高中数学椭圆经典例题(学生+老师)

合集下载

高中数学椭圆练习题

高中数学椭圆练习题

椭圆标准方程典型例题例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程.例3 ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.例5 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程例7 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.例8 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范例10 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.例13 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹.例14 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23 例15 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.例17 在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.例18 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程.高中数学椭圆经典试题练习1.在椭圆)0( 12222>>=+b a by a x 上取三点,其横坐标满足1322x x x +=,三点与某一焦点的连线段长分别为123,,r r r ,则123,,r r r 满足( )A .123,,r r r 成等差数列B .123112r r r += C .123,,r r r 成等比数列 D .以上结论全不对2.曲线22 1 4x y m+=的离心率e 满足方程22520x x -+=,则m 的所有可能值的积为( ) A .36 B .-36 C .-192 D .-1983.椭圆)0( 12222>>=+b a by a x ,过右焦点F 作弦AB ,则以AB 为直径的圆与椭圆右准线l 的位置关系是( )A .相交B .相离C .相切D .不确定4.设点P 是椭圆)0( 12222>>=+b a by a x 上异于顶点的任意点,作12PF F ∆的旁切圆,与x 轴的切点为D ,则点D ( )A .在椭圆内B .在椭圆外C .在椭圆上D .以上都有可能5. 椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是 ( )A 3B 23C 33 D 以上都不对 6. 椭圆141622=+y x 上有两点P 、Q ,O 为原点,若OP 、OQ 斜率之积为41-,则22OQ OP + 为 ( )A . 4 B. 64 C. 20 D. 不确定7. 过椭圆左焦点F 且倾斜角为ο60的直线交椭圆于A 、B 两点,若FB FA 2=,则椭圆的离心率为 ( ) A .32 B. 22 C. 21 D. 32 8.过原点的直线l 与曲线C:1322=+y x 相交,若直线l 被曲线C 所截得的线段长不大于6,则直线l 的倾斜角α的取值范围是 ( ) A 656παπ≤≤ B 326παπ<< C 323παπ≤≤ D. 434παπ≤≤ 9. 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且ο901=∠BDB ,则椭圆的离心率为 ( )A 213-B 215-C 215- D 2310.椭圆)10(,2222<<=+a a y x a 上离顶点A(0,a )最远点为(0,)a -成立的充要条件为( )A 10<<a B122<<a C 122<≤a D.220<<a . 11.若椭圆)0(12222>>=+b a b y a x 和圆c c b y x (,)2(222+=+为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是 ( )A )53,55(B )55,52(C )53,52(D )55,0( 12.已知c 是椭圆)0(12222>>=+b a b y a x 的半焦距,则a c b +的取值范围是 ( ) A (1, +∞) B ),2(∞+ C )2,1( D ]2,1(13.设椭圆的对称轴为坐标轴,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最短距离为3,则该椭圆的方程为14.M 是椭圆221 94x y +=不在坐标轴上的点,12,F F 是它的两个焦点,I 是12MF F ∆的内心,MI 的延长线交12F F 于N ,则MI NI= 15.12,F F 是椭圆2222: 1 (0)x y C a b a b+=>>的两个焦点,直线l 与椭圆C 交于12,P P ,已知椭圆中心O 关于直线l 的对称点恰好落在椭圆C 的左准线上,且2211109P F PF a -=,则椭圆C 的方程为 16. (2000全国高考) 椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠ 为钝角时,点P 横坐标的取值范围是18.已知21,F F 为椭圆的两个焦点,P 为椭圆上一点,若3:2:1::211221=∠∠∠PF F F PF F PF , 则此椭圆的离心率为19.如果y x ,满足,369422=+y x 则1232--y x 的最大值为20.已知椭圆的焦点是)1,0(),1,0(21F F -,直线4=y 是椭圆的一条准线.① 求椭圆的方程;② 设点P 在椭圆上,且121=-PF PF ,求21PF F ∠.余弦值22.求中心在原点,一个焦点为)25,0(且被直线23-=x y 截得的弦中点横坐标为21的椭圆方程.。

高中数学椭圆大题经典例题

高中数学椭圆大题经典例题

高中数学中椭圆大题的经典例题题目:已知椭圆 C:x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√3/3,过点 A(0,b) 和 B(a,0)的直线与原点的距离为√3/2。

(1)求椭圆 C 的方程;(2)设 P 是椭圆 C 上一点,E、F 是椭圆 C 上的两动点,如果直线 PE,PF 的斜率都存在,且满足 kPE * kPF = -2/3,试探究△OEF 的形状,并说明理由。

(3)试问:是否存在以 PE,PF 为邻边的平行四边形?如果存在,求出所有这样的平行四边形;如果不存在,说明理由。

解析:(1)由题意,离心率 e = c/a = √3/3,直线 AB 的方程为 y = -√3x + b,利用点到直线的距离公式得到 b = √3/2。

又因为 a^2 = b^2 + c^2,解得 a = √3, b = 1。

所以椭圆 C 的方程为 x^2/3 + y^2 = 1。

(2)设 P(x0,y0),E(x1,y1),F(x2,y2),由 kPE * kPF = -2/3,得到 (y0 - y1)(y0 - y2) / (x0 - x1)(x0 - x2) = -2/3。

根据椭圆方程和斜率公式,化简得到 (x0^2 - 1)(x0^2 - 3) = -4(x0^2 - 1),解得 x0^2 = 1 或 x0^2 = 3(舍去)。

所以△OEF是直角三角形。

(3)假设存在以 PE,PF 为邻边的平行四边形,则 PE // PF,即存在 m,使得 kPE = kPF = m。

联立方程求解得 m = -√5/5 或 m = √5/5。

当 m = -√5/5 时,P(-√15/3, √15/5),E(-√15/5, √15/5),F(-√15/5, -√15/5),此时ΔOEF 是等腰三角形,不满足题意。

当 m = √5/5 时,P(-√15/3, -√15/5),E(-√15/5, -√15/5),F(-√15/5, √15/5),此时ΔOEF 是等腰三角形,满足题意。

高中数学选修(2-1)椭圆基础、提高、综合篇

高中数学选修(2-1)椭圆基础、提高、综合篇

椭圆及其标准方程基础卷一、选择题:1、椭圆2211625x y +=的焦点坐标为( ) (A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)2、在方程22110064x y +=中,下列a , b , c 全部正确的一项是( ) (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =36 3、已知a =4, b =1,焦点在x 轴上的椭圆方程是( )(A )2214x y += (B )2214y x += (C )22116x y += (D )22116y x += 4、已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是( )(A )2213620x y += (B )2212036x y += (C )2213616x y += (D )2211636x y += 5、若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( ) (A )4 (B )194 (C )94 (D )146、已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是( ) (A )椭圆 (B )直线 (C )圆 (D )线段 二、填空题:7、若y 2-lga ·x 2=31-a 表示焦点在x 轴上的椭圆,则a 的取值范围是 . 8、当a +b =10, c =25时的椭圆的标准方程是 .9、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为 .10、经过点M (3, -2), N (-23, 1)的椭圆的标准方程是 .11、椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值为12,求此椭圆的方程。

2020高中数学 2.1.1 椭圆及其标准方程(1)(含解析)

2020高中数学 2.1.1 椭圆及其标准方程(1)(含解析)

课时作业10 椭圆及其标准方程(1)知识点一椭圆的定义及简单应用1。

已知在平面直角坐标系中,点A(-3,0),B(3,0),点P为一动点,且|PA|+|PB|=2a(a≥0),给出下列说法:①当a=2时,点P的轨迹不存在;②当a=4时,点P的轨迹是椭圆,且焦距为3;③当a=4时,点P的轨迹是椭圆,且焦距为6;④当a=3时,点P的轨迹是以AB为直径的圆.其中正确的说法是()A.①②B.①③C.②③D.②④答案B解析当a=2时,2a=4<|AB|,故点P的轨迹不存在,①正确;当a=4时,2a=8>|AB|,故点P的轨迹是椭圆,且焦距为|AB|=6,②错误,③正确;当a=3时,点P的轨迹为线段AB,④错误.2.已知椭圆错误!+错误!=1上一点P到椭圆的一个焦点的距离为3,则点P到另一个焦点的距离为()A.2 B.3 C.5 D.7答案D解析由椭圆方程知a=5,根据椭圆定义有|PF1|+|PF2|=2a=10.若|PF1|=3,则|PF2|=7.3.设F1,F2是椭圆错误!+错误!=1的焦点,P为椭圆上一点,则△PF1F2的周长为()A.16 B.18 C.20 D.不确定答案B解析∵a=5,b=3,∴c=4又|PF1|+|PF2|=2a=10,|F1F2|=2c=8,∴△PF1F2的周长为|PF1|+|PF2|+|F1F2|=2a+2c=10+8=18,故选B。

知识点二求椭圆的标准方程4.写出适合下列条件的椭圆的标准方程.(1)a=5,c=2;(2)经过P1(错误!,1),P2(-错误!,-错误!)两点;(3)以椭圆9x2+5y2=45的焦点为焦点,且经过点M(2,6).解(1)由b2=a2-c2,得b2=25-4=21.∴椭圆的标准方程为错误!+错误!=1或错误!+错误!=1。

(2)解法一:①当焦点在x轴上时,设椭圆方程为错误!+错误!=1(a>b〉0).由已知,得错误!⇒错误!即所求椭圆的标准方程是错误!+错误!=1。

人教A版高中数学选择性必修第一册3.1椭圆 经典例题及配套练习题

人教A版高中数学选择性必修第一册3.1椭圆 经典例题及配套练习题

3.1 椭圆3.1.1 椭圆及其标准方程例1 已知椭圆的两个焦点坐标分别是(−2,0),(2,0),并且经过点(52,−32),求它的标准方程.解:由于椭圆的焦点在x轴上,所以设它的标准方程为x2a2+y2b2=1(a>b>0).由椭圆的定义知c=2,2a=√(52+2)2+(−32)2+√(52−2)2+(−32)2=2√10,所以a=√10,所以b2=a2−c2=10−4=6.所以,所求椭圆的标准方程为x2 10+y26=1.例2 如图3.1-5,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P 在圆上运动时,线段PD的中点M的轨迹是什么?为什么?图3.1-5分析:点P在圆x2+y2=4上运动,点P的运动引起点M运动.我们可以由M为线段PD的中点得到点M与点P坐标之间的关系式,并由点P的坐标满足圆的方程得到点M的坐标所满足的方程.解:设点M的坐标为(x,y),点P的坐标为(x0,y0),则点D的坐标为(x0,0),由点M是线段PD的中点,得x=x0,y=y02.因为点P(x0,y0)在圆x2+y2=4上,所以x02+y02=4.①把x0=x,y0=2y代入方程①,得x2+4y2=4,即x24+y2=1.所以点M的轨迹是椭圆.例3如图3.1-6,设A,B两点的坐标分别为(−5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是−49,求点M的轨迹方程.图3.1-6分析:设点M的坐标为(x,y),那么直线AM,BM的斜率就可用含x,y的关系式分别表示.由直线AM,BM的斜率之积是−49,可得出x,y之间的关系式,进而得到点M的轨迹方程.解:设点M的坐标为(x,y),因为点A的坐标是(−5,0),所以直线AM的斜率k AM=yx:5(x≠−5).同理,直线BM的斜率k BM=yx;5(x≠5).由已知,有y x:5×yx;5=−49(x≠±5),化简,得点M的轨迹方程为x2 25+y21009=1(x≠±5).点M的轨迹是除去(−5,0),(5,0)两点的椭圆.练习1.如果椭圆x2100+y236=1上一点P到焦点F1的距离等于6,则点P到另一个焦点F2的距离为____【答案】14【分析】根据椭圆的定义|PF1|+|PF2|=2a及椭圆x2100+y236=1上一点P到焦点F1的距离等于6,可得PF2的长.【详解】解:根据椭圆的定义|PF1|+|PF2|=2a,又椭圆x2100+y236=1上一点P到焦点F1的距离等于6,∴6+|PF2|=20,故|PF2|=14,2.求适合下列条件的椭圆的标准方程.(1)a=4,b=1,焦点在x轴上;(2)a=4,c=√15,焦点在y轴上;(3)a+b=10,c=2√5.【答案】(1)x216+y2=1;(2)y216+x2=1;(3)x236+y216=1或y236+x216=1.【分析】(1)根据已知直接得出方程;(2)根据已知求得b,即可得出方程;(3)由已知联立求得a,b即可得出方程.【详解】(1)a=4,b=1,焦点在x轴上的椭圆方程为x216+y2=1;(2)由a=4,c=√15可得b2=a2−c2=1,又焦点在y轴上,所以标准方程为y216+x2=1;(3)联立{a+b=10 c=2√5a2=b2+c2,解得a=6,b=4,所以标准方程为x236+y216=1或y236+x216=1.3.已知经过椭圆x225+y216=1的右焦点F2作垂直于x轴的直线AB,交椭圆于A,B两点,F1是椭圆的左焦点.(1)求ΔAF1B的周长;(2)如果AB不垂直于x轴,ΔAF1B的周长有变化吗?为什么?【答案】(1)20;(2)不变,理由见解析【分析】根据椭圆的定义ΔAF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a求解.【详解】(1)由椭圆的定义得:|AF1|+|AF2|=2a=10,|BF1|+|BF2|=2a=10,所以ΔAF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=20.(2)不变,由椭圆的定义ΔAF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a.只受a的影响,不受AB与x轴的位置关系影响.4.已知A,B两点的坐标分别是(−1,0),(1,0),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的商是2,点M的轨迹是什么?为什么?【答案】点M的轨迹是直线x=−3,并去掉点(−3,0)【分析】设出点M的坐标,求出直线AM,BM斜率,由k AMk BM=2可求出.【详解】设点M的坐标为(x,y),则k AM=yx:1(x≠−1),k BM=yx;1(x≠1),当y≠0时,k AMk BM =x;1x:1=2,整理得x=−3(y≠0),所以点M的轨迹是直线x=−3,并去掉点(−3,0).3.1.2 椭圆的简单几何性质例4 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标.解:把原方程化成标准方程,得x2 52+y242=1,于是a=5,b=4,c=√25−16=3.因此,椭圆的长轴和短轴的长分别是2a=10和2b=8,离心率e=ca =35,两个焦点坐标分别是F1(−3,0)和F2(3,0),四个顶点坐标分别是A1(−5,0),A2(5,0),B1(0,−4)和B2(0,4).练习5.你能用圆规作出图中椭圆焦点的位置吗?你的依据是什么?【答案】能. 依据见解析.【分析】根据椭圆中a2=b2+c2的几何表示,即原点、焦点、短轴端点构成直角三角形,且体现a2=b2+c2求解.【详解】能.如图,以点B2(或B1)为圆心, |OA2|(或|OA1|)为半径画圆弧,与x轴交于点F1,F2,则点F1,F2就是椭圆的两个焦点.依据:因为在Rt△B2OF2中,|OB2|=b,|B2F2|=|OA2|=a,所以|OF2|=c,同理有|OF1|=c.6.求下列椭圆的焦点坐标:(1)x2100+y236=1;(2)2x2+y2=8.【答案】(1)(8,0)和(−8,0);(2)(0,2)和(0,−2)【分析】由椭圆方程得到a2,b2,根据c2=a2−b2求出c,即可得解;【详解】解:(1)因为椭圆方程为x2100+y236=1,焦点在x轴,所以a2=100,b2=36,因为c2=a2−b2,即c=√a2−b2=√100−36=8,所以椭圆的焦点坐标为(8,0)和(−8,0)(2)因为2x2+y2=8,所以y28+x24=1,焦点在y轴,所以a2=8,b2=4,因为c2=a2−b2,即c=√a2−b2=√8−4=2,所以椭圆的焦点坐标为(0,2)和(0,−2) 7.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.【答案】(1)x236+y232=1(2)y225+x216=1【详解】试题分析:(1)由离心率公式,求得c,再由a,b,c的关系,求得b,即可得到椭圆方程;(2)由离心率公式,求得a,再由a,b,c的关系,求得b,即可得到椭圆方程试题解析:(1)a=6,e=,即,解得c=2,b2=a2﹣c2=32,则椭圆的标准方程为:=1;(2)c=3,e=,即,解得,a=5,b2=a2﹣c2=25﹣9=16.则椭圆的标准方程为:=1.8.求适合下列条件的椭圆的标准方程:(1)经过P(−3,0),Q(0,−2)两点;(2)长轴长等于20,离心率等于35.【答案】(1)x 29+y 24=1 (2)x 2100+y 264=1或y 2100+x 264=1.【分析】(1)设出椭圆方程,根据椭圆经过点A (−3,0),B (0,−2),得出{a =3b =2 ,代入方程即可.(2)由条件可得{2a =20c a =35 ,则可得{a =10c =6b =8 ,根据焦点所在的轴代入对应的标准方程即可. 【详解】解:(1)设椭圆方程为:x 2a 2+y 2b 2=1,因为椭圆经过点A (−3,0),B (0,−2), A (−3,0),B (0,−2)分别为左顶点和下顶点, 所以得{a =3b =2,所以椭圆标准方程为x 29+y 24=1.(2)椭圆的长轴长等于20, 离心率等于35依题意: {2a =20c a =35 ,所以{a =10c =6,由b 2=a 2−c 2=64,即b =8所以椭圆标准方程为:x 2100+y 264=1或y 2100+x 264=1.9.比较下列每组中椭圆的形状,哪一个更接近于圆?为什么? (1)9x 2+y 2=36与x 216+y 212=1;(2)x 2+9y 2=36与x 26+y 210=1. 【答案】(1)x 216+y 212=1更接近于圆;(2)x 26+y 210=1更接近于圆.【分析】探究可得离心率e 越大,椭圆越扁;e 越小,椭圆越圆. 所以只需比较离心率的大小即可得出结果.【详解】因为椭圆的离心率e =ca =√1−(b a )2,所以e 越大,ba 越小,椭圆越扁;e 越小,ba 越大,椭圆越圆. (1)椭圆9x 2+y 2=36即x 24+y 236=1,其离心率e 1=√1−436=2√23,椭圆x 216+y 212=1的离心率e 2=√1−1216=12,因为e 2<e 1,所以椭圆x 216+y 212=1更接近于圆; (2)椭圆x 2+9y 2=36即x 236+y 24=1,其离心率e 3=√1−436=2√23,椭圆x 26+y 210=1的离心率e 4=√1−610=√105,因为e4<e3,所以椭圆x26+y210=1更接近于圆.例5 如图3.1-11,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上.由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC⊥F1F2,|F1B|=2.8cm,|F1F2|=4.5cm.试建立适当的平面直角坐标系,求截口BAC所在椭圆的方程(精确到0.1cm).图3.1-11解:建立如图3.1-11所示的平面直角坐标系,设所求椭圆方程为x2 a2+y2b2=1(a>b>0).在Rt△BF1F2中,|F2B|=√|F1B|2+|F1F2|2=√2.82+4.52.由椭圆的性质知,|F1B|+|F2B|=2a,所以a=12(|F1B|+|F2B|)=12(2.8+√2.82+4.52)≈4.1;b=√a2−c2=√4.12−2.252≈3.4.所以,所求的椭圆方程为x2 4.12+y23⋅42=1.例6 动点M(x,y)与定点F(4,0)的距离和M到定直线l:x=254的距离的比是常数45,求动点M的轨迹.解:如图3.1-12,设d是点M到直线l:x=254的距离,根据题意,动点M的轨迹就是集合。

2023年高中数学椭圆超经典知识点典型例题讲解

2023年高中数学椭圆超经典知识点典型例题讲解

学生姓名 性别 男 年级 高二 学科 数学 讲课教师 上课时间 2023年12月13日第( )次课 共( )次课课时: 课时教学课题椭圆教学目旳教学重点与难点选修2-1椭圆知识点一:椭圆旳定义 平面内一种动点到两个定点、旳距离之和等于常数(),这个动点旳轨迹叫椭圆.这两个定点叫椭圆旳焦点,两焦点旳距离叫作椭圆旳焦距.注意:若,则动点旳轨迹为线段;若,则动点旳轨迹无图形.讲练结合一.椭圆旳定义 1.方程()()10222222=++++-y x y x 化简旳成果是2.若ABC ∆旳两个顶点()()4,0,4,0A B -,ABC ∆旳周长为18,则顶点C 旳轨迹方程是3.已知椭圆22169x y +=1上旳一点P 到椭圆一种焦点旳距离为3,则P 到另一焦点距离为知识点二:椭圆旳原则方程1.当焦点在轴上时,椭圆旳原则方程:,其中;2.当焦点在轴上时,椭圆旳原则方程:,其中;注意:1.只有当椭圆旳中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆旳原则方程;2.在椭圆旳两种原则方程中,均有和;3.椭圆旳焦点总在长轴上.当焦点在轴上时,椭圆旳焦点坐标为,;当焦点在轴上时,椭圆旳焦点坐标为,。

讲练结合二.运用原则方程确定参数1.若方程25x k -+23y k -=1(1)表达圆,则实数k 旳取值是 .(2)表达焦点在x 轴上旳椭圆,则实数k 旳取值范围是 . (3)表达焦点在y 型上旳椭圆,则实数k 旳取值范围是 . (4)表达椭圆,则实数k 旳取值范围是 .2.椭圆22425100x y +=旳长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点旳坐标是 ,焦距是 ,离心率等于 ,3.椭圆2214x y m+=旳焦距为2,则m = 。

4.椭圆5522=+ky x 旳一种焦点是)2,0(,那么=k 。

讲练结合三.待定系数法求椭圆原则方程1.若椭圆通过点(4,0)-,(0,3)-,则该椭圆旳原则方程为 。

高中数学选择性必修一精讲精炼 1 椭圆的简单几何性质(精讲)(教师含解析)

高中数学选择性必修一精讲精炼   1  椭圆的简单几何性质(精讲)(教师含解析)

3.1.2 椭圆的简单几何性质(精讲)考点一离心率【例1】(1)(2021·四川高二期末(文))椭圆()222210x ya ba b+=>>的左右焦点分别是1F,2F,以2F为圆心的圆过椭圆的中心,且与椭圆交于点P,若直线1PF恰好与圆2F相切于点P,则椭圆的离心率为( ).A B C1D(2)(2021·黄冈天有高级中学高二月考)已知12,F F是椭圆的两个焦点,过1F且与椭圆长轴垂直的直线交椭圆于,A B两点,若2ABF是等腰直角三角形,则这个椭圆的离心率是( )A B.2C1D【答案】(1)C(2)C【解析】(1)由题意2PF c=,12PF PF⊥,所以1PF===,所以122PF PF c a++=,所以离心率为1cea=.故选:C.(2)不妨设椭圆方程为()222210x ya ba b+=>>,焦点()()12,0,,0F c F c-,离心率为e,将x c =代入22221c y a b +=可得2b y a =±,所以22bAB a =,又2ABF 是等腰直角三角形,所以212224bAB F F c a===,所以22b c a =即2220c a ac -+=,所以2210e e +-=,解得1e =(负值舍去).故选:C. 【一隅三反】1.(2021·河北石家庄二中高一期末)若焦点在x 轴上的椭圆 22116x y m +=+m = A .31 B .28 C .25 D .23【答案】D【解析】焦点在x 轴上,所以221,6a m b =+= 所以2165c m m =+-=-离心率e =,所以2225314c m e a m -===+解方程得m=23 所以选D2.(2021·江苏高二期末)设1F ,2F 为椭圆2222:1(0)x y C a b a b +=>>的两个焦点,点P 在C 上,且1122,,PF F F PF 成等比数列,则C 的离心率的最大值为( ) A .12 B .23C .34D .1【答案】A【解析】设()2120F F c c =>,122PF PF a +=, 因为1122,,PF F F PF 成等比数列, 所以2212124F F PF PF c =⨯=,由12PF PF +≥2a ≥ 即12c e a =≤,当且仅当12PF PF =等号成立, 所以椭圆C 的离心率最大值为12. 故选:A.3.(2021·全国高二课时练习)在Rt ABC 中,1AB AC ==,如果一个椭圆通过A 、B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率e =( )A B 1C 1D -【答案】D【解析】设另一个焦点为F ,如图所示,∵||||1AB AC ==,||BC42AB AC BC a ++==a =,设FA x =,则12x a +=,12x a -=,∴x =2214c +=,c =c e a ==故选:D.考点二 点与椭圆的位置关系【例2】(1)(2021·广西平果二中(理))点(1,1)与椭圆22132x y +=的位置关系为( )A .在椭圆上B .在椭圆内C .在椭圆外D .不能确定(2)(【新教材精创】3.1.2 椭圆的简单几何性质(2) 导学案-人教A 版高中数学选择性必修第一册)若点(),1P a 在椭圆22123x y +=的外部,则a 的取值范围为( )A .⎛ ⎝⎭B .,⎫⎛+∞⋃-∞⎪ ⎪ ⎝⎭⎝⎭C .4,3⎛⎫+∞ ⎪⎝⎭D .4,3⎛⎫-∞- ⎪⎝⎭【答案】(1)B(2)B【解析】(1)1151326+=<,可知点(1,1)在椭圆内.故选:B.(2)因为点(),1P a 在椭圆22123x y +=的外部,所以221123a +>,即243a >,解得a >a <.故选:B. 【一隅三反】1.(2021·安徽定远二中)点()1,0.7P 与椭圆2212x y +=的位置关系为( )A .在椭圆内B .在椭圆上C .在椭圆外D .不能确定【答案】A【解析】2210.70.9912+=<,所以,点P 在椭圆2212x y +=内.故选:A.2.(2021·甘肃省民乐县第一中学高三二模(理))若直线9mx ny +=和圆229x y +=没有交点,则过点(,)m n 的直线与椭圆221916x y +=的交点个数为( )A .1个B .至多一个C .2个D .0个【答案】C【解析】因为直线9mx ny +=和圆229x y +=没有交点, 3>,即229m n +<,所以2222191699m n m n +≤+<,即点(,)m n 在椭圆221916x y +=内, 所以过点(,)m n 的直线与椭圆221916x y +=的交点个数为2个. 故选:C考点三 直线与椭圆的位置关系【例3】(2021·安徽省泗县第一中学)已知椭圆的长轴长是(,. (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.【答案】(1)2213x y +=;(2)22m -<<.【解析】(1)由已知得2a =c = 解得a =2321b ∴=-=,∴椭圆的标准方程为2213x y +=. (2)由2213y x m x y =+⎧⎪⎨+=⎪⎩,解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<. m ∴的取值范围(2,2)-.【一隅三反】1.(2021·上海市长征中学)设直线与椭圆的方程分别为 2y x b =+与2217525x y +=,问b 为何值时,(1)直线与椭圆有一个公共点; (2)直线与椭圆有两个公共点; (3)直线与椭圆无公共点.【答案】(1)b =±(2)b -<(3)b <-b >【解析】设直线与椭圆的方程分别为 2y x b =+与2217525x y +=,问b 为何值时, 由22217525y x b x y =+⎧⎪⎨+=⎪⎩得2213172530x bx b ++=-.(1)当()()22124133075b b =--∆⨯⨯=,即b =±(2)当()()22124133075b b =--∆⨯⨯>,即b -<(3)()()22124133075b b =--∆⨯⨯<即b <-b >时直线与椭圆无公共点.2.(2021·广东高二期末)在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C .(1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围. 【答案】(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【解析】(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.3.(2021·莆田第十五中学高二期末)直线0x y m --=与椭圆2219xy +=有且仅有一个公共点,求m 的值.【答案】m =【解析】将直线方程0x y m --=代入椭圆方程2219x y +=, 消去x 得到:2210290y my m -++=,令0∆=,即()22441090m m -⨯-=解得m =考点四 弦长【例4-1】(2021·全国高二课时练习)直线x -y +1=0被椭圆23x +y 2=1所截得的弦长|AB |等于( )A.2BC.D.【答案】A【解析】由2210,1,3x y x y -+=⎧⎪⎨+=⎪⎩得交点为(0,1),31(,)22--,则|AB |故选:A.【例4-2】(2021·陕西高二期末(理))已知椭圆()2222:10y x E a b a b +=>>的焦距为⎫⎪⎪⎝⎭在椭圆E 上.(1)求椭圆E 的标准方程;(2)设直线1y kx =+与椭圆E 交于M 、N 两点,O 为坐标原点,求OMN 面积的取值范围. 【答案】(1)2214y x +=;(2)⎛ ⎝⎦. 【解析】(1)因为焦距为2c =c =因为点⎫⎪⎪⎝⎭在椭圆E 上,所以221314a b +=,联立222221314c a b a b c ⎧=⎪⎪+=⎨⎪=+⎪⎩,解得24a =,21b =,椭圆E 的标准方程为2214y x +=. (2)设()11,M x y ,()22,N x y ,联立22141y x y kx ⎧+=⎪⎨⎪=+⎩,整理得()224230k x kx ++-=,0∆>,则12224k x x k +=-+,12234x x k =-+,原点到直线1y kx =+,则MON △的面积12S ==令t =t ≥,22211t S t t t==++,令1y t t =+,则221t y t-'=,函数1yt t =+在)+∞上单调递增,故1t t +≥,201t t <≤+OMN 面积的取值范围为⎛ ⎝⎦. 【一隅三反】1.(2021·安徽省泗县第一中学高二开学考试(理))已知椭圆的长轴长是(),).(1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于A 、B两不同的点,若2AB =,求m 的值. 【答案】(1)2213x y +=;(2)1m =±.【解析】(1)由已知得2a =a =c =2221b a c =-=所以椭圆的标准方程2213x y +=(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩消除y 得2246330x mx m ++-= 因为有两个不同的交点,所以()222(6)44(33)1240m m m ∆=-⨯⨯-=-->得m 的取值范围为()2,2- 由韦达定理得:126342m m x x --+== ,212334m x x -=所以2AB ==解得1m =±2.(2021·四川高二期末(文))已知椭圆1C 以直线0x my +=所过的定点为一个焦点,且短轴长为4. (1)求椭圆1C 的标准方程;(2)过点()1,0C 的直线l 与椭圆1C 交于A ,B 两个不同的点,求OAB 面积的最大值. 【答案】(1)22194x y +=;【解析】(1)直线0x my +过定点),即椭圆的一个焦点为),依题意:椭圆1C 的半焦距c =2b =,长半轴长a 有2229a b c =+=, 所以椭圆1C 的标准方程为22194x y +=; (2)显然点()1,0C 在椭圆内部,即直线l 与椭圆必有两个不同的交点, 由题意得直线l 不垂直于y 轴,设直线l 的方程为1x ky =+,由2214936x ky x y =+⎧⎨+=⎩消去x 整理得()22498320k y ky ++-=, 设()11,A x y ,()22,B x y ,则122849k y y k -+=+,1223249y y k -=+, 从而有1212111||||222△△△OAB AOC BOC S S S OC y OC y y y =+=⋅⋅+⋅⋅=-421k =++121=,t 1()4f t t t=+在)+∞单调递增, 则t 0k=时,14t t =+≥=于是有129AOB S ≤△0k =时等号成立, 所以OAB 3.(2021·重庆字水中学高二期末)已知椭圆22:1y E x m +=的下焦点为1F 、上焦点为2F ,其离心率e =过焦点2F 且与x 轴不垂直的直线l 交椭圆于A 、B 两点 (1)求实数m 的值;(2)求ABO (O 为原点)面积的最大值. 【答案】(1)2m =;【解析】(1)由题意可得:21b =,2a m =,可得1b =,a =因为c e a ==c = 因为222a b c =+,所以12mm =+,可得2m =,(2)由(1)知:椭圆22:12y E x +=,上焦点()20,1F ,设()11,A x y ,()22,B x y ,直线:l 1y kx =+, 由22112y kx y x =+⎧⎪⎨+=⎪⎩可得:()222210k x kx ++-=,所以12222k x x k -+=+,12212-=+x x k ,所以()()()()222222121212222222442248842222k k k k x x x x x x k k k k ++-+⎛⎫-=+-=+== ⎪++⎝⎭++,可得:12x x -=所以12211122ABOSx x OF =⨯-⨯==≤即0k =时等号成立,所以ABO (O 为原点)面积的最大值为2. 考点五 中点弦与点差法【例5】(1)(2021·全国高二专题练习)已知椭圆2219x y +=,过点11,22P ⎛⎫ ⎪⎝⎭的直线与椭圆相交于A 、B 两点,且弦AB 被点P 平分,则直线AB 的方程为( ) A .950x y +-= B .940x y --= C .950x y +-=D .940x y -+=(2)(2021·南京市中华中学高二期中)已知椭圆C :22221x y a b +=(0a b >>)的左焦点为F ,过点F的直线0x y -与椭圆C 相交于不同的两点A ,B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( )A .22132x y +=B .2214x y +=C .22142x y +=D .22163x y +=【答案】(1)C(2)D【解析】(1)设点()11,A x y 、()22,B x y ,由已知可得121211x x y y +=⎧⎨+=⎩, 因为点A 、B 都在椭圆上,则221122221919x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差可得()()()()1212121209x x x x y y y y -++-+=,即()121209x x y y -+-=, 所以,直线AB 的斜率为121219AB y y k x x -==--,因此,直线AB 的方程为111292y x ⎛⎫-=-- ⎪⎝⎭,即950x y +-=. 故选:C.(2)直线0x y -过点F ,令0y =则x =()F,即c =设()()1122,,,A x y B x y ,则2222112222221,1x y x y a b a b +=+=,两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,所以222222111222b b a b a a ⎛⎫-=-⋅⇒=⇒= ⎪⎝⎭,22223,c a b b b a =-====所以椭圆C 的方程为22163x y +=.故选:D 【一隅三反】1.(2021·浙江嘉兴·高二期中)已知点P Q M ,,是椭圆2222:1(0)x y C a b a b +=>>上的三点,坐标原点O 是PQM的重心,若点M ⎫⎪⎪⎝⎭,直线PQ 的斜率恒为12-,则椭圆C 的离心率为( ) ABCD【答案】D【解析】设()()1122,,,P x y Q x y,又,M ⎫⎪⎪⎝⎭由原点O 是PQM的重心,得1212220,033x x y y ++==,即1212,x x y y +=+=, 又P Q ,是椭圆2222:1(0)x y C a b a b+=>>上的点,2222112222221,1x y x y a b a b∴+=+=, 作差可得:()()()()1212121222x x x x y y y y a b -+-+=-,即()()2212122121212b b x x y y x x a y y ⎛⎫⋅ ⎪+-=-=-=-+⎝⎭,即12b a =,∴c e a===, 故选:D2.(2021·河南新乡·高二期末(理))已知椭圆()2222:10x y G a b a b+=>>的右焦点为()F ,过点F 的直线交椭圆于A 、B 两点.若AB的中点坐标为,则G 的方程为( )A .2213214+=x yB .2213820+=x yC .2214830+=x yD .2213618x y +=【答案】D【解析】设点()11,A x y 、()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两个等式作差得22221212220x x y y a b --+=, 整理可得2221222212y y b x x a-=--, 设线段AB的中点为M,即2121221212AB OMy y y y b k k x x x x a-+⋅=⋅=--+,另一方面12AB MFk k ==,1OM k =-,所以,()2211122b a -=⨯-=-,所以,22222182c a b a b ⎧=-=⎨=⎩,解得223618a b ⎧=⎨=⎩, 因此,椭圆G 的方程为2213618x y +=.故选:D.3.(2021·江苏)已知椭圆C 的方程为2214x y +=,直线AB 与椭圆C 交于A ,B 点,且线段AB 的中点坐标为1(1,)2,则直线AB 的方程为( )A .3220x y --=B .4230--=x yC .2230x y +-=D .+220x y -=【答案】D【解析】设,A B 两点的坐标分别为1122(,),(,)x y x y ,则有221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得12121212()()()()04x x x x y y y y -++-+=, ∴121212124()y y x xx x y y -+=--+. 又12122,1x x y y +=+=, ∴121221412y y x x -=-=--⨯,即直线AB 的斜率为12-, ∴直线AB 的方程为11(1)22y x -=--,即+220x y -=. 故选:D.4.(2021·河北辛集中学高二期中)过椭圆216x +24y =1内一点M (2,1)引一条弦,使弦被M 点平分.(1)求此弦所在的直线方程; (2)求此弦长.【答案】(1)x +2y -4=0;【解析】(1)设所求直线方程为y -1=k (x -2).代入椭圆方程并整理,得 (4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0,① 又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程的两个根,于是x 1+x 2=228(2)41k k k -+.又M 为AB 的中点,∴122x x +=224(2)41k k k -+=2,解得k =-12,直线方程为11(2)2y x -=--,即x +2y -4=0.(2)由(1)将k =-12代入①得,x 2-4x =0, ∴120,4x x ==, ∴|AB |12|x x -=考点六 最值【例6】(1)(2021·浙江高二期末)点P 、Q 分别在圆(222x y +=和椭圆2214x y +=上,则P 、Q 两点间的最大距离是( )A .B .C .D .(2)(2021·江苏高二开学考试)已知椭圆22:194x y C +=的右顶点为2A ,直线:l x m =与椭圆C 相交于A ,B 两点,当2∠AA B 为钝角时,m 的取值范围是( ). A .150,13⎛⎫⎪⎝⎭B .15,313⎛⎫ ⎪⎝⎭C .1515,00,1313⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .15153,,31313⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭【答案】(1)C(2)B【解析】(1)圆(222x y +=的圆心为(C ,半径为r =设点(),Q x y ,则2244x y =-且11y -≤≤,CQ ==,当且仅当3y =-时,等号成立,所以,max max PQ CQ r =+=故选:C.(2)易知33m -<<,x m=代入22194x y +=得y =±AB =由对称性知2AA B 是等腰三角形,AB 是底,设AB 与x 轴交点为M ,如图, 2∠AA B 为钝角,则24AA M π∠>,∴2AM MA >,即3m >-,解得15313m <<.故选:B .【一隅三反】1.(【新东方】高中数学20210429—004【2020】【高二上】)已知P 为椭圆22221x y a b+=上一点,12,F F 是焦点,12F PF ∠取最大值时的余弦值为13,则此椭圆的离心率为_______.【解析】依题意12122,2PF PF a F F c +==,222a b c =+,当12F PF ∠取最大值时,即12cos F PF ∠最小,即12cos F PF ∠的最小值为13.而()222221212121212121224cos 22PF PF PF PF c PF PF F F F PF PF PF PF PF +-⋅-+-∠==⋅⋅222121212424212a PF PF c b PF PF PF PF -⋅-==-⋅⋅, 而()2122124PF PF PF PF a +⋅≤=,当且仅当12PF PF a ==时等号成立,故21222cos 1b F PF a∠≥-,当且仅当12PF PF a ==时等号成立,所以12cos F PF ∠的最小值为222113b a -=,即2223ba =,故c e a ===2.(2021·重庆西南大学附中高二期末)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F 、2F ,离心率为12,过2F 的直线l 交C于A 、B 两点,若1AF B △的周长为8.(1)求椭圆C 的标准方程;(2)若椭圆上存在两点关于直线4y x m =+对称,求m 的取值范围.【答案】(1)22143x y +=;(2)m <<【解析】(1)1AF B △周长为8,即48a =,2a ∴=.又因为12e =,1c ∴=,b =椭圆方程22143x y C +=:,(2)设椭圆上两点11(,)A x y ,22(,)B x y 关于4y x m =+对称,则AB 的方程为14y x t =-+,由2214143y x t x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 有:2213816480x tx t -+-= 由22(8)413(1648)0.t t ∆=--⨯⨯->得213,4t <① 又1212128124,()213413t tx x y y x x t +=+=-++=因为AB 的中点在直线4y x m =+上,所以1212422y y x x m ++=+,即12441313t tm =⨯+ 所以1340m t +=②,由①②得:2413m <,即m <<。

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。

2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。

3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。

4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。

5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。

6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。

7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。

重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。

2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。

3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。

4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。

高中数学《椭圆》方程典型例题20例(含标准答案)

高中数学《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学椭圆专题一.相关知识点1.椭圆的概念平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。

这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a,|F1F2|=2c,其中a>0,c>0,且a,c为常数}。

(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2.椭圆的标准方程和几何性质3.椭圆中常用的4个结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时P在短轴端点处;当x=±a时,|OP|有最大值a,这时P在长轴端点处。

(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2。

(3)已知过焦点F1的弦AB,则△ABF2的周长为4a。

(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c。

一、细品教材1.(选修1-1P34例1改编)若F1(3,0),F2(-3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.x225+y216=1 B.x2100+y29=1 C.y225+x216=1 D.x225+y216=1或y225+x216=12.(选修1-1P42A组T6改编)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.22 B.2-12C.2- 2 D.2-1走进教材答案1.A; 2.D 二、双基查验1.设P是椭圆x24+y29=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.8 C.6 D.182.方程x25-m+y2m+3=1表示椭圆,则m的范围是()A.(-3,5) B.(-5,3) C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)3.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或214.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________。

高中数学解椭圆方程的常见方法和注意事项

高中数学解椭圆方程的常见方法和注意事项

高中数学解椭圆方程的常见方法和注意事项椭圆方程是高中数学中的重要内容,解椭圆方程需要掌握一些常见的方法和注意事项。

本文将介绍几种常见的解椭圆方程的方法,并给出相应的例题进行说明。

一、配方法解椭圆方程配方法是解椭圆方程的一种常用方法,它的基本思想是通过变量代换将椭圆方程转化为标准形式,从而求解出方程的解。

例题一:解方程$x^2-3xy+2y^2=7$解法:首先,我们将方程进行配方,即将$x^2-3xy+2y^2$转化为$(x-y)(x-2y)$的形式。

因此,原方程可写为$(x-y)(x-2y)=7$。

接下来,我们可以尝试令$u=x-y$和$v=x-2y$,则方程可以进一步转化为$uv=7$。

这样,我们就将原方程转化为了一个更简单的形式,可以通过求解$u$和$v$的值来得到方程的解。

假设$u=1$,则$v=7$;假设$u=7$,则$v=1$。

因此,原方程的解为$(x-y,x-2y)=(1,7)$和$(7,1)$。

二、直接求解椭圆方程直接求解椭圆方程是一种简单直接的方法,需要将方程转化为标准形式,然后根据标准形式进行求解。

例题二:解方程$4x^2+9y^2-24x+36y=0$解法:首先,我们将方程进行配方,即将$4x^2-24x$转化为$4(x^2-6x)$,将$9y^2+36y$转化为$9(y^2+4y)$。

然后,我们再将方程进行分组,即$4(x^2-6x)+9(y^2+4y)=0$。

接下来,我们可以将$x^2-6x$转化为$(x-3)^2-9$,将$y^2+4y$转化为$(y+2)^2-4$。

将这些转化代入方程,得到$(x-3)^2-9+9(y+2)^2-36=0$。

整理后,得到$(x-3)^2+9(y+2)^2=45$。

这是一个标准的椭圆方程,可以根据标准形式求解。

通过对方程进行分析,我们可以得到椭圆的中心坐标为$(3,-2)$,长轴长度为$\sqrt{45}$,短轴长度为$\sqrt{5}$。

高中数学椭圆经典例题(学生+老师)

高中数学椭圆经典例题(学生+老师)

. 专业.专注 .(教师版)椭圆标准方程典型例题例 1 已知椭圆 mx2 3y2 6m 0 的一个焦点为( 0, 2)求m的值.剖析:把椭圆的方程化为标准方程,由 c 2 ,依据关系 a2 b2 c2可求出 m 的值.解:方程变形为x2y2 1 .由于焦点在y轴上,所以2m 6 ,解得 m 3 .6 2m又 c 2 ,所以2m 6 22,m 5合适.故m 5.例 2 已知椭圆的中心在原点,且经过点P 3,0,a3b ,求椭圆的标准方程.剖析:因椭圆的中心在原点,故其标准方程有两种状况.依据题设条件,运用待定系数法,求出参数 a 和b(或 a2 和 b2 )的值,即可求得椭圆的标准方程.解:当焦点在 x 轴上时,设其方程为x2 y2 1 a b 0 .a 2 b2由椭圆过点 P 3,0 ,知90 1.又a 3b ,代入得 b2 1 , a 2 9 ,故椭圆的方程为x2 y2 1 .a2 b2 9当焦点在 y 轴上时,设其方程为y2 x2 1 a b 0 .a2 b2由椭圆过点P3,0 ,知90 1 .又a3b ,联立解得a2 81 , b2 9,故椭圆的方程为a2 b2y2 x2 81 1.9例 3ABC 的底边 BC 16 , AC 和 AB 两边上中线长之和为30 ,求此三角形重心G 的轨迹和极点 A 的轨迹.剖析:( 1 )由已知可得GC GB 20 ,再利用椭圆定义求解.( 2 )由G的轨迹方程G 、 A 坐标的关系,利用代入法求 A 的轨迹方程.解:(1)以BC所在的直线为x轴,BC中点为原点成立直角坐标系.设G点坐标为x,y ,由.word 完满格式.. 专业.专注 .GC GB 20 ,知 G 点的轨迹是以 B 、 C 为焦点的椭圆 ,且除掉轴上两点 .因 a10 , c 8 ,有 b 6 ,故其方程为x 2y20 .1001 y36( 2 )设 A x , y , G x ,y x 2y 2①,则1 y 0 .10036xx,的轨迹方程为x 2y 2(除掉 x 轴上两由题意有3代入①,得A900 1 y 0 ,其轨迹是椭圆y y3243点).例 4 已知 P 点在以坐标轴为对称轴的椭圆上 ,点 P 到两焦点的距离分别为4 5和2 5,过 P 点作焦点所在轴33的垂线 ,它恰巧过椭圆的一个焦点 ,求椭圆方程 .4 52 5. 从 椭 圆 定 义 知 2a PF 1PF 2 2 5.即解:设两焦点为 F 1、F 2,且 PF 1, PF 233a5 .从 PF 1PF 2 知 PF 2 垂直焦点所在的对称轴 ,所以在 Rt PF 2F 1 中, sin PF 1F 2PF 2 1 ,PF 1 2可求出PF 1 F 26 , 2cPF 1 cos2 5 ,进而 b 2a 2 c 210 .6 33∴所求椭圆方程为 x23y 21或 3x 2y 2 1.51010 5例 5 已知椭圆方程x 2 y 2 1 a b0 ,长轴端点为 A 1, A 2 ,焦点为 F 1 , F 2 , P 是a2b2椭圆上一点 , A 1PA 2 , F 1PF 2 . 求: F 1 PF 2 的面积 (用 a 、 b 、 表示 ).剖析 :求面积要联合余弦定理及定义求角的两邻边 ,进而利用 S1ab sin C 求面积 .2解:如图 ,设 P x , y ,由椭圆的对称性 ,不如设 P 在第一象限 ..word 完满格式.. 专业.专注 .2 2 22 PF1 ·PF2 cos 4c2.①由余弦定理知: F1F2 PF1 PF2由椭圆定义知: PF PF 2a ②,则②2-①得PF1 PF2 2b2 .1 2 1 cos故S FPF 1 PF1 PF2 sin 1 2b2 sin b2 tan .1 2 2 2 1 cos 2例 6 已知动圆P过定点A3,0 ,且在定圆 B:x 3 2y264 的内部与其相内切,求动圆圆心P 的轨迹方程.剖析:要点是依据题意,列出点P知足的关系式.解:以下图,设动圆 P 和定圆 B 内切于点 M .动点 P 到两定点,即定点 A 3,和定圆圆心 B 3,0 距离之和恰巧等于定圆半径,即 PA PB PM PB BM 8 .∴点 P 的轨迹是以 A , B 为两焦点,半长轴为 4 ,半短轴长为b 42 32 7 的椭圆的方程:x2 y2 1 .16 7说明:本题是先依据椭圆的定义,判断轨迹是椭圆,而后依据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例 7 已知椭圆x2y2 1,2(1)求过点P 1 1且被 P 均分的弦所在直线的方程;2,2(2)求斜率为 2 的平行弦的中点轨迹方程;(3)过A 2,1 引椭圆的割线,求截得的弦的中点的轨迹方程;( 4 )椭圆上有两点P 、Q, O 为原点,且有直线 OP 、OQ斜率知足k OP k OQ 1 ,2求线段 PQ 中点M的轨迹方程..word 完满格式.. 专业.专注.剖析:本题中四问都跟弦中点有关,所以可考虑设弦端坐标的方法.解:设弦两头点分别为M x1, y1 , N x2, y2 ,线段 MN 的中点R x,y,则2 2 ,①x1 2y1 2 ①-②得 x1 x2 x1 x2 2 y1 y2 y1 y2 0 .2 2 ,②x2 2y2 2x1 x2,③由题意知x1 x2 ,则上式两端同除以 x1x2,有2xy1 y2,④2y y1 y2x1x22 y1y2x1 x2 0 ,将③④代入得 x2 yy1 y2 0 .⑤x1 x2( 1 )将x 1 ,y 1 代入⑤,得y1y21,故所求直线方程为: 2 x 4 y 3 0 .⑥2 2 x1 x2 2将⑥ 代入椭圆方程x2 2 y2 2 得 6 y 2 6 y 1 0 ,36 4 6 1 0 切合题意, 2x 4 y 3 0 为所4 4 求.( 2 )将y1 y2 2 代入⑤得所求轨迹方程为:x 4 y 0 .(椭圆内部分)x1 x2( 3 )将y1 y2 y1代入⑤得所求轨迹方程为:x2 2y 2 2x 2 y 0 .(椭圆内部分)x1 x2 x 2(4)由①+② 得:x12 x22 y12 y22 2 ,⑦,将③④ 平方并整理得2x12 x22 4x2 2x1 x2,⑧,y12 y22 4 y2 2 y1 y2,⑨将⑧⑨ 代入⑦得:4x2 2x1 x2 4 y 2 2 y1 y2 2 ,⑩4再将 y1 y2 1x1x2 代入⑩式得:2x2 x1 x2 4 y2 21x1 x2 2 ,即x 2y21.2 2 12此即为所求轨迹方程.自然,本题除了设弦端坐标的方法,还可用其余方法解决..word 完满格式.. 专业.专注 .例 8 已知椭圆 4x 2y 21及直线 y x m .( 1 )当 m 为什么值时 ,直线与椭圆有公共点?( 2 )若直线被椭圆截得的弦长为2 10,求直线的方程.5解:( 1)把直线方程 y x m 代入椭圆方程 4x 2y 2 1得 4x 2 x m 21 ,即 5x 22mx m 21 0 .2m 2 4 5 m 2116m 2 20 0 ,解得5 m5 .22( 2 )设直线与椭圆的两个交点的横坐标为x 1 , x 2 ,由(1)得 x 1x 2 2mm 2 1, x 1 x 25 .5221依据弦长公式得: 1 122m4m2 10 . 解得 m 0 . 方程为 y x .555说明 :办理有关直线与椭圆的地点关系问题及有关弦长问题,采纳的方法与办理直线和圆的有所差别 .这里解决直线与椭圆的交点问题,一般考虑鉴别式;解决弦长问题 ,一般应用弦长公式 .用弦长公式 ,若能合理运用韦达定理 (即根与系数的关系 ), 可大大简化运算过程 .例 9以椭圆 x2y 2 1 的焦点为焦点 ,过直线 l : x y 90上一点 M 作椭圆,要使12 3所作椭圆的长轴最短 ,点 M 应在哪处 ?并求出此时的椭圆方程.剖析 : 椭圆的焦点简单求出,依照椭圆的定义 ,本题实质上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点 )的距离之和最小 ,只须利用对称便可解决 .解:以下图 ,椭圆x 2y 2 1 的焦点为 F 1 3,0 , F 2 3,0 .12 3点F 1 对于直线 l : x y 90 的对称点 F 的坐标为 (- 9, 6), 直线 FF 2 的方程为 x 2 y 3 0 .x 2y 3 0解方程组得交点 M 的坐标为 (- 5 , 4). 此时 MF MF2 最小.x y 9 01. word 完满格式 .. 专业.专注 .所求椭圆的长轴 :2MF 1MF 2 FF 2 6 5 ,∴a 3 5 ,又 c 3 ,a∴ 2a 2c 23 52236 .所以 ,所求椭圆的方程为 x2y 21. b34536例 10已知方程x 2y 2k 5 31表示椭圆 ,求 k 的取值范围 .kk 50,解:由 3 k0,得 3k 5,且 k 4.k 5 3 k,∴知足条件的 k 的取值范围是 3k 5 ,且 k 4 . 说明 :本题易出现以下错解 k 5 0, 5 ,故 k 的取值范围是 3 k 5 .:由k得 3 k3 0,犯错的原由是没有注意椭圆的标准方程中a b 0 这个条件 ,当 a b 时,其实不表示椭圆 .例 11已知 x 2siny 2 cos1 (0) 表示焦点在 y 轴上的椭圆 ,求 的取值范围 .剖析 :依照已知条件确立 的三角函数的大小关系 .再依据三角函数的单一性,求出的取值范围 .解:方程可化为x 2 y 21 1 0 . 1 1. 由于焦点在 y 轴上 ,所以sin1 cossincos所以 sin0且 tan1进而(,3) .2 4说明 : (1)由椭圆的标准方程知1 0 10 ,这是简单忽略的地方 .sin,cos(2) 由 焦 点 在 y 轴 上 , 知a 21, b 21 . (3)求的取值范围时,应注意题目中的条件cossin..word 完满格式.. 专业.专注 .例 12求中心在原点 ,对称轴为坐标轴 ,且经过 A( 3 , 2) 和 B( 2 3 ,1) 两点的椭圆方程 .剖析 :由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情况,为了计算简易起见 ,可设其方程为 mx 2 ny 21( m 0 , n 0),且不用去考虑焦点在哪个坐标轴上,直接可求出方程 .解:设所求椭圆方程为 mx 2ny 2 1( m 0 , n 0).由 A( 3 ,2)和B( 2 3 , 1) 两点在椭圆上可得m ( 3) 2 n ( 2) 21,3m 4n 1,1, n1.故所求的椭圆方程为x 2y 21.3) 2 n 12即12m n所以 mm ( 21,1,15 515 5例 13知圆 x 2 y 2 1,从这个圆上随意一点 P 向 y轴作垂线段 ,求线段中点 M 的轨迹 .剖析 :本题是已知一些轨迹 ,求动点轨迹问题 . 这类题目一般利用中间变量 (有关点 )求轨迹方程或轨迹 . 解:设点 M 的坐标为 ( x , y) ,点 P 的坐标为 ( x 0 ,y 0 ) ,则 xx 0 , y y 0.2由于P( x 0 , y 0 )在圆x2y 21 上,所以 x 02y 0 2 1.将x 0 2x ,y 0221 得 4x2y 21.所以点M 的轨迹是一个椭圆y代 入 方 程x 0y 04x 2y 21.说明 :本题是利用有关点法求轨迹方程的方法,这类方法详细做法以下 :第一设动点的坐标为 ( x , y),设已知轨迹上的点的坐标为( x 0 , y 0 ),而后依据题目要求 ,使x ,y 与x 0 ,y 0 成立等式关系 ,进而由这些等式关系求出x 0 和 y 0 代入已知的轨迹方程 ,就能够求出对于 x , y 的方程 ,化简后即我们所求的方程 .这类方法是求轨迹方程的最基本的方法,一定掌握 .例 14 已知长轴为 12 ,短轴长为6,焦点在 x 轴上的椭圆 ,过它对的左焦点 F 1 作倾斜解为的直线交椭圆于3A ,B 两点,求弦 AB 的长.剖析:能够利用弦长公式 AB 1 k 2 x1 x2(1 k 2 )[( x1 x2 )2 4x1x2 ] 求得,.word 完满格式.. 专业.专注 .也能够利用椭圆定义及余弦定理,还能够利用焦点半径来求.解: ( 法 1) 利用直线与椭圆订交的弦长公式求解.AB1 k2 x 1 x 2(1 k 2 )[( x 1 x 2 )24x 1 x 2 ] . 由于 a6 , b 3 ,所以 c 3 3.由于焦点在 x 轴上,x 2 y 2 3 , 0) ,进而直线方程为 y3x9.所以椭圆方程为1,左焦点 F ( 3369由直线方程与椭圆方程联立得: 13x 272 3x36 8 0 . 设 x 1 , x 2 为方程两根 ,所以 x 1 x 272 3 ,13x 1x 236 8 , k 3 ,进而 AB1 k2 x 1 x 2(1 k 2 )[( x 1 x 2 )24x 1 x 2 ] 48 .1313( 法 2) 利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为x 2y 2 1,设 AF m , BFn ,则 AF 12m , BF12 n .2369 112222F 1F 2 cos ,即 (12 m)2 m 236 3 2 m 6 3 1在AF 1F 2 中, AF 2AF 1F 1 F 22 AF 1 ;3 2所以 m6 BF 1F 2 中,用余弦定理得 n 6 m 48.同理在,所以 ABn . 434 313( 法 3) 利用焦半径求解 .先依据直线与椭圆联立的方程13x 2 72 3x 36 80 求出方程的两根 x 1 , x 2 , 它们分别是 A ,B 的横坐标.再依据焦半径 AF 1 a ex 1, BF 1 a ex 2 ,进而求出 AB AF 1 BF 1 .例 15 椭圆x 2y 2 1 上的点 M 到焦点 F 1 的距离为 2, N 为 MF 1 的中点,则 ON ( O 为坐标原点 )的值为 25 9A . 4B . 2C . 8D .32. word 完满格式 .. 专业.专注 .解:以下图,设椭圆的另一个焦点为 F 2,由椭圆第必定义得MF 1 MF 2 2a 10 ,所以 MF 2 10MF 1 10 2 8 ,又由于 ON 为 MF 1F 2 的中位线 ,所以 ON1MF 24 ,故答案为 A .2说明 : (1)椭圆定义 :平面内与两定点的距离之和等于常数 (大于 F 1F 2 )的点的轨迹叫做椭圆 .(2) 椭圆上的点必然合适椭圆的这必定义,即 MF 1 MF 2 2a ,利用这个等式能够解决椭圆上的点与焦点的有关距离 .例 16x 2y 24x m ,椭圆 C 上有不一样的两点已知椭圆 C :1 ,试确立 m 的取值范围 ,使得对于直线 l : y4 3对于该直线对称 .剖析 :若设椭圆上A ,B 两点对于直线 l 对称 ,则已知条件等价于 : (1)直线 AB l ; (2) 弦 AB 的中点 M 在 l上.利用上述条件成立 m 的不等式即可求得 m 的取值范围 .解: ( 法 1) 设椭圆上 A( x 1 , y 1 ) , B( x 2 , y 2 ) 两点对于直线 l 对称 ,直线 AB 与 l 交于 M( x 0, y 0 ) 点 .4 ,∴设直线 AB 1y 1x n ,消去 y 得∵ 的斜率 k l的方程为 yxn .由方程组 4l4x 2 y 2 1,4313 x 2 8nx 16n 248 0①。

高中数学椭圆练习题(含答案)

高中数学椭圆练习题(含答案)

椭圆练习题一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A . 22B . 2C . 2D . 16.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+yx 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2C .21 D .-21 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 .15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,求顶点A 轨迹方程.18.椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.19.点P到定点F(2,0)的距离和它到定直线x=8的距离的比为1:2,求点P的轨迹方程,并指出轨迹是什么图形.20.中心在原点,一焦点为F1(0,52)的椭圆被直线y=3x-2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=210,求椭圆方程22.椭圆12222=+byax(a>b>)0与直线1=+yx交于P、Q两点,且OQOP⊥,其中O为坐标原点.(1)求2211ba+的值;(2)若椭圆的离心率e满足33≤e≤22,求椭圆长轴的取值范围.椭圆练习题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDDABD13、3或316 14、 4 , 1 15、5382 16、121425422=+yx17、3)(x 15922±≠=+y x 18、解:(1)当A (2,0)为长轴端点时,a =2 , b =1,椭圆的标准方程为: ;(2)当为短轴端点时,,,椭圆的标准方程为: ;19.解:设P (x ,y ),根据题意,|PF|=(x-2)2-y 2,d=|x-8|,因为|PF|d =12 ,所以 (x-2)2-y 2 |x-8| = 12.化简,得3x 2+4y 2=48,整理,得x 216 +y 212=1,所以,点P 的轨迹是椭圆。

高中数学椭圆经典考点及例题讲解 (1)

高中数学椭圆经典考点及例题讲解 (1)

椭圆考纲解读 1.利用椭圆的定义、几何性质求椭圆方程;2.利用椭圆的几何性质研究直线与椭圆的关系.[基础梳理]1.椭圆的定义(1)平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a>|F1F2|时,M点的轨迹为椭圆;②当2a=|F1F2|时,M点的轨迹为线段F1F2;③当2a<|F1F2|时,M点的轨迹不存在.2.椭圆的标准方程和几何性质x2y2y2x2[三基自测]1.已知椭圆x2m-2+y210-m=1的焦点在x轴上,焦距为4,则m等于()A.8B.7C .6D .5答案:A2.已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7答案:D3.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________.答案:x 24+y 23=14.过椭圆x 225+y 216=1的右焦点F 2作直线交椭圆于A 、B 两点,则△AF 1B 的周长为________.答案:205.(2017·高考全国卷Ⅰ改编)A 、B 是椭圆x 23+y 2m =1长轴的两个端点,M 为短轴的一个端点,且∠AMB =120°,求m 值.答案:1或9考点一 椭圆的定义及应用|思维突破[例1] (1)已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 (2)设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12(3)F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.74 C.72D.752[解析] (1)点P 在线段AN 的垂直平分线上, 故|P A |=|PN |.又AM 是圆的半径,∴|PM |+|PN |=|PM |+|P A |=|AM |=6>|MN |, 由椭圆定义知,点P 的轨迹是椭圆.(2)如图所示,因为到两个圆心恰好是椭圆的焦点,由椭圆的定义可知|PF 1|+|PF 2|=10,易知|PM |+|PN |=(|PM |+|MF 1|)+(|PN |+|NF 2|)-2,则其最小值为|PF 1|+|PF 2|-2=8,最大值为|PF 1|+|PF 2|+2=12,故选C.(3)由题意得a =3,b =7,c =2,∴F 1F 2=22,AF 1+AF 2=6.∵AF 22=AF 21+F 1F 22-2AF 1·F 1F 2cos 45°=AF 21-4AF 1+8,∴(6-AF 1)2=AF 21-4AF 1+8.∴AF 1=72.∴S =12×72×22×22=72.[答案] (1)B (2)C (3)C [思维升华]椭圆定义应用技巧思路应用 解读求方程 条件转化后满足椭圆定义,直接求轨迹方程求焦点三角形 求焦点三角形周长或面积,根据椭圆定义、正余弦定理,其中|PF 1|+|PF 2|=2a .平方是常用技巧求最值 利用|PF 1|+|PF 2|=2a 为定值,利用基本不等式求|PF 1|·|PF 2|最值或利用三角形求最值.如a +c 、a -c[跟踪训练]1.已知圆C 1:(x -4)2+y 2=169,圆C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 解析:设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,∴M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.答案:D2.椭圆C :x 2a 2+y 2=1(a >0)的左、右焦点分别为F 1、F 2、P 为椭圆上异于端点的任意一点,PF 1,PF 2的中点分别为M ,N .O 为坐标原点,四边形OMPN 的周长为23,则△PF 1F 2的周长是( )A .2(2+3) B.2+23 C.2+ 3D .4+23解析:因为O ,M 分别为F 1F 2和PF 1的中点,所以OM ∥PF 2,且|OM |=12|PF 2|,同理,ON ∥PF 1,且|ON |=12|PF 1|,所以四边形OMPN 为平行四边形,由题意知,|OM |+|ON |=3,故|PF 1|+|PF 2|=23,即2a =23,a =3,由a 2=b 2+c 2知c 2=a 2-b 2=2,c =2,所以|F 1F 2|=2c =22,故△PF 1F 2的周长为2a +2c =23+22,选A.答案:A3.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|P A |+|PF |的最大值为________,最小值为________.解析:如图所示,设椭圆右焦点为F 1,则|PF |+|PF 1|=6. 所以|P A |+|PF |=|P A |-|PF 1|+6.利用-|AF 1|≤|P A |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立). 所以|P A |+|PF |≤6+2, |P A |+|PF |≥6- 2.故|P A |+|PF |的最大值为6+2,最小值为6- 2. 答案:6+2 6-2考点二 椭圆的标准方程及应用|方法突破[例2] (1)△ABC 的两个顶点为A (-4,0),B (4,0),周长为18,则C 点轨迹为( ) A.x 225+y 29=1(y ≠0) B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.y 216+x 29=1(y ≠0) (2)已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.求椭圆C 2的方程.[解析] (1)(定义法)由A ,B 坐标可知|AB |=8,由△ABC 的周长为18可知AC +BC =10,由椭圆的定义可知,点C 在焦点为A (4,0),B (-4,0),长半轴长为5的椭圆上运动,则椭圆方程为x 225+y 29=1,当点C 在横轴上时,点A ,B ,C 共线,不能构成三角形,所以y ≠0,所以点C 的轨迹方程为x 225+y 29=1(y ≠0).(2)法一:(待定系数法):由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,解得a =4,故椭圆C 2的方程为y 216+x 24=1.法二:(椭圆系法):因椭圆C 2与C 1有相同的离心率,且焦点在y 轴上,故设C 2:y 24+x 2=k (k >0),即y 24k +x 2k=1. 又2k =2×2,故k =4, 故C 2的方程为y 216+x 24=1.[答案] (1)A [方法提升]求椭圆标准方程的方法[母题变式]1.本例(1)变为:一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1 B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12.得a 2=8,b 2=6,故椭圆方程为x 28+y 26=1. 答案:A2.本例(2)变为:与椭圆x 24+y 23=1有相同离心率且经过点(2,-3),求椭圆方程.解析:法一:因为e =ca =a 2-b 2a =1-b 2a2=1-34=12,若焦点在x 轴上,设所求椭圆方程为x 2m 2+y 2n2=1(m >n >0),则1-⎝⎛⎭⎫n m 2=14.从而⎝⎛⎭⎫n m 2=34,n m =32. 又4m 2+3n2=1,所以m 2=8,n 2=6. 所以方程为x 28+y 26=1.若焦点在y 轴上,设方程为y 2h 2+x 2k 2=1(h >k >0),则3h 2+4k 2=1,且k h =32, 解得h 2=253,k 2=254.故所求方程为y 2253+x 2254=1.法二:若焦点在x 轴上,设所求椭圆方程为 x 24+y 23=t (t >0),将点(2,-3)代入,得 t =224+(-3)23=2.故所求方程为x 28+y 26=1. 若焦点在y 轴上,设方程为y 24+x 23=λ(λ>0),代入点(2,-3),得λ=2512,故所求方程为y 2253+x 2254=1.考点三 椭圆的几何性质|模型突破角度1 求离心率(或范围)[例3] (1)若椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 是抛物线y 2=4x 的焦点,两曲线的一个交点为P ,且|PF |=4,则该椭圆的离心率为( )A.7-23B.2+13C.23D.12(2)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎡⎭⎫23,1B.⎣⎡⎦⎤13,22 C.⎣⎡⎭⎫13,1D.⎝⎛⎦⎤0,13 (3)已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 在椭圆上且满足PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是( )A.⎣⎡⎭⎫33,1B.⎣⎡⎦⎤33,22 C.⎣⎡⎦⎤13,12D.⎝⎛⎭⎫0,22 [解析] (1)(直接法)设P (x ,y ),由题意,得F (1,0),|PF |=x +1=4,所以x =3,y 2=12,则9a 2+12b2=1,且a 2- 1=b 2,解得a 2=11+47,即a =7+2,则该椭圆的离心率e =c a =17+2=7-23.故选A.(2)(几何法)如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=F 1F 2=2c ,即椭圆上存在一点P ,使得PF 2=2c . ∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎡⎭⎫13,1.故选C. (3)(直接法)设P (x ,y ),则x 2a 2+y 2b 2=1,y 2=b 2-b 2a 2x 2,-a ≤x ≤a ,PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ).所以PF 1→·PF 2→=x 2-c 2+y 2=⎝⎛⎭⎫1-b 2a 2x 2+b 2-c 2=c 2a 2x 2+b 2-c 2.因为-a ≤x ≤a ,所以b 2-c 2≤PF 1→·PF 2→≤b 2. 所以b 2-c 2≤c 2≤b 2.所以2c 2≤a 2≤3c 2. 所以33≤c a ≤22.故选B. [答案] (1)A (2)C (3)B [模型解法][高考类题]1.(2016·高考全国卷Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34解析:|OB |为椭圆中心到l 的距离,设l 与椭圆交于顶点A 和焦点F ,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b 2,所以e =c a =12.故选B.答案:B角度2 根据椭圆性质求值或范围[例4] (1)已知点P 是椭圆x 216+y 28=1(x ≠0,y ≠0)上的一动点,F 1,F 2为椭圆的两个焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上的一点,且F 1M →·PM →=0,则|OM →|的取值范围为( )A .[0,3)B .(0,22)C .[22,3)D .[0,4)(2)(2018·合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点.则PF →·P A →的最大值为________.[解析] (1)由题意得c =22,当点P 在椭圆的短轴端点处时,M 与点O 重合,|OM →|取得最小值0;当点P 在椭圆的长轴端点处时,点M 与F 1重合,|OM →|取得最大值22,由于x ≠0,y ≠0,故|OM →|的取值范围是(0,22).(2)设P 点坐标为(x 0,y 0).由题意知a =2, ∵e =c a =12,c =1,∴b 2=a 2-c 2=3.故所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.∵F (-1,0),A (2,0),PF →=(-1-x 0,-y 0), P A →=(2-x 0,-y 0),∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 即当x 0=-2时,PF →·P A →取得最大值4. [答案] (1)B (2)4 [模型解法][高考类题]2.(2017·高考全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)解析:依题意得,⎩⎪⎨⎪⎧3m ≥tan ∠AMB 20<m <3或⎩⎪⎨⎪⎧ m 3≥tan ∠AMB 2m >3,所以⎩⎪⎨⎪⎧3m ≥tan 60°0<m <3或⎩⎪⎨⎪⎧m 3≥tan 60°m >3,解得0<m ≤1或m ≥9.故选A. 答案:A3.(2014·高考福建卷)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+2 C .7+ 2D .62 解析:设圆的圆心为C ,则C (0,6),半径为r =2,点C 到椭圆上的点Q (10cos α,sin α)的距离|CQ |=(10cos α)2+(sin α-6)2=46-9sin 2α-12sin α=50-9(sin α+23)2≤50=52,当且仅当sin α=-23时取等号,所以|PQ |≤|CQ |+r =52+2=62,即P ,Q 两点间的最大距离是62,故选D.答案:D考点四 直线与椭圆的综合问题|方法突破[例5] (1)(2018·新乡模拟)已知椭圆x 22+y 2=1,则斜率为2的平行弦中点的轨迹方程为________.(2)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上任意一点,直线TA ,TB 的斜率之积为-34.①求椭圆C 的方程;②设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP →·OQ →+MP →·MQ →的取值范围.[解析] (1)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有x 212+y 21=1,x 222+y 22=1. 两式作差,得(x 2-x 1)(x 2+x 1)2+(y 2-y 1)(y 2+y 1)=0.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 2-y 1x 2-x 1=k AB ,代入后求得k AB =-x 02y 0. 即2=-x 02y 0,所以x 0+4y 0=0.故所求的轨迹方程为x +4y =0,将x +4y =0代入x 22+y 2=1得:x 22+⎝⎛⎭⎫-x 42=1,解得x=±43,又中点在椭圆内,所以-43<x <43.(2)①设T (x ,y ),由题意知A (-4,0),B (4,0),设直线TA 的斜率为k 1,直线TB 的斜率为k 2,则k 1=y x +4,k 2=y x -4.由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.故椭圆C 的方程为x 216+y 212=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),直线PQ 与椭圆方程联立,得⎩⎪⎨⎪⎧x 216+y 212=1y =kx +2,消去y ,得(4k 2+3)x 2+16kx -32=0.所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP →·OQ →+MP →·MQ →=x 1x 2+y 1y 2+[x 1x 2+(y 1-2)(y 2-2)]=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3.所以-20<OP →·OQ →+MP →·MQ →≤-523.当直线PQ 的斜率不存在时,OP →·OQ →+MP →·MQ →的值为-20. 综上,OP →·OQ →+MP →·MQ →的取值范围为[-20,-523].[答案] (1)x +4y =0⎝⎛⎭⎫-43<x <4 3 [方法提升][跟踪训练]1.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 解析:设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式相减得x 21-x 22a 2+y 21-y 22b2=0,∴x 1+x 2a 2+y 1-y 2x 1-x 2·y 1+y 2b 2=0.∵x 1+x 2=2,y 1+y 2=-2,k AB =-1-01-3=12, ∴2a 2+12×-2b 2=0,即a 2=2b 2. 又c =3=a 2-b 2,∴a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.故选D.答案:D2.(2018·林州模拟)已知椭圆E :x 24+y 22=1,直线l 交椭圆于A ,B 两点,若AB 的中点坐标为⎝⎛⎭⎫12,-1,则l 的方程为( ) A .2x +y =0 B .x -2y -52=0C .2x -y -2=0D .x -4y -92=0解析:设A (x 1,y 1),B (x 2,y 2),则x 214+y 212=1,x 224+y 222=1,两式作差并化简整理得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2,而x 1+x 2=1,y 1+y 2=-2,所以y 1-y 2x 1-x 2=14,直线l 的方程为y +1=14⎝⎛⎭⎫x -12,即x -4y -92=0.故选D.答案:D3.(2018·河北三市联考)已知离心率为63的椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F ,过F且与x 轴垂直的直线与椭圆交于A 、B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C 、D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解析:(1)设焦距为2c , ∵e =c a =63,a 2=b 2+c 2,∴b a =33, 由|AB |=233,易知b 2a =33,∴b =1,a =3, ∴椭圆方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0,又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1.设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2, 若以CD 为直径的圆过E 点,则EC →·ED →=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4,则(x 1+1)(x 2+1)+y 1y 2=(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1.1.[考点二、三、四](2016·高考全国卷Ⅲ)已知O 为坐标原点, F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34解析:法一:设点M (-c ,y 0),OE 的中点为N ,则直线AM 的斜率k =y 0a -c ,从而直线AM 的方程为y =y 0a -c (x +a ),令x =0,得点E 的纵坐标y E =ay 0a -c.同理,OE 的中点N 的纵坐标y N =ay 0a +c.因为2y N =y E ,所以2a +c =1a -c,即2a -2c =a +c ,所以e =c a =13.故选A.法二:如图,设OE 的中点为N ,由题意知|AF |=a -c ,|BF |=a +c ,|OF |=c ,|OA |=|OB |=a ,∵PF ∥y 轴,∴|MF ||OE |=|AF ||AO |=a -c a ,|MF ||ON |=|BF ||OB |=a +ca, 又∵|MF ||OE |=|MF |2|ON |,即a -c a =a +c 2a ,∴a =3c ,故e =c a =13.答案:A2.[考点一、二、三](2015·高考全国卷Ⅰ)已知椭圆E 的中心在坐标原点,离心率为12,E的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12解析:抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c =2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),因为离心率e =c a =12,所以a =4,所以b 2=a 2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B. 答案:B。

高中数学椭圆定点定值专题习题

高中数学椭圆定点定值专题习题

1.已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)P(2,n),Q(2,﹣n)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点.①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值,说明理由.2.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=m(定值m≠0),求直线l的斜率.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一3.如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点.(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.4.已知F1,F2分别是椭圆(a>b>0)的左、右焦点,半焦距为c,直线x=﹣与x轴的交点为N,满足,设A、B是上半椭圆上满足的两点,其中.(1)求椭圆的方程及直线AB的斜率k的取值范围;(2)过A、B两点分别作椭圆的切线,两切线相交于一点P,试问:点P是否恒在某定直线上运动,请说明理由.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一5.在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB的斜率之积为定值;(ii)求OA2+OB2.6.已知椭圆的左焦点为F(﹣,0),离心率e=,M、N是椭圆上的动点.(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为﹣,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一7.一束光线从点F1(﹣1,0)出发,经直线l:2x﹣y+3=0上一点P反射后,恰好穿过点F2(1,0).(1)求P点的坐标;(2)求以F1、F2为焦点且过点P的椭圆C的方程;(3)设点Q是椭圆C上除长轴两端点外的任意一点,试问在x轴上是否存在两定点A、B,使得直线QA、QB的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.8.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB的中点,k OD为直线OD的斜率,求证:k•k OD为定值;(3)在(2)条件下,当t=1时,若的夹角为锐角,试求k的取值范围.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一9.如图所示,椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l的斜率为定值;(2)当λ∈[2,4]时,求椭圆的离心率e的取值范围.10.已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若k,求e的取值范围.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一11.在平面直角坐标系xOy中,椭圆=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2的距离的平方和为6.(1)求动点P的轨迹方程;(2)若,,Q为椭圆上位于x轴上方的动点,直线DM•CN,BQ分别交直线m于点M,N.(i)当直线AQ的斜率为时,求△AMN的面积;(ii)求证:对任意的动点Q,DM•CN为定值.12.(1)如图,设圆O:x2+y2=a2的两条互相垂直的直径为AB、CD,E在弧BD上,AE交CD于K,CE交AB于L,求证:为定值(2)将椭圆(a>b>0)与x2+y2=a2相类比,请写出与(1)类似的命题,并证明你的结论.(3)如图,若AB、CD是过椭圆(a>b>0)中心的两条直线,且直线AB、CD的斜率积,点E是椭圆上异于A、C的任意一点,AE交直线CD于K,CE交直线AB于L,求证:为定值.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一13.作斜率为的直线l与椭圆C:交于A,B两点(如图所示),且在直线l的左上方.(1)证明:△PAB的内切圆的圆心在一条定直线上;(2)若∠APB=60°,求△PAB的面积.14.设椭圆C:+=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2+=.(1)若过A.Q.F2三点的圆恰好与直线l:x﹣y﹣3=0相切,求椭圆C的方程;(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:+为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一15.已知A,B分别是椭圆C1:=1的左、右顶点,P是椭圆上异与A,B的任意一点,Q是双曲线C2:=1上异与A,B的任意一点,a>b>0.(I)若P(),Q(,1),求椭圆C l的方程;(Ⅱ)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;(Ⅲ)过Q作垂直于x轴的直线l,直线AP,BP分别交 l于M,N,判断△PMN是否可能为正三角形,并说明理由.16.已知椭圆=1的焦点坐标为(±1,0),椭圆经过点(1,)(1)求椭圆方程;(2)过椭圆左顶点M(﹣a,0)与直线x=a上点N的直线交椭圆于点P,求的值.(3)过右焦点且不与对称轴平行的直线l交椭圆于A、B两点,点Q(2,t),若K QA+K QB=2与l的斜率无关,求t的值.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一17.如图,已知椭圆的焦点为F1(1,0)、F2(﹣1,0),离心率为,过点A(2,0)的直线l交椭圆C于M、N两点.(1)求椭圆C的方程;(2)①求直线l的斜率k的取值范围;②在直线l的斜率k不断变化过程中,探究∠MF1A和∠NF1F2是否总相等?若相等,请给出证明,若不相等,说明理由.18.已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.(1)求椭圆E的标准方程;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一19.如图,双曲线C1:与椭圆C2:(0<b<2)的左、右顶点分别为A1、A2第一象限内的点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.(I)求证:为定值(其中表示直线AA1的斜率,等意义类似);(II)证明:△OAA2与△OA2P不相似.(III)设满足{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R} 的正数m的最大值是b,求b的值.20.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一21.已知椭圆的离心率为,且椭圆上的点到两个焦点的距离和为2.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)试用m表示△MPQ的面积,并求面积的最大值.22.已知椭圆E:的左焦点,若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F.(Ⅰ)求椭圆E的方程;(Ⅱ)已知两点Q(﹣2,0),M(0,1)及椭圆G:,过点Q作斜率为k的直线l交椭圆G于H,K两点,设线段HK的中点为N,连接MN,试问当k为何值时,直线MN过椭圆G的顶点?(Ⅲ)过坐标原点O的直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC并延长交椭圆W于B,求证:PA⊥PB.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一23.已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点为A,B.(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;(2)设直线AB与x轴、y轴分别交于点M,N,求证:为定值.24.已知椭圆中心在原点,焦点在y轴上,离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线y=x+2相切.(Ⅰ)求椭圆的标准方程;(Ⅱ)设点F是椭圆在y轴正半轴上的一个焦点,点A,B是抛物线x2=4y上的两个动点,且满足,过点A,B分别作抛物线的两条切线,设两切线的交点为M,试推断是否为定值?若是,求出这个定值;若不是,说明理由.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一25.已知椭圆的中心为O,长轴、短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA⊥OB.(1)求证:为定值;(2)求△AOB面积的最大值和最小值.26.设F1、F2分别是椭圆+y2=1的左、右焦点.(1)若P是该椭圆上的一个动点,求向量乘积的取值范围;(2)设过定点M(0,2)的直线l与椭圆交于不同的两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.(3)设A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一27.已知椭圆的左焦点F1(﹣1,0),长轴长与短轴长的比是.(Ⅰ)求椭圆的方程;(Ⅱ)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n,求证:为定值.28.已知椭圆的左顶点是A,过焦点F(c,0)(c>0,为椭圆的半焦距)作倾斜角为θ的直线(非x轴)交椭圆于M,N两点,直线AM,AN分别交直线(称为椭圆的右准线)于P,Q两点.(1)若当θ=30°时有,求椭圆的离心率;(2)若离心率e=,求证:为定值.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一29.已知点P在椭圆C:(a>b>0)上,F1、F2分别为椭圆C的左、右焦点,满足|PF1|=6﹣|PF2|,且椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若过点Q(1,0)且不与x轴垂直的直线l与椭圆C相交于两个不同点M、N,在x轴上是否存在定点G,使得为定值.若存在,求出所有满足这种条件的点G的坐标;若不存在,说明理由.30.如图,已知椭圆C:的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一。

高中选修第一册数学《3.1 椭圆》课后练习试题

高中选修第一册数学《3.1 椭圆》课后练习试题

专题11 椭圆一、单选题1.(2019·浙江省高二期末)椭圆2214xy+=的长轴长为()A.1 B.2 C.D.4【答案】D 【解析】由2214xy+=可得24a=,即2a=所以长轴长为24 a=故选:D2.(2020·黑龙江省铁人中学高二月考(文))方程22142x ym m+=+-表示椭圆的必要不充分条件是()A.()1,2m∈-B.()4,2m∈-C.()()4,11,2m∈--⋃-D.()1,+m∈-∞【答案】B 【解析】方程22142x ym m+=+-表示椭圆的充要分条件是402042mmm m+>⎧⎪->⎨⎪+≠-⎩,解得:(4m∈-,1)(1--⋃,2),所以(4m∈-,1)(1--⋃,2)是正确选项的真子集,对照四个选项,只有()4,2-符合.故选:B.3.(2020·咸阳市教育教学研究室高三一模(文))椭圆2221 x my-=的一个焦点坐标为()0,2-,则实数m=()A.23B.25C.23-D.25-【答案】D【解析】椭圆的标准方程为221112x ym+=-,由于该椭圆的一个焦点坐标为()0,2-,则1122m--=,解得25m=-.故选:D.4.(2020·定远县育才学校高二月考(文))已知12,F F是椭圆221169x y+=的两焦点,过点2F的直线交椭圆于点A、B,若5AB=,则11AF BF+=( )A.11 B.10 C.9 D.16【答案】A【解析】如图,由椭圆221169x y+=可得:216a=,则4a=又11416AF BF AB a++==且5AB=则1111AF BF +=故选A5.(2020·安徽省高二期末(文))已知椭圆C 的中心在原点,焦点在y 轴上,且短轴的长为2,,则该椭圆的标准方程为( )A .221204x y +=B .221204y x +=C .2215y x +=D .2215x y +=【答案】C 【解析】设椭圆C 标准方程为:()222210y x a b a b +=>>.短轴长为2,22b ∴=,解得:1b =.离心率c e a ==,又22221a b c c =+=+,25a ∴=,∴椭圆C 的标准方程为2215y x +=.故选:C .6.(2020·天津市实验中学滨海学校高三一模)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为1F 、2F ,P 是C 上的点212PF F F ⊥,1230PF F ∠=︒,则C 的离心率为( )AB .13C .12 D.【答案】D 【解析】 设2PF x=,∵212PF F F ⊥,1230PF F ∠=︒,∴12PF x=,12F F =,又122PF PF a +=,122F F c=∴23a x =,2c =,∴C的离心率为:22c e a ==.故选:D.7.(2020·北京高三月考)已知曲线C 的方程为221x y a b -=,则“a b >”是“曲线C 为焦点在x 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】若0a b >>,则对应的曲线为双曲线,不是椭圆,即充分性不成立, 若曲线C 为焦点在x 轴上的椭圆,则满足0a b >->, 即0a>,0b <,满足a b >,即必要性成立,即“a b >”是“曲线C 为焦点在x 轴上的椭圆”的必要不充分条件. 故选:B.8.(2020·安徽省六安一中高二开学考试(理))点P 为椭圆2211615x y +=上任意一点,EF 为圆22:(1)1N x y -+=的任意一条直径,则PE PF ⋅的取值范围是( )A .(8,24)B .[8,24]C .[5,21]D .(5,21)【答案】B 【解析】由题意,()()()()22PE PF PN NE PN NF PN NE PN NE PN NE⋅=+⋅+=+⋅-=-又EF 为圆22:(1)1N x y -+=的任意一条直径,则1NE =,在椭圆2211615x y +=中,有a c PN a c -≤≤+,即35PN ≤≤,所以,28124PN ≤-≤,故21PE PF PN ⋅=-的取值范围为[]8,24.故选:B.9.(2020·定远县育才学校高二月考(文))已知椭圆221259x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个焦点的距离等于( ) A .1 B .3C .6D .10【答案】C【解析】由椭圆方程可得,,--²=25,2a=10,由椭圆的定义可得点M 到另一焦点的距离等于6,故选C.10.(2020·安徽省高三三模(理))已知椭圆()222210x y a b a b +=>>的离心率为35,左,右焦点分别为1F ,2F ,过左焦点1F 作直线与椭圆在第一象限交点为P ,若12PF F △为等腰三角形,则直线1PF的斜率为( )ABC .D【答案】A 【解析】因为点P 在第一象限,所以12||||PF PF >,因为35c e a ==,所以53a c =,当112||||2PF F F c==时,24||223PF a c c=-=满足12||||PF PF >,222112212112||||||cos 2||||PF F F PF PF F PF F F +-∠=⋅222216447989c c cc +-==,所以12sin PF F ∠==,所以121212sin 9tan 7cos 9PF F PF F PF F ∠∠===∠,所以直线1PF的斜率为,当212||||2PF F F c ==时,1224||2||22||3PF a PF a c c PF =-=-=<,不符合题意.综上所以直线1PF的斜率为.故选:A 二、多选题11.(2020·海南省高三零模)已知P 是椭圆22:16x C y +=上的动点,Q 是圆22(51:1)D x y ++=上的动点,则( )A .CB .C的离心率为C .圆D 在C 的内部 D .PQ的最小值为【答案】BC 【解析】依题意可得c ==,则C的焦距为e ==.设(,)(P x y x ≤≤,则22222256441||(1)(1)1665555x PD x y x x ⎛⎫=++=++-=++≥>⎪⎝⎭, 所以圆D 在C 的内部,且||PQ=. 故选:BC.12.(2020·高密市第一中学高三月考)某颗人造地球卫星的运行轨道是以地球的中心F为一个焦点的椭圆,如图所示,已知它的近地点A(离地面最近的点)距地面m千米,远地点B(离地面最远的点)距地面n千米,并且F A B、、三点在同一直线上,地球半径约为R千米,设该椭圈的长轴长、短轴长、焦距分别为222a b c、、,则()A.a c m R-=+B.a c n R+=+C.2a m n=+D.()()b m R n R=++【答案】ABD【解析】因为地球的中心是椭圆的一个焦点,并且根据图象可得m a c Rn a c R=--⎧⎨=+-⎩,(*)a c m R∴-=+,故A正确;a c n R+=+,故B正确;(*)两式相加22m n a R+=-,可得22a m n R=++,故C不正确;由(*)可得m R a cn R a c+=-⎧⎨+=+⎩,两式相乘可得()()22m R n R a c++=-222a c b-=,()()()()2b m R n R b m R n R∴=++⇒=++,故D正确.故选:ABD13.(2020·南京市秦淮中学高二期末)在平面直角坐标系xOy 中,椭圆()222210x y a b a b +=>>上存在点P ,使得123PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率可能为( )A .14B .12C.6D .34【答案】BD 【解析】设椭圆的焦距为()20c c >,由椭圆的定义可得121232PF PF PF PF a =⎧⎨+=⎩,解得132a PF =,22a PF =, 由题意可得232aa c a a c ⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得12c a ≥,又01c a <<,所以,112c a ≤<,所以,该椭圆离心率的取值范围是1,12⎡⎫⎪⎢⎣⎭. 故符合条件的选项为BD. 故选:BD. 三、填空题14.(2020·定远县育才学校高二月考(文))焦点在x轴,两准线间的距离为,焦距为的椭圆方程为__________.【答案】22194x y +=【解析】设椭圆方程为()222210x y a b a b +=>>,依题意222222a c c a b c ⎧⨯=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得3,2,5a b c===.所以椭圆方程为22194x y+=.故答案为:22194x y+=15.(2019·浙江省高二期中)若方程22121x ym m+=+-表示椭圆,则实数m的取值范围是______;当1m=-时,椭圆的焦点坐标为______.【答案】11(2,)(,1)22---;(0,1),(0,1)-.【解析】①根据椭圆的方程特征,方程22121x ym m+=+-表示椭圆,则201021mmm m+>⎧⎪->⎨⎪+≠-⎩解得:11(2,)(,1)22m∈---;②1m=-时,椭圆的方程2212yx+=,焦点在y轴,其坐标分别为(0,1),(0,1)-故答案为:①11(2,)(,1)22m∈---;②(0,1),(0,1)-16.(2020·黑龙江省高三一模(理))已知椭圆C:22162x y+=的左、右焦点分别为1F,2F,如图AB是过1F且垂直于长轴的弦,则2ABF∆的内切圆方程是________.【答案】224439x y ⎛⎫++= ⎪⎝⎭ 【解析】由已知,(A -,(2,B -,2(2,0)F ,设内切圆的圆心为(,0)(2)t t >-,半径为r ,则21222111()4222ABF S AB F F AB AF BF r a r∆=⨯⨯=⨯++⨯=⨯⨯4⨯=, 解得23r =,由2|(2)|3t --=,43t =-或83t =-(舍),所以2ABF ∆的内切圆方程为 224439x y ⎛⎫++= ⎪⎝⎭. 故答案为:224439x y ⎛⎫++= ⎪⎝⎭. 17.(2020·合肥一六八中学高三月考(理))已知两定点()1,0A -和()10B ,,动点(),P x y 在直线l :3yx 上移动,椭圆C 以A ,B ,为焦点且经过点P ,则椭圆C 的离心率的最大值为__________.【解析】 由题意得,22c AB ==,所以1c =,2a PA PB=+当a 取最小值时,椭圆C 的离心率有最大值, 设点()1,0A -关于直线l :3y x的对称点为'(,)A x y ,则111322yx y x ⎧=-⎪⎪+⎨-⎪=+⎪⎩,解得32x y =-⎧⎨=⎩, 所以'(3,2)A -, 则''PA PB PA PB A B+=+≥,所以'2a A B ≥=,所以当a=时,椭圆的离心率最大,此时,ca==四、解答题18.(2019·肃宁县第一中学高二月考)求下列椭圆的标准方程:(1)焦点在x轴上,离心率35e=,且经过点2A⎫-⎪⎪⎝⎭;(2)以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点()3,0P.【答案】(1)2212516x y+=;(2)2219xy+=或221819y x+=.【解析】(1)因为焦点在x轴上,即设椭圆的标准方程为22221(0)x ya ba b+=>>,∵椭圆经过点2A⎫-⎪⎪⎝⎭,2275414a b∴+=.①,由已知222223333,,,()5555ce c a b a c a aa=∴=∴=∴=-=-,即221625b a=.②,把②代入①,得22754251416a a⨯+=,解得2225,16a b=∴=,∴椭圆的标准方程为2212516x y+=.(2)若焦点在x轴上,设方程为()222210.x ya ba b+=>>因为椭圆过点()3,0P,所以2222301a b+=,又232a b=⨯,3,1a b∴==椭圆的标准方程为221 9xy+=,若焦点在y轴上,设方程为()222210.y xa ba b+=>>因为椭圆过点()3,0P,,所以2222031a b+=,又232a b=⨯,9,3a b∴==∴椭圆的方程为221 819y x+=综上,所求的椭圆方程是2219xy+=或221819y x+=19.(2019·甘南藏族自治州合作第一中学高二期末(理))椭圆的两个焦点的坐标分别为F1(﹣2,0),F2(2,0),且椭圆经过点(,﹣)(1)求椭圆标准方程.(2)求椭圆长轴长、短轴长、离心率.【答案】(1)椭圆的标准方程为:+=1,(2)椭圆的长轴长:2,短轴长2,离心率e==.【解析】(1)设椭圆的标准方程为+=1(a>b>0),则2a=+=2,即a=,又∵c=2,∴b2=a2﹣c2=6,故椭圆的标准方程为:+=1,(2)由(1)得:椭圆的长轴长:2,短轴长2,离心率e==.20.(2020·河北省深州市长江中学高二月考)已知椭圆C 的两焦点分别为()()1222,022,0F F -、,长轴长为6.⑴求椭圆C 的标准方程; ⑵已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长度.【答案】(1)22191x y +=;(2)63【解析】 ⑴由()()1222,022,0F F -、,长轴长为6得:2,3c a ==所以1b =∴椭圆方程为22191x y +=⑵设1122(,),(,)A x y B x y ,由⑴可知椭圆方程为22191x y +=①,∵直线AB 的方程为2y x =+②把②代入①得化简并整理得21036270x x ++=所以12121827,510x x x x +=-=又222182763(11)(4)510AB =+-⨯=21.(2019·江苏省淮阴中学高三月考)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>的焦点为()1,0F c -,()2,0F c ,点A 为上顶点,直线1AF 交椭圆于点B .(1)若2a =1c =,求点B 的坐标;(2)若22AF BF ⊥,求椭圆的离心率.【答案】(1)41(,)33--;(25【解析】(1)因为2a=1c =,所以椭圆的方程为2212x y +=,直线:1AB y x =+,222134021x y x x y x ⎧+=⎪⇒+=⎨⎪=+⎩,所以0x =或43x =-, 所以点B 的坐标为41(,)33--. (2)设1BF x=,则22BF a x=-,因为点A 为上顶点,所以12AF AF a==,因为22AF BF ⊥,所以222(2)()a a x a x +-=+,所以23a x =.在三角形2BAF 中,223cos 5AF BAF AB ∠==,在三角形12AF F 中,()222222122224cos 1222a a c a c F AF e a a a +--∠===-⋅,所以23125e -=,即5e =.22.(2020·萍乡市湘东中学高二期中(文))已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点(4,1)M,直线:l y x m=+交椭圆于不同的两点A,B.(1)求椭圆的方程;(2)求m的取值范围.【答案】(1)221205x y+=;(2)55m-<<【解析】(1)由椭圆的中心在原点,焦点在x轴上,离心率为,得cea==即2222234c a ba a-==,∴a2=4b2,依题意设椭圆方程为:222214x yb b+=,把点(4,1)代入得b2=5,∴椭圆方程为221 205x y+=;(2)因为直线:l y x m=+交椭圆于不同的两点A,B.联立221205y x mx y=+⎧⎪⎨+=⎪⎩,得5x2+8mx+4m2﹣20=0.由△=64m2﹣20(4m2﹣20)=400﹣16m2>0,解得﹣5<m<5.∴m的取值范围是(﹣5,5).23.(2020·江西省高三其他(理))已知椭圆()2222:10x ya ba bΩ+=>>的焦距为.(1)求Ω的方程;(2)若直线2y x=+与Ω相交于A、B两点,求以线段AB为直径的圆的标准方程.【答案】(1)22182x y+=;(2)2282485525x y⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭.【解析】(1)设椭圆Ω的焦距为()20c c>,则2c=2b=所以c=b=,2228a b c=+=,所以Ω的方程为22182x y+=;(2)设点()11,A x y、()22,B x y,联立222182y xx y=+⎧⎪⎨+=⎪⎩,消去y,得251680x x++=.由韦达定理得12165x x+=-,1285x x=,所以12825x x+=-,线段AB的中点坐标为82,55⎛⎫- ⎪⎝⎭.12AB x x=⋅-===,所以,所求圆的标准方程为2282485525x y⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭.。

人教版(B版)高中数学选择性必修第一册课时作业 课时作业(二十) 椭圆的几何性质

人教版(B版)高中数学选择性必修第一册课时作业 课时作业(二十) 椭圆的几何性质

课时作业(二十) 椭圆的几何性质一、选择题1.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 2.椭圆x 216+y 28=1的离心率为( )A.13B.12C.33D.223.已知椭圆C 的短轴长为6,离心率为45,则椭圆C 的焦点F 到长轴的一个端点的距离为 ( )A .9B .1C .1或9D .以上都不对4.曲线x 225+y 29=1与曲线x 225-k +y 29-k=1(k<9)的( )A .长轴长相等B .短轴长相等C .焦距相等D .离心率相等 二、填空题5.已知椭圆x 225+y 2m 2=1(m>0)的左焦点为F 1(-4,0),则m 等于________.6.若椭圆C :x 2a 2+y 2b2=1(a>b>0)经过点P(0,3),且椭圆的长轴长是焦距的2倍,则a =________.7.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.三、解答题 8.如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB,求此椭圆的离心率.9.已知椭圆的中心在原点,焦点在x 轴上,离心率e =13,又知椭圆上一点M ,它的横坐标等于焦点的横坐标,纵坐标是4,求此椭圆的标准方程.[尖子生题库]10.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.。

高中数学例题:椭圆的定义、标准方程及几何性质 (3)

高中数学例题:椭圆的定义、标准方程及几何性质 (3)

高中数学例题:椭圆的定义、标准方程及几何性质
1.已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32.
(1)求椭圆C 的方程;
(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.
(1)解:设椭圆C 的方程为x 2a 2+y 2
b 2=1(a >b >0).
由题意,得⎩⎨⎧ a =2,
c a =32,
解得c =3,
所以b 2=a 2-c 2=1. 所以椭圆C 的方程为x 24+y 2=1.
(2)证明:设M (m ,n ),则D (m,0),N (m ,-n ).
由题设知,m ≠±2,且n ≠0.
直线AM 的斜率k AM =n m +2
, 故直线DE 的斜率k DE =-m +2n .
所以直线DE 的方程为y =-m +2n (x -m ),
直线BN 的方程为y =n 2-m
(x -2). 联立⎩⎨⎧
y =-m +2n (x -m ),y =n 2-m (x -2),
得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2
.
由点M 在椭圆C 上,得4-m 2=4n 2,
所以y E =-45n .
又S △BDE =12|BD |·|y E |=25|BD |·|n |,
S △BDN =12|BD |·|n |,
所以△BDE 与△BDN 的面积之比为4∶5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(教师版)椭圆标准方程典型例题例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.分析:把椭圆的方程化为标准方程,由2=c ,根据关系222c b a +=可求出m 的值.解:方程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准方程.解:当焦点在x 轴上时,设其方程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92=a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知10922=+ba .又b a 3=,联立解得812=a ,92=b ,故椭圆的方程为198122=+x y .例3 ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解.(2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x . (2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12FPF Rt ∆中,21sin 1221==∠PF PF F PF , 可求出621π=∠F PF ,3526cos21=⋅=πPF c ,从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x .例5 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积. 解:如图,设()y x P ,,由椭圆的对称性,不妨设P 在第一象限. 由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =.例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例7 已知椭圆1222=+y x , (1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求. (2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫ ⎝⎛--+-x x y x x x , 即 12122=+y x . 此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =. 说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.解:如图所示,椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x . 解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x .例10 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例11 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0.例12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程. 分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为151522=+y x .例13 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹.分析:本题是已知一些轨迹,求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹. 解:设点M 的坐标为),(y x ,点P 的坐标为),(00y x ,则2x x =,0y y =. 因为),(00y x P 在圆122=+y x 上,所以12020=+y x .将x x 20=,y y =0代入方程12020=+y x 得1422=+y x .所以点M 的轨迹是一个椭圆1422=+y x .说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为),(y x ,设已知轨迹上的点的坐标为),(00y x ,然后根据题目要求,使x ,y 与0x ,0y 建立等式关系, 从而由这些等式关系求出0x 和0y 代入已知的轨迹方程,就可以求出关于x ,y 的方程, 化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.例14 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求. 解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ; 所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标. 再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,又因为ON 为21F MF ∆的中位线,所以4212==MF ON ,故答案为A .说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这一定义,即a MF MF 221=+,利用这个等式可以解决椭圆上的点与焦点的有关距离.例16 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围. 解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x ①。

相关文档
最新文档