精馏塔前馈-反馈控制
换热器前馈—反馈控制系统的研究
引言前馈控制系统和反馈控制系统都属于单回路控制系统,它们有各自的优缺点。
诸如前馈控制能根据干扰值的大小在被调参数偏离给定值之前进行控制,使被调量始终保持在给定值上,但这种控制方式也存在局限,首先表现在前馈控制系统中不存在被调量的反馈,即对于补偿的结果没有检验手段。
反馈控制是根据被调量与给定值的偏差值来控制的,反馈系统的特点是在干扰作用下,必须形成偏差才能进行调节(或偏差即将形成),如果干扰已经发生,而被调参数还没变化时,调节器是不会动作的,即反馈控制总是落后于干扰动作,因此称之为不及时控制。
因此把它们结合起来就产生了前馈—反馈复合控制系统,这种系统能把前馈与反馈的优点结合起来,既能发挥前馈调节控制及时的优点,又能保持反馈控制对各种扰动因素都有抑制作用的长处,较好地解决了控制过程中的问题,通过仿真可以得出这种系统既能获得较好的稳定性,又有较好的抗扰性能。
本设计首先根据设计要求和原始数据补偿传函,然后利用衰减曲线法整定调节器参数,最后在系统动态Simulink结构图和MATLAB软件中进行仿真,得出曲线和相应的结论。
第一章概述1.1自动控制系统的简介1.1.1绪论生产过程中必须保证产品满足一定的数量和质量的要求,同时也要保证生产的安全和经济,这就要求生产过程在预期的工况下进行。
但是,生产过程往往受到各种扰动而偏离正常工况,必须通过自动控制随时消除各种干扰,保证正常运行。
更为严重的是有时自动控制系统本身也要发生故障,这就要求在设计自动控制系统时,考虑各种可能发生的故障,并加以保护。
因此,现代的自动控制系统往往包含自动保护、自动检测、自动报警、顺序控制等内容。
有时,它们有机的组合成一个不可分割的整体,以确保控制系统的安全可靠。
1.1.2 自动控制系统的分类(1)反馈控制系统这种控制系统的基本工作原理是根据被调量与其给定值之间的偏差进行调节,最后达到减小或消除偏差,简单说就是“按偏差调节”。
为了取得偏差信号,必须要有被调量测量值的反馈信号,因而将系统构成一个闭合回路,如图1-1所示。
精馏塔的控制说明
一、精馏塔的控制要求精馏塔的控制目标是,在保证产品质量合格的前提下,使塔的总收益(利润)最大或总成本最小。
具体对一个精馏塔来说,需从四个方面考虑,设置必要的控制系统。
(1)产品质量控制;(2)物料平衡控制;(3)能量平衡控制;(4)约束条件控制(液泛限、漏液限、压力限、临界温差限等)。
防止液泛和漏液,可以用塔压降或压差来监视气相速度。
二、精馏塔的主要干扰因素精馏塔的主要干扰因素为进料状态,即进料流量F、进料组分Z f、进料温度T f或热焓F E。
此外,冷剂与热剂的压力盒温度及环境温度等因素,也会影响精馏塔的平衡操作。
所以,在精馏塔的整体方案确定时,如果工艺允许,能把精馏塔进料量、进料温度或热焓加以定值控制,对精馏塔的操作平稳时极为有利的。
三、精馏塔控制变量的分析精馏塔的控制是为了保证精馏塔安全、平稳的运行,其目标是,是塔操作满足各种约束条件,保持塔的物料及能量的平衡,在较佳的工况下安全、平稳的运行,获得较大的产品回收率和较低的能耗及符合规定要求的产品。
在过程系统控制中所涉及的变量可分为以下几类。
(1)被控变量被控变量是通过改变调节其他相关变量使之维持在目标值的变量。
精馏塔的被控变量有5个:塔顶产品的浓度、塔底产品的浓度、塔内压力、塔釜及回流罐的液位。
(2)操纵变量操纵变量时通过改变调节阀的开度实施对介质的调节,该介质变量称为操纵变量。
控制系统是通过调节操纵变量来控制被控变量,而操纵变量通常是系统的流量。
如产品流量、塔回流量及加热剂、冷却剂量。
操纵变量也为5个。
(3)干扰变量精馏塔的环境参数及输入变量波动破坏塔的平衡,使产品质量发生变化,称这些变量为干扰变量,控制的目的就是克服干扰变量的扰动影响。
干扰变量有些可控,有些则不能控制。
a、可控干扰变量如塔的进料流量、温度或进料焓值或热状态。
b、不可控干扰变量如进料的成分、环境温度、冷却水温及大气压等。
四、精馏塔被控变量的选择精馏塔被控变量的选择,是指精馏塔产品质量控制中被控变量的确定,以及检测点的位置等问题。
前馈反馈控制
前馈反馈控制串级控制的主回路和副回路都是闭环负反馈控制系统。
前馈反馈控制系统的前馈控制是一开环控制,反馈控制是一闭环负反馈控制。
串级是调节被控量使其不偏离给定值,而前馈是专门针对干扰量的,前馈控制一般用在变量无法控制的场合串级控制的副变量和主变量之间一般都有相互干扰因素,这种干扰因素有多大可以简单或者大约量化。
相反,前馈控制变量是不可控的,不仅对调节变量影响大,而且有可能会干扰对主变量的判断,也就是造成假象。
而且,一条前馈路径只能针对一个可测干扰、最常见的过程控制系统有DCS、PLC等,DCS侧重模拟量控制,PLC侧重开关量控制,PLC的开关量控制周期相对DCS来说具有较大优势,能够达到几个毫秒,但是目前2种系统都对自己的弱项进行了强化,因此相互之间差异的越来越小了。
2、反馈控制属于闭环控制,将被控对象的值采集并与设定值进行比较,根据差值来决定控制输出变化,形成闭环。
3、如果在这个差值上叠加可能造成被控对象值变化的另一个对象参数的值与作用系数的乘积,以提前预知被控对象可能的变化趋势并提前做出响应,那么就成了前馈控制。
4、FCS 是现场总线,可以作为DCS系统的现场设备管理层网络,能够通过1根总线连接现场设备,通过专用协议卡接入DCS系统,能够节省大量电缆。
5、串级控制是指由2个PID控制回路组成,分为外环和内环,其中外环的控制输出值作为内环的输入设定值。
前馈反馈控制的原理:前馈控制又称扰动补偿,它与反馈调节原理完全不同,是按照引起被调参数变化的干扰大小进行调节的。
在这种调节系统中要直接测量负载干扰量的变化,当干扰刚刚出现并能被测出时,调节器就能发出调节信号使调节量作相应的变化,使两者在被调量发生偏差之前抵消。
因此,前馈调节对干扰的客服比反馈调节及时。
但是前馈控制是开环控制,其控制效果需要通过反馈加以检验。
前馈控制器在测出扰动之后,按过程的某种物质或能量平衡条件计算出校正值。
如果前馈支路出现扰动,经过流量计测量之后,测量得到干扰的大小,然后在反馈支路通过调整调节阀开度,直接进行补偿。
精馏塔温度控制系统设计
辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计院(系):电气工程学院专业班级:自动化093学号: *********学生姓名:***指导教师:(签字)起止时间:课程设计(论文)任务及评语院(系):电气工程学院教研室:自动化注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。
采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。
将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。
所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。
由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。
精馏塔的大多数前馈信号采用进料量。
当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。
前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。
如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。
前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。
但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。
所以仅用前馈并不能达到良好的控制品质。
这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。
解决前馈不能控制的不可测干扰。
前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度关键词:提馏段温度前馈-反馈串级控制目录第1章绪论........................................................................................... 错误!未定义书签。
过程控制课程设计-精馏塔温度控制系统
过程控制课程设计-精馏塔温度控制系统(总34页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除过程控制系统与仪表课程设计目录一、研究对象........................................................................................... 错误!未定义书签。
二、研究任务........................................................................................... 错误!未定义书签。
三、仿真研究要求 (4)四、传递函数计算 (5)五、控制方案........................................................................................... 错误!未定义书签。
1. 单回路反馈控制系统 (6)1) 控制方案的系统框图和工艺控制流程图............................... 错误!未定义书签。
2) PID参数整定 (7)3) 系统仿真................................................................................... 错误!未定义书签。
4) 对象特性变化后仿真 (12)2. Smith预估补偿控制系统 ................................................................ 错误!未定义书签。
1) 控制方案的系统框图和工艺控制流程图............................... 错误!未定义书签。
2) 控制系统方框图....................................................................... 错误!未定义书签。
精馏塔提馏段温前馈
精馏塔提馏段温前馈————————————————————————————————作者:————————————————————————————————日期:1 精馏塔提馏段前馈-反馈控制系统概述1.1概述精馏塔是实现混合物组分分离的主要设备,一般为圆柱形,内部装有供气液分离器的塔板和填料。
精馏塔的控制直接影响到工厂产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。
精馏塔是一个多输入多输出的对象,它有多级塔板组成,内在机理复杂,对控制要求较高。
这些都给自动控制带来一定的困难,同时各塔工艺结构特点千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究。
精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。
在这个情况为了更好实现精馏的目标就有了提馏段温度控制系统的产生。
精馏过程是一个复杂的传质传热过程,表现为:过程变量多,被控变量多,可操纵变量也多;过程动态和机理复杂,例如,非线性、时变、关联;控制方案多样,例如,同一被控变量可以采用不同的控制方案,控制方案的适应面光等。
1.2 精馏塔的扰动分析和其他化工过程一样,精馏过程是在一定物料平衡和能量平衡基础上进行的。
一切影响精馏塔操作的因素均通过物料平衡和能量平衡进行。
影响物料平衡的因素主要包括进料量和进料成分的变化、顶部馏出物及底部出料的变化。
影响能量平衡的因素主要包括进料温度或热焓的变化、再沸器加热量和冷凝器冷却量的变化及塔的环境温度变化等。
物料平衡和能量平衡之间相互影响。
各种扰动因素有可控的,也有不可控的。
1.进料流量和进料成分进料流量是上工序的出料,因此,通常不可控但可测,当进料流量较大时,对精馏塔的操作会造成很大的影响。
这时,可将进料流量作为前馈信号,引入到控制系统中,组成前馈-反馈控制系统。
当进料流量需要定值控制时,从工艺角度看,有时需要增加中间储罐或容器,以便缓冲上一工序的出料量。
精馏塔控制方案
精馏塔控制方案引言精馏塔是一种常用的化工设备,广泛应用于石油、化工、制药等行业。
精馏塔的控制是保证塔内蒸汽、冷凝液、流体等流动的关键,能够有效地提高产品纯度和产量。
本文将介绍一种精馏塔控制方案,以提高塔的稳定性和效率。
1. 控制策略1.1 温度控制精馏塔的温度控制是塔内液体和蒸汽相平衡的关键。
通过控制塔顶和塔底的温度,可以调节塔内液位和物料的分离。
常见的控制策略有:•温度比例控制:根据塔顶温度的偏差与目标温度之间的比例关系,调整塔底的回流液流量。
•迭代控制:根据塔底液位的变化,通过反馈调整塔顶温度控制器的参数,以逐步达到温度的稳定。
1.2 压力控制精馏塔的压力控制主要是为了控制蒸汽流量和流体的分布。
压力控制可以通过以下策略实现:•PID控制:利用压力变送器测量塔内压力,并通过PID控制器调节废气量或提升风扇的转速,以保持塔内压力稳定。
•模型预测控制:利用塔内流体的数学模型,预测下一时刻的压力,然后通过调节控制器输出,实现精确的压力控制。
1.3 液位控制精馏塔的液位控制是控制塔内液体高度的重要环节,液位控制的好坏影响着塔内液体的扩散和分离效果。
常见的控制策略有:•PID控制:通过测量塔内液位高度,并根据设定的目标值进行反馈调节,保持液位稳定。
•前馈控制:通过预先计算液位的变化趋势,利用前馈信号及时调整液位,以提高液位的控制精度。
2. 性能评估为了评估控制方案的有效性和稳定性,需要对精馏塔的控制系统进行性能评估。
常用的评估指标有:•稳态误差:指控制系统在稳定状态下与目标值之间的偏差,稳态误差越小,说明控制系统越稳定。
•动态响应:指控制系统对于输入信号的响应速度和抑制扰动的能力。
动态响应越快,说明控制系统的响应速度越高。
•系统稳定性:通过计算系统的闭环传递函数,判断系统是否稳定。
如果传递函数的特征根都具有负实部,说明系统稳定。
3. 控制优化为了进一步提高精馏塔的控制效果,可以采用控制优化的方法。
常见的控制优化技术有:•模型预测控制:利用精馏塔的数学模型,预测未来一段时间内的塔内流体状态,并根据预测结果进行控制器的调整。
第五章2 前馈-反馈控制系统
东北大学
前馈—反馈控制系统框图
5.2.2 前馈控制系统的结构形式
东北大学
5.2.2 前馈控制系统的结构形式
前馈—反馈控制系统优点:
(1) 由于增加了反馈回路,大大简化了原有前馈控制系统, 只需对主要的干扰进行前馈补偿,其它干扰可由反馈控 制予以校正; (2) 反馈回路的存在,降低了前馈控制模型的精度要求,为 工程上实现比较简单的通用模型创造了条件;
K 1 K ] T2 s 1
T1 1时,有 T2 (T1/T2 )-1 T T s 1 1 1 1] K f 1 T2 s 1 T2 T2 s 1
W f ( s) K f [
东北大学
常规仪表实现时,由一个正微分器、反微分器及比值器串联而成。
K T s 1 正微分器的传递函数: W正 ( s ) d 1 T1s 1 T2 s 1 K d T2 s 1
Wm (s)
o ,则动态前馈控制器为
K f (T o s 1) Ko (Tf s 1) Km (T o s 1) Tf s 1
K o (T f s 1)
W f ( s) Wo (s)
如果 T f To ,则
Wm (s) Km (s)
显然,当被控对象的控制通道和干扰通道的动态特性完全相同时, 动态前馈补偿器的补偿作用相当于一个静态放大系统。实际上,静态前 馈控制是动态前馈控制的一种特殊情况。
(3) 负荷变化时,模型特性也要变化,可由反馈控制加以补 偿,因此具有一定自适应能力。
东北大学
5.2.2 前馈控制系统的结构形式 前馈—反馈控制系统的局限性: (1) 前馈控制器的输出与反馈控制器的输出相叠加后送至控制
阀,这实际上将所要求的物料流量与加热蒸气流量对应关系
精馏塔的自动控制
精馏过程是石油和化工生产中应用极为广泛的生产过程,它是利用混合液中各组分挥发度的不同,将各组分进行分离以提取达到规定纯度要求的产品。
精馏过程是一个非常复杂的过程,其关键设备是精馏塔,。
在精馏操作中,被控变量多,可以选用的操作变量也多,它们之间又可以有多种不同组合。
所以,控制方案繁多。
一、工艺要求和约束条件要对精馏塔实施有效的自动控制,必须首先了解精馏塔的控制目标。
精馏塔的控制目标一般从质量指标、产品产量和能量消耗三方面考虑。
任何精馏塔的操作情况同时受约束条件的制约,因此,在考虑精馏塔控制方案时一定要把这些因素考虑进去。
1.质量指标质量指标(即产品纯度)必须符合规定的要求。
一般应使塔顶或塔底产品之一达到规定的纯度,要求另一个产品也应该维持在规定的范围之内,或者塔项和塔底的产品均保证一定的纯度要求。
如果产品质量不合格,它的价值就将远远低于合格产品。
但决不是说质量越高越好。
由于质量超过规定,产品的价值并不因此而增加;而产品产量却可能下降,同时操作成本主要是能量消耗会增加很多。
因此,总的价值反倒下降了。
由此可见,除了要考虑使产品符合规格外,还应同时考虑产品的产量和能量消耗。
2.产品产量指标在达到一定质量指标要求的前提下,应得到尽可能高的产量,从而使产品的回收率提高。
这对于提高经济效益显然是有利的。
产品的回收率定义为产品量与进料中该产品组分的量之比。
即:Ri =P/Fzi(8)生产效益除了产品纯度与产品回收率之间的关系,还必须考虑能量消耗因素。
由精馏原理可知,用精馏搭进行混合物的分离是要消耗一定能量的;要使分离的产品质量越高,产品产量越多,所需的能量也就越大。
3.能耗要求和经济性指标精馏过程中消耗的能量,主要是再沸器的加热量和冷凝器的冷却量消耗;此外,塔和附属设备及管线也要散失部分能量。
在一定的纯度要求下,增加塔内的上升蒸汽是有利于提高产品回收率的;同时也意味着再沸器的能量消耗要增大。
且任何事物总是有一定限度的。
精馏塔的控制
F,ቤተ መጻሕፍቲ ባይዱi
Fo,T T*
FFC
t
QA
QF
前馈控制特别适用于调节通道时间常数或 纯滞后很大的场合。 纯滞后很大的场合。调节及时是前馈控制 的突出优点。 的突出优点。 它的控制结构是由干扰变量决定的,与被 它的控制结构是由干扰变量决定的, 控变量无关。然而, 控变量无关。然而,前馈控制往往是基于 不甚完善的过程模型获得的, 不甚完善的过程模型获得的,故干扰对过 程的扰动并不能被完全补偿, 即存在残( 程的扰动并不能被完全补偿 即存在残(余) 差(offset)。 )。 解决方案之二: 解决方案之二:前馈 + 反馈控制 特点:响应快、无残差,效果见下图。 特点:响应快、无残差,效果见下图。
F,Ti T*
TC
t 调节不及时所致
QA
QF
PI控制优于手动控制且能消除余差。但调节不够及时, 控制优于手动控制且能消除余差。但调节不够及时, 控制优于手动控制且能消除余差 表现在第一个波峰较低,这意味着, 表现在第一个波峰较低,这意味着,低温原油一度流 进了分馏塔。 进了分馏塔。反馈控制是当过程干扰影响到被控变量 以后,才根据偏差去改变操纵变量。 以后,才根据偏差去改变操纵变量。这里的干扰可以 是F, Ti,PF , λF。 解决方案之二: 前馈控制)。 解决方案之二:Feedforward Control (前馈控制 。这 前馈控制 里前馈是指,一旦测得干扰变量的大小, 里前馈是指,一旦测得干扰变量的大小,就适量改变 操纵变量,使干扰对过程的影响得到快速抑制。 操纵变量,使干扰对过程的影响得到快速抑制。那么 如何实现呢? 干扰通道模型。 如何实现呢?→ 干扰通道模型。 以稳态模型为例: 其中Q 以稳态模型为例:QF λF =F/M CP (T*-Ti ). 其中 F 、F 均为质量流量, 均为质量流量,CP、M分别为原油的热容 (单位: 分别为原油的热容 单位 J/oK/mole)和分子量 和分子量. 和分子量 → QF λF = [F/M CP (T*-Ti )]
前馈控制和反馈控制
前馈控制、反馈控制及前馈反馈控制的对比1、前馈控制属于开环控制,反馈控制属于负反馈的闭环控制一般定值控制系统是按照测量值与给定值比较得到的偏差进行调节,属于闭环负反馈调节。
其特点是在被控变量出现偏差后才进行调节;如果干扰已经发生而没有产生偏差,调节器不会进行工作。
因此反馈控制方式的调节作用落后于干扰作用。
前馈调节是按照干扰作用来进行调节的。
前馈控制将干扰测量出来并直接引入调节装置,对于干扰的克服比反馈控制及时。
现在以换热器控制方案举例,直观阐述前馈控制和反馈控制:前馈控制方案反馈控制方案2、前馈控制系统中测量干扰量,反馈控制系统中测量被控变量在单纯的前馈控制系统中,不测量被控变量,而单纯的反馈控制系统中不测量干扰量。
3、前馈控制需要专用调节器,反馈控制一般采用通用PID 调节器反馈调节符合PID调节规律,常用通用PID调节器、DCS等或PLC控制系统实现。
前馈调节使用的调节器是是根据被控对象的特点来确定调节规律的前馈调节器。
4、前馈控制只能克服所测量的干扰,反馈控制则可克服所有干扰前馈控制系统中若干扰量不可测量,前馈就不可能加以克服。
而反馈控制系统中,任何干扰,只要它影响到被控变量,都能在一定程度上加以克服。
5、前馈控制理论上可以无差,反馈控制必定有差反馈调节使系统达到动态稳定,让被调参数稳定在给定值附近动态变化,却不能使被调参数稳定在给定值上不动。
前馈调节在理论上可以实现无差调节。
6前馈控制的局限性A、在生产应用中各种环节的特性是随负荷变化的,对象动态特性形式多样性难以精确测量,容易造成过补偿或欠补偿。
为了补偿前馈调节的不准确,通常将前馈和反馈控制系统结合起来组成前馈反馈控制系统。
B、工业对象存在多个扰动,若均设置前馈控制器,那设备投资高,工作量大。
C、很多前馈补偿结果在现有技术条件下没有检测手段。
D前馈控制受到前馈控制模型精度限制。
E、前馈控制算法,往往做近似处理。
1、系统中存在频率高、幅度大、可测量而不可控的扰动时,可选用前馈控制。
精馏塔前馈-反馈控制系统
第1章精馏塔前馈-反馈控制系统概述1.1 精馏及精馏塔概述精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。
精馏的目的是利用各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。
精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。
按需分离组分的多少可分为二元精馏和多元精馏;按混合物中组分挥发度的差异,可分为一般精馏和特殊精馏。
精馏过程通过精馏塔、再沸器、冷凝器等设备完成。
再沸器为混合物液相中轻组分的转移提供能量;冷凝器将塔顶来的上升蒸汽冷凝为液相,并提供精馏所需的回流。
精馏塔是实现混合物组分分离的主要设备,一般为圆柱体,内部装有提供汽液分离的塔板或填料,塔身设有混合物进料口和产品出料口。
随着石油化工的迅速发展,精馏操作的应用越来越广,分离物料的组分越来越多,分离的产品纯度要求越来越高,对精馏过程的控制也提出了越来越高的要求,也越来越被人们所重视。
精馏过程是一个复杂的传质传热过程,表现为:过程变量多,被控变量多,可操纵变量也多;过程动态和机理复杂,例如,非线性、时变、关联;控制方案多样,例如,同一被控变量可以采用不同的控制方案,控制方案的适应面光等。
1.2 精馏塔的扰动分析和其他化工过程一样,精馏过程是在一定物料平衡和能量平衡基础上进行的。
一切影响精馏塔操作的因素均通过物料平衡和能量平衡进行。
影响物料平衡的因素主要包括进料量和进料成分的变化、顶部馏出物及底部出料的变化。
影响能量平衡的因素主要包括进料温度或热焓的变化、再沸器加热量和冷凝器冷却量的变化及塔的环境温度变化等。
物料平衡和能量平衡之间相互影响。
各种扰动因素有可控的,也有不可控的。
1.进料流量和进料成分进料流量是上工序的出料,因此,通常不可控但可测,当进料流量较大时,对精馏塔的操作会造成很大的影响。
这时,可将进料流量作为前馈信号,引入到控制系统中,组成前馈-反馈控制系统。
热工控制系统课堂_第七章_前馈--反馈复合控制系统
如图7-5中曲线H2(t)所示。在开始的一段时间H2(t)的作用大于 H1(t)。当过了一定时间后,当汽泡容积和负荷相适应而达到稳定 后,水位就要反映出物质平衡关系而下降。
整理课件
因此,水位的变化应是上述两者之和,即:
H t H 1 t H 2 t
传递函数也为两者之代数和:
HS DS
1T2S
S
(三)炉膛负荷扰动下水位变化的动态特性
此处的炉膛负荷扰动即是指燃料量M的扰动。
燃料量增加时,锅炉吸收更多的热量,使蒸发强度增大,如果 不调节蒸汽阀门,由于锅炉出口汽压提高,蒸汽流量也增大,这 时蒸发量大于给水量,水位应下降。
整理课件
但由于在热负荷增加时蒸发强度的提高,使汽水混和物中的 汽泡容积增加,而且这种现象必然先于蒸发量增加之前发生,从 而使汽包水位先上升,引起虚假水位”现象。
复合控制系统具有以下几个特点: 一、引入反馈控制后,前馈控制中的完全补偿条件不变
图7-2为前馈--反馈复合控制系统的原理方框图:
WB(S)
Z
WDZ(S)
X
WT(S)
-
+ WD(S)
+
Y
图7-2 复合控制系统原理方框图
整理课件
WB(S)
Z
X
WT(S)
-
WDZ(S)
+ WD(S)
+
Y
图7-2 复合控制系统原理方框图
H m ax
把扰动量即水位变化量转成用相对量表示的水位变化范围,通常
的水位允许变化范围为200mm,这个范围扰动量的相对极限制为
100%。上式中:
dH dt max
C 1GDmax
整理课件
右边一项表示汽包内工质的变化量,当给水量G=0,而蒸发量 为最大时,变化量最大,因此有:
精选Ch11生产过程控制kha
精馏塔操作工艺分析精馏塔操作工艺要求精馏塔质量指标选取精馏塔常规控制方案精馏塔的前馈-反馈控制方案
1、精馏塔操作工艺分析
图11-1 精馏塔的物料流程
精馏操作设备主要包括再沸器、冷凝器和精馏塔,再沸器为混合物液相中的轻组分转移提供能量,冷凝器将塔顶来的上升蒸汽冷凝为液相并提供精馏所需的回流。精馏塔实现混合物组分分离的主要设备。
(1)质量指标
化学反应器的质量指标一般指反应的转化率或反应生产物的规定浓度。因此,应该选取转化率或与之相关的可测变量作为被控变量。 由于化学反应不是吸热就是放热,反应过程总伴随热效应,所以温度是最能够表征质量的间接控制指标。
(2)物料平衡
为了使反应正常,转化率高,要求维持进入反应器的各种物料料恒定,配比符合要求。因此,在进入反应器前,往往采用流量定值或比值控制。对于有物料循环的反应系统,还应该设置辅助控制系统。
二、化学反应器控制
化学反应过程伴有化学物理现象,涉及能量、物料平衡,以及物料动量、热量和物质传递过程,因此化学反应器的操作一般比较复杂。 化学反应器的自动控制关系到产品的质量、产量和安全生产。
1、反应器控制要求
化学反应器自动控制的基本要求是使化学反应在符合预定要求的条件下自动进行。 设计化学反应器的自控方案,一般从质量指标、物料平衡和约束条件等方面加以考虑。
图11-19 流化床反应器控制方案一
改变原料入口温度控制反应器内温度。
图11-19 流化床反应器控制方案二
改变流化床冷却剂量以控制反应器内的温度。
图11-20 流化床反应器差压指示系统
为了了解催化剂的沸腾状态,设置差压指示系统。而且反应器中有结块、结焦和堵塞等现象也可反映出来。
9、静夜四无邻,荒居旧业贫。。10、雨中黄叶树,灯下白头人。。11、以我独沈久,愧君相见频。。12、故人江海别,几度隔山川。。13、乍见翻疑梦,相悲各问年。。14、他乡生白发,旧国见青山。。15、比不了得就不比,得不到的就不要。。。16、行动出成果,工作出财富。。17、做前,能够环视四周;做时,你只能或者最好沿着以脚为起点的射线向前。。9、没有失败,只有暂时停止成功!。10、很多事情努力了未必有结果,但是不努力却什么改变也没有。。11、成功就是日复一日那一点点小小努力的积累。。12、世间成事,不求其绝对圆满,留一份不足,可得无限完美。。13、不知香积寺,数里入云峰。。14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。15、楚塞三湘接,荆门九派通。。。16、少年十五二十时,步行夺得胡马骑。。17、空山新雨后,天气晚来秋。。9、杨柳散和风,青山澹吾虑。。10、阅读一切好书如同和过去最杰出的人谈话。11、越是没有本领的就越加自命不凡。12、越是无能的人,越喜欢挑剔别人的错儿。13、知人者智,自知者明。胜人者有力,自胜者强。14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。15、最具挑战性的挑战莫过于提升自我。。16、业余生活要有意义,不要越轨。17、一个人即使已登上顶峰,也仍要自强不息。
热工控制系统课堂第七章前馈-反馈复合控制系统
测量元件
用于测量被控对象的输入信号 和输出信号,以便进行反馈控
制。
系统软件配置
控制算法
根据被控对象的特性和控 制要求,选择合适的控制 算法,如PID控制、模糊控 制等。
数据处理
对传感器和测量元件采集 的数据进行预处理和后处 理,以提高控制精度和稳 定性。
人机界面
提供操作人员与控制系统 交互的界面,方便操作人 员进行监控和调试。
系统调试与优化
参数调整
根据实际运行情况,对控制系统 的参数进行适当调整,以提高控
制效果。
性能测试
对控制系统的性能进行测试,包 括响应速度、控制精度、稳定性
等指标。
系统优化
根据性能测试结果,对控制系统 进行优化,包括硬件配置、软件
算法等。
05
前馈-反馈复合控制系统 的应用案例
工业过程控制中的应用
考虑抗干扰措施
针对可能存在的干扰因素,采取适 当的抗干扰措施,以提高系统的稳 定性和可靠性。
04
前馈-反馈复合控制系统 的实现
系统硬件配置
01
02
03
04
传感器
用于检测被控对象的输出信号 ,并将其转换为电信号或数字
信号。
控制器
接收传感器信号,根据控制算 法计算出控制信号,并输出到
执行器。
执行器
接收控制信号,驱动被控对象 进行动作。
02
前馈控制系统的设计
确定系统参数
01
02
03
输入参数
确定输入参数是前馈控制 系统的第一步,这些参数 通常包括温度、压力、流 量等。
输出参数
输出参数是系统需要控制 的变量,例如温度、压力 等。
过程参数
前馈控制和反馈控制
前馈控制和反馈控制前馈反馈控制讲解前馈控制系统前馈反馈控制讲解内容前馈控制的由来与原理静态前馈控制系统前馈控制系统的动态补偿前馈反馈控制系统结论前馈反馈控制讲解一、基本原理及特点问题:过程特性决定了它被控制的难易,一个本性难控的过程具有Kf大、Tf_lt;To、τ o/To大的特点,难控过程受到较大扰动后,反馈控制的效果将不令人满意。
下面分析其原因,并讨论相应对策。
原因相应措施⒈本性难控过程克服扰动的稳定时间长⒈将扰动克服在被控变量偏产生偏差大;离设定值之前⒉反馈控制器不会区别偏差产生的原因,⒉针对较大可测和不可控的只是减少偏差,直到趋近“0”; 扰动采取措施,使被控变量在扰动下基本不变⒊扰动产生频率过高,将使系统振荡;⒊开环控制“前馈控制方案前馈反馈控制讲解一、基本原理及特点D1 前馈控制器对象 y DnD1,……,Dn 为可测扰动;u, y分别为被控对象的操作变量与受控变量。
u前馈控制思想:在扰动还未影响输出以前,直接改变操作变量,以使输出不受或少受外部扰动的影响。
前馈控制定义:是测取进入过程的干扰(包括外界干扰和设定值变化,并按其信号产生合适的控制作用去改变操纵变量,使被控变量维持在设定值上。
例如,我们以换热器前馈控制系统来说明其方案控制过程前馈反馈控制讲解一、基本原理及特点换热器控制方案举例蒸汽蒸汽TCHV, RVFFHV, RV工艺介质RF工艺介质cp, RF , T1凝液T2cp, RF , T1凝液T2反馈控制方案前馈控制方案前馈反馈控制讲解一、基本原理及特点换热器前馈控制方块图d(t) GYD (s) u(t) GFF (s) GYC (s)+ +Y ( s) GYD ( s) GFF ( s)GYC ( s) 0 D( s )控制目标:D(S)≠0时,要求Y(S)=0本例中,d (t)、u (t)、y (t) 分别表示工艺介质流量(外部干扰)、蒸汽流量(控制变量)与工艺介质的出口温度(被控变 y(t) 量);GFF(s)为前馈控制器的动态特性;GYD(s)、GYC(s)分别为干扰通道与控制通道的的动态特性。
介绍化工厂装置中常用的工艺控制策略
介绍化工厂装置中常用的工艺控制策略化工厂装置中的工艺控制策略是确保生产过程稳定和产品质量可靠的关键。
本文将介绍化工厂装置中常用的工艺控制策略,包括反馈控制、前馈控制、模型预测控制和优化控制等。
一、反馈控制反馈控制是最常见的一种工艺控制策略,它通过测量和比较实际输出与期望输出之间的差异,来调整输入变量以达到期望的控制目标。
在化工装置中,常用的反馈控制策略包括比例控制、积分控制和微分控制。
比例控制根据实际输出与期望输出之间的差异,按照一定的比例关系来调整输入变量。
积分控制则是根据实际输出与期望输出之间的累积差异,按照一定的积分关系来调整输入变量。
微分控制则是根据实际输出的变化率来调整输入变量。
二、前馈控制前馈控制是一种预测性的控制策略,它通过预测未来的输入变量变化,提前调整控制系统的输出来抵消外部扰动对系统的影响。
在化工装置中,前馈控制通常用于抵消原料成分和温度等变化带来的影响。
例如,在制药工艺中,通过提前测量原料成分的变化趋势,并根据预测结果调整反应条件,可以减少产品质量的波动。
三、模型预测控制模型预测控制是一种基于数学模型的控制策略,它通过建立系统的数学模型来预测未来的系统行为,并根据预测结果来调整控制系统的输出。
在化工装置中,模型预测控制通常用于复杂的多变量系统,例如化工过程中的温度、压力和流量等参数的控制。
通过建立系统的数学模型,并结合实时测量数据,可以预测系统的行为,并根据预测结果来调整控制系统的输出,以实现更好的控制效果。
四、优化控制优化控制是一种通过优化算法来寻找最优控制策略的控制方法。
在化工装置中,优化控制通常用于多目标优化问题,例如在生产过程中同时考虑产品质量和能耗的最优化。
通过建立数学模型,并结合优化算法,可以寻找最优的控制策略,以实现生产过程的最优化。
综上所述,化工厂装置中常用的工艺控制策略包括反馈控制、前馈控制、模型预测控制和优化控制等。
这些控制策略可以根据不同的控制目标和系统要求进行组合使用,以实现生产过程的稳定和产品质量的可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.. . …目录1.前言12.总体方案设计22.1系统方案的论证22.1.1单回路控制系统22.1.2方案二:精馏段前馈—反馈控制(以进料量为前馈信号)22.1.3方案三:精馏段前馈—反馈控制(以进料量为前馈信号)32.1.4方案四:提馏段前馈—反馈控制32.2 方案的比较32.3 方案的选择43.精馏塔前馈-反馈控制系统53.1前馈—反馈控制系统的设计53.1.1 被控参数的选择53.1.2 控制变量的选择53.1.3 调节阀的气开、气关方式的选择63.1.4 调节器正反作用的选择63.2 精馏塔前馈—反馈控制系统的计算分析83.2.1 前馈—反馈控制系统的分析83.2.2 前馈—反馈器的模型分析93.3 前馈-反馈控制系统的工程整定133.3.1 Kb的整定133.3.2T1,T2的整定153.3.3调节器参数整定方法163.3.4本次设计中调节器参数整定及结果174. MATLAB 系统仿真184.1 MATLAB的简介184.2 Simulink控制系统仿真185.设计总结216.致227.参考资料191.前言精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。
精馏的目的是利用混合液中各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。
精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。
精馏过程通过精馏塔、再沸器、冷凝器等设备完成,是实现混合物组分分离的主要设备。
精馏过程是一个复杂的传质传热过程。
表现为:过程变量多,被控变量多,可操纵的变量也多;过程动态和机理复杂,例如,非线性、时变、关联;控制方案多样,例如,同一被控变量可以采用不同的控制方案,控制方案的适应面广等。
因此,熟悉工艺过程和在特性,对控制系统的设计十分重要。
前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。
如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。
前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。
但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。
所以仅用前馈并不能达到良好的控制品质。
这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。
解决前馈不能控制的不可测干扰。
前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度。
精馏塔的控制目标是:在保证产品质量合格的前提下,是回收率最高、能耗最低,或使总收益最大,或总成本最小。
精馏过程是在一定约束条件下进行的。
因此,精馏塔的控制要求可从质量指标、产品产量和能量消耗三方面考虑。
本次设计打算采用前馈反馈复合控制系统来进行,通过与单回路系统仿真运行结果的比较,突出复合系统的优越性。
2.总体方案设计2.1系统方案的论证2.1.1单回路控制系统PID02()()fG s G s0102()()G s G s反馈通道干扰信号图2.1 单回路系统控制框图方案一为单回路控制系统,在该系统中只有一个测量元件、一个控制器、一个调节阀和一个被控过程,并只对一个被控参数进行单闭环反馈控制。
2.1.2方案二:精馏段前馈—反馈控制(以进料量为前馈信号)图2.2 精馏段前馈—反馈控制I方案二是精馏塔精馏段温度为被控变量、进料量为前馈信号的相乘型前馈—反馈控制系统。
2.1.3方案三:精馏段前馈—反馈控制(以进料量为前馈信号)图2.3 精馏段前馈—反馈控制II方案三与方案二类似,均为精馏塔精馏段温度为被控变量,进料量为前馈信号的相乘型前馈—反馈控制系统。
2.1.4方案四:提馏段前馈—反馈控制图2.4 提馏段前馈—反馈控制方案四是精馏塔提馏段温度为主被控变量、再沸器蒸汽流量为副被控变量的串级控制系统和进料量为前馈信号组成的相乘型前馈—反馈控制系统。
2.2 方案的比较方案一:采用单回路控制系统,其实际生产中具有结构简单、投资少、易于调整等优点;但对于动态特性复杂、存在多种扰动或扰动幅度较大、控制要求较高的系统则难以满足要求。
方案二:采用间接物料平衡控制,该方案优点是控制作用及时,动态响应快,对克服扰动影响有利;该控制方案的缺点是回流受外界温度影响大,能量和物料平衡之间关联大。
方案三:采用直接物料平衡控制,优点是物料和能量平衡之间关联小,回流在环境温度变化时基本不变,产品不合格时不出料;缺点是控制回路的滞后大,动态响应差。
方案四:从前馈原理角度看,反馈信号来自提馏段温度,前馈信号来自进料流量,反馈信号和前馈信号进行相乘运算,运算结果作为再沸器加热蒸汽流量控制器的设定。
从比值控制原理角度看,进料流量与加热蒸汽量应保持一定比值关系,当提馏段温度有偏差时应调整该比值。
2.3 方案的选择在精馏塔的控制过程中,所需考虑到的影响系统控制的参数比较多,且该生产过程所要求的控制质量也比较高,故不能选择单回路系统进行实际设计。
再通过对三种前馈—反馈复合控制设计系统的比较,从实际生产过程中的各种要求上考虑,决定在本次课程设计中,选择方案四进行设计和仿真。
3.精馏塔前馈-反馈控制系统3.1前馈—反馈控制系统的设计3.1.1 被控参数的选择生产中希望借助控制系统保持恒定值(或按一定规律变化)的参数称为被控参数,也称为被控变量。
被控参数是控制方案设计中的重要一环,对控制系统能否达到稳定操作、增加产量、提高质量、节能降耗、改善劳动条件、保证生产安全等具有决定性意义、关系到控制方案的成败。
如果被控参数选择不当,则不管组成什么形式的控制系统,也不管选用多么先进的检测控制设备,均难以达到预期的控制效果。
精馏塔控制目标是两端的产品质量,直接检测产品成分并进行控制的方法因成分分析仪表价格昂贵,维护保养复杂,采样周期较长,反应缓慢,滞后大,可靠性差等原因,而较少采用,绝大多数精馏塔的控制仍采用间接质量指标控制。
此次设计中,从工艺合理性的角度考虑,选择温度作为被控参数;这是因为在精馏过程中,一般都要求塔压力固定,只有规定压力下,才能保证精馏塔的分离纯度和生产效率。
塔压固定,精馏塔各层塔板上压力稳定,各层塔板上的温度与组分之间可保持单值对应关系。
可见,固定压力,选择温度作为控制产品之类的间接被控参数在工艺上是合理的。
3.1.2 控制变量的选择在控制系统中,把用来克服干扰对被控参数的影响,实现控制作用的变量称为控制变量(也称操纵变量)。
在有些生产过程中,影响被控参数的外部变量有几个,这些输入变量中,有些允许控制,有些不允许控制。
原则上,在考虑生产过程特点和产品特点下,要从所允许控制变量中尽可能地选择一个对被控参数影响显著、控制性能好的输入变量作为控制变量。
从控制原理来的观点来看,从所有允许控制的变量中选出一个作为控制变量,需要分析、比较不同的控制通道(控制变量对被控参数作用的通道)和不同的扰动通道(扰动量对被控参数的作用通道)对系统特性和控制品质的影响,作出合理的选择。
基于以上分析,可得出控制变量选取的一般原则:1)控制变量是可控的,2)控制变量一般比其它干扰对被控参数的影响灵敏。
即工艺上允许调节的变量。
为此,应通过合理选择控制变量,使控制通道的放大系数大、时间常数小、纯滞后时间小。
3)为使其他干扰对被控参数的影响减小、应使干扰通道的放大系数小、时间常尽可能大。
4)被控过程存在多个时间常数,在选择设备时,应尽量使时间常数错开、使其中一个时间常数比其他常大很多,同时注意减小其他时间常数。
5)在选择变量时,除了从提高控制品质的角度考虑外,还要考虑工艺的合理性与生产效率及生产过程的经济性。
在此次精馏塔前馈—反馈复合系统的设计中,被控变量为被塔温度,而蒸汽流量是干扰参数。
通过以上分析,可选取物料流量来作为控制变量,通过对物料流量的控制,来稳定被控变量,从而使整个系统稳定运行。
3.1.3 调节阀的气开、气关方式的选择调节阀开、关作用方式的选择主要以不同生产条件下,人员安全、生产安全、系统及设备安全的需要为首要依据。
当控制系统发生故障、信号中断里,阀门处于打开位置危害性小,则应选择气关式调节阀;反之,若阀门处于关闭位置时危害性小,则应选用气开阀。
﹥0。
精馏段出料口控制阀本次设计中,从安全角度考虑,应选气开阀,Kv选气开可防止蒸汽带液输出,当阀体失去压力作用是,阀应处于全闭状态。
该系统以温度作被控变量,选用的控制阀理想流量特性为等百分比流量特性。
3.1.4 调节器正反作用的选择调节器的选型与调节规律的选择对过程控制系统的控制品质有至关重要的影响,也是过程控制系统设计的核心容之一。
调节器的输出决定于被控参数的测量值与设定值之差,被控参数的测量值与设定值变化,对输出的作用方向是相反的,调节器的正反作用的定义是:当设定值不就时,随着测量值的增加,调节器的输出增加,则称为“正作用”方式;同样,当测量值不变,设定值减小时,调节器的输出增加,称为“正作用”方式。
反之,如果测量值增加或设定值减小时,调节器输出减小,则称为“反作用”方式。
调节器正反作用方式的选择是在调节阀气开、气关方式确定后进行的,其确定原则是使整个单回路构成负反馈系统。
若对控制系统中各个环节按照其工作特性,定义一个表示其性质的正(+),负(-)符号,则可根据组成控制系统各个环节的正(+),负(-)符号及回路构成负反馈的根本要求,得出调节器的“正”“反”作用的选择工式。
控制系统中各个环节的正、负符号做如下规定:调节阀:气开式取“+”,气关式取负;被控对像:若控制变量增加时,被控参数随之增加取“+”;反之取“-”;变送器:输出信号随被测变量增加而增大,取“+”;反之取“-”;调节器:测量输入增加,调节器输出增大(正作用)时取“+”;测量输入增加,调节器输出减小(反作用)时取“-”;在传感器、执行器的符号确定的情况下,为了保证单回路控制系统构成负反馈系统,调节器的符号择应满足单回路各个环节符号的乘积必须为“-”,即:调节器符号(+或-)*执行器符号(+或-)*变送器符号(+或-)*被控过程符号(+或-)=“-”若其它三项已知时,则可以求出调节器的符号了。
根据所求和的符号则可确定其“正”“反”作用形式。
在一般情况下,过程控制中变送器的符号都认为是“+”,则可以简化为:调节器符号(+或-)*执行器符号(+或-)*被控过程符号(+或-)=“-”即:调节器符号为被控过程的符号与执行器符号乘积的相反值。
由此可知,当控制阀与被控过程符号相同时,控制器应选择“反作用”方式,反之,则选择“正作用”方式。