形的圆心角为360°×=108°,故答案为:108;(4)全校最喜爱篮球的人数=1200×=450,答:估计全校有450名学生喜爱篮球.22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.【考点】菱形的判定.【分析】(1)有一组邻边相等的平行四边形是菱形,即可得出答案;(2)求出四边形是平行四边形,再证出AE=DE即可.【解答】解:(1)小明错用了菱形的定义.(2)改正:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE,∴平行四边形AEDF是菱形.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.【考点】矩形的判定;角平分线的性质;等腰三角形的性质.【分析】(1)根据角平分线的性质,及∠BAC+∠BAF=180°可求出∠DAE=90°,即DA⊥AE;(2)要证AB=DE,需证四边形AEBD是矩形,由AB=AC,AD为∠BAC的角平分线,可知AD⊥BC,又因为DA⊥AE,BE⊥AE故,所以∠AEB=90°,∠DAE=90°即证四边形AEBD是矩形.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠BAC,又∵AE平分∠BAF,∴∠BAE=∠BAF,∵∠BAC+∠BAF=180°,∴∠BAD+∠BAE=(∠BAC+∠BAF)=×180°=90°,即∠DAE=90°,故DA⊥AE.(2)解:AB=DE.理由是:∵AB=AC,AD平分∠BAC,∴AD⊥BC,故∠ADB=90°∵BE⊥AE,∴∠AEB=90°,∠DAE=90°,故四边形AEBD是矩形.∴AB=DE.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据SAS,易证△AFG≌△AFG,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.【考点】四边形综合题.【分析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,再证明△AFG≌△AFE 进而得到EF=FG,即可得EF=BE+DF;(2)∠B+∠D=180°时,EF=BE+DF,与(1)的证法类同;(3)根据△AEC绕点A顺时针旋转90°得到△ABE′,根据旋转的性质,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根据Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,证△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2.【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案为:SAS;△AFG;(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF;(3)猜想:DE2=BD2+EC2,证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.2017年5月4日。

南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析

南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析

南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形B.正方形C.圆D.平等四边形2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④3.下列各式从左到右的变形正确的是()A.=1 B.=C.=x+y D.=4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种 B.5种 C.4种 D.3种二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C=.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为,频率为.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=°.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a的值代入求值.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是.(直接写出答案,不需要证明)22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k(a﹣b+b ﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知:==(x+y+z≠0),求的值.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系为;(2)如图②,将正方形DEFG绕点D按逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立,证明你的结论.2015-2016学年江苏省南京八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形B.正方形C.圆D.平等四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解:①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选C.【点评】此题考查了概率的意义、抽样调查和全面调查和随机事件,不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列各式从左到右的变形正确的是()A.=1 B.=C.=x+y D.=【考点】65:分式的基本性质.【专题】11 :计算题;513:分式.【分析】原式变形变形得到结果,即可作出判断.【解答】解:A、原式==1,正确;B、原式=,错误;C、原式为最简结果,错误;D、原式=,错误,故选A【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形【考点】O1:命题与定理;L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定;LF:正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解:对角线互相垂直平分且相等的四边形是正方形,所以A为假命题;对角线相等且互相平分的四边形是矩形,所以B为真命题;对角线互相垂直平分的四边形是菱形,所以C为真命题;对角线互相平分的四边形为平行四边形,所以D为真命题.故选A.【点评】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】X8:利用频率估计概率.【专题】1 :常规题型.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种 B.5种 C.4种 D.3种【考点】L6:平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是x≠﹣1.【考点】62:分式有意义的条件.【分析】根据分式有意义的条件可得1+x≠0,再解即可.【解答】解:由题意得:1+x≠0,解得:x≠﹣1,故答案为:x≠﹣1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C=80°.【考点】L5:平行四边形的性质.【专题】11 :计算题.【分析】根据平行四边形的性质分别求出∠A和∠B的度数,然后根据平行四边形对角相等的性质可得∠C=∠A,即可求解.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.【点评】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:求摸到白球的概率.【考点】X2:可能性的大小;X1:随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解:一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为:=<,故答案为:求摸到白球的概率.【点评】本题考查了可能性的大小的知识,解题的关键是能够根据题意确定摸到红球和摸到白球的概率,难度不大.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20,频率为0.4.【考点】V6:频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解:根据题意可得:第1、2、3、4组数据的个数分别是2、8、15、5,共(2+8+15+5)=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=0.4.故答案为20,0.4.【点评】本题考查频率、频数的关系:频率=,同时考查频数的定义即样本数据出现的次数.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为4.【考点】LB:矩形的性质.【分析】由矩形的性质可得到OA=OB,于是可证明△ABO为等边三角形,于是可求得AB=4,然后依据勾股定理可求得BC的长.【解答】解:∵四边形ABCD为矩形,∴OA=OB=AC=4.∵OA=OB,∠AOB=60°,∴△OAB为等边三角形.∴AB=4.在Rt△ABC中,BC==4.故答案为:4.【点评】本题主要考查的是矩形的性质、等边三角形的性质和判定、勾股定理的应用,求得AB 的长是解题的关键.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=65°.【考点】L5:平行四边形的性质.【分析】由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A,又由平角的定义,根据∠AMF=50°,求得∠DMF的度数,然后可求得∠A 的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.【点评】此题考查了平行四边形的性质、平行线的性质与折叠的性质,注意数形结合思想的应用以及折叠中的对应关系,难度适中.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是24.【考点】L8:菱形的性质.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=3,∴AB=6,∴菱形ABCD的周长是:4×6=24,故答案为:24【点评】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【考点】L6:平行四边形的判定.【专题】26 :开放型.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解:答案不唯一,如两组对角分别相等的四边形是平行四边形等;理由:∵∠B=∠D,∠A=∠C,∠B+∠C+∠D+∠A=360°,∴∠B+∠C=180°,∠A+∠D=180°,∴AB∥CD,AD∥BC,∴四边行ABCD是平行四边形.故答案为:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【点评】此题主要考查了平行四边形的判定,熟练掌握相关判定定理是解题关键.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】LN:中点四边形;LC:矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故答案为:对角线互相垂直.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是2,5,18.【考点】L9:菱形的判定;D5:坐标与图形性质.【分析】利用菱形的性质结合A,C点坐标进而得出符合题意的n的值.【解答】解:如图所示:当C(﹣7,2),C′(﹣7,5)时,都可以得到以A、B、C、D四个点为顶点的四边形是菱形,同理可得:当D(﹣7,8)则对应点C的坐标为;(﹣7,18)可以得到以A、B、C、D四个点为顶点的四边形是菱形,故n的值为:2,5,18.故答案为:2,5,18.【点评】此题主要考查了菱形的判定以及坐标与图形的性质,利用菱形的性质得出C点坐标是解题关键.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.【考点】6C:分式的混合运算.【分析】(1)先约分,再计算即可;(2)化为同分母的分式,再进行相加即可.【解答】解:(1)原式=﹣;(2)原式=﹣﹣===﹣2.【点评】本题考查了分式的混合运算,掌握分式的约分和通分是解此题的关键.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的a的值代入进行计算即可.【解答】解:原式=÷=•=﹣,当a=﹣2时,原式=﹣=1.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.【考点】LC:矩形的判定.【分析】由全等三角形的判定定理SSS证得△ABC≌△DCB,则∠ABC=∠DCB=90°,所以“有一内角为直角的平行四边形是矩形”.【解答】已知:四边形ABCD是平行四边形,AC、BD是两条对角线,且AC=BD.求证:平行四边形ABCD是矩形.证明:如图,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.在△ABC与△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.又∵∠ABC+∠DCB=180°,∴∠ABC=∠DCB=90°,∴平行四边形ABCD是矩形.【点评】本题考查了矩形的判定.此题通过全等三角形的性质得到同旁内角互补,结合平行线的性质证得平行四边形的两个内角为直角.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】R8:作图﹣旋转变换.【分析】(1)连接AA1、BB1,再分别作AA1、BB1中垂线,两中垂线交点即为点O;(2)根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.【点评】本题主要考查旋转变换的作图,熟练掌握旋转变换的性质:①对应点到旋转中心的距离相等(意味着:旋转中心在对应点所连线段的垂直平分线上),②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是平行四边形ABCD是矩形,并且AB=2AD.(直接写出答案,不需要证明)【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)解:当平行四边形ABCD是矩形,并且AB=2AD时,平行四边形EHFG是矩形.理由如下:连接EF,如图所示:∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=AB,这时,EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是矩形;故答案为:平行四边形ABCD是矩形,并且AB=2AD.【点评】本题考查了平行四边形的判定与性质,矩形的判定,注意找准条件,有一定的难度.22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是每名学生的上学方式;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?【考点】V7:频数(率)分布表;V3:总体、个体、样本、样本容量;V5:用样本估计总体.【分析】(1)每一个调查对象称为个体,据此求解;(2)首先求得私家车部分所占的百分比,然后乘以总人数即可求得对应频数;(3)用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解:(1)本次调查的个体是每名学生的上学方式,故答案为:每名学生的上学方式;(2)由扇形统计图知,“乘私家车”部分对应的百分比为1﹣15%﹣29%﹣30%﹣6%=20%,则“乘私家车”部分对应的频数为100×20%=20;(3)2000×(15%+29%)=880人.答:估计该校2000名学生中,选择骑车和步行上学的一共有880人.【点评】本题考查了频率分布表、用样本估计总体及扇形统计图的知识,解题的关键是能够读懂统计图,并从统计图中整理出进一步解题的有关信息.23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.【考点】LE:正方形的性质;KB:全等三角形的判定;LA:菱形的判定与性质.【分析】(1)连接BD交AC于O,先证明四边形BMDN是平行四边形,再根据NM⊥BD即可证明.(2)先证明四边形BFDE是平行四边形,得到∠BFM=∠DEN,再证明BM=DN,∠BMF=∠DNE 即可解决问题.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是正方形,∴OA=OC,OB=OD,AC⊥BD,∵AM=CN,∴OM=ON,∵OB=OD,∴四边形MBND是平行四边形,∵MN⊥DB,∴四边形MBND是菱形.(2)证明:∵四边形MBND是菱形,∴DM∥NB,BM=DN,∠DMB=∠DNB,∴∠BMF=∠DNE,∵BF∥DE,∴四边形BFDE是平行四边形,∴∠BFM=∠DEN,在△MFB和△NED中,,∴△MFB≌△NED.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.【考点】6C:分式的混合运算.【分析】(1)根据题意即可得到结论;(2)首先浴缸容积为V,然后求出方式一和方式二注满时间为t、t′,最后作差比较.【解答】解:(1)先开热水注满浴缸一半所需的时间为分;故答案为:;(2)方式一:设浴缸容积为V,注满时间为t,依题意,得t=+,方式二:同样设浴缸容积为V,注满总时间为t′,依题意得t′a+t′b=V。

南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析

南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析

南京XX中学2015-2016学年八年级下期中数学试卷(2)含答案解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形B.正方形C.圆D.平等四边形2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④3.下列各式从左到右的变形正确的是()A.=1 B.=C.=x+y D.=4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种 B.5种 C.4种 D.3种二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C=.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为,频率为.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC 的长为.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=°.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a的值代入求值.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是.(直接写出答案,不需要证明)22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表(1)本次调查的个体是;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a 升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k (a﹣b+b﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知:==(x+y+z≠0),求的值.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系为;(2)如图②,将正方形DEFG绕点D按逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立,证明你的结论.2015-2016学年江苏省南京八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形B.正方形C.圆D.平等四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解:①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选C.【点评】此题考查了概率的意义、抽样调查和全面调查和随机事件,不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列各式从左到右的变形正确的是()A.=1 B.=C.=x+y D.=【考点】65:分式的基本性质.【专题】11 :计算题;513:分式.【分析】原式变形变形得到结果,即可作出判断.【解答】解:A、原式==1,正确;B、原式=,错误;C、原式为最简结果,错误;D、原式=,错误,故选A【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形【考点】O1:命题与定理;L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定;LF:正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解:对角线互相垂直平分且相等的四边形是正方形,所以A为假命题;对角线相等且互相平分的四边形是矩形,所以B为真命题;对角线互相垂直平分的四边形是菱形,所以C为真命题;对角线互相平分的四边形为平行四边形,所以D为真命题.故选A.【点评】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】X8:利用频率估计概率.【专题】1 :常规题型.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种 B.5种 C.4种 D.3种【考点】L6:平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是x≠﹣1.【考点】62:分式有意义的条件.【分析】根据分式有意义的条件可得1+x≠0,再解即可.【解答】解:由题意得:1+x≠0,解得:x≠﹣1,故答案为:x≠﹣1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C=80°.【考点】L5:平行四边形的性质.【专题】11 :计算题.【分析】根据平行四边形的性质分别求出∠A和∠B的度数,然后根据平行四边形对角相等的性质可得∠C=∠A,即可求解.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.【点评】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:求摸到白球的概率.【考点】X2:可能性的大小;X1:随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解:一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为:=<,故答案为:求摸到白球的概率.【点评】本题考查了可能性的大小的知识,解题的关键是能够根据题意确定摸到红球和摸到白球的概率,难度不大.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20,频率为0.4.【考点】V6:频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解:根据题意可得:第1、2、3、4组数据的个数分别是2、8、15、5,共(2+8+15+5)=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=0.4.故答案为20,0.4.【点评】本题考查频率、频数的关系:频率=,同时考查频数的定义即样本数据出现的次数.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为4.【考点】LB:矩形的性质.【分析】由矩形的性质可得到OA=OB,于是可证明△ABO为等边三角形,于是可求得AB=4,然后依据勾股定理可求得BC的长.【解答】解:∵四边形ABCD为矩形,∴OA=OB=AC=4.∵OA=OB,∠AOB=60°,∴△OAB为等边三角形.∴AB=4.在Rt△ABC中,BC==4.故答案为:4.【点评】本题主要考查的是矩形的性质、等边三角形的性质和判定、勾股定理的应用,求得AB的长是解题的关键.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=65°.【考点】L5:平行四边形的性质.【分析】由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A,又由平角的定义,根据∠AMF=50°,求得∠DMF的度数,然后可求得∠A的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.【点评】此题考查了平行四边形的性质、平行线的性质与折叠的性质,注意数形结合思想的应用以及折叠中的对应关系,难度适中.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是24.【考点】L8:菱形的性质.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=3,∴AB=6,∴菱形ABCD的周长是:4×6=24,故答案为:24【点评】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【考点】L6:平行四边形的判定.【专题】26 :开放型.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解:答案不唯一,如两组对角分别相等的四边形是平行四边形等;理由:∵∠B=∠D,∠A=∠C,∠B+∠C+∠D+∠A=360°,∴∠B+∠C=180°,∠A+∠D=180°,∴AB∥CD,AD∥BC,∴四边行ABCD是平行四边形.故答案为:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【点评】此题主要考查了平行四边形的判定,熟练掌握相关判定定理是解题关键.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】LN:中点四边形;LC:矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故答案为:对角线互相垂直.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是2,5,18.【考点】L9:菱形的判定;D5:坐标与图形性质.【分析】利用菱形的性质结合A,C点坐标进而得出符合题意的n的值.【解答】解:如图所示:当C(﹣7,2),C′(﹣7,5)时,都可以得到以A、B、C、D 四个点为顶点的四边形是菱形,同理可得:当D(﹣7,8)则对应点C的坐标为;(﹣7,18)可以得到以A、B、C、D 四个点为顶点的四边形是菱形,故n的值为:2,5,18.故答案为:2,5,18.【点评】此题主要考查了菱形的判定以及坐标与图形的性质,利用菱形的性质得出C点坐标是解题关键.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.【考点】6C:分式的混合运算.【分析】(1)先约分,再计算即可;(2)化为同分母的分式,再进行相加即可.【解答】解:(1)原式=﹣;(2)原式=﹣﹣===﹣2.【点评】本题考查了分式的混合运算,掌握分式的约分和通分是解此题的关键.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的a的值代入进行计算即可.【解答】解:原式=÷=•=﹣,当a=﹣2时,原式=﹣=1.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.【考点】LC:矩形的判定.【分析】由全等三角形的判定定理SSS证得△ABC≌△DCB,则∠ABC=∠DCB=90°,所以“有一内角为直角的平行四边形是矩形”.【解答】已知:四边形ABCD是平行四边形,AC、BD是两条对角线,且AC=BD.求证:平行四边形ABCD是矩形.证明:如图,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.在△ABC与△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.又∵∠ABC+∠DCB=180°,∴∠ABC=∠DCB=90°,∴平行四边形ABCD是矩形.【点评】本题考查了矩形的判定.此题通过全等三角形的性质得到同旁内角互补,结合平行线的性质证得平行四边形的两个内角为直角.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】R8:作图﹣旋转变换.【分析】(1)连接AA1、BB1,再分别作AA1、BB1中垂线,两中垂线交点即为点O;(2)根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.【点评】本题主要考查旋转变换的作图,熟练掌握旋转变换的性质:①对应点到旋转中心的距离相等(意味着:旋转中心在对应点所连线段的垂直平分线上),②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是平行四边形ABCD 是矩形,并且AB=2AD.(直接写出答案,不需要证明)【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)解:当平行四边形ABCD是矩形,并且AB=2AD时,平行四边形EHFG是矩形.理由如下:连接EF,如图所示:∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=AB,这时,EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是矩形;故答案为:平行四边形ABCD是矩形,并且AB=2AD.【点评】本题考查了平行四边形的判定与性质,矩形的判定,注意找准条件,有一定的难度.22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表(1)本次调查的个体是每名学生的上学方式;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?【考点】V7:频数(率)分布表;V3:总体、个体、样本、样本容量;V5:用样本估计总体.【分析】(1)每一个调查对象称为个体,据此求解;(2)首先求得私家车部分所占的百分比,然后乘以总人数即可求得对应频数;(3)用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解:(1)本次调查的个体是每名学生的上学方式,故答案为:每名学生的上学方式;(2)由扇形统计图知,“乘私家车”部分对应的百分比为1﹣15%﹣29%﹣30%﹣6%=20%,则“乘私家车”部分对应的频数为100×20%=20;(3)2000×(15%+29%)=880人.答:估计该校2000名学生中,选择骑车和步行上学的一共有880人.【点评】本题考查了频率分布表、用样本估计总体及扇形统计图的知识,解题的关键是能够读懂统计图,并从统计图中整理出进一步解题的有关信息.23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.【考点】LE:正方形的性质;KB:全等三角形的判定;LA:菱形的判定与性质.【分析】(1)连接BD交AC于O,先证明四边形BMDN是平行四边形,再根据NM⊥BD即可证明.(2)先证明四边形BFDE是平行四边形,得到∠BFM=∠DEN,再证明BM=DN,∠BMF=∠DNE即可解决问题.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是正方形,∴OA=OC,OB=OD,AC⊥BD,∵AM=CN,∴OM=ON,∵OB=OD,∴四边形MBND是平行四边形,∵MN⊥DB,∴四边形MBND是菱形.(2)证明:∵四边形MBND是菱形,∴DM∥NB,BM=DN,∠DMB=∠DNB,∴∠BMF=∠DNE,∵BF∥DE,∴四边形BFDE是平行四边形,∴∠BFM=∠DEN,在△MFB和△NED中,,∴△MFB≌△NED.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a 升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.【考点】6C:分式的混合运算.【分析】(1)根据题意即可得到结论;(2)首先浴缸容积为V,然后求出方式一和方式二注满时间为t、t′,最后作差比较.【解答】解:(1)先开热水注满浴缸一半所需的时间为分;故答案为:;(2)方式一:设浴缸容积为V,注满时间为t,依题意,得t=+,方式二:同样设浴缸容积为V,注满总时间为t′,依题意得t′a+t′b=V所以t′=,故t﹣t′=+﹣==,分类讨论:(Ⅰ)当a=b时,t﹣t′=0,即t=t′(Ⅱ)当a≠b时,>0,即t>t′综上所述:(1)当放热水速度与放冷水速度不相等时,选择方式二节约时间.(2)当两水龙头放水速度相等时,选其中任一方式都可以,因为此时注满水的时间相等.【点评】本题考查的是分式的加减运算,解答认真仔细地阅读、理解是关键.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k (a﹣b+b﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知:==(x+y+z≠0),求的值.【考点】S1:比例的性质.【分析】设===k,根据比例的性质得到x=y=z,计算即可.【解答】解:设===k,则y+z=xk,z+x=yk,x+y=zk,∴2(x+y+z)=k(x+y+z),解得,k=2,∴y+z=2x,z+x=2y,x+y=2z,解得,x=y=z,则=﹣.【点评】本题考查的是比例的性质,正确理解给出的解题过程是解题的关键.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.。

2015-2016年江苏省南京师大附中八年级(下)期中数学试卷(解析版)

2015-2016年江苏省南京师大附中八年级(下)期中数学试卷(解析版)

2015-2016学年江苏省南京师大附中八年级(下)期中数学试卷一、先把题(每小题2分,共12分)1.(2分)下列汽车标志中,不是中心对称图形的是()A.B.C.D.2.(2分)“三次投掷一枚硬币,三次正面朝上”这一事件是()A.必然事件B.随机事件C.不可能事件D.确定事件3.(2分)甲校女生占全校总人数的54%,乙校女生占全校总人数的50%,则女生人数()A.甲校多于乙校B.甲校少于乙校C.不能确定D.两校一样多4.(2分)我校学生会成员的年龄如下表:则出现频数最多的年龄是()A.4B.14C.13和15D.25.(2分)如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为()A.4m2B.9m2C.16m2D.25m26.(2分)如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2.若∠EOF=45°,则F点的纵坐标是()A.B.1C.D.﹣1二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到球的可能性最大.8.(2分)如图,菱形ABCD的对角线AC=6,BD=8,则菱形ABCD的周长为.9.(2分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.10.(2分)在平面直角坐标系中,已知三点O(0,0),A(1,﹣2),B(3,1),若以A、B、C、O为顶点的四边形是平行四边形,则C点不可能在第象限.11.(2分)从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第届夏季奥运会.12.(2分)如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出奶油口味雪糕的数量是支.13.(2分)如图,矩形ABCD的对角线AC、BD相交于点O,∠BOC=120°,则∠OAD=°.14.(2分)已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=3,BC=5,则EF=.15.(2分)已知:如图,以正方形ABCD的一边BC向正方形内作等边△EBC,则∠AEB=°.16.(2分)如图,在△ABC中,AB=2,AC=,∠BAC=105°,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为.三、解答题(本大题共10小题,共68分)17.(6分)将两块全等的含30°角的三角尺按如图的方式摆放在一起.求证:四边形ABCD是平行四边形.18.(6分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.19.(6分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=,n=;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.20.(6分)请按要求,只用无刻度的直尺作图(请保留画图痕迹,不写作法)如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,在图中画出∠AOB的平分线.21.(6分)如图,已知长方形ABCD的周长为20,AB=4,点E在BC上,AE⊥EF,AE=EF,求CF的长.22.(6分)证明:三角形中位线定理.已知:如图,DE是△ABC的中位线.求证:.证明:.23.(6分)4月22日是世界地球日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充;(2)补全频数分布直方图;(3)总体是.24.(8分)如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.(1)求证:FE=FD;(2)若∠CAD=∠CAB=24°,求∠EDF的度数.25.(8分)已知:如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD 相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积.26.(10分)阅读下列材料:如图(1),在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.(1)写出筝形的两个性质(定义除外).①;②.(2)如图(2),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.(3)如图(3),在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD 的面积.2015-2016学年江苏省南京师大附中八年级(下)期中数学试卷参考答案与试题解析一、先把题(每小题2分,共12分)1.(2分)下列汽车标志中,不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故选项错误;B、不是中心对称图形,故选项正确;C、是中心对称图形,故选项错误;D、是中心对称图形,故选项错误.故选:B.2.(2分)“三次投掷一枚硬币,三次正面朝上”这一事件是()A.必然事件B.随机事件C.不可能事件D.确定事件【解答】解:“三次投掷一枚硬币,三次正面朝上”这一事件是随机事件,故选:B.3.(2分)甲校女生占全校总人数的54%,乙校女生占全校总人数的50%,则女生人数()A.甲校多于乙校B.甲校少于乙校C.不能确定D.两校一样多【解答】解:两个学校的总人数不能确定,故甲校女生和乙校女生的人数不能确定.故选:C.4.(2分)我校学生会成员的年龄如下表:则出现频数最多的年龄是()A.4B.14C.13和15D.2【解答】解:由表格可得,14岁出现的人数最多,故出现频数最多的年龄是14岁.故选:B.5.(2分)如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为()A.4m2B.9m2C.16m2D.25m2【解答】解:若设正方形的边长为am,则有2a+2(a+1)=10,解得a=2,故正方形的面积为4m2,即透光面积为4m2.故选:A.6.(2分)如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2.若∠EOF=45°,则F点的纵坐标是()A.B.1C.D.﹣1【解答】解:如图连接EF,延长BA使得AM=CE,则△OCE≌△OAM.∴OE=OM,∠COE=∠MOA,∵∠EOF=45°,∴∠COE+∠AOF=45°,∴∠MOA+∠AOF=45°,∴∠EOF=∠MOF,在△OFE和△OFM中,,∴△OFE≌△FOM,∴EF=FM=AF+AM=AF+CE,设AF=x,∵CE===2,∴EF=2+x,EB=2,FB=4﹣x,∴(2+x)2=22+(4﹣x)2,∴x=,∴点F的纵坐标为,故选:A.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到红球的可能性最大.【解答】解:∵袋中装有6个红球,5个黄球,3个白球,∴总球数是:6+5+3=14个,∴摸到红球的概率是==;摸到黄球的概率是;摸到白球的概率是;∴摸出红球的可能性最大.故答案为:红.8.(2分)如图,菱形ABCD的对角线AC=6,BD=8,则菱形ABCD的周长为20.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=3,OB=OD=BD=4,AB=BC=CD=AD,∴AB==5,∴菱形的周长L=20.故答案为:20.9.(2分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是5.【解答】解:事件A发生的概率为,大量重复做这种试验,则事件A平均每100次发生的次数为:100×=5.故答案为:5.10.(2分)在平面直角坐标系中,已知三点O(0,0),A(1,﹣2),B(3,1),若以A、B、C、O为顶点的四边形是平行四边形,则C点不可能在第二象限.【解答】解:如图所示:以A、B、C、O为顶点的四边形是平行四边形,则C点不可能在第二象限.故答案为:二.11.(2分)从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第29届夏季奥运会.【解答】解:观察统计图可得:与上一届相比增长量最大的是第29届夏季奥运会.故答案为:29.12.(2分)如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出奶油口味雪糕的数量是150支.【解答】解:由扇形统计图可知,售出红豆口味的雪糕200支,占40%,则冷饮店一天售出各种口味雪糕数量为200÷40%=500支,则售出奶油口味雪糕的数量是500×30%=150支,故答案为:150.13.(2分)如图,矩形ABCD的对角线AC、BD相交于点O,∠BOC=120°,则∠OAD=30°.【解答】解:∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA,∵∠AOD=∠BOC=120°,∴∠OAD=(180°﹣120°)÷2=30°.故答案为:30.14.(2分)已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=3,BC=5,则EF=1.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=3,BC=AD=5,AD∥BC,∵BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,∴∠ABF=∠CBE=∠AEB,∠BCF=∠DCF=∠CFD,∴AB=AE=3,DC=DF=3,∴EF=AE+DF﹣AD=3+3﹣5=1.故答案为1.15.(2分)已知:如图,以正方形ABCD的一边BC向正方形内作等边△EBC,则∠AEB=75°.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD,∵△EBC是等边三角形,∴BE=BC,∠EBC=60°,∴∠ABE=90°﹣60°=30°,AB=BE,∴∠AEB=∠BAE=(180°﹣30°)=75°;故答案为:75.16.(2分)如图,在△ABC中,AB=2,AC=,∠BAC=105°,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为2.【解答】解:∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,∵∠BAC=105°,∴∠DAE=135°,∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.在△ABC与△DBF中,∴△ABC≌△DBF(SAS),∴AC=DF=AE=,同理可证△ABC≌△EFC,∴AB=EF=AD=2,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).∴∠FDA=180°﹣∠DAE=45°,∴S▱AEFD=AD•(DF•sin45°)=2×(×)=2.即四边形AEFD的面积是2,故答案为:2.三、解答题(本大题共10小题,共68分)17.(6分)将两块全等的含30°角的三角尺按如图的方式摆放在一起.求证:四边形ABCD 是平行四边形.【解答】证明:由题意得:△ABD ≌△CDB , ∴AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形.18.(6分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是 0.25 ;(精确到0.01) (2)估算袋中白球的个数.【解答】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近, ∴估计从袋中摸出一个球是黑球的概率是0.25; (2)设袋中白球为x 个,=0.25, x=3.答:估计袋中有3个白球, 故答案为:(1)0.25.19.(6分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=40,n=60;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.【解答】解:(1)本次调查中,一共调查了:70÷35%=200人,科普类人数为:n=200×30%=60人,则m=200﹣70﹣30﹣60=40人,故答案为:40,60;(2)艺术类读物所在扇形的圆心角是:×360°=72°.20.(6分)请按要求,只用无刻度的直尺作图(请保留画图痕迹,不写作法)如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,在图中画出∠AOB的平分线.【解答】解:如图所示:射线OP即为所求.21.(6分)如图,已知长方形ABCD的周长为20,AB=4,点E在BC上,AE⊥EF,AE=EF,求CF的长.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥AE,∴∠AEF=90°,∴∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,在△ABE和△ECF中,,∴△ABE≌△ECF,∴AB=CE=4,∵矩形的周长为20,∴BC=6,∴CF=BE=BC﹣CE=BC﹣AB=2.22.(6分)证明:三角形中位线定理.已知:如图,DE是△ABC的中位线.求证:DE∥BC,DE=BC.证明:略.【解答】求证:DE∥BC,DE=BC.证明:如图,延长DE到F,使FE=DE,连接CF,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.23.(6分)4月22日是世界地球日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充;(2)补全频数分布直方图;(3)总体是 900名学生该次竞赛的成绩的全体 .【解答】解:(1)∵50.5﹣60.5频数为4,频率为0.08, ∴总人数为:4÷0.08=50人,∴90.5﹣100.5的人数为:50﹣4﹣8﹣10﹣16=12(人), 频率为:12÷50=0.24,填表如下:(2)补全频数分布直方图如图:(3)总体是900名学生该次竞赛的成绩的全体.故答案为:(1)12、0.24,50、1;(2)900名学生该次竞赛的成绩的全体.24.(8分)如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.(1)求证:FE=FD;(2)若∠CAD=∠CAB=24°,求∠EDF的度数.【解答】(1)证明:∵E、F分别是BC、AC的中点,∴FE=AB,∵F是AC的中点,∠ADC=90°,∴FD=AC,∵AB=AC,∴FE=FD;(2)解:∵E、F分别是BC、AC的中点,∴FE∥AB,∴∠EFC=∠BAC=24°,∵F是AC的中点,∠ADC=90°,∴FD=AF.∴∠ADF=∠DAF=24°,∴∠DFC=48°,∴∠EFD=72°,∵FE=FD,∴∠FED=∠EDF=54°.25.(8分)已知:如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD 相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积.【解答】(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,∴S=DM•AB=5×4=20.菱形BMDN26.(10分)阅读下列材料:如图(1),在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.(1)写出筝形的两个性质(定义除外).①∠BAC=∠DAC;②∠ABC=∠ADC.(2)如图(2),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.(3)如图(3),在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD 的面积.【解答】解:(1)在△ABC和△ADC中,,∴△ABC≌△ADC∴∠BAC=∠DAC,∠ABC=∠ADC,故答案为∠BAC=∠DAC,∠ABC=∠ADC(2)证明:∵四边形ABCD是平行四边形,∴∠B=∠D.∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,∴∠AEB=∠AFD.∵AE=AF,∴△AEB≌△AFD(AAS).∴AB=AD,BE=DF.∴平行四边形ABCD是菱形.∴BC=DC,∴EC=FC,∴四边形AECF是筝形.(3)如图∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC.∴S=S△ADC.△ABC过点B作BH⊥AC,垂足为H.在Rt△ABH中,BH2=AB2﹣AH2=262﹣AH2.在Rt△CBH中,BH2=CB2﹣CH2=252﹣(17﹣AH)2.∴262﹣AH2=252﹣(17﹣AH)2,∴AH=10.∴BH=24.=×17×24=204.∴S△ABC∴筝形ABCD的面积为408.。

2015树人初二数学期中试卷2015-4

2015树人初二数学期中试卷2015-4

DB AyxO C扬州中学教育集团树人学校2014–2015学年第二学期期中试卷八年级数学20(满分:150分;考试时间:120分钟,将答案写在答题纸上)一、选择题(每题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案1.关于反比例函数xy 3=的图象,下列说法正确的是( ) A .两个分支关于原点成中心对称 B .两个分支分布在第二、四象限 C .两个分支关于x 轴成轴对称D .必经过点(1,1)2. 点A (1x ,1y ),B (2x ,2y ),C (3x ,3y )都在反比例函数xy 2-=的图象上, 若1x <2x <0<3x ,则1y ,2y ,3y 的大小关系是( )A . 3y <1y <2yB .1y <2y <3yC .3y <2y <1y D .2y <1y <3y 3. 如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定四边形ABCD 为平行四边形的是( )A. AB ∥CD ,AD ∥BCB. OA=OC ,OB=ODC. AD=BC ,AB ∥CDD. AB=CD ,AD=BC4.已知四边形ABCD 是平行四边形,再从①∠ABC=90°,②AB=BC ,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误..的是( ) A . 选①②B . 选①④C . 选②③D . 选①③(第3题) (第5题) (第6题)5.如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A.ED EA = DF AB B.DE BC = EF FB C. BC DE = BF BE D.BF BE = BCAEODCBA6.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( )A .12B .9C .6D .47.顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( )8.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( ) A .1B .2C .3D .4二、填空题(每题3分,共30分)9. 两个相似三角形的相似比是9:16,则这两个三角形的周长比是____________.∶4 000 000的地图上,量得甲、乙两地的距离是25cm ,则两地的实际距离是 km. 11. 若反比例函数x k y 3-=的图象在每一象限内,y 随x 的增大而减小,则k 的取值范围是_ _ .12.已知三角形的各边长分别是8cm 、10cm 和12cm ,则以各边中点为顶点的三角形的周长为___________cm.13. 如图,A 、B 两点被池塘隔开,在AB 外取一点C,连结AC 、BC ,在AC 上取点M ,使AM=3MC ,作MN ∥AB 交BC 于N ,量得MN=28cm,则AB 的长为 cm.14. 如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是12和8,反比例函数)0(<=x xky 的图象经过点C ,则k 的值为 .(第13题) (第14题) (第15题)15. 如图,CD 与BE 互相垂直平分,AD ⊥DB,∠BDE=70c,则∠CAD= c.16. 如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (4,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是_________________.(第16题) (第17题) (第18题)17. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为___________.18. 如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数xk y 2)1(+=的图象上。

江苏省南京师范大学附属中学树人学校八年级数学期中试卷含解析

江苏省南京师范大学附属中学树人学校八年级数学期中试卷含解析

江苏省南京师范大学附属中学树人学校八年级数学期中试卷含解析2019年04月22日一、选择题(本题共6小题,每小题2分,共12分)1.下列调查中,最适合采用普查的是()A.对我国中学生每周课外阅读时间情况的调查B.对我省中学生知晓“礼让行人”交通法规情况的调查C.对我市中学生观看电影《流浪地球》情况的调查D.对我校中学生体重情况的调查2.下列说法正确的是()A.任意抛掷一枚质地均匀的硬币10次,则“有5次正面朝上”是必然事件B.明天的降水概率为40%,则“明天下雨”是确定事件C.篮球队员在罚球线上投篮一次,则“投中”是随机事件D.a是实数,则“|a|≥0”是不可能事件3.下列等式成立的是()A.+=B.=C.=D.=﹣4.若点A(2,3)在反比例函数y=的图象上,则下列说法正确的是()A.该函数图象分布在第二、四象限B.k的值为6C.该函数图象经过点(1,﹣6)D.若点A(x1,y1),B(x2,y2)都在该函数图象上,且x1<x2,则y1>y25.下列性质中,正方形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线相等D.四个角都是直角6.如图,在矩形ABCD中,AB=12,BC=16,将矩形ABCD沿EF折叠,使点B与点D重合,则折痕EF的长为()A.14 B.C.D.15二.填空题(本大题共10小题,每空2分,共20分)7.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为度.8.“一个事件发生的可能性大小的数值,称为这个事件的概率”.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率记为P1,指针指向小于3的数的概率记为P2,指针指向偶数的概率记为P3,则P1、P2、P3的大小关系是.9.若分式无意义,则x=.10.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示接力中,自己负责的一步出现错误的同学是.11.用反证法证明“一个三角形中最多有一个内角是钝角”的第一步是.12.如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD=.13.如图,▱ABCD中,AC=8,BD=6,则顺次连接四边形ABCD各边中点所得四边形的周长是.14.如图,菱形ABCD的对角线AC,BD相交于点O,E为AD的中点,若OE=5,BD=12,则菱形ABCD的面积为.15.如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=.16.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,OC边在x轴上点A、D、C共线,反比例函数y=在第一象限的图象经过点B,则△OAC和△BAD的面积之差为(用含k的代数式表示).三.解答题(本题共11小题,共68分)17.(1)化简:(+1)÷,并从﹣1、0、1、2这四个数中选取一个合适的数作为x的值代入求值.(2)解方程:=+218.某校八年级根据学生的学习成绩、学习能力将学生依次分为A、B、C三个层次,第一次月考后,选取了其中一个A层次班级的考试成绩分布情况进行处理分析,制成频数分布表(成绩得分均为整数):根据表中提供的信息解答下列各题:(1)频数分布表中的a=,b=,c=;(2)将频数分布直方图补充完整;(3)小明正好在所选取的班级中,他认为:学校八年级共有20个班(平均每班40人),根据本班的成绩分布情况可知,在这次考试中,全年级90分以上为优秀,则优秀的人数约为人,60分及以上为及格,及格的人数约为人,及格的百分比约为;(4)小明得到的数据会与实际情况相符吗?为什么?19.在一个不透明的盒子中装有a个除颜色外完全相同的红球和白球,其中红球有b个,将盒中的球摇匀后从中任意摸出1个球,记录颜色后将球放回盒中,重复进行这过程,如表记录了某班一次摸球实验情况:(1)由此估计任意摸出1个球为红球的概率约是 (精确到0.1)(2)实验结束后,小明发现了一个一般性的结论:盒子中共有a 个球,其中红球有b 个,则摇匀后从中任意摸出1个球为红球的概率P 可以表示为,这个结论也得到了老师的证实根据小明的发现,若在该盒子中再放入除颜色外与原来的球完全相同的2个红球和2个白球,摇匀后从中任意摸出1个球为红球的概率为P ’,请通过计算比较P 与P '的大小.20.扬州市某土特产商店购进960盒绿叶牌牛皮糖,由于进入旅游旺季,实际每天销售的盒数比原计划每天多20%,结果提前2天卖完.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.21.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.22.按要求完成下列尺规作图(不写作法,保留作图痕迹)(1)如图①,线段MN 与线段M 'N '成中心对称,点M 的对称点是点M ',求作M 'N ’; (2)如图②,线段AB 绕某个点O 顺时针旋转60°后,点A 恰好落在点A ′处,求作点O .23.有下列命题:①两组对角分别相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形;④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形;⑤一组对边相等,一组对角相等的四边形是平行四边形,(1)上述五个命题中,是真命题的是(填写序号)(2)请选择一个假命题,并举反例说明.24.如图,在矩形ABCD中,延长BA到点F,使得AF=AB,连接FC交AD于E.(1)求证:AD与FC互相平分;(2)当CF平分∠BCD时,BC与CD的数量关系是.25.如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证;∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.26.参照学习函数的过程与方法,探完函数y=(x≠0)的图象与性质,因为y==1﹣,即y=﹣+1,所以我们对比函数y=﹣来探究.操作:面出函数y=(x≠0)的图象.列表:=﹣﹣描点:在平面直角坐标中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出如图所示相应的点;连线:请把y轴左边和右边各点,分别用一条光滑曲线顺次连接起来.观察:由图象可知:①当x>0时,y随x的增大而(填“增大”或“减小”)②y=的图象可以由y=﹣的图象向平移个单位长度得到.③y的取值范围是.探究:①A(m1,n1),B(m2,n2)在函数y=图象上,且n1+n2=2,求m1+m2的值;②若直线l对应的函数关系式为y1=kx+b,且经过点(﹣1,3)和点(1,﹣1),y2=,若y1>y2,则x的取值范围为.延伸:函数y=的图象可以由反比例函数y=的图象向平移个单位,再向平移个单位得到.27.如图,在▱ABCD中,AB=6a,BC=6b,∠D=60°,点E、F、G、H分别在ABCD各边上,且BE=DG=AE,CF =AH=BF.(1)求证:四边形EFGH是平行四边形;(2)若四边形EFGH是菱形,求﹣的值;(3)四边形EFGH能为正方形吗?若能,请直接写出a、b的值;若不能,请说明理由.参考答案与试题解析一.选择题(共6小题)1.下列调查中,最适合采用普查的是()A.对我国中学生每周课外阅读时间情况的调查B.对我省中学生知晓“礼让行人”交通法规情况的调查C.对我市中学生观看电影《流浪地球》情况的调查D.对我校中学生体重情况的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、对我国中学生每周课外阅读时间情况的调查,不适宜普查方式,故A选项错误;B、对我省中学生知晓“礼让行人”交通法规情况的调查,不适宜采用普查方式,故B选项错误;C、对我市中学生观看电影《流浪地球》情况的调查,不适宜采用普查方式,故C选项错误;D、对我校中学生体重情况的调查,适宜采用普查方式,故D选项正确.故选:D.2.下列说法正确的是()A.任意抛掷一枚质地均匀的硬币10次,则“有5次正面朝上”是必然事件B.明天的降水概率为40%,则“明天下雨”是确定事件C.篮球队员在罚球线上投篮一次,则“投中”是随机事件D.a是实数,则“|a|≥0”是不可能事件【分析】利用随机事件及必然事件的定义确定正确的选项即可.【解答】解:A、任意抛掷一枚质地均匀的硬币10次,则“有5次正面朝上”是随机事件,故原命题错误;B、明天的降水概率为40%,则“明天下雨”是随机事件,故原命题错误;C、篮球队员在罚球线上投篮一次,则“投中”是随机事件,正确;D、a是实数,则“|a|≥0”是必然事件,故原命题错误;故选:C.3.下列等式成立的是()A.+=B.=C.=D.=﹣【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选:C.4.若点A(2,3)在反比例函数y=的图象上,则下列说法正确的是()A.该函数图象分布在第二、四象限B.k的值为6C.该函数图象经过点(1,﹣6)D.若点A(x1,y1),B(x2,y2)都在该函数图象上,且x1<x2,则y1>y2【分析】根据反比例函数图象上点的坐标特征对B、C进行判断;根据反比例函数的性质对A、D进行判断.【解答】解:B、∵点A(2,3)在反比例函数y=的图象上,∴3=,∴k=6,所以B选项正确;A、k=6>0,则函数图象位于第一、第三象限,所以A选项的说法不正确;C、把x=1代入y=得y=6,则该函数图象不经过点(1,﹣6),所以C选项的说法正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=的图象上,若x1<x2<0,则y1>y2,所以D选项不正确.故选:B.5.下列性质中,正方形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线相等D.四个角都是直角【分析】根据正方形与矩形的性质对各选项分析判断后利用排除法求解即可.【解答】解:A、正方形的对角线互相垂直平分,矩形的对角线互相平分但不一定垂直,故本选项正确.B、正方形和矩形的对角线都互相平分,故本选项错误;C、正方形和矩形的对角线都相等,故本选项错误;D、正方形和矩形的四个角都是直角,故本选项错误;故选:A.6.如图,在矩形ABCD中,AB=12,BC=16,将矩形ABCD沿EF折叠,使点B与点D重合,则折痕EF的长为()A.14 B.C.D.15【分析】设A′E=AE=x,则DE=16﹣x,在Rt△A′DE中,根据勾股定理可得x值,即AE可求,证明FC=AE,过E点作EH⊥BC于H点,则EH=AB=12,HF=BC﹣BH﹣FC,在Rt△EFH中,利用勾股定理可得EF值.【解答】解:根据折叠的对称性可知AE=A′E,A′D=AB.设AE=x,则DE=16﹣x,在Rt△A′DE中,根据勾股定理可得DE2=A′D2+A′E2,即(16﹣x)2=122+x2,解得x=,即AE=A′E=.根据折叠的对称性可知∠BFE=∠DFE,又AD∥BC,∴∠DEF=∠BFE.∴∠DEF=∠DFE,∴DF=DE.又DC=A′D,∴Rt△DFC≌Rt△DEA′(HL).∴FC=EA′=.过E点作EH⊥BC于H点,则EH=AB=12,HF=BC﹣BH﹣FC=16﹣﹣=9,在Rt△EFH中,利用勾股定理可得EF=.故选:D.二.填空题(共10小题)7.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为90 度.【分析】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.8.“一个事件发生的可能性大小的数值,称为这个事件的概率”.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率记为P1,指针指向小于3的数的概率记为P2,指针指向偶数的概率记为P3,则P1、P2、P3的大小关系是P1=P3>P2.【分析】根据概率公式计算出三者的概率,从而得出它们大小关系.【解答】解:∵指针指向大于3的数的概率记为P1==,指针指向小于3的数的概率记为P2==,指针指向偶数的概率记为P3==,∴P1=P3>P2,故答案为:P1=P3>P2.9.若分式无意义,则x= 3 .【分析】根据分式无意义的条件可得2x﹣6=0,再解即可.【解答】解:由题意得:2x﹣6=0,解得:x=3,故答案为:3.10.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示接力中,自己负责的一步出现错误的同学是乙和丁.【分析】观察每一项的变化,发现乙抄错了甲给的式子;【解答】解:从图中可看到,乙同学将甲同学给的式子中抄错了;丁同学化简后正确的应该是;故答案为乙和丁;11.用反证法证明“一个三角形中最多有一个内角是钝角”的第一步是至少有两个内角是钝角.【分析】利用反证法证明一个命题,首先要假设所证的结论不正确,结论的反面正确.【解答】解:用反证法证明“一个三角形中最多有一个内角是钝角”的第一步是假设至少有两个内角是钝角,故答案为:至少有两个内角是钝角.12.如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD=45°.【分析】根据平行四边形的性质可得∠A=∠BCD=135°,再根据邻补角互补可算出∠MCD的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠DCM=180°﹣135°=45°,故答案为:45°.13.如图,▱ABCD中,AC=8,BD=6,则顺次连接四边形ABCD各边中点所得四边形的周长是14 .【分析】根据三角形的中位线定理得出EF=GH==3,EH=FG==4,代入四边形的周长式子求出即可.【解答】解:∵E、F、G、H分别是边AD、AB、BC、CD的中点,∴EF=GH==3,EH=FG==4,∴EF+FG+GH+EH=3+4+3+4=14,故答案为14.14.如图,菱形ABCD的对角线AC,BD相交于点O,E为AD的中点,若OE=5,BD=12,则菱形ABCD的面积为96 .【分析】根据菱形的性质和已知条件可得OE是Rt△DOC斜边上的中线,由此可求出DC的长,再根据勾股定理可求出OC的长,最后根据菱形的面积等于对角线乘积的一半计算即可.【解答】解:∵菱形ABCD对角线AC与BD交于点O,∴DO⊥CO,DO=BO=BD=6,∵E是DC边上的中点,∴OE=DC,∴DC=10,∴OC==8,∴AC=2OC=16,∴则菱形的面积=×16×12=96,故答案为:96.15.如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=.【分析】先根据勾股定理得到AC的长,再根据AQ=AD,得出CP=CQ=2,进而得到BP的长,最后在Rt△ABP中,依据勾股定理即可得到AP的长.【解答】解:∵矩形ABCD中,AB=4,AD=3=BC,∴AC=5,又∵AQ=AD=3,AD∥CP,∴CQ=5﹣3=2,∠CQP=∠AQD=∠ADQ=∠CPQ,∴CP=CQ=2,∴BP=3﹣2=1,∴Rt△ABP中,AP===,故答案为:.16.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,OC边在x轴上点A、D、C共线,反比例函数y=在第一象限的图象经过点B,则△OAC和△BAD的面积之差为(用含k的代数式表示).【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=k.∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=k.故答案为k.三.解答题(共11小题)17.(1)化简:(+1)÷,并从﹣1、0、1、2这四个数中选取一个合适的数作为x的值代入求值.(2)解方程:=+2【分析】(1)根据分式的加法和除法可以化简题目中的式子,然后从﹣1、0、1、2这四个数中选取一个使得原分式有意义的值代入化简后的式子即可解答本题;(2)根据解分式方程的方法可以解答本题,注意分式方程要检验.【解答】解:(1)(+1)÷===,∵x﹣2≠0,x﹣1≠0,∴x≠2,x≠1,当x=0时,原式==﹣1;(2)=+2方程两边同乘以3(x﹣3),得2x+9=3(4x﹣7)+2×3(x﹣3)去括号,得2x+9=12x﹣21+6x﹣18移项及合并同类项,得﹣16x=﹣48系数化为1,得x=3,经检验,x=3不是原分式方程的根,故原分式方程无解.18.某校八年级根据学生的学习成绩、学习能力将学生依次分为A、B、C三个层次,第一次月考后,选取了其中一个A层次班级的考试成绩分布情况进行处理分析,制成频数分布表(成绩得分均为整数):根据表中提供的信息解答下列各题:(1)频数分布表中的a=8 ,b=10 ,c=0.25 ;(2)将频数分布直方图补充完整;(3)小明正好在所选取的班级中,他认为:学校八年级共有20个班(平均每班40人),根据本班的成绩分布情况可知,在这次考试中,全年级90分以上为优秀,则优秀的人数约为120 人,60分及以上为及格,及格的人数约为680 人,及格的百分比约为85% ;(4)小明得到的数据会与实际情况相符吗?为什么?【分析】(1)根据第一组的频数和频率可以求得本次调查的人数,从而可以求得a、b、c的值;(2)根据(1)中a、b的值可以将频数分布直方图补充完整;(3)根据统计图中的数据可以解答本题;(4)根据题意,可以得到小明得到的数据会与实际情况是否相符,并说明理由.【解答】解:(1)本次调查的有:2÷0.05=40(人),a=40×0.20=8,b=40﹣2﹣4﹣8﹣10﹣6=10,c=10÷40=0.25,故答案为:8,10,0.25;(2)由(1)知,59.5~69.5的频数为8,79.5﹣89.5的频数为10,补全的频数分布直方图如右图所示;(3)优秀的人数约为:20×40×=120(人),及格的人数约为:20×40×=680(人),及格的百分比约为:=85%,故答案为:120,680,85%;(4)不相符,选择A层次班级的成绩不具有代表性.19.在一个不透明的盒子中装有a个除颜色外完全相同的红球和白球,其中红球有b个,将盒中的球摇匀后从中任意摸出1个球,记录颜色后将球放回盒中,重复进行这过程,如表记录了某班一次摸球实验情况:(1)由此估计任意摸出1个球为红球的概率约是0.9 (精确到0.1)(2)实验结束后,小明发现了一个一般性的结论:盒子中共有a个球,其中红球有b个,则摇匀后从中任意摸出1个球为红球的概率P可以表示为,这个结论也得到了老师的证实根据小明的发现,若在该盒子中再放入除颜色外与原来的球完全相同的2个红球和2个白球,摇匀后从中任意摸出1个球为红球的概率为P’,请通过计算比较P 与P'的大小.【分析】(1)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,从而得出答案;(2)由(1)得出b=0.9a,根据概率公式得出P′=,再两者相减得出p﹣p′>0,从而得出P与P'的大小.【解答】解:(1)根据给出的数据可得:任意摸出1个球为红球的概率约是0.9;故答案为:0.9;(2)由(1)得:=0.9,即b=0.9a,由题意得:P′=,p﹣p′=﹣=====,∵a>0,∴p﹣p′>0,∴P>P'.20.扬州市某土特产商店购进960盒绿叶牌牛皮糖,由于进入旅游旺季,实际每天销售的盒数比原计划每天多20%,结果提前2天卖完.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【分析】问题:求原计划每天销售多少盒绿叶牌牛皮糖?设原计划每天销售x盒绿叶牌牛皮糖,则实际每天销售1.2x盒绿叶牌牛皮糖,根据销售时间=销售总量÷每天的销量结合提前2天卖完,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】问题:求原计划每天销售多少盒绿叶牌牛皮糖?解:设原计划每天销售x盒绿叶牌牛皮糖,则实际每天销售1.2x盒绿叶牌牛皮糖,根据题意,得:﹣=2,解得:x=80,经检验,x=80是原分式方程的解,且符合题意.答:原计划每天销售80盒绿叶牌牛皮糖.21.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.【分析】(1)根据中心对称图形,画出所有可能的图形即可.(2)根据是轴对称图形,不是中心对称图形,画出图形即可.【解答】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示;22.按要求完成下列尺规作图(不写作法,保留作图痕迹)(1)如图①,线段MN与线段M'N'成中心对称,点M的对称点是点M',求作M'N’;(2)如图②,线段AB绕某个点O顺时针旋转60°后,点A恰好落在点A′处,求作点O.【分析】(1)如图①,先作MM′的垂直平分线,然后作N点关于这条直线的对称点N′,从而得到M′N′;(2)连接AA′,然后分别以A、A′为圆心,AA′为半径画弧,它们相交于点O.【解答】解:(1)如图①,M′N′为所作;(2)如图②,点O′为所作.23.有下列命题:①两组对角分别相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形;④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形;⑤一组对边相等,一组对角相等的四边形是平行四边形,(1)上述五个命题中,是真命题的是①②④(填写序号)(2)请选择一个假命题,并举反例说明.【分析】(1)根据平行线的判定定理写出真命题;(2)根据反例证明解答即可.【解答】解:(1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;②两组对角分别相等的四边形是平行四边形.故正确;③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.故答案是:①②④;(2)③反例如下图:等腰梯形ABCD满足一组对边AD与BC平行,另一组对边AB与CD相等,但四边形ABCD不是平行四边形.24.如图,在矩形ABCD中,延长BA到点F,使得AF=AB,连接FC交AD于E.(1)求证:AD与FC互相平分;(2)当CF平分∠BCD时,BC与CD的数量关系是BC=2CD.【分析】(1)连接AC,DF,可证明四边形ACDF是平行四边形,则AD与FC互相平分;(2)可证明∠FCB=∠BFC,得出BC=BF=2AB,则BC=2CD.【解答】(1)证明:连接AC,DF,∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵AF=AB,∴AF=CD,又∵AF∥CD,∴四边形ACDF是平行四边形,∴AD与CF互相平分;(2)解:∵CF平分∠BCD,∴∠FCD=∠∠FCB,∵CD∥BF,∴∠FCD=∠BFC,∴∠FCB=∠BFC,∴BC=BF,∴BC=2AB=2CD.故答案为:BC=2CD.25.如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证;∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.【分析】(1)由折叠和平行线的性质易证∠EDB=∠EBD;(2)AF∥DB;首先证明AE=EF,得出∠AFE=∠EAF,然后根据三角形内角和与等式性质可证明∠BDE=∠AFE,所以AF∥BD.【解答】解:(1)由折叠可知:∠CDB=∠EDB,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDB=∠EBD,∴∠EDB=∠EBD;(2)AF∥DB;∵∠EDB=∠EBD,∴DE=BE,由折叠可知:DC=DF,∵四边形ABCD是平行四边形,∴DC=AB,∴DF=AB,∴AE=EF,∴∠EAF=∠EFA,在△BED中,∠EDB+∠EBD+∠DEB=180°,∴2∠EDB+∠DEB=180°,同理,在△AEF中,2∠EFA+∠AEF=180°,∵∠DEB=∠AEF,∴∠EDB=∠EFA,∴AF∥DB.26.参照学习函数的过程与方法,探完函数y=(x≠0)的图象与性质,因为y==1﹣,即y=﹣+1,所以我们对比函数y=﹣来探究.操作:面出函数y=(x≠0)的图象.列表:=﹣﹣描点:在平面直角坐标中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出如图所示相应的点;连线:请把y轴左边和右边各点,分别用一条光滑曲线顺次连接起来.观察:由图象可知:①当x>0时,y随x的增大而增大(填“增大”或“减小”)②y=的图象可以由y=﹣的图象向上平移 1 个单位长度得到.③y的取值范围是y≠1 .探究:①A(m1,n1),B(m2,n2)在函数y=图象上,且n1+n2=2,求m1+m2的值;②若直线l对应的函数关系式为y1=kx+b,且经过点(﹣1,3)和点(1,﹣1),y2=,若y1>y2,则x的取值范围为x<﹣1或0<x<1 .延伸:函数y=的图象可以由反比例函数y=的图象向左平移 1 个单位,再向下平移 2 个单位得到.【分析】操作:用光滑曲线顺次连接即可;观察:①②③观察图象即可解决问题;探究:①根据图象上点的坐标特征得到n1=1﹣,n2=1﹣,根据题意即可得到=0,进一步得到=0,所以m1+m2=0;②根据图象即可求得;延伸:根据以上得到的规律即可得到答案.【解答】解:操作:函数图象如图所示:观察:①当x<0时,y随x的增大而增大;②y=的图象是由y=﹣的图象向上平移1个单位长度得到.③y的取值范围是y≠1.故答案为:增大,上,1,y≠1;探究:①y==1﹣,∵A(m1,n1),B(m2,n2)在函数y=图象上,∴n1=1﹣,n2=1﹣,∵n1+n2=2,∴=0,∴=0,∴m1+m2=0;②由图象可知,根据题意得:若y1>y2,则x的取值范围为x<﹣1或0<x<1,故答案为x<﹣1或0<x<1;延伸:函数y=的图象可以由反比例函数y=的图象向左平移1个单位,再向下平移2个单位得到,故答案为,左,1,下,2.27.如图,在▱ABCD中,AB=6a,BC=6b,∠D=60°,点E、F、G、H分别在ABCD各边上,且BE=DG=AE,CF =AH=BF.(1)求证:四边形EFGH是平行四边形;(2)若四边形EFGH是菱形,求﹣的值;(3)四边形EFGH能为正方形吗?若能,请直接写出a、b的值;若不能,请说明理由.【分析】(1)证明△DGH≌△BEF,可得GH=EF,同理证得△AEH≌△CGF,可得EH=GF,则结论得证;(2)过H,F作HP⊥CD,FQ⊥CD,交直线CD于P、Q,可得∠DHP=∠CFQ=30°,求出DP=2b,FQ=b,则PG=2a ﹣2b,QG=b+4a,由PG2+PH2=GQ2+FQ2,得出a、b的关系式12a2+16ab﹣12b2=0,可求得;(3)可证明△PHG≌△QGF,得出HP=GQ,PG=QF,则2b=4a+b,2a﹣2b=,解出a=0,b=0,故四边形EFGH不能是正方形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,AB=CD=6a,AD=BC=6b,∵BE=,∴AB=AE+AE,。

浙江省绍兴市树人中学八年级数学下学期期中试题 浙教

浙江省绍兴市树人中学八年级数学下学期期中试题 浙教

第10题 GFE DCB A 浙江省绍兴市树人中学2015-2016学年八年级数学下学期期中试题考试时间:90分钟 满分:100分 一、选择题(本题有10个小题,每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.已知在平行四边形ABCD 中,∠A =36°,则∠C 为( )A 、18°B 、36°C 、72°D 、144° 3.一个多边形的内角和是外角和的2倍,则该多边形的边数为( ) A 、4 B 、5 C 、6 D 、74.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是( )A .(x -1)2=2B .(x -1)2=4C .(x -1)2=1D .(x -1)2=7 5.下列计算中正确的是( ) A 、()21313-=± B 、111111442=⨯=C 、()21331-=- D 、22225454541-=-=-=6.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度) 120 140 160 180 200 户数23672则这20户家庭该月用电量的众数和中位数分别是( )A .180,160B .160,180C .160,160D .180,180 7.某平行四边形的一条边长为12cm ,则它的两条对角线长可以为( ) A 、6cm ,12cm B 、18cm ,20cm C 、34cm ,10cm D 、10cm ,14cm 8.下列条件不能..判定四边形ABCD 是平行四边形的是( ). A .AB ∥CD , AD ∥BC B .AD =BC , AB =CD C .AB ∥CD , AD =BC D .∠A =∠C ,∠B =∠D9.若以A (-0.5,0),B (2,0),C (0,1)三点为顶点要画平行四边形,则第四个顶点不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且F 恰好为DC 的中点,DG ⊥AE ,垂足为G . 若DG =1,则AE 的长为( )A 、23B 、4C 、8D 、43二、填空题(共10小题,每小题3分,共24分) 11.要使式子2x -有意义,则x 的取值范围是12.为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为S 甲2=3.6,S 乙2=15.8,则__________种小麦的长势比较整齐.13.点A (-4,1)关于y 轴的对称点坐标为 ,关于原点对称的点的坐标为 。

南京市XX中学2015-2016年八年级下期中数学试卷含答案解析

南京市XX中学2015-2016年八年级下期中数学试卷含答案解析

南京市XX中学2015-2016年八年级下期中数学试卷含答案解析一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.156.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°二、填空题.(共10小题,满分20分)7.当x时,分式有意义.8.已知分式的值为0,那么x的值为.9.分式,的最简公分母是.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性(选填“大于”“小于”或“等于”)是白球的可能性.11.化简:=.12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为cm.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=.15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为.16.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为.三、解答题(共68分) 17.计算: (1)÷(﹣6x 2y ); (2)•;(3)+(4)﹣.18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n 很大时,频率将会接近 .假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是 .(结果精确到0.1)19.如图,点E 是正方形ABCD 边BC 延长线上的一点,且CE=AC ,求∠E 的度数.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据,易证△AFG≌,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.2015-2016学年江苏省南京XX中学八年级(下)期中数学试卷参考答案与试题解析一、选择题.(每题2分,共12分)1.完成下列任务,宜用抽样调查的是()A.调查你班同学的年龄情况B.了解你所在学校男、女生人数C.奥运会上对参赛运动员进行的尿样检查D.考察一批炮弹的杀伤半径【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的特点即可作出判断.【解答】解:A、B、C选项中,因涉及人数较少,范围较小,适用普查;D、考察一批炮弹的杀伤半径,调查具有破坏性,所以适用抽样调查,故选:D.2.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为0的数分式的值不变,可得答案.【解答】解:若把分式中的x、y都扩大3倍,则分式的值不变,故选:C.3.下列事件是随机事件的是()A.在标准大气压下,温度低于0℃时冰融化B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.如果a、b都是实数,那么a+b=b+a【考点】随机事件.【分析】随机事件就是可能发生,也可能不发生的事件,依据定义即可判断.【解答】解:A、在标准大气压下,温度低于0℃时冰融化是不可能事件,选项不符合题意;B、小明骑车经过某个十字路口时遇到红灯,是随机事件,选项符合题意;C、地球上海洋面积大于陆地面积,是必然事件,选项不符合题意;D、如果a、b都是实数,那么a+b=b+a是必然事件,选项不符合题意.故选B.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【考点】旋转的性质.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.5.调查某小区内30户居民月人均收入情况,制成如下频数分布直方图,且人均收入在1 200~1 240元的频数是()A.12 B.13 C.14 D.15【考点】频数(率)分布直方图.【分析】根据频数分布直方图第三组数据可得.【解答】解:由频数分布直方图知,人均收入在1 200~1 240元的频数是13,故选:B.6.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°【考点】翻折变换(折叠问题);菱形的性质.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.二、填空题.(共10小题,满分20分)7.当x≠﹣3时,分式有意义.【考点】分式有意义的条件.【分析】直接利用分式的定义分析得出答案.【解答】解:∵分式有意义,∴x+3≠0,解得:x≠﹣3.故答案为:≠﹣3.8.已知分式的值为0,那么x的值为2.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣2=0,且x+1≠0,再解可得答案.【解答】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故答案为:2.9.分式,的最简公分母是6x3y2z.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是3xy2、2x3z,故最简公分母是6x3y2z;故答案为6x3y2z.10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.11.化简:=.【考点】约分.【分析】直接利用平方差公式将分母分解因式,进而化简即可.【解答】解:==.故答案为:.12.菱形的周长为20cm,较短一条对角线的长是6cm,则这个菱形的另一条对角线长为8cm.【考点】菱形的性质.【分析】根据菱形的性质,先求菱形的边长,利用勾股定理求另一条对角线的长度.【解答】解:如图,菱形ABCD中,BD=6,∴AC⊥BD,∵菱形的周长为20,BD=6,∴AB=20÷4=5,BO=3,∴AO==4,∴AC=8.则这个菱形的另一条对角线长为8 cm.故答案为:8.13.某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:某中学要了解初二学生的视力情况,在全校初二年级中抽取25名学生进行检测,在这个问题中,样本是抽取25名学生的视力情况,故答案为:抽取25名学生的视力情况.14.直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=3.【考点】三角形中位线定理;矩形的判定与性质.【分析】由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.15.菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为(+1,1).【考点】菱形的性质;坐标与图形性质.【分析】根据菱形的性质,作CD⊥x轴,先利用三角函数求出OD、CD的长度,从而得出C点坐标,然后利用菱形的性质求得点B的坐标.【解答】解:由题意可得OA=OC=,∠AOC=45°,∴CD=0Csin45°=1,OD=OCcos45°=1,点C的坐标为(1,1),则点B的坐标为(+1,1).故答案为:(+1,1).16.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为2.【考点】轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=2,连结BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长.【解答】解:连结BP.∵ABCD为正方形,面积为4,∴正方形的边长为2.∵△ABE为等边三角形,∴BE=AB=2.∵ABCD为正方形,∴△ABP与△ADP关于AC对称.∴BP=DP.∴PE+PD=PE+BP.由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=2.故答案为:2.三、解答题(共68分)17.计算:(1)÷(﹣6x2y);(2)•;(3)+(4)﹣.【考点】分式的混合运算.【分析】(1)根据分式除法法则即可求出答案.(2)先将分子分母进行因式分解,然后利用分式的基本性质即可求出答案(3)利用分式加减法则即可求出答案(4)根据分式的加减运算法则即可求出答案.【解答】解:(1)原式=×=﹣(2)原式=×=(3)原式=﹣==a +b(4)原式=﹣=﹣18.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘,商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:(1)完成上述表格:(2)请估计当n 很大时,频率将会接近 0.6 .假如你去转动转盘一次,你获得“洗衣粉”的概率估计值是 0.6 .(结果精确到0.1)【考点】利用频率估计概率.【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n 很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;【解答】解:(1):(2)估计当n 很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6,472;0.6,0.6.19.如图,点E是正方形ABCD边BC延长线上的一点,且CE=AC,求∠E的度数.【考点】正方形的性质;等腰三角形的性质.【分析】根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°.【解答】解:∵CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=×45°=22.5°.20.先化简(1﹣)÷﹣1,再从﹣2≤x≤2的范围内选取一个合适的整数x代入求值.【考点】分式的化简求值.【分析】首先对括号内的分式进行通分相减,然后把除法转化为乘法,计算乘法即可化简,最后代入数值计算即可.【解答】解:原式=•﹣1=•﹣1=x﹣1.∵x≠0或1或﹣2或2.且﹣2≤x≤2而x是整数.∴x=﹣1.当x=﹣1时,原式=﹣1﹣1=﹣2.21.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为108度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢跳绳的人数除以其所占的百分比,即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用360度乘以样本中喜欢足球人数占总人数的比例;(4)用样本估计总体,即可确定最喜爱篮球的人数.【解答】解:(1)观察条形统计图与扇形统计图可知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;(2)喜欢足球的有40×30%=12人,喜欢跑步的有40﹣10﹣15﹣12=3人,故条形统计图补充为:(3)扇形统计图中“足球”所对应扇形的圆心角为360°×=108°,故答案为:108;(4)全校最喜爱篮球的人数=1200×=450,答:估计全校有450名学生喜爱篮球.22.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.23.辨析纠错已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.对于这道题,小明是这样证明的:证明:∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE(等角对等边).同理可证:AF=DF,∴四边形AEDF是菱形(菱形定义).老师说小明的证明过程有错误.(1)请你帮小明指出他的错误是什么.(2)请你帮小明做出正确的解答.【考点】菱形的判定.【分析】(1)有一组邻边相等的平行四边形是菱形,即可得出答案;(2)求出四边形是平行四边形,再证出AE=DE即可.【解答】解:(1)小明错用了菱形的定义.(2)改正:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠1=∠2(角平分线的定义).∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴AE=DE,∴平行四边形AEDF是菱形.24.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.【考点】矩形的判定;角平分线的性质;等腰三角形的性质.【分析】(1)根据角平分线的性质,及∠BAC+∠BAF=180°可求出∠DAE=90°,即DA⊥AE;(2)要证AB=DE,需证四边形AEBD是矩形,由AB=AC,AD为∠BAC的角平分线,可知AD⊥BC,又因为DA⊥AE,BE⊥AE故,所以∠AEB=90°,∠DAE=90°即证四边形AEBD是矩形.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠BAC,又∵AE平分∠BAF,∴∠BAE=∠BAF,∵∠BAC+∠BAF=180°,∴∠BAD+∠BAE=(∠BAC+∠BAF)=×180°=90°,即∠DAE=90°,故DA⊥AE.(2)解:AB=DE.理由是:∵AB=AC,AD平分∠BAC,∴AD⊥BC,故∠ADB=90°∵BE⊥AE,∴∠AEB=90°,∠DAE=90°,故四边形AEBD是矩形.∴AB=DE.25.我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据SAS,易证△AFG≌△AFG,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.【考点】四边形综合题.【分析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,再证明△AFG≌△AFE进而得到EF=FG,即可得EF=BE+DF;(2)∠B+∠D=180°时,EF=BE+DF,与(1)的证法类同;(3)根据△AEC绕点A顺时针旋转90°得到△ABE′,根据旋转的性质,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根据Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,证△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2.【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案为:SAS;△AFG;(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF;(3)猜想:DE2=BD2+EC2,证明:连接DE′,根据△AEC绕点A顺时针旋转90°得到△ABE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.2017年5月4日。

兰州市树人中学初中数学八年级下期中经典测试卷(含答案解析)

兰州市树人中学初中数学八年级下期中经典测试卷(含答案解析)

一、选择题1.(0分)[ID:9927]如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣32,﹣1),则点C的坐标是()A.(﹣3,32)B.(32,﹣3)C.(3,32)D.(32,3)2.(0分)[ID:9895]如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为()A.1 B.2 C.3 D.43.(0分)[ID:9888]为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②4.(0分)[ID :9883]如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是( )A .203B .252C .20D .255.(0分)[ID :9880]如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 6.(0分)[ID :9865]如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<7.(0分)[ID :9860]有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5 B .7 C .5 D .5或78.(0分)[ID :9857]如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .3C .3D .159.(0分)[ID :9854]如图,已知圆柱底面的周长为4dm ,圆柱的高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .42dmB .22dmC .25dmD .45dm10.(0分)[ID :9850]如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE⊥BC,垂足为E,则AE 的长为( )A .4B .2.4C .4.8D .5 11.(0分)[ID :9845]下列各组数是勾股数的是( )A .3,4,5B .1.5,2,2.5C .32,42,52D .3 ,4,5 12.(0分)[ID :9841]下列运算正确的是( )A .235+=B .3262=C .235=D .1333÷= 13.(0分)[ID :9835]如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6 14.(0分)[ID :9851]下列各组数据中,不可以构成直角三角形的是( ) A .7,24,25B .2223,4,5C .53,1,44D .1.5,2,2.5 15.(0分)[ID :9925]已知一次函数y =﹣x +m 和y =2x +n 的图象都经过A (﹣4,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( )A .48B .36C .24D .18二、填空题16.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.17.(0分)[ID :10021]比较大小:52_____13.18.(0分)[ID :10015]若23(1)0m n -++=,则m+n 的值为 .19.(0分)[ID :10003]已知51,x =-则226x x +-=____________________.20.(0分)[ID :9992]计算:(62)(62)+-=________.21.(0分)[ID :9984]如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.22.(0分)[ID :9961]如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.23.(0分)[ID :9947]如图,矩形ABCD 中,15cm AB =,点E 在AD 上,且9cm AE =,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则'A C =____________cm .24.(0分)[ID :9944]设2a =,3b =,用含,a b 的代数式表示0.54,结果为________.25.(0分)[ID :9935]如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,PO =2,则菱形ABCD 的周长是_________.三、解答题26.(0分)[ID :10127]已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足33652b a a =+-+-,求此三角形的周长.27.(0分)[ID :10125]如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,若C 在格点上,且满足13,32AC BC ==.(1)在图中画出符合条件的ABC ;(2)若BD AC ⊥于点D ,则BD 的长为 .28.(0分)[ID :10118]如图,已知一次函数y kx b =+的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)△ABC 的面积.29.(0分)[ID :10116]计算:(1127123- (2)(362)2÷30.(0分)[ID :10034]如图,在四边形ABCD 中, AB=4,BC=3,CD=12,AD=13,∠B =90°,连接AC .求四边形ABCD 的面积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.C4.D5.C6.C7.D8.C9.A10.C11.A12.D13.B14.B二、填空题16.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少17.>【解析】【分析】根据实数大小比较的方法比较即可【详解】解:∵5=∴5故答案为>【点睛】本题考查实数大小的比较熟练掌握实数大小的比较方法是解题关键18.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m-3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质19.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型20.2【解析】试题解析:原式=()2-22=6-4=221.4【解析】【分析】在Rt中由勾股定理可求得AB的长进而可根据三角形面积的不同表示方法求出CD的长【详解】解:Rt中AC=4mBC=3mAB=m∵∴m=24m故答案为24m【点睛】本题考查勾股定理掌握22.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE分别是BCCDAD的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=23.8【解析】【分析】设A′C=xcm先根据已知利用AAS证明△A′BC≌△DCE得出A′C=DE=xcm则BC=AD=(9+x)cmA′B=AB=15cm然后在Rt△A′BC中由勾股定理可得BC2=A24.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型25.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=三、解答题26.27.28.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C的坐标为(﹣32+3,﹣1+4),即点C的坐标为(32,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.2.C解析:C【解析】【分析】先求出每边的平方,得出AB2+AC2=BC2,AD2+CD2=AC2,BD2+AB2=AD2,根据勾股定理的逆定理得出直角三角形即可.【详解】理由是:连接AC、AB、AD、BC、CD、BD,设小正方形的边长为1,由勾股定理得:AB2=12+22=5,AC2=22+42=20,AD2=12+32=10,BC2=52=25,CD2=12+32=10,BD2=12+22=5,∴AB2+AC2=BC2,AD2+CD2=AC2,BD2+AB2=AD2,∴△ABC、△ADC、△ABD是直角三角形,共3个直角三角形,故选C.【点睛】本题考查了勾股定理的逆定理,解题的关键是掌握勾股定理.3.C解析:C【解析】【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.D解析:D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度. 5.C解析:C【解析】【详解】如图,作MG⊥BC于G,MH⊥CD于H,则BG=GC,AB∥MG∥CD,∴AM=MN,∵MH⊥CD,∠D=90°,∴MH∥AD,∴NH=HD,由旋转变换的性质可知,△MBC是等边三角形,∴MC=BC=a,∠MCD=30°,∴MH=12MC=12a,3,∴DH=a 3,∴CN=CH﹣NH=32a﹣(a﹣32a)=3﹣1)a,∴△MNC的面积=12×2a×3﹣1)a=314a2.故选C. 6.C解析:C 【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.7.D解析:D【解析】【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边,当4是斜边时,另一条直角边=故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.8.C解析:C【解析】【分析】证明30BAE EAC ACE,求出BC即可解决问题.【详解】解:四边形ABCD是矩形,90B∴∠=︒,EA=EC,EAC ECA∴∠=∠,EAC BAE,又∵将纸片沿AE折叠,点B恰好落在AC上,30BAE EAC ACE,3AB=,333BC AB,∴矩形ABCD的面积是33393AB BC.故选:C.【点睛】本题考查矩形的性质,翻折变换,直角三角形30角性质等知识,解题的关键是灵活运用所学知识解决问题.9.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度,圆柱底面的周长为4dm,圆柱高为2dm,2AB dm,2BC BC dm,22222448AC,22AC dm,∴这圈金属丝的周长最小为242AC dm.故选:A.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.10.C解析:C【解析】【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=12AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD可得答案.【详解】连接BD,交AC于O点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5, ∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=,∵AC =6,∴AO =3, ∴2594BO =-=, ∴DB =8,∴菱形ABCD 的面积是11682422AC DB ⨯⋅=⨯⨯=, ∴BC ⋅AE =24, 245AE =, 故选C.11.A解析:A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证较小两数的平方和是否等于最大数的平方.【详解】A .32+42=52,是勾股数;B .1.5,2,2.5中,1.5,2.5不是正整数,故不是勾股数;C .(32)2+(42)2≠(52)2,不是勾股数;D 42+325235 故选A .【点睛】本题考查了勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.12.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A 、原式+B 2=,故错误;C 、原式,故C 错误;D 3=,正确; 故选:D .【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.13.B解析:B【解析】【分析】由折叠的性质可得DN CN =,根据勾股定理可求DN 的长,即可求BN 的长.【详解】 D 是AB 中点,6AB =,3AD BD ∴==,根据折叠的性质得,DN CN =,9BN BC CN DN ∴=-=-,在Rt DBN 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.14.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意;D、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.C解析:C【解析】【分析】把A(﹣4,0)分别代入一次函数y=﹣x+m和y=2x+n中,求得m和n的值,根据所得的两个解析式,求得点B和点C的坐标,以BC为底,点A到BC的垂线段为高,求出△ABC的面积即可.【详解】把点A(﹣4,0)代入一次函数y=﹣x+m得:4+m=0,解得:m=﹣4,即该函数的解析式为:y=﹣x﹣4,把点A(﹣4,0)代入一次函数y=2x+n得:﹣8+n=0,解得:n=8,即该函数的解析式为:y=2x+8,把x=0代入y=﹣x﹣4得:y=0﹣4=﹣4,即B(0,﹣4),把x=0代入y=2x+8得:y=0+8=8,即C(0,8),则边BC的长为8﹣(﹣4)=12,点A到BC的垂线段的长为4,S△ABC11242=⨯⨯=24.故选C.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握代入法求一次函数的解析式是解题的关键.二、填空题16.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.17.>【解析】【分析】根据实数大小比较的方法比较即可【详解】解:∵5=∴5故答案为>【点睛】本题考查实数大小的比较熟练掌握实数大小的比较方法是解题关键解析:>【解析】【分析】根据实数大小比较的方法比较即可.【详解】解:∵∴故答案为>.【点睛】本题考查实数大小的比较,熟练掌握实数大小的比较方法是解题关键18.2【解析】试题分析:几个非负数之和为零则每个非负数都为零根据非负数的性质可得:m-3=0且n+1=0解得:m=3n=-1则m+n=3+(-1)=2考点:非负数的性质解析:2【解析】试题分析:几个非负数之和为零,则每个非负数都为零.根据非负数的性质可得:m-3=0且n+1=0,解得:m=3,n=-1,则m+n=3+(-1)=2.考点:非负数的性质19.-2【解析】【分析】直接代入根据二次根式的运算法则即可求出答案【详解】解:当时原式【点睛】本题考查了学生的运算能力解题的关键是熟练运用运算法则本题属于基础题型解析:-2【解析】【分析】直接代入,根据二次根式的运算法则即可求出答案.解:当1x =时,原式21)1)6=+-5126=-+-2=-【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 20.2【解析】试题解析:原式=()2-22=6-4=2解析:2【解析】试题解析:原式=)2-22=6-4=2.21.4【解析】【分析】在Rt 中由勾股定理可求得AB 的长进而可根据三角形面积的不同表示方法求出CD 的长【详解】解:Rt 中AC=4mBC=3mAB=m ∵∴m=24m 故答案为24m 【点睛】本题考查勾股定理掌握 解析:4【解析】【分析】在Rt ABC 中,由勾股定理可求得AB 的长,进而可根据三角形面积的不同表示方法求出CD 的长.【详解】解:Rt ABC 中,AC=4m ,BC=3m5=m ∵1122ABC S AC BC AB CD =⋅=⋅ ∴125AC BC CD AB ⋅==m=2.4m 故答案为2.4 m【点睛】 本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.22.AC⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形然后根据矩形的性质得出AC⊥BD【详解】解:∵GHE 分别是BCCDAD 的中点∴HG∥BDEH∥AC∴∠EHG=∠1∠1=解析:AC ⊥BD【解析】【分析】本题首先根据三角形中位线的性质得出四边形为平行四边形,然后根据矩形的性质得出AC ⊥BD .解:∵G 、H 、E 分别是BC 、CD 、AD 的中点, ∴HG ∥BD ,EH ∥AC ,∴∠EHG=∠1,∠1=∠2, ∴∠2=∠EHG ,∵四边形EFGH 是矩形, ∴∠EHG=90°, ∴∠2=90°, ∴AC ⊥BD .故还要添加AC ⊥BD ,才能保证四边形EFGH 是矩形.【点睛】本题主要综合考查了三角形中位线定理及矩形的判定定理,属于中等难度题型.解答这个问题的关键就是要明确矩形的性质以及中位线的性质.23.8【解析】【分析】设A′C=xcm 先根据已知利用AAS 证明△A′BC≌△DCE 得出A′C=DE=xcm 则BC=AD=(9+x )cmA′B=AB=15cm 然后在Rt△A′BC 中由勾股定理可得BC2=A解析:8【解析】【分析】设A ′C=xcm ,先根据已知利用AAS 证明△A ′BC ≌△DCE ,得出A ′C=DE= xcm ,则BC=AD=(9+x )cm ,A ′B=AB=15cm ,然后在Rt △A ′BC 中,由勾股定理可得BC 2=A ′B 2+A ′C 2,即可得方程,解方程即可求得答案【详解】解:∵四边形ABCD 是矩形,∴AB=CD=15cm ,∠A=∠D=90°,AD ∥BC ,AD=BC ,∴∠DEC=∠A ′CB ,由折叠的性质,得:A ′B=AB=15cm ,∠BA ′E=∠A=90°,∴A ′B=CD ,∠BA ′C=∠D=90°,在△A ′BC 和△DCE 中,BA C D A CB DEC A B CD ∠=∠⎧⎪∠=∠=''⎨'⎪⎩∴△A ′BC ≌△DCE (AAS ),∴A ′C=DE ,设A ′C=xcm ,则BC=AD=DE+AE=x+9(cm ),在Rt △A ′BC 中,BC 2=A ′B 2+A ′C 2,即(x+9)2=x 2+152,解得:x=8,∴A ′C=8cm .故答案为:8.【点睛】此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.24.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型解析:3 10 ab【解析】【分析】化简后,代入a,b即可.【详解】====a=b=,301=ab故答案为:310ab.【点睛】化简变形,本题属于中等题型.25.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=解析:16【解析】【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故答案为:16.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.三、解答题26.三角形的周长为7或8【解析】【分析】根据二次根式的非负性,可求得a=2、b=3,根据等腰三角形的性质,可得三边长为2、2、3或2、3、3,从而求得三角形周长.【详解】b=∵3∴3a-6≥0,2-a≥0∴a=2∴b=3∵a,b分别为等腰三角形的两条边长∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=8【点睛】本题考查二次根式的非负性和等腰三角形的多解问题,解题关键是利用二次根式的非负性,得出a=2.27.(1)见解析;【解析】【分析】(1)结合网格图利用勾股定理确定点C的位置即可得解;(2)根据三角形的面积列出关于BD方程,求解即可得到答案.【详解】解:(1)如图:∵小正方形的边长均为1∴3AE =,2CE =;3BF CF == ∴2213AC AE CE =+=;2232BC BF CF =+=∴ABC 即为所求.(2)如图:∵由网格图可知5AB =,3CH =,13AC =32BC =22ABC AB CH AC BD S⋅⋅== 13532BD ⋅⨯= ∴1513BD =【点睛】本题考查了勾股定理在网格图中的的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.28.(1)4533y x =+;(2)52. 【解析】【分析】(1)利用待定系数法即可求出一次函数解析式;(2)求出点D 坐标,根据ABC AOD BOD SS S =+即可求解.【详解】(1)把A (-2,-1),B (1,3)代入y =kx +b 得 213k b k b -+=-⎧⎨+=⎩, 解得 4353k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以一次函数解析式为4533y x =+; (2)把x =0代入4533y x =+得y =53, ∴D 点坐标为(0,53), ∴15155=21=23232ABC AOD BOD S S S =+⨯⨯+⨯⨯. 【点睛】(1)待定系数法是求函数解析式的一种常用方法,要深刻领会,其实质是根据题意设出函数关系式,把点的坐标代入解析式构造方程,求解,回代,最后确定解析式;(2)平面直角坐标系中如果图形的面积不易直接求,则一般采用割补法求解. 29.(1)3;(2)2-.【解析】【分析】(1)先化简二次根式,再计算二次根式的加减法即可;(2)利用二次根式除法的分配律进行计算即可.【详解】(1)原式=3=;(2)原式=2=.【点睛】本题考查了二次根式的加减法、除法运算,熟记运算法则是解题关键. 30.36【解析】【分析】由AB=4,BC=3,∠B=90°可得AC=5.可求得S △ABC ;再由AC=5,AD=13,CD=12,可得△ACD 为直角三角形,进而求得S △ACD ,可求S 四边形ABCD =S △ABC +S △ACD .【详解】∵∠ABC =90°,AB =4,BC =3,∴5=∵CD =12,AD =13 22125169+=,213169=∴22212513+=∴222CD AC AD +=∴∠ACD =90° ∴14362ABC S ∆=⨯⨯=, 1125302ACD S ∆=⨯⨯= ∴6+30=36ABCD S =四边形【点睛】此题考查勾股定理及逆定理的应用,判断△ACD 是直角三角形是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南师附中树人学校2015-2016学年度(下)期中试卷
八年级数学
一、选择题:(本大题共6小题,每小题2分,共计12分)
1.为了了解某校八年级1000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指( ) A .1000名学生 B .被抽取的50名学生 C .1000名学生的身高 D .被抽取的50名学生的身高
2.如图所示的四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )
A .1个
B .2个
C .3个
D .4个 3.“十次投掷一枚硬币,十次正面朝上”这一事件是( ) A .必然事件 B .随机事件 C .确定事件 D .不可能事件
4.若已知分式||2
2
m m --的值为0,则m 的值为( )
A .2±
B .2
C .0
D .-2
5.代数式62π
x y x x y x
x a b +-+,,,中分式有( )
A .4个
B .3个
C .2个
D .1个
6.如图,矩形ABCD 中,M 为CD 中点,今以B M 、为圆心,分别以BC 长、MC 长为半径画弧,两板相交于P 点.若70PBC ∠=︒,则MPC ∠=( )度 A .20 B .35 C .45 D .
55
M C
B
二、填空题:(本大题共10小题,每小题2分,共计20分)
7.3个人站成一排,其中小亮“站在中间”的可能性 小亮“站在两边”的可能.(填“大于”、“等于”或“小于”)
8.分式4b ac 与26c
a b
的最简公分母是 .
9.如图,D E F 、、分别是ABC △各边的中点,AH 是高,如果5cm ED =,那么HF 的长为 .
H
F E
D C
B
A
10.下图是一枚图钉被抛起后钉尖触地频率随抛掷次数变化趋势图,则一枚图钉被抛起后钉尖触地的
概率估计值是 .

率抛掷次数
66.0%61.0%56.0%51.0%
46.0%
36.0%
31.0%26.0%
1100
1000900800500400
300200100
11.为鼓励学生课外阅读,某校制定了“阅读奖励方案”,方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形图,则赞成该方案所对应扇形的圆心角的度数为 °.
反对10%
12.已知菱形ABCD 的两条对角线AC BD ,长分别为6cm 8cm 、,且AE BC ⊥,这个菱形的面积=S 2cm ,AE = cm .
E D
C
B A
13.若132x x -
=,则221
x x
+= . 14.分式方程的解题步骤是:(1)去分母(2)去括号(3)移项(4)合并同类项(5)“系数化为1”(6)验根,其中可能产生增根的步骤是 ,产生增根的原因是 .
15.如图,在菱形ABCD 中,82BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,
则CDF ∠等于 度. F E
D
C
B
A
16.如图,是两种品牌的方便面销售增长率折线统计图,则AA 牌方面便2003年的销售量 2002年的销售量,2002年BB 牌方便面的销售量 AA 牌方面便的销售量(填“高于”“低于”“不一定高于”)
三、解答题:(本大题共11小题,共计68分) 17.(本题10分)化简:
(1)a c c b
a b b a ----- (2)352.22x x x x -⎛⎫÷+- ⎪--⎝⎭
18.(本题5分)如图,111A B C △由ABC △绕某点旋转而成,请你用尺规作图,找出旋转中心O ,并用量角器度量出旋转的大小(完成填空). 旋转角(∠ )是 度.
C 1A 1
B 1
C
B
A
19.(本题6分)解方程:
2947
2393x x x x
+-+=-- 20.(本题6分)如图,在平行四边形ABCD 中,点E F 、分别在AD BC 、边上,且AE CF =,AF 与BE 交于G ,CE 与DF 交于H .求证:四边形EGFH 是平行四边形. H G
F E
D
C
B
A 21.(本题7分)3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加完全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图解题:
频数分布直方图
(1)这次抽取了 名学生的竞赛成绩进行统计,其中:m = ,n = ; (2)补全频数分布直方图;
(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人? 22.(本题6分)为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者
支援,实际每天种树的棵树是原计划的4
3
倍,结果提前4天完成任务,原计划每天种树多少棵?
23.(本题8分)在正方形ABCD 中,E 是CD 上一点,AF AE ⊥交CB 的延长线于点F ,连接DF ,分别交AE AB 、于点G P 、.已知.BAF BFD ∠=∠
(1)图中存在直角三角形全等,找出其中的一对,并加以证明; (2)证明四边形APED 是矩形.
E P G
F
D
C B
A
24.(本题6分)(1)当整数x 为何整数时,分式
2
1
x +的值也是整数? (2)化简代数式22
411
12x x x x x x x
+---÷++,并直接写出x 为何整数时,该代数式的值也为整数. 25.(本题6分)观察下列方程以及解的特征:
①1122x x +=+的解为12122x x ==,;
②1133x x +=+的解为12133x x ==,;
③1144x x +=+的解为12144x x ==,;
……
(1)猜想关于x 方程11
x m x m
+=+的解,并利用“方程解的概念”进行验证;
(2)利用(1)结论解分式方程:
①33165
8y y +=
②2141
482a a x x a
+++=
- 26.(本题8分)已知:如图1,点P 在线段AB 上(A P P B >)
,C D E 、、分别是AP PB AB 、、的中点,正方形CPFG 和正方形PDHK 在直线AB 同侧. (1)求证:GC ED =
(2)求证:EHG △是等腰直角三角形;
(3)若将图1中的射线PB 连同正方形PDHK 绕点P 顺时针旋转一个角度后,其它已知条件不变,如图2,判断EHG △还是等腰直角三角形吗?若是,给予证明,若不是,请说明理由.
H
G
G
A
B
C
D
E F
K P 图2图1
H
P
K
F E D
C
B
A。

相关文档
最新文档