【数学】2015-2016年广西南宁市马山县七年级下学期数学期末试卷和答案解析PDF
2015-2016学年广西南宁市马山县七年级(下)期中数学试卷
2015-2016学年广西南宁市马山县七年级(下)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的1.(3分)4的平方根是()A.﹣2B.2C.±2D.42.(3分)在0.51525354…、、0.2、、、、中,无理数的个数是()A.2B.3C.4D.53.(3分)如图,下列各组角中,是对顶角的一组是()A.∠1和∠2B.∠3和∠5C.∠3和∠4D.∠1和∠5 4.(3分)下列计算正确的是()A.=±15B.=﹣3C.=D.=5.(3分)在平面直角坐标系中,点P(﹣2,1)位于()A.第二象限B.第二象限C.第三象限D.第四象限6.(3分)在下列表述中,能确定位置的是()A.北偏东30°B.距学校500m的某建筑C.东经92°,北纬45°D.某电影院3排7.(3分)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)8.(3分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°9.(3分)如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()A.18B.16C.12D.810.(3分)命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线11.(3分)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠3=124°,∠2=88°,则∠1的度数为()A.26°B.36°C.46°D.56°12.(3分)正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根为()A.﹣5B.5C.13D.10二、填空题:本大题共6小题,每小题3分,共18分13.(3分)计算:=.14.(3分)(+)=.15.(3分)如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=40°,则∠BOD为.16.(3分)将点A(4,3)向左平移个单位长度后,其坐标为(﹣1,3).17.(3分)已知点P在x轴上,且到y轴的距离为3,则点P坐标为.18.(3分)如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=°.三、解答题:本大题共6小题,共46分19.(6分)计算题:﹣++.20.(6分)求x值:(x﹣1)2=25.21.(8分)如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各顶点的坐标;(2)把三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A′B′C′,在图中画出三角形A′B′C′的位置,并写出顶点A′,B′,C′的坐标.解:(1)A(,),B(,),C(,)(2)A′(,),B′(,),C′(,)22.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,()∴∠2=.(两直线平行,同位角相等)又∵∠1=∠2,()∴∠1=∠3.()∴AB∥DG.()∴∠BAC+ =180°()又∵∠BAC=70°,()∴∠AGD=.23.(8分)如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.24.(10分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.2015-2016学年广西南宁市马山县七年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的1.(3分)4的平方根是()A.﹣2B.2C.±2D.4【解答】解:∵±2的平方等于4,∴4的平方根是:±2.故选:C.2.(3分)在0.51525354…、、0.2、、、、中,无理数的个数是()A.2B.3C.4D.5【解答】解:∵=,=3,∴在这一组数中无理数有:在0.51525354…、、共3个.故选:B.3.(3分)如图,下列各组角中,是对顶角的一组是()A.∠1和∠2B.∠3和∠5C.∠3和∠4D.∠1和∠5【解答】解:由对顶角的定义可知:∠3和∠5是一对对顶角,故选:B.4.(3分)下列计算正确的是()A.=±15B.=﹣3C.=D.=【解答】解:A、,错误;B、,错误;C、,错误;D、,正确;故选:D.5.(3分)在平面直角坐标系中,点P(﹣2,1)位于()A.第二象限B.第二象限C.第三象限D.第四象限【解答】解:在平面直角坐标系中,点P(﹣2,1)位于第二象限,故选:B.6.(3分)在下列表述中,能确定位置的是()A.北偏东30°B.距学校500m的某建筑C.东经92°,北纬45°D.某电影院3排【解答】解:A、北偏东30°,不能确定具体位置,故本选项错误;B、距学校500m的某建筑,不能确定具体位置,故本选项错误;C、东经92°,北纬45°,能确定具体位置,故本选项正确;D、某电影院3排,不能确定具体位置,故本选项错误.故选:C.7.(3分)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选:D.8.(3分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选:A.9.(3分)如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()A.18B.16C.12D.8【解答】解:一个正方形面积为4,而把一个正方形从①﹣④变换,面积并没有改变,所以图⑤由4个图④构成,故图⑤面积为4×4=16.故选:B.10.(3分)命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线【解答】解:命题“垂直于同一条直线的两条直线互相平行”的题设是两条直线垂直于同一条直线.故选:D.11.(3分)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠3=124°,∠2=88°,则∠1的度数为()A.26°B.36°C.46°D.56°【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠3=124°,∴∠4=56°,∴∠1=180°﹣∠2﹣∠4=180°﹣88°﹣56°=36°.故选:B.12.(3分)正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根为()A.﹣5B.5C.13D.10【解答】解:∵正数x的两个平方根是3﹣a和2a+7,∴3﹣a+(2a+7)=0,解得:a=﹣10,∴这个正数的两个平方根是±13,∴这个正数是169.44﹣x=44﹣169=﹣125,﹣125的立方根是﹣5,故选:A.二、填空题:本大题共6小题,每小题3分,共18分13.(3分)计算:=﹣3.【解答】解:=﹣3.故答案为:﹣3.14.(3分)(+)=4.【解答】解:原式=×+×=3+1=4.故答案为4.15.(3分)如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=40°,则∠BOD为50°.【解答】解:∵OE⊥AB,∴∠AOE=90°;又∵∠COE=40°,∴∠AOC=∠AOE﹣∠COE=50°,∴∠BOD=∠AOC=50°(对顶角相等);故答案是:50°.16.(3分)将点A(4,3)向左平移5个单位长度后,其坐标为(﹣1,3).【解答】解:4﹣(﹣1)=4+1=5.答:将点A(4,3)向左平移5个单位长度后,其坐标为(﹣1,3).故答案为:5.17.(3分)已知点P在x轴上,且到y轴的距离为3,则点P坐标为(±3,0).【解答】解:∵点P在x轴上,∴点P的纵坐标等于0,又∵点P到y轴的距离是3,∴点P的横坐标是±3,故点P的坐标为(±3,0).故答案为:(±3,0).18.(3分)如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=70°.【解答】解:∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为:70.三、解答题:本大题共6小题,共46分19.(6分)计算题:﹣++.【解答】解:原式=2﹣2﹣+=0.20.(6分)求x值:(x﹣1)2=25.【解答】解:开方,得x﹣1=5或x﹣1=﹣5,解得x=6,或x=﹣4.21.(8分)如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各顶点的坐标;(2)把三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A′B′C′,在图中画出三角形A′B′C′的位置,并写出顶点A′,B′,C′的坐标.解:(1)A(﹣1,﹣1),B(4,2),C(1,3)(2)A′(1,2),B′(6,5),C′(3,6)【解答】解:(1)由图可知,A(﹣1,﹣1),B(4,2),C(1,3).故答案为:(﹣1,﹣1),(4,2),(1,3);(2)由图可知A′(1,2),B′(6,5),C′(3,6).故答案为:(1,2),(6,5),(3,6).22.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3.(等量代换)∴AB∥DG.(内错角相等,两直线平行;)∴∠BAC+ ∠AGD=180°(两直线平行,同旁内角互补;)又∵∠BAC=70°,(已知)∴∠AGD=110°.【解答】解:∵EF∥AD(已知),∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG.(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,(已知)∴∠AGD=110°.23.(8分)如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.【解答】证明:∵∠1=∠2,∴AB∥CD.∵∠3+∠4=180°,∴CD∥EF.∴AB∥EF.24.(10分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.。
广西南宁市马山县2015-2016学年七年级数学下学期期中试题(含解析)新人教版
广西南宁市马山县2015-2016学年七年级数学下学期期中试题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的1.4的平方根是()A.﹣2 B.2 C.±2 D.42.在0.51525354…、、0.2、、、、中,无理数的个数是()A.2 B.3 C.4 D.53.如图,下列各组角中,是对顶角的一组是()A.∠1和∠2 B.∠3和∠5 C.∠3和∠4 D.∠1和∠54.下列计算正确的是()A. =±15 B. =﹣3 C. =D. =5.在平面直角坐标系中,点P(﹣2,1)位于()A.第二象限 B.第二象限 C.第三象限 D.第四象限6.在下列表述中,能确定位置的是()A.北偏东30°B.距学校500m的某建筑C.东经92°,北纬45°D.某电影院3排7.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)8.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52° B.38° C.42° D.60°9.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()A.18 B.16 C.12 D.810.命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直 B.两条直线C.同一条直线D.两条直线垂直于同一条直线11.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠3=124°,∠2=88°,则∠1的度数为()A.26° B.36° C.46° D.56°12.正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根为()A.﹣5 B.5 C.13 D.10二、填空题:本大题共6小题,每小题3分,共18分13.计算: = .14.(+)= .15.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=40°,则∠BOD为.16.将点A(4,3)向左平移个单位长度后,其坐标为(﹣1,3).17.已知点P在x轴上,且到y轴的距离为3,则点P坐标为.18.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2= °.三、解答题:本大题共6小题,共46分19.计算题:﹣++.20.求x值:(x﹣1)2=25.21.如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各顶点的坐标;(2)把三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A′B′C′,在图中画出三角形A′B′C′的位置,并写出顶点A′,B′,C′的坐标.解:(1)A(,),B(,),C (,)(2)A′(,),B′(,),C′(,)22.如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,()∴∠2= .(两直线平行,同位角相等;)又∵∠1=∠2,()∴∠1=∠3.()∴AB∥DG.()∴∠BAC+ =180°()又∵∠BAC=70°,()∴∠AGD= .23.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.2015-2016学年广西南宁市马山县七年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的1.4的平方根是()A.﹣2 B.2 C.±2 D.4【考点】平方根.【分析】首先根据平方根的定义求出4的平方根,然后就可以解决问题.【解答】解:∵±2的平方等于4,∴4的平方根是:±2.故选C.2.在0.51525354…、、0.2、、、、中,无理数的个数是()A.2 B.3 C.4 D.5【考点】无理数.【分析】先把化为,化为3的形式,再根据无理数就是无限不循环小数进行解答即可.【解答】解:∵=, =3,∴在这一组数中无理数有:在0.51525354…、、共3个.故选B.3.如图,下列各组角中,是对顶角的一组是()A.∠1和∠2 B.∠3和∠5 C.∠3和∠4 D.∠1和∠5【考点】对顶角、邻补角.【分析】根据对顶角的定义,首先判断是否由两条直线相交形成,其次再判断两个角是否有公共边,没有公共边有公共顶点的是对顶角.【解答】解:由对顶角的定义可知:∠3和∠5是一对对顶角,故选B.4.下列计算正确的是()A. =±15 B. =﹣3 C. =D. =【考点】算术平方根.【分析】根据算术平方根的定义解答判断即可.【解答】解:A、,错误;B、,错误;C、,错误;D、,正确;故选D5.在平面直角坐标系中,点P(﹣2,1)位于()A.第二象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据横坐标比零小,纵坐标比零大,可得答案.【解答】解:在平面直角坐标系中,点P(﹣2,1)位于第二象限,故选B.6.在下列表述中,能确定位置的是()A.北偏东30°B.距学校500m的某建筑C.东经92°,北纬45°D.某电影院3排【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、北偏东30°,不能确定具体位置,故本选项错误;B、距学校500m的某建筑,不能确定具体位置,故本选项错误;C、东经92°,北纬45°,能确定具体位置,故本选项正确;D、某电影院3排,不能确定具体位置,故本选项错误.故选:C.7.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【考点】坐标确定位置.【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.8.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52° B.38° C.42° D.60°【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.9.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()A.18 B.16 C.12 D.8【考点】平移的性质.【分析】根据平移的基本性质,平移不改变图形的形状和大小,即图形平移后面积不变,则⑤面积可求.【解答】解:一个正方形面积为4,而把一个正方形从①﹣④变换,面积并没有改变,所以图⑤由4个图④构成,故图⑤面积为4×4=16.故选B.10.命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直 B.两条直线C.同一条直线D.两条直线垂直于同一条直线【考点】命题与定理.【分析】找出已知条件的部分即可.【解答】解:命题“垂直于同一条直线的两条直线互相平行”的题设是两条直线垂直于同一条直线.故选D.11.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠3=124°,∠2=88°,则∠1的度数为()A.26° B.36° C.46° D.56°【考点】平行线的性质.【分析】如图,首先运用平行线的性质求出∠4的大小,然后借助平角的定义求出∠1即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠3=124°,∴∠4=56°,∴∠1=180°﹣∠2﹣∠4=180°﹣88°﹣56°=36°.故选B.12.正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根为()A.﹣5 B.5 C.13 D.10【考点】平方根;立方根.【分析】根据一个正数有两个平方根,它们互为相反数,求出a的值,从而得出这个正数的两个平方根,即可得出这个正数,计算出44﹣x的值,即可解答.【解答】解:∵正数x的两个平方根是3﹣a和2a+7,∴3﹣a+(2a+7)=0,解得:a=﹣10,∴这个正数的两个平方根是±13,∴这个正数是169.44﹣x=44﹣169=﹣125,﹣125的立方根是﹣5,故选:A.二、填空题:本大题共6小题,每小题3分,共18分13.计算: = ﹣3 .【考点】立方根.【分析】根据(﹣3)3=﹣27,可得出答案.【解答】解: =﹣3.故答案为:﹣3.14.(+)= 4 .【考点】二次根式的混合运算.【分析】根据二次根式的乘法法则运算.【解答】解:原式=×+×=3+1=4.故答案为4.15.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=40°,则∠BOD为50°.【考点】垂线;对顶角、邻补角.【分析】根据垂直的定义求得∠AOE=90°;然后根据余角的定义可以推知∠AOC=∠AOE﹣∠COE=50°;最后由对顶角的性质可以求得∠BOD=∠AOC=50°.【解答】解:∵OE⊥AB,∴∠AOE=90°;又∵∠COE=40°,∴∠AOC=∠AOE﹣∠COE=50°,∴∠BOD=∠AOC=50°(对顶角相等);故答案是:50°.16.将点A(4,3)向左平移 5 个单位长度后,其坐标为(﹣1,3).【考点】坐标与图形变化-平移.【分析】由将点A(4,3)向左平移得到坐标(﹣1,3),根据横坐标的变化可得平移了几个单位长度,依此即可求解.【解答】解:4﹣(﹣1)=4+1=5.答:将点A(4,3)向左平移5个单位长度后,其坐标为(﹣1,3).故答案为:5.17.已知点P在x轴上,且到y轴的距离为3,则点P坐标为(±3,0).【考点】点的坐标.【分析】先根据P在x轴上判断出点P纵坐标为0,再根据距离的意义即可求出点P的坐标.【解答】解:∵点P在x轴上,∴点P的纵坐标等于0,又∵点P到y轴的距离是3,∴点P的横坐标是±3,故点P的坐标为(±3,0).故答案为:(±3,0).18.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2= 70 °.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【解答】解:∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为:70.三、解答题:本大题共6小题,共46分19.计算题:﹣++.【考点】实数的运算;立方根.【分析】原式利用平方根、立方根定义计算即可得到结果.【解答】解:原式=2﹣2﹣+=0.20.求x值:(x﹣1)2=25.【考点】平方根.【分析】根据开方运算,可得方程的解.【解答】解:开方,得x﹣1=5或x﹣1=﹣5,解得x=6,或x=﹣4.21.如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各顶点的坐标;(2)把三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A′B′C′,在图中画出三角形A′B′C′的位置,并写出顶点A′,B′,C′的坐标.解:(1)A(﹣1 ,﹣1 ),B( 4 , 2 ),C( 1 , 3 )(2)A′( 1 , 2 ),B′( 6 , 5 ),C′( 3 , 6 )【考点】作图-平移变换.【分析】(1)根据各点在坐标系中的位置写出各点坐标即可;(2)画出平移后的三角形,写出各点坐标即可.【解答】解:(1)由图可知,A(﹣1,﹣1),B(4,2),C(1,3).故答案为:(﹣1,﹣1),(4,2),(1,3);(2)由图可知A′(1,2),B′(6,5),C′(3,6).故答案为:(1,2),(6,5),(3,6).22.如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,(已知)∴∠2= ∠3 .(两直线平行,同位角相等;)又∵∠1=∠2,(已知)∴∠1=∠3.(等量代换)∴AB∥DG.(内错角相等,两直线平行;)∴∠BAC+ ∠AGD =180°(两直线平行,同旁内角互补;)又∵∠BAC=70°,(已知)∴∠AGD= 110°.【考点】平行线的判定与性质.【分析】根据题意,利用平行线的性质和判定填空即可.【解答】解:∵EF∥AD(已知),∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG.(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,(已知)∴∠AGD=110°.23.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.【考点】平行线的判定.【分析】根据∠1=∠2利用“同位角相等,两直线平行”可得出AB∥CD,再根据∠3+∠4=180°利用“同旁内角互补,两直线平行”可得出CD∥EF,从而即可证出结论.【解答】证明:∵∠1=∠2,∴AB∥CD.∵∠3+∠4=180°,∴CD∥EF.∴AB∥EF.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【考点】平行线的判定与性质.【分析】(1)求出AE∥GF,求出∠2=∠A=∠1,根据平行线的判定推出即可;(2)根据平行线的性质得出∠D+∠CBD+∠3=180°,求出∠3,根据平行线的性质求出∠C 即可.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.。
2015-2016学年第二学期7下数学期末试题与答案
七年级数学试题与答案 第1页(共2页)2015—2016学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本大题共10个小题,每小题3分,计30分. 1.下列命题中是假命题的是A.对顶角相等B.邻补角是互补的角C.同旁内角互补D.垂线段最短2.23的算术平方根是A.3B. ±3.已知点A (a +3,a -2)位于第四象限,则a 的取值范围是 A .a <-3B .a > 2C .-3<a <2D .-2<a <34.在平面直角坐标系中,将点P (-2,1)向左平移3个单位长度,再向上平移4个单位长度得到点P ′的坐标是A .(1,5)B .(-5,5)C .(1,-3)D .(-5,-3) 5.若x >y ,则下列式子错误的是A. x ﹣3>y ﹣3B.﹣3x >﹣3yC. x +3>y +3D. 3x >3y6.若a b +=3,a b -=7,则22a b +的值是A.5B.21C.29D. 857.下列调查:①调查某批次汽车的抗撞击能力;②了解某班学生的身高情况;③调查春节联欢晚会收视率;④选出某校短跑最快的学生参加全市比赛.其中适宜抽样调查的是A. ①②B. ①③ 错误!未找到引用源。
C. ②③错误!未找到引用源。
广西南宁市七年级下学期数学期末考试试卷
广西南宁市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九上·鞍山期末) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示是()A . 0.21×10-4B . 2.1×10-4C . 2.1×10-5D . 21×10-63. (2分)下列计算正确的是()A . x+x=B . •=C . ÷x=D . =4. (2分)(2019·永州) 下列说法正确的是()A . 有两边和一角分别相等的两个三角形全等B . 有一组对边平行,且对角线相等的四边形是矩形C . 如果一个角的补角等于它本身,那么这个角等于45°D . 点到直线的距离就是该点到该直线的垂线段的长度5. (2分) (2020八上·阳泉期末) 选择计算(-4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A . 运用多项式乘多项式法则B . 运用平方差公式C . 运用单项式乘多项式法则D . 运用完全平方公式6. (2分)已知三角形的两边分别为2和6,则此三角形的第三边可能是()A . 2B . 4C . 6D . 87. (2分)(2017·宿迁) 如图,直线a,b被直线c,d所截,若∠1=80°,∠2=100°,∠3=85°,则∠4度数是()A . 80°B . 85°C . 95°D . 100°8. (2分)下列命题中,正确的是()A . 全等三角形的高相等B . 全等三角形的中线相等C . 全等三角形的角平分线相等D . 全等三角形对应边上的高相等9. (2分) (2019八上·西安月考) 甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A . ①②B . ①②③C . ①③④D . ①②④10. (2分)下列计算正确的是()A . (ab4)4=a4b8B . (a2)3÷(a3)2=0C . (﹣x)6÷(﹣x3)=x3D .二、填空题 (共6题;共6分)11. (1分) (2018七上·阳江月考) (﹣)3的底数是________,指数是________,运算后的结果是________.12. (1分) (2019·桂林) 若x2+ax+4=(x﹣2)2 ,则a=________.13. (1分)(2019·白银) 一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德·摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次数3109204849791803139699频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为________(精确到0.1).14. (1分)(2012·常州) 在平面直角坐标系xOy中,已知点P(3,0),⊙P是以点P为圆心,2为半径的圆,若一次函数y=kx+b的图象过点A(﹣1,0)且与⊙P相切,则k+b的值为________.15. (1分) (2019八上·台安月考) 在Rt△ABC中,∠C是直角,若∠A=30°,那么∠B=________.16. (1分)(2017八上·西湖期中) 有一组平行线,过点作于,作,且,过点作交直线于点,在直线上取点使,则为________三角形,若直线与间的距离为,与间的距离为,则 ________.三、解答题 (共9题;共90分)17. (5分)(2012·镇江)(1)计算:﹣4sin45°+(﹣2012)0;(2)化简:÷(x+1).18. (5分) (2019八上·武威月考) 先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=0.5,b=-1.19. (10分) (2019八上·北京期中) 在△ABC 中,AB = BC = AC ,∠A = ∠B = ∠C = 60°.点 D、E 分别是边 AC、AB 上的点(不与 A、B、C 重合),点 P 是平面内一动点.设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α .(1)若点 P 在边 BC 上运动(不与点 B 和点 C 重合),如图⑴所示,则∠1+∠2 = ________.(用α 的代数式表示)(2)若点 P 在△ABC 的外部,如图⑵所示,则∠α、∠1、∠2 之间有何关系?写出你的结论,并说明理由.20. (10分)(2018·连云港) 汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲、乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?21. (5分)(2017·云南) 如图,点E,C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.22. (10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.23. (15分) (2016七上·萧山月考) 已知关于的方程是一元一次方程,试求:(1)的值;(2)的值。
广西南宁市马山县民族中学2015-2016学年七年级(下)第一次月考数学试卷(解析版)
2015-2016学年广西南宁市马山县民族中学七年级(下)第一次月考数学试卷一、选择题(每题3分,共36分)1.﹣8的立方根是( )A .﹣2B .2C .±2D .42.如图,直线a 、b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°3.下列各式中,计算正确的是( )A .± =4B . =3C . =±4D . =34.如图,OA ⊥AB 于点A ,点O 到直线AB 的距离是( )A .线段OAB .线段OA 的长度C .线段OB 的长度D .线段AB 的长度5.估算的值是在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.如图,下列条件中,能判断AB ∥CD 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠3+∠4=180°7.下列实数中,是有理数的为( )A .B .C .πD .08.如图,△ABC 沿着由点B 到点E 的方向,平移到△DEF ,已知BC=5.EC=3,那么平移的距离为( )A.2 B.3 C.5 D.79.如图,已知AB∥CD,那么下列结论中正确的是()A.∠3=∠4 B.∠1=∠2 C.∠2=∠3 D.∠1+∠ACD=180°10.的算术平方根是()A.4 B.±4 C.2 D.±211.下列说法:①•无理数是无限小数,无限小数就是无理数;‚②无理数包括正无理数、0、负无理数;③ƒ带根号的数都是无理数;④无理数是开不尽方的数.其中正确的个数是()A.0 B.2 C.3 D.412.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=25°,则∠2的度数为()A.25°B.65°C.55°D.40°二、填空题(每题3分,共18分)13.的平方根是.14.﹣的绝对值是.15.“两直线被第三条直线所截,同位角相等”是命题(填真或假)16.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM=.17.如图,在数轴上点A和点B之间表示整数的点有个.18.如图,已知直线AB∥CD,BC∥DE,若∠B=60°,则∠D=.三、解答题(本大题共6小题,共46分)19.计算:(1)﹣3﹣(+)(2)+﹣||20.作图题:在方格纸中,将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.21.请把下列解题过程补充完整并在括号中注明理由:如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.解:∵EF∥AD,∴∠2=,()又∵∠1=∠2,∴∠1=∠3,∴AB∥,()∴∠BAC+=180°,()∵∠BAC=70°,∴∠AGD=.22.如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,∠BOD=20°,求∠COE的度数.23.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问正方形边长应为多少cm?24.如图,已知直线AB∥DE.(1)当∠B=27°,∠D=123°时,求∠DCB的大小;(2)写出∠B,∠DCB,∠D之间的数量关系,不必说明理由.2015-2016学年广西南宁市马山县民族中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.﹣8的立方根是()A.﹣2 B.2 C.±2 D.4【考点】立方根.【分析】根据(﹣2)3=﹣8,继而可得出﹣8的立方根.【解答】解:=﹣2,故选A.2.如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【考点】对顶角、邻补角.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.3.下列各式中,计算正确的是()A.±=4 B.=3 C.=±4 D.=3【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的定义和性质求解即可.【解答】解:A、±=±4,故A错误;B、==3,故B正确;C、=4,故C错误;D、=,故D错误.故选:B.4.如图,OA⊥AB于点A,点O到直线AB的距离是()A.线段OA B.线段OA的长度C.线段OB的长度D.线段AB的长度【考点】点到直线的距离.【分析】根据点到直线的距离是这一点到这条直线的垂线段的长度作答.【解答】解:因为OA⊥AB,根据点到直线的距离的定义知,点O到直线AB的距离是线段OA的长度.故选B.5.估算的值是在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小.【分析】求出<<,推出4<<5,即可得出答案.【解答】解:∵<<,∴4<<5,∴的值是在4和5之间.故选:C.6.如图,下列条件中,能判断AB∥CD的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠3+∠4=180°【考点】平行线的判定.【分析】由∠3+∠4=180°,根据同旁内角互补两直线平行,可得AB∥CD.【解答】解:A、由∠1=∠3,不能判断AB∥CD,故本选项错误;B、由∠2=∠3,不能判断AB∥CD,故本选项错误;C、由∠4=∠5,不能判断AB∥CD,故本选项错误;D、∵∠3+∠4=180°,∴AB∥CD,故本选项正确.故选D.7.下列实数中,是有理数的为()A.B.C.πD.0【考点】实数.【分析】根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.【解答】解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.8.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.7【考点】平移的性质.【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=5﹣3=2,进而可得答案.【解答】解:根据平移的性质,易得平移的距离=BE=5﹣3=2,故选A.9.如图,已知AB∥CD,那么下列结论中正确的是()A.∠3=∠4 B.∠1=∠2 C.∠2=∠3 D.∠1+∠ACD=180°【考点】平行线的性质.【分析】根据两直线平行线,内错角相等直接进行判断.【解答】解:∵AB∥CD(已知),∴∠3=∠4(两直线平行内错角相等).故选A.10.的算术平方根是()A.4 B.±4 C.2 D.±2【考点】算术平方根.【分析】根据算术平方根的定义:一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.【解答】解:∵(±2)2=4=,∴的算术平方根是2.故选C.11.下列说法:①•无理数是无限小数,无限小数就是无理数;‚②无理数包括正无理数、0、负无理数;③ƒ带根号的数都是无理数;④无理数是开不尽方的数.其中正确的个数是()A.0 B.2 C.3 D.4【考点】无理数.【分析】无理数就是无限不循环小数,即可作出判断.【解答】解:①无理数是无限不循环小数,因而无理数是无限小数,但无限循环小数是有理数,故命题错误;②0是有理数,故命题错误;③=2是有理数,故命题错误;④开方开不尽的数是无理数,但无理数不一定是开方开不尽的数,如π,故命题错误.故选A.12.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=25°,则∠2的度数为()A.25°B.65°C.55°D.40°【考点】平行线的性质.【分析】如图根据平行线的性质可知∠2=∠3,只要求出∠3即可解决问题.【解答】解:∵AB∥CD,∴∠2=∠3,∵∠1+∠3=90°,∠1=25°,∴∠2=∠3=90°﹣25°=65°,故选B.二、填空题(每题3分,共18分)13.的平方根是.【考点】平方根.【分析】直接根据平方根的定义即可解决问题.【解答】解:∵(±)2=∴=.故答案为:±.14.﹣的绝对值是.【考点】实数的性质.【分析】根据负数的绝对值等于它的相反数即可求解.【解答】解:﹣的绝对值是,故答案为:.15.“两直线被第三条直线所截,同位角相等”是假命题(填真或假)【考点】命题与定理.【分析】判定此命题的正误即可得到答案.【解答】解:∵当两条平行线被第三条直线所截,同位角相等,∴原命题错误,是假命题,故答案为:假.16.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM=142°.【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠AOC=76°,射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故答案是:142°.17.如图,在数轴上点A和点B之间表示整数的点有4个.【考点】数轴.【分析】因为大于﹣1.414的最小整数为﹣1,小于2.65的最大整数为2,由此可确定A,B 两点之间表示整数的点的个数.【解答】解:∵﹣2<﹣1.414<﹣1,2<2.65<3,∴在数轴上,A,B两点之间表示整数的点有﹣1,0,1,2一共4个,故答案为4.18.如图,已知直线AB∥CD,BC∥DE,若∠B=60°,则∠D=120°.【考点】平行线的性质.【分析】先根据∠B=55°求出∠C的度数,再由BC∥DE即可得出结论.【解答】解:∵AB∥CD,∠B=60°,∴∠C=∠B=60°.∵BC∥DE,∴∠D=180°﹣∠C=180°﹣60°=120°.故答案为:120°.三、解答题(本大题共6小题,共46分)19.计算:(1)﹣3﹣(+)(2)+﹣||【考点】实数的运算.【分析】(1)原式去括号合并即可得到结果;(2)原式利用平方根,立方根的定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=﹣3﹣﹣=﹣4;(2)原式=3+4﹣2=5.20.作图题:在方格纸中,将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.【考点】作图-平移变换.【分析】分别找出△ABC向右平移3个单位后对应的关键点,然后顺次连接即可.【解答】解:如下图所画△A1B1C1即为所求.21.请把下列解题过程补充完整并在括号中注明理由:如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.解:∵EF∥AD,∴∠2=∠3,(两直线平行,同位角相等)又∵∠1=∠2,∴∠1=∠3,∴AB∥DG,(内错角相等,两直线平行)∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°.【考点】平行线的判定与性质.【分析】根据平行线的性质填一、二、五、六、七空,根据平行线的判定填三、四空.【解答】解:∵EF∥AD,∴∠2=∠3,(两直线平行,同位角相等)又∵∠1=∠2,∴∠1=∠3,∴AB∥DG,(内错角相等,两直线平行)∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°.22.如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,∠BOD=20°,求∠COE的度数.【考点】垂线;对顶角、邻补角.【分析】根据垂直定义求出∠AOE,根据对顶角相等求出∠AOC,即可得解.【解答】解:∵AB,CD相交于点O,∠BOD=20°,∴∠AOC=∠BOD=20°,∵OE⊥AB,∴∠AOE=90°,∴∠COE=∠AOE﹣∠AOC﹣=90﹣20=70°.23.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问正方形边长应为多少cm?【考点】算术平方根.【分析】利用已知得出新正方形的面积,进而求出其边长.【解答】解:由题意可得:两个正方形的面积和为:112+13×8=225(cm2),则正方形边长应为:=15(cm).24.如图,已知直线AB∥DE.(1)当∠B=27°,∠D=123°时,求∠DCB的大小;(2)写出∠B,∠DCB,∠D之间的数量关系,不必说明理由.【考点】平行线的性质.【分析】(1)首先过点C作CF∥AB,由平行线的性质:两直线平行,内错角相等,即可求得答案;(2)根据(1)的结论解答即可.【解答】解:(1)过点C作CF∥AB,∵CF∥AB,∴∠FCB=∠B=27°,∵CF∥AB,AB∥DE.∴CF∥DE,∴∠DCF=180°﹣∠D=57°,∴∠DCB=∠FCB+∠DCF=84°;(2)∠DCB﹣∠B+∠D=180°,∵CF∥AB,AB∥DE,CF∥DE,∴∠FCB=∠B,∠DCF=180°﹣∠D,∵∠DCB=∠FCB+∠DCF,∴∠DCB﹣∠B+∠D=180°.2016年5月15日。
广西初一初中数学期末考试带答案解析
广西初一初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、单选题1.下列变形是因式分解的是()A.xy(x+y)="x" 2 y+xy 2B.x 2+2x+1=x(x+1)+1C.(a﹣b)(m﹣n)=(b﹣a)(n﹣m)D.ab﹣a﹣b+1=(a﹣1)(b﹣1)2.下列等式中,正确的是()A.3a﹣2a=1B.(a2)3=a5C.(﹣2a3)2=4a6D.(a﹣b)2=a2﹣b23.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1)B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)4.方程3x+y=9在正整数范围内的解的个数是()A.1个B.2个C.3个D.有无数个5.下列调查方式合适的是()A.为了了解市民对电影《功夫熊猫3》的感受,小华在某校随机采访了8名九年级学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式6.2017年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是()A.这50名学生是总体的一个样本B.每位学生的体考成绩是个体C.50名学生是样本容量D.650名学生是总体7.下列图形中,不是轴对称图形的是()A.B.C.D.8.下列几种形状的瓷砖中,只用一种不能够铺满地面的是()A.正六边形B.正五边形C.正方形D.正三角形9.一个多边形的边数每增加一条,这个多边形的()A.内角和增加 180°B.外角和增加 360°C.对角线增加一条D.内角和增加360°10.下列命题中,是真命题的是()A.相等的两个角是对顶角B.有公共顶点的两个角是对顶角C.一条直线只有一条垂线D.过直线外一点有且只有一条直线垂直于已知直线11.方程6+3x=0的解是()A.x=﹣2B.x=﹣6C.x=2D.x=612.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°二、填空题1.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为_________.2.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.则∠EDF的度数是__________.3.七(2)数学测验成绩如下:77,74,65,53,95,87,84,63,91,53,69,81,61,69,91,78,75,81,80,67,76,81,61,69,79,94,86,70,70,87,81,86,90,88,85,67,71,82,87,75,落在79.5~89.5内数据的频数为_________.4.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.三、解答题1.用简便方法计算:(1)982;(2)99×101.2.先化简,再求值(a+b)2﹣(b﹣a)2﹣2(b﹣a)(b+a),其中a=1,b=2.3.如图,已知△ACE≌△DBF.CE=BF,AE=DF,AD=8,BC=2.(1)求AC的长度;(2)试说明CE∥BF.4.小明同学参加周末社会实践活动,到“富平花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46(1)上面所用的调查方法是_____.(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图:(3)通过频数分布直方图试分析此大棚中西红柿的长势.广西初一初中数学期末考试答案及解析一、单选题1.下列变形是因式分解的是()A.xy(x+y)="x" 2 y+xy 2B.x 2+2x+1=x(x+1)+1C.(a﹣b)(m﹣n)=(b﹣a)(n﹣m)D.ab﹣a﹣b+1=(a﹣1)(b﹣1)【答案】D【解析】A. 等式从左到右是把积化为和差的形式,故不正确;B. 等式的右边仍然是和的形式,故B不正确;C. 等式从左到右属于乘法的交换律,故C不正确;D. 等式从左到右把多项式化为了几个因式积的形式,属于因式分解,故D正确;故选D.2.下列等式中,正确的是()A.3a﹣2a=1B.(a2)3=a5C.(﹣2a3)2=4a6D.(a﹣b)2=a2﹣b2【答案】C【解析】A. 3a−2a=a≠1,本选项错误;B. (a2)3=a6≠a5,本选项错误;C. (﹣2a3)2=4a6,本选项正确;D. (a﹣b)2= a2-2ab+b2≠a2﹣b2,本选项错误。
南宁市人教版七年级下册数学期末考试试卷及答案
一、选择题
1.在下列各图的△ABC中,正确画出AC边上的高的图形是()
A. B.
C. D.
2.以下列各组数据为边长,可以构成等腰三角形的是( )
A.1cm、2cm、3cmB.3cm、3cm、4cm
C.1cm、3cm、1cmD.2cm、2cm、4cm
3.已知 ,则a2-b2-2b的值为
故选:C.
【点睛】
本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.
2.B
解析:B
【分析】
先判断三边长是否能构成三角形,再判断是否是等腰三角形.
【详解】
上述选项中,A、C、D不能构成三角形,错误
B中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确
(4)平移过程中,线段 扫过的面积是:.
27.已知:如图EF∥CD,∠1+∠2=180°.
(1)试说明GD∥CA;
(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.
28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买 台电脑和 台电子白板需要 万元,购买 台电脑和 台电子白板需要 万元.
A.4B.3C.1D.0
4.已知关于x,y的方程组 的解为 ,则a,b的值是( )
A. B. C. D.
5.已知一粒米的质量是0.00021kg,这个数用科学记数法表示为()
A. kgB. kgC. kgD. kg
6.如图, 中, ,且 , ,则 的度数为( )
A.80°B.60°C.40°D.20°
南宁市人教版七年级下册数学期末试卷
解得: ,
故选A.
【点睛】
本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.
3.B
解析:B
【解析】
分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
详解:(x+1)(x-3)
=x2-3x+x-3
=x2-2x-3
所以a=2,b=-3,
故选B.
点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
13.一个多边形的内角和与外角和之差为720 ,则这个多边形的边数为______.
14.已知 是关于x、y的二元一次方程mx﹣y=7的一个解,则m=_____.
15.若 ( 、 、 为常数),则 _____.
16.如图,AD⊥BC于D,那么图中以AD为高的三角形有______个.
17.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件 元的价格购进某品牌衬衫 件,并以每件 元的价格销售 件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利 的预期目标.
南宁市人教版七年级下册数学期末试卷
一、选择题
1.从边长为 的大正方形板挖去一个边长为 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )
A. B.
C. D.
2.已知关于x,y的方程组 的解为 ,则a,b的值是( )
【详解】
解:图甲中阴影部分的面相等
可以验证成立的公式为
故选: .
【点睛】
本题考查了平方差公式的几何背景,属于基础题型,比较简单.
南宁市七年级下册数学全册单元期末试卷及答案-百度文库
南宁市七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( )A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩2.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()()22a b a b a b +-=- 3.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD4.下列代数运算正确的是( ) A .x•x 6=x 6 B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 5.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y6.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x +=+ 7.已知,()()212x x x mx n +-=++,则m n +的值为( )A .3-B .1-C .1D .38.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个9.下列各式从左到右的变形,是因式分解的是( )A .a 2-5=(a+2)(a-2)-1B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-4 10.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2二、填空题11.计算:m 2•m 5=_____.12.已知:()521x x ++=,则x =______________. 13.不等式1x 2x 123>+-的非负整数解是______. 14.若多项式29x mx ++是一个完全平方式,则m =______.15.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.16.已知2x =3,2y =5,则22x+y-1=_____.17.若2a x =,5b x =,那么2a b x +的值是_______ ;18.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.19.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______20.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.三、解答题21.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.22.四边形ABCD中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C,试求出∠C的度数;(2)如图②,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图③,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.23.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;…(1)请你根据上面式子的规律直接写出第4个式子:;(2)探索以上式子的规律,试写出第n个等式,并说明等式成立的理由.24.计算(1)1 012(2)3π-⎛⎫---+-⎪⎝⎭;(2)52482(2)()()x x x x+-÷-.25.(1)解二元一次方程组3423x yx y-=⎧⎨-=⎩;(2)解不等式组29421333x xx x<-⎧⎪⎨+≥-⎪⎩.26.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.27.计算:(1)1021(3)(4)5π-⎛⎫----⎪⎝⎭(2)3()6m m n mn-+(3)4(2)(2)x x-+-(4)2(2)(2)a b a a b---28.计算:(1)022019()32020--(2)4655x x x x⋅+⋅【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18=,再列出方程组即可.【详解】解:设用x 张制作盒身,y 张制作盒底,根据题意得:1821016x y x y +=⎧⎨⨯=⎩. 故选:B .【点睛】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.2.D解析:D【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等 22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D .【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.3.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】A 、错误.由∠1=∠4应该推出AB ∥CD .B 、错误.由∠2=∠3,应该推出BC//AD .C 、正确.D 、错误.由∠CBA+∠C=180°,应该推出AB ∥CD ,故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.4.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.5.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x 3y 2-3x 2y 3=3x 2y 2(2x-y ),因此6x 3y 2-3x 2y 3的公因式是3x 2y 2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 6.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.7.A解析:A【解析】根据多项式的乘法法则即可化简求解.【详解】∵()()2212222x x x x x x x +-=-+-=-- ∴m=-1,n=-2,故m n +=-3故选A.【点睛】此题主要考查整式的乘法运算,解题的关键是熟知多项式乘多项式的运算法则.8.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l 1∥l 2,故本小题正确;②∵∠2+∠4=180°,∴l 1∥l 2,故本小题正确;③∵∠4=∠5,∴l 1∥l 2,故本小题正确;④∠2=∠3不能判定l 1∥l 2,故本小题错误;⑤∵∠6=∠2+∠3,∴l 1∥l 2,故本小题正确.故选B .【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.9.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、是因式分解,故本选项符合题意;D 、不是因式分解,故本选项不符合题意;故选:C .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.10.B解析:B【解析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、填空题11.m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键.12.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.13.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x解析:0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x-2移项合并同类项得x<5非负整数解是0,1,2,3,4.【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,解析:3 2【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,∴4m-6=0,解得m=32.故答案为3 2 .【点睛】此题考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.16.【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=故答案为解析:45 2【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=45 2故答案为:452.【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.17.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.18.【分析】先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:,把①②式相加得到:,即: ,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,即103xm=+为整数,又∵m为正整数,故m=2,此时10223x==+,3y=,故,x y均为整数,故答案为:2;【点睛】本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;19.4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.20.7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.三、解答题21.(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.22.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB的度数,再进一步求得∠BEC的度数.【详解】(1)在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE∥AD,∠A=140°,∠D=80°,∴∠BEC=∠D,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE是∠ABC的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°.因为∠ABC和∠BCD的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD.故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°.23.(1)8×10+1=81;(2)2n(2n+1)+1=(2n+1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n 个等式为:2n (2n +1)+1=(2n +1)2,理由:2n (2n +1)+1=4n 2+4n +1=(2n +1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.24.(1)2- ;(2)103x【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解.【详解】解:(1)原式=213=2---;(2)原式12252481010122101010221=24443x xx x x x x x x x x ⨯+-⎛⎫⋅+⋅-=-=-=-= ⎪⎝⎭. 【点睛】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键.25.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩; (2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.26.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC 的度数,再由∠ABD=30°得出∠CBD 的度数,根据CE 平分∠ACB 得出∠BCE 的度数,根据∠BEC=180°-∠BCE-∠CBD 即可得出结论【详解】在△ABC 中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC ﹣∠ABD=13°∵CE 平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE 中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键27.(1)12;(2)233m mn +;(3)28x -;(4)224ab b -+.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)先做单项式乘多项式,再合并同类项即可得出答案;(3)先利用平方差公式计算,再合并同类项即可得出答案;(4)先利用完全平方公式以及单项式乘多项式计算,再合并同类项即可得出答案.【详解】解:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭5116=--12=-;(2)3()6m m n mn -+2336m mn mn =-+233m mn =+;(3)4(2)(2)x x -+-()244x =--244x ==-+28x =-;(4)()()222a b a a b ---()()222442a ab b a ab=-+--222442a ab b a ab=-+-+224ab b+=-.【点睛】此题主要考查了平方差公式以及完全平方公式、实数运算,正确应用公式是解题关键.28.(1)89;(2)102x;【分析】(1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89;(2)原式=x10+x10=2x10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.。
广西南宁市马山县七年级数学下学期期末试卷(含解析) 新人教版
广西南宁市马山县2015-2016学年七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤2.下列调查工作需采用全面调查方式的是()A.环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质监部门对各厂家生产的电池使用寿命的调查D.调查乘坐飞机的旅客是否携带违禁物品3.点P(m+3,m+1)在直角坐标系的x轴上,则P点的坐标为()A.(0,﹣2)B.(2,0) C.(0,2) D.(0,﹣4)4.下列式子中,正确的是()A. =﹣ B. =3 C. =±6 D.± =35.下列说法正确的是()A.4的平方根是2 B.是无理数C.无限小数都是无理数D.实数和数轴上的点一一对应6.地理老师介绍到:长江比黄河长836米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x千米,黄河长为y千米,那么下面列出的方程组正确的是()A.B.C.D.7.已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣48.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等9.若关于x的一元一次不等式组恰有3个整数解,那么a的取值范围是()A.﹣2<a<1 B.﹣3<a≤﹣2 C.﹣3≤a<﹣2 D.﹣3<a<﹣210.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.18cm C.20cm D.22cm二、填空题(本大题共6个小题,每小题3分,共18分)11.64的立方根为______.12.剧院里5排2号可以用(5,2)表示,则(7,4)表示______.13.不等式﹣4x≥﹣12的正整数解为______.14.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是______.15.由方程3x﹣2y﹣6=0可得到用x表示y的式子是______.16.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=______°.三、解答题(共52分)17.计算: ++||18.解方程组:.19.解不等式组:并把解集在数轴上表示出来.20.如图,已知A(﹣2,2),B(﹣3,﹣2),C(3,﹣2)把△ABC向上平移4个单位长度,再向右平移2个单位得到△A1B1C1,解答下列各题:(1)在图上画出△A1B1C1;(2)写出点的A1,B1的坐标;(3)求出△A1B1C1的面积.21.如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.解:∵EF∥AD,(已知)∴∠2=______.(______)又∵∠1=∠2,(______)∴∠1=∠3,(______)∴AB∥______,(______)∴∠DGA+∠BAC=180°.(______)22.如图,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,判断AC与BD的位置关系,并说明理由.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有______人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是______度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.24.(10分)(2016春•马山县期末)为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少了购买乙种树苗的金额,则至少应购买甲种树苗多少棵?2015-2016学年广西南宁市马山县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤【考点】生活中的平移现象.【分析】根据平移的性质,结合图形进行分析,求得正确答案.【解答】解:A、②是由旋转得到,故错误;B、③是由轴对称得到,故错误;C、④是由旋转得到,故错误;D、⑤形状和大小没有变化,由平移得到,故正确.故选D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.下列调查工作需采用全面调查方式的是()A.环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质监部门对各厂家生产的电池使用寿命的调查D.调查乘坐飞机的旅客是否携带违禁物品【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.环保部门对淮河某段水域的水污染情况的调查需采用抽样调查方式;B.电视台对正在播出的某电视节目收视率的调查需采用抽样调查方式;C.质监部门对各厂家生产的电池使用寿命的调查需采用抽样调查方式;D.调查乘坐飞机的旅客是否携带违禁物品需采用全面调查方式,故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.点P(m+3,m+1)在直角坐标系的x轴上,则P点的坐标为()A.(0,﹣2)B.(2,0) C.(0,2) D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,解得m=﹣1,所以,m+3=﹣1+3=2,所以,点P的坐标为(2,0).故选B.【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.4.下列式子中,正确的是()A. =﹣ B. =3 C. =±6 D.± =3【考点】算术平方根;平方根.【分析】依据算术平方根、平方根的性质求解即可.【解答】解:A、因为负数没有算术平方根,故A错误;B、=3,故B正确;C、=6,故C错误;D、±=±3,故D错误.故选:B.【点评】本题主要考查的是算术平方根、平方根的定义,熟练掌握相关知识是解题的关键.5.下列说法正确的是()A.4的平方根是2 B.是无理数C.无限小数都是无理数D.实数和数轴上的点一一对应【考点】实数与数轴;平方根;无理数.【分析】因为一个正数的平方根有两个,它们互为相反数;无限不循环小数是无理数,其中包括带根号且开不尽的数,所以是有理数;任意一个有理数都能在数轴上找到和它对应的点,且数轴上的任意一个点都对应着一个实数,也就是说实数的数轴上的点一一对应;【解答】解:因为,4的平方根±2,所以A选项错误;又因为, =2,所以,是有理数;因为,无限小数包括无限循环小数和无限不循环小数,而无理数只是无限不循环小数,所以C选项说法错误;故正确答案是:D【点评】本题不是难点,但容易出错特别是选项B和C,有些同学认为是带三次根号的就认为是无理数,这种想法是错误的,带根号但开的尽的是有理数6.地理老师介绍到:长江比黄河长836米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x千米,黄河长为y千米,那么下面列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故选D.【点评】本题考查由实际问题抽象出二元一次方程组组,解题的关键是明确题意,列出相应的方程组.7.已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣4【考点】不等式的性质.【分析】根据不等式的性质1,可判断B、D,根据不等式的性质2,可判断A,根据不等式的性质3,可判断C.【解答】解:A、不等式的两边都乘以一个正数,不等号的方向不变,故A正确;B、不等式的两边都加或都减同一个整式,不等号的方向不变,故B正确;C、不等式的两边都乘以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D正确;故选:C.【点评】本题考查了不等式的性质,不等式的两边都乘以同一个负数,不等号的方向改变.8.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等【考点】平行线的判定;作图—基本作图.【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.【点评】本题主要考查了平行线的判定方法.这是以后做题的基础.要求学生熟练掌握.9.若关于x的一元一次不等式组恰有3个整数解,那么a的取值范围是()A.﹣2<a<1 B.﹣3<a≤﹣2 C.﹣3≤a<﹣2 D.﹣3<a<﹣2【考点】一元一次不等式组的整数解.【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【解答】解:,解①得:x<1,解②得:x>a,则不等式组的解集是:a<x<1.不等式组有3个整数解,则整数解是﹣2,﹣1,0.则﹣3≤a<﹣2.故选C.【点评】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a的不等式组.10.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.18cm C.20cm D.22cm【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【解答】解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.64的立方根为 4 .【考点】立方根.【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故答案为:4.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.12.剧院里5排2号可以用(5,2)表示,则(7,4)表示7排4号.【考点】坐标确定位置.【分析】第一个数表示排,第二个数表示号,将位置问题转化为有序数对.【解答】解:∵5排2号可以表示为(5,2),∴7排4号可以表示为(7,4).故答案为:7排4号【点评】用有序数对表示位置,体会数学给生活带来的便利.13.不等式﹣4x≥﹣12的正整数解为1,2,3 .【考点】一元一次不等式的整数解.【分析】首先解不等式,再从不等式的解集中找出适合条件的整数即可.【解答】解:不等式﹣4x≥﹣12的解集是x≤3,因而不等式﹣4x≥﹣12的正整数解为1,2,3.故答案为:1,2,3.【点评】正确解不等式,求出解集是解诀本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【解答】解:其依据是:连接直线外一点与直线上各点的所有线段中,垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线的性质在实际生活中的运用,关键是掌握垂线段的性质:垂线段最短.15.由方程3x﹣2y﹣6=0可得到用x表示y的式子是.【考点】解二元一次方程.【分析】考查解方程的基本技能,等式的变形【解答】解:移项,得3x﹣2y=6,移项,得﹣2y=6﹣3x,化系数为1,得y=,故答案为:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x的形式.16.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= 57 °.【考点】平行线的性质.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.三、解答题(共52分)17.计算: ++||【考点】实数的运算.【分析】此题涉及算术平方根、立方根、绝对值的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】解: ++||=1﹣3+2﹣=﹣【点评】此题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握算术平方根、立方根、绝对值的运算.18.解方程组:.【考点】解二元一次方程组.【分析】根据方程组的特点采用相应的方法求解,用加减法较简单.【解答】解:①×2+②,得11x=22,x=2,代入①,得y=﹣1.所以方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入消元法.19.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x≤2.5,由②得,x<4,故不等式组的解集为:x≤2.5.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.如图,已知A(﹣2,2),B(﹣3,﹣2),C(3,﹣2)把△ABC向上平移4个单位长度,再向右平移2个单位得到△A1B1C1,解答下列各题:(1)在图上画出△A1B1C1;(2)写出点的A1,B1的坐标;(3)求出△A1B1C1的面积.【考点】作图-平移变换.【分析】(1)直接利用平移变换的性质得出对应点位置进而得出答案;(2)直接利用平移后图形得出对应点坐标即可;(3)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:A1(0,6),B1(﹣1,2);(3)△A1B1C1的面积为:×6×4=12.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.21.如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.解:∵EF∥AD,(已知)∴∠2= ∠3 .(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG ,(内错角相等,两直线平行)∴∠DGA+∠BAC=180°.(两直线平行,同旁内角互补)【考点】平行线的判定与性质.【分析】分别根据平行线的性质及平行线的判定定理解答即可.【解答】解:∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG,(内错角相等,两直线平行)∴∠DGA+∠BAC=180°(两直线平行,同旁内角互补).【点评】本题考查的是平行线的性质及判定定理,比较简单.22.如图,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,判断AC与BD的位置关系,并说明理由.【考点】平行线的判定;对顶角、邻补角.【分析】根据已知条件∠C=∠COA,∠D=∠BOD,以及∠AOC=∠DOB,可以得出∠C=∠D,进而判定AC∥BD.【解答】解:AC∥BD.理由:∵∠C=∠COA,∠D=∠BOD,而∠AOC=∠DOB,∴∠C=∠D,∴AC∥BD.【点评】本题主要考查了平行线的判定,解决问题的关键是运用对顶角相等这一性质,解题时注意等量代换的运用.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500 人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54 度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用C的人数÷所占百分比可得被调查的学生总数;(2)利用总人数减去其它各项的人数=A的人数,再补图即可;(3)计算出B所占百分比,再用360°×B所占百分比可得答案;(4)首先计算出样本中喜欢健美操的学生所占百分比,再利用样本估计总体的方法计算即可.【解答】解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2016春•马山县期末)为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少了购买乙种树苗的金额,则至少应购买甲种树苗多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据题意可以列出相应的方程组,从而可以求得需购买甲、乙两种树苗各多少棵;(2)根据题意可以列出相应的不等式,从而可以求得至少应购买甲种树苗多少棵.【解答】解:(1)设购买甲种树苗x棵,乙种树苗y棵,,解得,,即购买甲种树苗300棵,乙种树苗100棵;(2)设购买甲种树苗a棵,200a≥300(400﹣a)解得,a≥240,即至少应购买甲种树苗240棵.【点评】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组与不等式.。
广西南宁市马山县七年级(下)期末数学试卷
A.∠B=∠DCE
B.∠3=∠4
C.∠1=∠2
D.∠D+∠DAB=180°
6.(3 分)下列调查:①了解中央电视台“成语大赛”节目的收视率;②调查某城市居民
家庭收入情况;③中国首个载货火箭“天舟一号”发射前对重要零部件的检查;④调查
某种药品的药效.其中适合抽样调查的是( )
A.①②③
B.①②④
C.②③④
第5页(共5页)
象
限.
13.(3 分)已知(a﹣2)x|a|﹣1+3y=1 是关于 x、y 的二元一次方程,则 a=
.
14.(3 分)已知方程组
,则 x+y 的值为
.
15.(3 分)不等式:2x﹣1≥3x+1 的最大整数解是
.
16.(3 分)如图,动点 P 在平面直角坐标系中按图中箭头所示的方向运动,第 1 次从原点
运动到(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2),…,按这
样的运动规律,经过 2017 次运动后,动点 P 的坐标为
.
第2页(共5页)
三、解答题(共 8 小题,满分 52 分)
17.(4 分)计算:﹣32+| ﹣3|﹣
.
18.(5 分)解方程组
.
19.(6 分)解不等式组
广西南宁市马山县七年级(下)期末数学试卷
一、选择题(共 10 小题,每小题 3 分,满分 30 分) 1.(3 分)在下列实数: 、 、 、 、 、﹣0.0010001 中,有理数有( )
A.1 个
B.2 个
2.(3 分)方程 kx+3y=5 有一组解是
C.3 个
D.4 个
,则 k 的值是( )
广西南宁市马山县七年级数学下学期期末试题(扫描新人教版(2021年整理)
广西南宁市马山县2017-2018学年七年级数学下学期期末试题(扫描版)新人教版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广西南宁市马山县2017-2018学年七年级数学下学期期末试题(扫描版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广西南宁市马山县2017-2018学年七年级数学下学期期末试题(扫描版)新人教版的全部内容。
广西南宁市马山县2017—2018学年七年级数学下学期期末试题。
南宁市七年级下学期期末数学试题及答案
3.现有两根木棒,它们长分别是40cm和50cm,若要钉成一个三角形木架,则下列四根木棒应选取()
A.10cm的木棒B.40cm的木棒
C.90cm的木棒D.100cm的木棒
4.下列条件中,能判定△ABC为直角三角形的是().
A.∠A=2∠B-3∠CB.∠A+∠B=2∠CC.∠A-∠B=30°D.∠A= ∠B= ∠C
(1)问草莓、苹果各购买了多少箱?
(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓 箱,苹果 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.
①若老徐在甲店获利600元,则他在乙店获利多少元?
(2)将图①中三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图③,且OD恰好平分∠MON,CD与MN相交于点E,求∠CEN的度数;
(3)将图①中三角尺OCD绕点O按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第秒时,边CD恰好与边MN平行;在第秒时,直线CD恰好与直线MN垂直.
3.B
解析:B
【解析】
试题解析:已知三角形的两边是40cm和50cm,则
10<第三边<90.
故选40cm的木棒.
故选B.
点睛:三角形的三边关系:三角形任意两边之和大于第三边.
4.D
解析:D
【分析】
根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.
【详解】
解:A.不是乘积的形式,错误;
B.等号左边的式子不是多项式,不符合因式分解的定义,错误;
南宁市七年级下册数学全册单元期末试卷及答案-百度文库
南宁市七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .b =5aB .b =4aC .b =3aD .b =a 2.12-等于( )A .2-B .12C .1D .12- 3.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .2 4.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒 5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 6.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 7.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .8.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .109.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④ 10.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140°二、填空题11.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.12.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.13.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.14.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______15.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.16.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.17.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.18.计算:(12)﹣2=_____. 19.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______. 20.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.三、解答题21.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.22.先化简,再求值:(3x+2)(3x-2)-5x(x+1)-(x-1)2,其中x2-x-10=0.23.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= .24.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.25.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.26.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .27.[知识生成]通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式. 例如:如图①是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:(1)图②中阴影部分的正方形的边长是________________;(2)请用两种不同的方法求图②中阴影部分的面积:方法1:________________________;方法2:_______________________;(3)观察图②,请你写出(a+b )2、2()a b -、ab 之间的等量关系是____________________________________________;(4)根据(3)中的等量关系解决如下问题:若6x y +=,112xy =,则2()x y -= [知识迁移]类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式. (5)根据图③,写出一个代数恒等式:____________________________; (6)已知3a b +=,1ab =,利用上面的规律求332a b +的值. 28.利用多项式乘法法则计算:(1)()()22+-+a b a ab b = ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案)(4)66a b += ;(写出解题过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b225315()BC AB a BC a AB a BC AB b BC AB b22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b, 5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.3.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键. 4.B解析:B【解析】试题解析:已知三角形的两边是40cm 和50cm ,则10<第三边<90.故选40cm 的木棒.点睛:三角形的三边关系:三角形任意两边之和大于第三边.5.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.6.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 7.C解析:C【解析】【分析】根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案.【详解】解:A 、图案自身的一部分围绕中心经旋转而得到,故错误;B 、图案自身的一部分沿对称轴折叠而得到,故错误;C 、图案自身的一部分沿着直线运动而得到,是平移,故正确;D 、图案自身的一部分经旋转而得到,故错误.故选C .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.8.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.解:设第三边为x ,则3<x <9,纵观各选项,符合条件的整数只有6.故选:A .【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.9.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.... 故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.10.C解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,故选:C .【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.二、填空题11.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.13.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.15.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b +ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a 2b +ab 2=ab (a +b )=3×5=15(2)a 2+b 2=(a +b )2-2ab =52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.17.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.18.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:(12)﹣2=2112⎛⎫⎪⎝⎭=114=4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.19.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得:,解得:,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x,y代入方程组,首先求得m,进而可以求得n.【详解】解:将11xy=⎧⎨=⎩代入方程组得:31=1mm n-⎧⎨-=⎩,解得:21mn=⎧⎨=-⎩,故n的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.20.a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a+2(2a+4)>1,解得:a>﹣1.故答案为:a>﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.三、解答题21.(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x ﹣1)x ,∴x 3﹣x =(x+1)(x ﹣1)x .故答案为:x 3﹣x =(x+1)(x ﹣1)x .【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.22.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.23.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.【详解】(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++ 故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅ 2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+- 213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键.24.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.25.23x x +-;1-【分析】先通过整式的乘法及乘法公式对原式进行去括号,然后通过合并同类项进行计算即可化简原式,再将2x =-代入即可得解.【详解】解:原式222221343x x x x x x x =-+-++-=+-将2x =-代入,原式2(2)(2)34231=-+--=--=-.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的乘法公式及合并同类项的运算方法是解决本题的关键.26.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.27.(1) a-b ;(2)()2a-b ; ()2a b 4ab +-; (3)22()4()a b ab a b +-=-;(4) 14;(5) (a+b )3=a 3+b 3+3a 2b+3ab 2;(6) 9.【分析】(1)由图直接求得边长即可,(2)已知边长直接求面积,阴影面积是大正方形面积减去四个长方形面积,可得答案,(3)利用面积相等推导公式22()4()a b ab a b +-=-;(4)利用(3)中的公式求解即可,(5)利用体积相等推导33322()33a b a b a b ab +=+++;(6)应用(5)中的公式即可.【详解】解:(1)由图直接求得阴影边长为a-b ;故答案为:a-b ;(2)方法一:已知边长直接求面积为2()a b -;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为2()4a b ab +-;故答案为2()a b -;2()4a b ab +-;(3)由阴影部分面积相等可得22()4()a b ab a b +-=-;故答案为: 22()4().a b ab a b +-=-(4)由22()4()a b ab a b +-=-,可得22()4()x y xy x y -+=+,∵116,2x y xy +==, ∴2211()462x y -+⨯= , ∴2()14x y -= ;故答案为14;(5)方法一:正方体棱长为a+b , ∴体积为3()a b +,方法二:正方体体积是长方体和小正方体的体积和,即332233a b a b ab +++,∴33322()33a b a b a b ab +=+++;故答案为33322()33a b a b a b ab +=+++;(6)∵33322()33a b a b a b ab +=+++; 将a+b=3,ab=1,代入得:333333,a b a b =+++ 33279,a b =++3318a b +=;339.2a b +∴= 【点睛】本题考查完全平方公式的几何意义;同时考查对公式的熟练的应用,能够由面积相等,过渡到利用体积相等推导公式是解题的关键.28.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b =322223a a b ab a b ab b -++-+ =33+a b()()22a b a ab b -++ =322223a a b ab a b ab b ++--- =33a b -,故答案为:33+a b ,33a b -; (2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b -=()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯=14;(4)66a b +=()()224224a b aa b b +-+ =()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦ =()()2222163+⨯- =198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年广西南宁市马山县七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤2.(3分)下列调查工作需采用全面调查方式的是()A.环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质监部门对各厂家生产的电池使用寿命的调查D.调查乘坐飞机的旅客是否携带违禁物品3.(3分)点P(m+3,m+1)在直角坐标系的x轴上,则P点的坐标为()A.(0,﹣2)B.(2,0) C.(0,2) D.(0,﹣4)4.(3分)下列式子中,正确的是()A.=﹣B.=3 C.=±6 D.±=35.(3分)下列说法正确的是()A.4的平方根是2 B.是无理数C.无限小数都是无理数D.实数和数轴上的点一一对应6.(3分)地理老师介绍到:长江比黄河长836米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x千米,黄河长为y千米,那么下面列出的方程组正确的是()A.B.C.D.7.(3分)已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣48.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等9.(3分)若关于x的一元一次不等式组恰有3个整数解,那么a的取值范围是()A.﹣2<a<1 B.﹣3<a≤﹣2 C.﹣3≤a<﹣2 D.﹣3<a<﹣2 10.(3分)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)64的立方根为.12.(3分)剧院里5排2号可以用(5,2)表示,则(7,4)表示.13.(3分)不等式﹣4x≥﹣12的正整数解为.14.(3分)如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是.15.(3分)由方程3x﹣2y﹣6=0可得到用x表示y的式子是.16.(3分)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.三、解答题(共52分)17.(5分)计算:++||18.(5分)解方程组:.19.(6分)解不等式组:并把解集在数轴上表示出来.20.(6分)如图,已知A(﹣2,2),B(﹣3,﹣2),C(3,﹣2)把△ABC向上平移4个单位长度,再向右平移2个单位得到△A1B1C1,解答下列各题:(1)在图上画出△A1B1C1;(2)写出点的A1,B1的坐标;(3)求出△A1B1C1的面积.21.(6分)如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.解:∵EF∥AD,(已知)∴∠2=.()又∵∠1=∠2,()∴∠1=∠3,()∴AB∥,()∴∠DGA+∠BAC=180°.()22.(6分)如图,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,判断AC与BD的位置关系,并说明理由.23.(8分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.24.(10分)为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少了购买乙种树苗的金额,则至少应购买甲种树苗多少棵?2015-2016学年广西南宁市马山县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤【解答】解:A、②是由旋转得到,故错误;B、③是由轴对称得到,故错误;C、④是由旋转得到,故错误;D、⑤形状和大小没有变化,由平移得到,故正确.故选D.2.(3分)下列调查工作需采用全面调查方式的是()A.环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质监部门对各厂家生产的电池使用寿命的调查D.调查乘坐飞机的旅客是否携带违禁物品【解答】解:A.环保部门对淮河某段水域的水污染情况的调查需采用抽样调查方式;B.电视台对正在播出的某电视节目收视率的调查需采用抽样调查方式;C.质监部门对各厂家生产的电池使用寿命的调查需采用抽样调查方式;D.调查乘坐飞机的旅客是否携带违禁物品需采用全面调查方式,故选:D.3.(3分)点P(m+3,m+1)在直角坐标系的x轴上,则P点的坐标为()A.(0,﹣2)B.(2,0) C.(0,2) D.(0,﹣4)【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,解得m=﹣1,所以,m+3=﹣1+3=2,所以,点P的坐标为(2,0).故选B.4.(3分)下列式子中,正确的是()A.=﹣B.=3 C.=±6 D.±=3【解答】解:A、因为负数没有算术平方根,故A错误;B、=3,故B正确;C、=6,故C错误;D、±=±3,故D错误.故选:B.5.(3分)下列说法正确的是()A.4的平方根是2 B.是无理数C.无限小数都是无理数D.实数和数轴上的点一一对应【解答】解:因为,4的平方根±2,所以A选项错误;又因为,=2,所以,是有理数;因为,无限小数包括无限循环小数和无限不循环小数,而无理数只是无限不循环小数,所以C选项说法错误;故正确答案是:D6.(3分)地理老师介绍到:长江比黄河长836米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x千米,黄河长为y千米,那么下面列出的方程组正确的是()A.B.C.D.【解答】解:由题意可得,,故选D.7.(3分)已知a<b,则下列不等式中不正确的是()A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣4【解答】解:A、不等式的两边都乘以一个正数,不等号的方向不变,故A正确;B、不等式的两边都加或都减同一个整式,不等号的方向不变,故B正确;C、不等式的两边都乘以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D正确;故选:C.8.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.9.(3分)若关于x的一元一次不等式组恰有3个整数解,那么a的取值范围是()A.﹣2<a<1 B.﹣3<a≤﹣2 C.﹣3≤a<﹣2 D.﹣3<a<﹣2【解答】解:,解①得:x<1,解②得:x>a,则不等式组的解集是:a<x<1.不等式组有3个整数解,则整数解是﹣2,﹣1,0.则﹣3≤a<﹣2.故选C.10.(3分)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm【解答】解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)64的立方根为4.【解答】解:64的立方根是4.故答案为:4.12.(3分)剧院里5排2号可以用(5,2)表示,则(7,4)表示7排4号.【解答】解:∵5排2号可以表示为(5,2),∴7排4号可以表示为(7,4).故答案为:7排4号13.(3分)不等式﹣4x≥﹣12的正整数解为1,2,3.【解答】解:不等式﹣4x≥﹣12的解集是x≤3,因而不等式﹣4x≥﹣12的正整数解为1,2,3.故答案为:1,2,3.14.(3分)如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是垂线段最短.【解答】解:其依据是:连接直线外一点与直线上各点的所有线段中,垂线段最短.故答案为:垂线段最短.15.(3分)由方程3x﹣2y﹣6=0可得到用x表示y的式子是.【解答】解:移项,得3x﹣2y=6,移项,得﹣2y=6﹣3x,化系数为1,得y=,故答案为:y=.16.(3分)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=57°.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.三、解答题(共52分)17.(5分)计算:++||【解答】解:++||=1﹣3+2﹣=﹣18.(5分)解方程组:.【解答】解:①×2+②,得11x=22,x=2,代入①,得y=﹣1.所以方程组的解为.19.(6分)解不等式组:并把解集在数轴上表示出来.【解答】解:,由①得,x≤2.5,由②得,x<4,故不等式组的解集为:x≤2.5.在数轴上表示为:.20.(6分)如图,已知A(﹣2,2),B(﹣3,﹣2),C(3,﹣2)把△ABC向上平移4个单位长度,再向右平移2个单位得到△A1B1C1,解答下列各题:(1)在图上画出△A1B1C1;(2)写出点的A1,B1的坐标;(3)求出△A1B1C1的面积.【解答】解:(1)如图所示:△A 1B1C1,即为所求;(2)如图所示:A1(0,6),B1(﹣1,2);(3)△A1B1C1的面积为:×6×4=12.21.(6分)如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.解:∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG,(内错角相等,两直线平行)∴∠DGA+∠BAC=180°.(两直线平行,同旁内角互补)【解答】解:∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG,(内错角相等,两直线平行)∴∠DGA+∠BAC=180°(两直线平行,同旁内角互补).22.(6分)如图,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,判断AC与BD的位置关系,并说明理由.【解答】解:AC∥BD.理由:∵∠C=∠COA,∠D=∠BOD,而∠AOC=∠DOB,∴∠C=∠D,∴AC∥BD.23.(8分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【解答】解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).24.(10分)为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少了购买乙种树苗的金额,则至少应购买甲种树苗多少棵?【解答】解:(1)设购买甲种树苗x棵,乙种树苗y棵,,解得,,即购买甲种树苗300棵,乙种树苗100棵;(2)设购买甲种树苗a棵,200a≥300(400﹣a)解得,a≥240,即至少应购买甲种树苗240棵.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa+b-aa45°A BE 挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。