2018学年数学人教A版必修一优化练习:第一章 1.2 1.2.1 函数的概念
人教A版高中数学必修一课时作业1.2.1函数的概念(含答案)
第一章 1.2 1.2.1A 级 基础巩固一、选择题1.下列四种说法中,不正确的是导学号 69174212( B ) A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应 B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 2.f (x )=1+x +x1-x的定义域导学号 69174213( D ) A .[-1,+∞) B .(-∞,-1] C .RD .[-1,1)∪(1,+∞)[解析] ⎩⎪⎨⎪⎧ 1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D . 3.各个图形中,不可能是函数y =f (x )的图象的是导学号 69174214( A )[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A . 4.(2016·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是导学号 69174215( C )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C .5.下列各组函数表示相等函数的是导学号 69174216( C ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =x +1,x ∈Z 与y =x -1,x ∈Z[解析] A 项中y =x 2-9x -3可化为y =x +3(x ≠3),∴定义域不同;B 项中y =x 2-1=|x |-1.∴定义域相同,但对应关系不同;D 项中定义域相同,但对应关系不同;C 项正确,故选C .6.函数y =f (x )的图象与直线x =m 的交点个数为导学号 69174217( C ) A .可能有无数个 B .只有一个 C .至多一个D .至少一个[解析] 根据函数定义,一个自变量x 只能对应一个函数值y ,而y =f (x )的定义域中不一定含有m .二、填空题7.已知函数f (x )=11+x ,又知f (t )=6,则t =__-56__.导学号 69174218[解析] f (t )=1t +1=6.∴t =-56.8.用区间表示下列数集:导学号 69174219 (1){x |x ≥1}=__[1,+∞)__; (2){x |2<x ≤4}=__(2,4]__;(3){x |x >-1且x ≠2}=__(-1,2)∪(2,+∞)__. 三、解答题9.求下列函数的定义域,并用区间表示:导学号 69174220 (1)y = x +1 2x +1-1-x ;(2)y =5-x|x |-3. [解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [点评] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x 2-2x (-1≤x ≤2).导学号 69174221 (1)画出f (x )的图象; (2)根据图象写出f (x )的值域. [解析] (1)f (x )的图象如图所示.(2)观察f (x )的图象可知,f (x )图象上所有点的纵坐标的取值范围是[-1,3],故f (x )的值域是[-1,3].B 级 素养提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2 ③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.导学号 69174222( B ) A .1B .2C .3D .0[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B . 2.下列函数中,不满足:f (2x )=2f (x )的是导学号 69174223( C ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件.3.A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是导学号 69174224( B )[解析] A 、C 、D 的值域都不是[1,2],故选B . 4.(2016~2017·盘锦高一检测)函数f (x )=11-2x的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =导学号 69174225( B )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是__(1,2)__.导学号 69174226[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a ⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是__[-3,0]∪[2,3]__;其中只与x 的一个值对应的y 值的范围是__[1,2)∪(4,5]__.导学号 69174227[解析] 观察函数图象可知 f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域:导学号 69174228 (1)y =31-1-x ;(2)y = x +1 0|x |-x ;(3)y =2x +3-12-x +1x. [解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧ x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.C 级 能力拔高1.已知函数f (x )=1+x 21-x 2,导学号 69174229(1)求f (x )的定义域. (2)若f (a )=2,求a 的值. (3)求证:f ⎝⎛⎭⎫1x =-f (x ).[解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1, 所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x 21-x 2,且f (a )=2,所以f (a )=1+a 21-a2=2,即a 2=13,解得a =±33.(3)由已知得f ⎝⎛⎭⎫1x =1+⎝⎛⎭⎫1x 21-⎝⎛⎭⎫1x 2=x 2+1x 2-1, -f (x )=-1+x 21-x 2=x 2+1x 2-1,∴f ⎝⎛⎭⎫1x =-f (x ).2.已知函数f (x )=12x 2-x +32,是否存在实数m ,使得该函数在x ∈[1,m ]时,f (x )的取值范围也是[1,m ](m >1)?若存在,求出m 的值;若不存在,请说明理由.导学号 69174230[解析] f (x )=12x 2-x +32=12(x -1)2+1的图象是一条抛物线,它的对称轴为直线x =1,顶点坐标为(1,1),开口向上,若存在实数m ,使该函数在x ∈[1,m ]时,f (x )的取值范围也是[1,m ],则需m >1,且f (m )=m ,即12m 2-m +32=m ,即m 2-4m +3=0, 解得m =3或m =1(舍去m =1). 故存在实数m =3满足条件.。
高中数学人教版A版必修一课时作业及解析:第一章1-2函数及其表示
高中数学人教版A版必修一第一章集合与函数概念§1.2函数及其表示1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A、B是非空的数集,如果按照某种确定的__________,使对于集合A中的____________,在集合B中都有________________和它对应,那么就称f:________为从集合A到集合B的一个函数,记作__________________.其中x 叫做________,x的取值范围A叫做函数的________,与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________.(2)值域是集合B的________.2.区间(1)设a,b是两个实数,且a<b,规定:①满足不等式__________的实数x的集合叫做闭区间,表示为________;②满足不等式__________的实数x的集合叫做开区间,表示为________;③满足不等式________或________的实数x的集合叫做半开半闭区间,分别表示为______________.(2)实数集R可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为________,________,________,______.一、选择题1.对于函数y=f(x),以下说法正确的有()①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个B .2个 C .3个D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞) C .(-∞,0] D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2011)f (2010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________. 三、解答题11.已知函数f (1-x1+x )=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2m,渠深为1.8m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A 中的任一个值,按照对应关系所对应数集B 中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x ,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 1.2.1 函数的概念知识梳理1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎨⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B 7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1, ∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2010时,得f (2)f (1)=f (3)f (2)=…=f (2011)f (2010)=1.故答案为2010. 9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7. 10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2m ,上底为(2+2h )m ,高为h m ,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.一、选择题1.一个面积为100cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ) A .y =50x (x >0) B .y =100x (x >0)C .y =50x (x >0)D .y =100x (x >0)2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( ) A .0B .1C .2D .33.如果f (1x )=x1-x,则当x ≠0时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )等于( )A .2x +1B .2x -1C .2x -3D .2x +75.若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f (12)的值为( ) A .1B .15C .4D .306.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )二、填空题7.一个弹簧不挂物体时长12cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg 物体后弹簧总长是13.5cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________________________________________________.8.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________. 9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为__________________.三、解答题10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310]C .y =[x +410]D .y =[x +510]13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理(1)数学表达式 (2)图象 (3)表格 作业设计1.C [由x +3x2·y =100,得2xy =100.∴y =50x (x >0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.]3.B [令1x =t ,则x =1t ,代入f (1x )=x1-x,则有f (t )=1t 1-1t=1t -1,故选B.] 4.B [由已知得:g (x +2)=2x +3,令t =x +2,则x =t -2,代入g (x +2)=2x +3,则有g (t )=2(t -2)+3=2t -1,故选B.]5.B [令1-2x =12,则x =14,∴f (12)=1-(14)2(14)2=15.] 6.B [当t <0时,S =12-t 22,所以图象是开口向下的抛物线,顶点坐标是(0,12);当t >0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k+12,k =12.所以所求的函数解析式为y =12x +12.8.f (x )=-x 2+23x (x ≠0)解析 ∵f (x )=2f (1x )+x ,①∴将x 换成1x ,得f (1x )=2f (x )+1x .②由①②消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x (x ≠0).9.f (x )=2x +83或f (x )=-2x -8 解析 设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a 2x +ab +b .∴⎩⎨⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎨⎧a =-2b =-8.10.解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎨⎧f (0)=c ,f (4)=16a +4b +c ,f (0)=f (4),得4a +b =0.① 又图象过(0,3)点, 所以c =3.②设f (x )=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca . 所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f (x )=x 2-4x +3.11.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y … -5 0 3 4 3 0 -5 …连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2). (3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.B [方法一 特殊取值法,若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二 设x =10m +α(0≤α≤9),0≤α≤6时, [x +310]=[m +α+310]=m =[x 10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1, 所以选B.]13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1, ∴f (x )=x (x +1)+1=x 2+x +1.第2课时分段函数及映射课时目标 1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题.2.了解映射的概念.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的____________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集.(3)作分段函数图象时,应_____________________________________.2.映射的概念设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中____________确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的__________.一、选择题1.已知,则f(3)为()A.2B.3C.4D.52.下列集合A到集合B的对应中,构成映射的是()3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:A.100元B.90元C.80元D.60元4.已知函数,使函数值为5的x的值是()A.-2B.2或-5 2C.2或-2D.2或-2或-5 25.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为() A.13立方米B.14立方米C.18立方米D.26立方米6.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列不能表示从P到Q的映射的是()A.f:x→y=12x B.f:x→y=13xC.f:x→y=23x D.f:x→y=x二、填空题7.已知,则f(7)=____________.8.设则f {f [f (-34)]}的值为________,f (x )的定义域是______________.9.已知函数f (x )的图象如下图所示,则f (x )的解析式是__________________.三、解答题 10.已知,(1)画出f (x )的图象; (2)求f (x )的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B一定是() A.∅B.∅或{1}C.{1}D.∅13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d是车速v(公里/小时)的平方与车身长S(米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d关于v的函数关系式(其中S为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.对映射认识的拓展映射f:A→B,可理解为以下三点:(1)A中每个元素在B中必有唯一的元素与之对应;(2)对A中不同的元素,在B中可以有相同的元素与之对应;(3)A中元素与B中元素的对应关系,可以是:一对一、多对一,但不能一对多.3.函数与映射的关系映射f:A→B,其中A、B是两个“非空集合”;而函数y=f(x),x∈A为“非空的实数集”,其值域也是实数集,于是,函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.第2课时 分段函数及映射知识梳理1.(1)对应关系 (2)并集 (3)分别作出每一段的图象 2.都有唯一 一个映射 作业设计 1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.] 2.D3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.] 4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2, 若-2x =5,则x =-52,与x >0矛盾,故选A.]5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎨⎧mx , 0≤x ≤10,2mx -10m ,x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).]6.C [如果从P 到Q 能表示一个映射,根据映射的定义,对P 中的任一元素,按照对应关系f 在Q 中有唯一元素和它对应,选项C 中,当x =4时,y =23×4=83∉Q ,故选C.] 7.6解析 ∵7<9,∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8). 又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6. 即f (7)=6.8.32 {x |x ≥-1且x ≠0}解析 ∵-1<-34<0,∴f (-34)=2×(-34)+2=12.而0<12<2,∴f (12)=-12×12=-14.∵-1<-14<0,∴f (-14)=2×(-14)+2=32.因此f {f [f (-34)]}=32.函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎨⎧ x +1, -1≤x <0,-x ,0≤x ≤1解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎨⎧ -a +b =0,b =1.∴⎩⎨⎧a =1,b =1.当0<x <1时,设f (x )=kx ,将(1,-1)代入,则k =-1. 10.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎨⎧ 2x , 0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.12.B [由题意可知,集合A 中可能含有的元素为:当x 2=1时,x =1,-1;当x 2=2时,x =2,- 2. 所以集合A 可为含有一个、二个、三个、四个元素的集合.无论含有几个元素,A ∩B =∅或{1}.故选B.]13.解 根据题意可得d =k v 2S .∵v =50时,d =S ,代入d =k v 2S 中,解得k =12500.∴d =12500v 2S .当d =S 2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧ S 2 (0≤v <252)12500v 2S (v ≥252).§1.2习题课课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用.1.下列图形中,不可能作为函数y=f(x)图象的是()2.已知函数f:A→B(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()A.M=A,N=B B.M⊆A,N=BC.M=A,N⊆B D.M⊆A,N⊆B3.函数y=f(x)的图象与直线x=a的交点()A.必有一个B.一个或两个C.至多一个D.可能两个以上4.已知函数,若f(a)=3,则a的值为()A.3B.- 3C.±3D.以上均不对5.若f(x)的定义域为[-1,4],则f(x2)的定义域为()A.[-1,2]B.[-2,2]C.[0,2]D.[-2,0]6.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为() A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤0一、选择题1.函数f (x )=xx 2+1,则f (1x )等于( )A .f (x )B .-f (x )C.1f (x )D.1f (-x )2.已知f (x 2-1)的定义域为[-3,3],则f (x )的定义域为( )A .[-2,2]B .[0,2]C .[-1,2]D .[-3,3]3.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是()4.与y =|x |为相等函数的是( )A .y =(x )2B .y =x 2C .D .y =3x 35.函数y =2x +1x -3的值域为( )A .(-∞,43)∪(43,+∞)B .(-∞,2)∪(2,+∞)C .RD .(-∞,23)∪(43,+∞)6.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B 等于( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(0,+∞)二、填空题7.设集合A=B={(x,y)|x∈R,y∈R},点(x,y)在映射f:A→B的作用下对应的点是(x-y,x+y),则B中点(3,2)对应的A中点的坐标为____________.8.已知f(x+1)=x+2x,则f(x)的解析式为___________________________________.9.已知函数,则f(f(-2))=______________________________.三、解答题10.若3f(x-1)+2f(1-x)=2x,求f(x).11.已知,若f(1)+f(a+1)=5,求a的值.能力提升12.已知函数f(x)的定义域为[0,1],则函数f(x-a)+f(x+a)(0<a<12)的定义域为()A.∅B.[a,1-a] C.[-a,1+a]D.[0,1]13.已知函数(1)求f(-3),f[f(-3)];(2)画出y=f(x)的图象;(3)若f(a)=12,求a的值.1.函数的定义域、对应关系以及值域是构成函数的三个要素.事实上,如果函数的定义域和对应关系确定了,那么函数的值域也就确定了.两个函数是否相同,只与函数的定义域和对应关系有关,而与函数用什么字母表示无关.求函数定义域时,要注意分式的字母不能为零;偶次根式内的被开方式子必须大于或等于零.2.函数图象是描述函数两个变量之间关系的一种重要方法,它能够直观形象地表示自变量、函数值的变化趋势.函数的图象可以是直线、光滑的曲线,也可以是一些孤立的点、线段或几段曲线等.3.函数的表示方法有列举法、解析法、图象法三种.根据解析式画函数的图象时,要注意定义域对函数图象的制约作用.函数的图象既是研究函数性质的工具,又是数形结合方法的基础.§1.2习题课双基演练1.C[C选项中,当x取小于0的一个值时,有两个y值与之对应,不符合函数的定义.]2.C[值域N应为集合B的子集,即N⊆B,而不一定有N=B.]3.C[当a属于f(x)的定义域内时,有一个交点,否则无交点.]4.A[当a≤-1时,有a+2=3,即a=1,与a≤-1矛盾;当-1<a<2时,有a2=3,∴a=3,a=-3(舍去);当a≥2时,有2a=3,∴a=32与a≥2矛盾.综上可知a = 3.]5.B [由-1≤x 2≤4,得x 2≤4,∴-2≤x ≤2,故选B.]6.B [由题意,知kx 2+kx +1≠0对任意实数x 恒成立,当k =0时,1≠0恒成立,∴k =0符合题意.当k ≠0时,Δ=k 2-4k <0,解得0<k <4,综上,知0≤k <4.]作业设计1.A [f (1x )=1x 1x 2+1=x 1+x 2=f (x ).] 2.C [∵x ∈[-3,3],∴0≤x 2≤3,∴-1≤x 2-1≤2,∴f (x )的定义域为[-1,2].]3.C [C 选项中,和a 相对应的有两个元素0和1,不符合映射的定义.故答案为C.]4.B [A 中的函数定义域与y =|x |不同;C 中的函数定义域不含有x =0,而y =|x |中含有x =0,D 中的函数与y =|x |的对应关系不同,B 正确.]5.B [用分离常数法.y =2(x -3)+7x -3=2+7x -3. ∵7x -3≠0,∴y ≠2.] 6.C [化简集合A ,B ,则得A =[1,+∞),B =[2,+∞).∴A ∩B =[2,+∞).]7.(52,-12)解析 由题意⎩⎨⎧ x -y =3x +y =2,∴⎩⎪⎨⎪⎧ x =52y =-12.8.f (x )=x 2-1(x ≥1)解析 ∵f (x +1)=x +2x=(x )2+2x +1-1=(x +1)2-1,∴f (x )=x 2-1. 由于x +1≥1,所以f (x )=x 2-1(x ≥1).9.4解析 ∵-2<0,∴f (-2)=(-2)2=4,又∵4≥0,∴f (4)=4,∴f (f (-2))=4.10.解 令t =x -1,则1-x =-t ,原式变为3f (t )+2f (-t )=2(t +1),①以-t 代t ,原式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t ),得f (t )=2t +25. 即f (x )=2x +25.11.解 f (1)=1×(1+4)=5,∵f (1)+f (a +1)=5,∴f (a +1)=0.当a +1≥0,即a ≥-1时,有(a +1)(a +5)=0,∴a =-1或a =-5(舍去).当a +1<0,即a <-1时,有(a +1)(a -3)=0,无解.综上可知a =-1.12.B [由已知,得⎩⎨⎧ 0≤x +a ≤1,0≤x -a ≤1⇒⎩⎨⎧-a ≤x ≤1-a ,a ≤x ≤1+a . 又∵0<a <12,∴a ≤x ≤1-a ,故选B.]13.解 (1)∵x ≤-1时,f (x )=x +5,∴f (-3)=-3+5=2,∴f [f (-3)]=f (2)=2×2=4.(2)函数图象如右图所示.(3)当a ≤-1时,f (a )=a +5=12,a =-92≤-1; 当-1<a <1时,f (a )=a 2=12,a =±22∈(-1,1); 当a ≥1时,f (a )=2a =12,a =14∉[1,+∞),舍去. 故a 的值为-92或±22.。
数学人教A版必修一优化课件:第一章 1.2 1.2.1 函数的概念
考纲定位
重难突破
1.理解函数的概念,了解函数
构成的三要素.
重点:1.函数的概念;
2.会求一些简单函数的定义 2.定义域的求法.
域、值域.
难点:对函数符号y=f(x)的理解.
3.能正确使用区间表示数集.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
{x|x≤b} (-∞,b]
{x|x<b} (-∞,b)
三、函数相等 一个函数的构成要素为:定义域、对应关系和值域,其中值域是由 定义域 和 对 应 关 系 决定的.如果两个函数的定义域相同,并且 对应关系 完全一致, 我们就称这两个函数相等.
[双基自测]
1.设函数 f(x)=3x4-1,则 f(a)-f(-a)=( )
)
A.1
B.-1
3 C.5
D.-35
解析:f(2)=2222- +11=44- +11=35.
f(12)=121222+-11=1414- +11=-35.
∴f12=-1. f2
答案:B
3.下列各组函数表示同一函数的是( ) A.y=xx2--39与 y=x+3 B.y= x2-1 与 y=x-1 C.y=x0(x≠0)与 y=1(x≠0) D.y=x+1,x∈Z 与 y=x-1,x∈Z 解析:A 中两函数定义域不同;B 中两函数值域不同;D 中两函数对应法则不同. 答案:C
二、区间
1.有界区间
设 a,b 是两个实数,且 a<b.
定义
名称
符号
{x|a≤x≤b} 闭区间
[a,b]
{x|a<x<b} 开区间
(a,b)
{x|a≤x<b}
半开半 闭区间
优化方案高中数学第1章1.2.1知能优化训练新人教A版必修1
【优化方案】数学人教A版必修1第1章知能优化训练1.以下说法中正确的为( )A.y=f(x)与y=f(t)表示同一个函数B.y=f(x)与y=f(x+1)不行能是同一函数C.f(x)=1与f(x)=x表示同一函数D.定义域和值域都同样的两个函数是同一个函数分析:选A.两个函数是不是同一个函数与所取的字母没关,判断两个函数能否同样,主要看这两个函数的定义域和对应法例能否同样.()2.以下函数完整同样的是A.f(x)=|x|,g(x)=(x)2B.f(x)=|x|,g(x)=x2C.(x )=|x|,()=x2f gxxx2-9D.f(x)=x-3,g(x)=x+3分析:选、C、D的定义域均不一样.3.函数y=1-x+x的定义域是() A.{x|x≤1}B.{x|x≥0} C.{x|x≥1或x≤0}D.{x|0≤x≤1}1-x≥0,得0≤x≤1.分析:选D.由x≥04.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,此中表示y是x的函数关系的有________.分析:由函数定义可知,随意作一条直线x=a,则与函数的图象至多有一个交点,对于此题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当时,直线x=a与函数的图象没有交点.进而表示y是x的函数关系的有答案:(2)(3)a>1或(2)(3) .a<-111.函数y=x的定义域是() A.RB.{0}C.{|x ∈R,且≠0}D.{|x≠1}x x x11分析:选C.要使x存心义,必有x≠0,即y=x的定义域为{x|x∈R,且x≠0}.2.以下式子中不可以表示函数y=f(x)的是( )22A.x=y+1B.y=2x+1C.x-2y=6D.x=y分析:选A.一个x对应的y值不独一.3.以下说法正确的选项是()A.函数值域中每一个数在定义域中必定只有一个数与之对应B.函数的定义域和值域能够是空集C.函数的定义域和值域必定是数集D.函数的定义域和值域确立后,函数的对应关系也就确立了分析:选C.依据从会合A到会合B函数的定义可知,重申A中元素的随意性和B中对应元素的独一性,因此A中的多个元素能够对应B中的同一个元素,进而选项A错误;同样由函数定义可知,A、B会合都是非空数集,应选项B错误;选项C正确;关于选项D,能够举例说明,如定义域、值域均为A={0,1}的函数,对应关系能够是x→x,x∈A,能够是x →x,∈,还能够是x→x2,x∈.x A A4.以下会合A到会合B的对应f是函数的是()A.A={-1,0,1} ,B={0,1},f:A中的数平方B.A={0,1} ,B={-1,0,1} ,f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值分析:选A.依据函数定义,选项B中会合A中的元素1对应会合B中的元素±1,不符合函数定义中一个自变量的值对应独一的函数值的条件;选项C中的元素0取倒数没存心义,也不切合函数定义中会合A中随意元素都对应独一函数值的要求;选项D中,会合A中的元素0在会合B中没有元素与其对应,也不切合函数定义,只有选项A切合函数定义.5.以下各组函数表示相等函数的是()A.y=x2-3x+3(x≠3) x-与y=3B.y=x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x-1,x∈Z分析:选、B与D对应法例都不一样.6.设f:x→x2是会合A到会合B的函数,假如B={1,2},则A∩B必定是() A.?B.?或{1}C.{1}D.?或{2}分析:选B.由f:x→x2是会合A到会合B的函数,假如B={1,2},则A={-1,1,-2,2}或={-1,1,-2}或={-1,1,2}或={-1,2,-2}或={1,-2,2}A A A A或A={-1,-2}或A={-1,2}或A={1,2}或A={1,-2}.因此A∩B=?或{1}.7.若[a,3a-1]为一确立区间,则a的取值范围是________.1分析:由题意3a-1>a,则a>2.1答案:(2,+∞)x+18.函数y=的定义域是________.3-2x分析:要使函数存心义,需知足x+1≠0,即x<3且x≠-1. 3-2x>023答案:(-∞,-1)∪(-1,)29.函数y=x2-2的定义域是{-1,0,1,2},则其值域是________.分析:当x取-1,0,1,2时,y=-1,-2,-1,2,故函数值域为{-1,-2,2}答案:{-1,-2,2}10.求以下函数的定义域:-x34x+8(1)y=2x2-3x-2;(2)y=3x-2.---x解:(1)要使y=2x2-3x-2存心义,则一定-x≥0,12x2-3x-2≠0,解得x≤0且x≠-2,1故所求函数的定义域为{x|x≤0,且x≠-2}.324x+8存心义,则一定(2)要使y=3x-2>0,即x>,故所求函数的定义域为{x|x3x-232>}.31211.已知f(x)=1+x(x∈R且x≠-1),g(x)=x+2(x∈R).求f(2),g(2)的值;求f(g(2))的值.1解:(1)∵f(x)=1+x,f(2)=1=1,1+23又∵g(x)=x2+2,g(2)=22+2=6.由(1)知g(2)=6,1∴f(g(2))=f(6)=1+6=7.12.已知函数y=ax+1(a<0且a为常数)在区间(-∞,1]上存心义,务实数a的取值范围.解:函数y=ax+1(<0且a为常数).a1∵ax+1≥0,a<0,∴x≤-a,1即函数的定义域为(-∞,-a].∵函数在区间 (-∞,1]上存心义,1∴(-∞,1]?(-∞,-a],1∴-a≥1,而a<0,∴-1≤a<0.即a的取值范围是[-1,0).。
【优化课堂】高一数学人教A版必修1 学案:第一章 1.2.1 函数的概念 Word版含答案[ 高考]
1.2函数及其表示1.2.1函数的概念[学习目标] 1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域(重点).3.能够正确使用区间表示数集.(易混点)一、函数的有关概念f,使对于集合A中的任意的一个数x,在集合B中都有唯一确定的数f(x)和它对应结论称f:A―→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A 相关概念定义域x的取值范围A值域函数值的集合{}f(x)|x∈A二、两个函数相等的条件1.定义域相同;2.对应关系完全一致.三、区间的概念及表示1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示1.判断(正确的打“√”,错误的打“×”) (1)函数的定义域和值域一定是无限集合.( )(2)根据函数有定义,定义域中的一个x 可以对应着不同的y .( ) (3)f (a )表示当x =a 时函数f (x )的值,是一个常量.( ) 【答案】 (1)× (2)× (3)√ 2.已知f (x )=x +1,则f (3)=( )A .2B .4C .±6D .10 【解析】 ∵f (x )=x +1,∴f (3)=3+1=2.【答案】 A 3.函数f (x )=11-2x有定义域是________(用区间表示). 【解析】 由题意,需1-2x >0,解得x <12.故f (x )的定义域为⎝⎛⎭⎫-∞,12. 【答案】 ⎝⎛⎭⎫-∞,12 4.集合{}x |1<x ≤10用区间表示为________. 【解析】 集合{}x |1<x ≤10用区间表示为(1,10]. 【答案】 (1,10]预习完成后,请把你认为难以解决的问题记录在下面的表格中(1)(2014·长沙高一检测)设M =x -2≤x ≤2,N =}y 0≤y ≤2,函数y =f (x )的定义域为M ,值域为N ,对于下列四个图象,可作为函数y =f (x )的图象为( )(2)下列函数中,f (x )与g (x )相等的是( ) A .f (x )=x ,g (x )=(x )2 B .f (x )=x ,g (x )=x 2 C .f (x )=x +2,g (x )=x 2-4x -2D .f (x )=x ,g (x )=3x 3 (3)判断下列对应是否为函数. ①A =R ,B =R ,f :x →y =1x 2;②A =N ,B =R ,f :x →y =±x ; ③A =N ,B =N *,f :x →y =|x -2|;④A ={1,2,3},B =R ,f (1)=f (2)=3,f (3)=4.【解析】 (1)由函数定义可知任意作一条直线x =a 与函数图象至多有一个交点,故选项C 错误.由题设定义域中有元素-2,2知选项A 错误.由值域为{}y |0≤y ≤2知选项B 错误. (2)对于A ,f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{}x |x ≥0,两函数的定义域不相同,所以不是相等函数;对于B ,g (x )=x 2=|x |,与f (x )=x 的对应关系不相同,所以不是相等函数;对于C ,g (x )=x 2-4x -2=x +2(x ≠2),与f (x )=x +2的定义域不同,所以不是相等函数;对于D ,g(x)=3x3=x,与f(x)=x的对应关系和定义域都相同,所以是相等函数,故选D.【答案】(1)D(2)D(3)①因为A=R,B=R,对于A中的元素x=0,在对应关系f:x→y=1x2之下,在B 中没有元素与之对应,因而不能构成函数.②对于A中的元素,如x=9,y的值为y=±9=±3,即在对应关系f之下,B中有两个元素与之对应,不符合函数定义,故不能构成函数.③对于A中的元素x=2,在对应关系f的作用下,|2-2|=0∉B,从而不能构成函数.④依题意,f(1)=f(2)=3,f(3)=4,即A中的每一个元素在对应关系f之下,在B中都有唯一的元素与之对应,虽然B中有很多元素在A中无元素与之对应,但依函数的定义,仍能构成函数.1.判断一个对应关系是否为函数的步骤:(1)判断A,B是否是非空数集;(2)判断A中任一元素在B中是否有元素与之对应;(3)判断A是任一元素在B中是否有唯一确定的元素与之对应.2.判断函数是否相同的步骤:(1)看定义域是否相同;(2)看对应关系是否相同;(3)下结论.(1)f(x)=1x-2;(2)f(x)=3x+2;(3)f(x)=x+1+12-x.【思路探究】解答本题可根据函数解析式的结构特点,构造使解析式有意义的不等式(组),进而解不等式求解.【解】 (1)∵x ≠2时,分式1x -2有意义,∴这个函数的定义域是{}x |x ≠2. (2)∵3x +2≥0,即x ≥-23时,根式3x +2才有意义,∴这个函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-23. (3)∵要使函数有意义,必须⎩⎪⎨⎪⎧x +1≥02-x ≠0⇒⎩⎪⎨⎪⎧x ≥-1,x ≠2.∴这个函数的定义域是{}x |x ≥-1且x ≠2.1.求解析式给出的函数的定义域就是求使函数表达式有意义的自变量的取值集合.已知函数y =f (x ):(1)若f (x )为整式,则定义域为R ;(2)若f (x )为分式,则定义域是使分母不为零的实数的集合;(3)若f (x )是偶次根式,那么函数的定义域是根号内的式子不小于零的实数的集合; (4)若f (x )是由几个部分的数字式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合;5.若f (x )是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.(2014·济宁高一检测)函数y =1-x2x 2-3x -2定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫-12,1 D.⎝⎛⎫-∞,-12∪⎝⎛⎦⎤-12,1 【解析】 要使函数y =1-x 2x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,即⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2,所以x ≤1且x ≠-12,故选D.【答案】 Df (2x +1)的定义域;(2)已知函数f (2x +1)的定义域为[1,3],求函数f (x )的定义域.【思路探究】 (1)函数f (2x +1)的自变量是x ,而非2x +1,解不等式1≤2x +1≤3即可.(2)函数f (2x +1)的自变量是x ,本题实质是知1≤x ≤3,求2x +1的取值范围. 【解】 (1)∵函数f (x )的定义域为[1,3],即x ∈[1,3],函数f (2x +1)中2x +1的范围与函数f (x )中x 的范围相同,∴2x +1∈[1,3],∴x ∈[0,1], 即函数f (2x +1)的定义域是[0,1]. (2)∵x ∈[1,3],∴2x +1∈[3,7], 即函数 f (x )的定义域是[3,7].若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.已知函数f (x )的定义域为(0,1),则f (2x )的定义域为__________.【解析】 因为f (x )的定义域为(0,1),所以要使f (2x )有意义,须使0<2x <1,即0<x <12,所以函数f (2x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12.【答案】 ⎝⎛⎭⎫0,12已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.【思路探究】 (1)令x =2代入f (x ),g (x )→得出f (2),g (2) (2)求g (3)→求f [g (3)] 【解】 (1)∵f (x )=11+x ,∴f (2)=11+2=13, 又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)g (3)=32+2=11,∴f [g (3)]=f (11)=11+11=112.1.f (x )表示自变量为x 的函数,如f (x )=2x ,而f (a )表示的是当x =a 时的函数值,如f (x )=2x 中f (3)=2×3=6.2.求f {f [f (x )]}时,一般要遵循由里到外的原则.在题设条件不变的情况下,求g [f (3)]的值. 【解】 ∵f (3)=11+3=14, ∴g [f (3)]=g ⎝⎛⎭⎫14=⎝⎛⎭⎫142+2=3316.1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等,只须两个函数的定义域和对应关系一致即可.2.f(x)是函数符号,f表示对应关系,“y=f(x)”为“y是x的函数”这句话的数学表示,它仅仅是函数符号,并不表示“y等于f 与x的乘积”.3.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合,这是求某函数定义域的依据.相等函数判断中的误区下列各组函数相等函数的是()A.y=x+1与y=x2-1 x-1B.y=|x|+1和y=(x-1)2+1 C.y=2x和y=2x(x≤0) D.y=x2+1和y=t2+1【易错分析】 易失分点一:忽视函数定义域,误认为y =x 2-1x -1=x +1,而误选A.易失分点二:忽视对应关系,误认为定义域和值域相同就是相等函数,而误选B. 【防范措施】 1.判断函数相等时,对较为复杂的函数解析式的化简要慎重,注意其等价性,本例对选项A 中第二个函数解析式的化简易把定义域扩大,由解析式相同而误认为是相等函数.2.定义域相同,并且对应关系完全一致的两个函数才相等.【解析】 A 错误,由于函数y =x 2-1x -1中要求x -1≠0,即x ≠1,故两个函数的定义域不同,故不表示相等函数.B 错误,虽然定义域和值域相同,但对应关系不相同,因而不是相等函数.C 错误,显然定义域不同,因此不是相等函数.D 正确,虽然表示自变量的字母不同,但它们定义域和对应关系相同,因此是相等函数. 【答案】 D——[类题尝试]————————————————— 下列各组中的两个函数为相等函数的是( ) A .f (x )=x +1·x -1,g (x )=(x +1)(x -1) B .f (x )=(2x -5)2,g (x )=2x -5 C .f (x )=1-x x 2+1与g (x )=1+x x 2+1D .f (x )=(x )4x 与g (t )=⎝⎛⎭⎫t t 2 【解析】 A 中,f (x )=x +1·x -1的定义域为{x |x ≥1},g (x )=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},它们的定义域不相同;B 中,f (x )=(2x -5)2的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥52,g (x )=2x -5的定义域为R ,定义域不同,不是相等函数.C 中,f (x )=1-xx 2+1与g (x )=1+xx 2+1的对应关系不同,不相等.D 中,f (x )=(x )4x =x (x>0)与g (x )=⎝⎛⎭⎫t t 2=t (t >0)的定义域与对应关系都相同,它们相等.【答案】 D。
2018版高中数学人教版A版必修一学案第一单元 1.2.1 函数的概念 Word版含答案
§ 函数及其表示函数的概念学习目标 .理解函数的概念(重点、难点).了解构成函数的三要素(重点).正确使用函数、区间符号(易错点).预习教材-,完成下面问题:知识点函数的概念()函数的概念如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等. 【预习评价】 (正确的打“√”,错误的打“×”) ()函数的定义域和值域一定是无限集合.( )()根据函数的定义,定义域中的任何一个可以对应着值域中不同的.( ) ()在函数的定义中,集合是函数的值域.( )提示 ()×函数的定义域和值域也可能是有限集,如()=;()×根据函数的定义,对于定义域中的任何一个,在值域中都有唯一确定的与之对应; ()×在函数的定义中,函数的值域是集合的子集. 知识点区间及有关概念 ()一般区间的表示. 设,∈,且<,规定如下:()已知全集=,={<≤},则∁用区间表示为.解析∁={≤或>},用区间可表示为(-∞,]∪(,+∞).答案(-∞,]∪(,+∞)题型一函数关系的判定【例】()下列图形中,不能确定是的函数的是( )()下列各题的对应关系是否给出了实数集上的一个函数?为什么?①:把对应到+;②:把对应到+;③:把对应到;④:把对应到. ()解析任作一条垂直于轴的直线=,移动直线,根据函数的定义可知,此直线与函数图象至多有一个交点.结合选项可知不满足要求,因此不表示函数关系.答案()解①是实数集上的一个函数.它的对应关系是:把乘再加,对于任意∈+都有唯一确定的值与之对应,如当=-时,有+=-与之对应.同理,②也是实数集上的一个函数.③不是实数集上的函数.因为当=时,的值不存在.④不是实数集上的函数.因为当<时,的值不存在.规律方法.根据图形判断对应是否为函数的方法()任取一条垂直于轴的直线;()在定义域内平行移动直线;()若与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的。
2018学年数学人教A版必修一优化练习:第一章 1.2 1.2.2 第1课时 函数的表示法
[课时作业]单[A组基础巩固]1.函数y=ax2+a与y=ax(a≠0)在同一坐标系中图象可能是()解析:当a>0时,二次函数图象开口向上,且与y轴交于(0,a)点,在y轴上方,反比例函数图象在第一、三象限,没有满足此条件图象;当a<0时,二次函数图象开口向下,且与y轴交于(0,a)点,在y轴下方,反比例函数图象在第二、四象限;综合来看,只有选项D满足条件.答案:D2.已知f(x-1)=x2-2,则f(2)=()A.6 B.2C.7 D.9解析:f(2)=f(3-1)=32-2=9-2=7.答案:C3.已知f(x)是反比例函数,且f(-3)=-1,则f(x)解析式为()A.f(x)=-3x B.f(x)=3xC.f(x)=3x D.f(x)=-3x解析:设f(x)=kx(k≠0),∵f(-3)=k-3=-1,∴k=3,∴f(x)=3 x.答案:B4.已知函数f(x)满足2f(x)+f(-x)=3x+2,则f(2)=()A.-163B.-203C.163 D.203解析:因为2f(x)+f(-x)=3x+2,①所以2f(-x)+f(x)=-3x+2,②①×2-②得f(x)=3x+2 3.所以f(2)=3×2+23=203.答案:D5.已知x≠0时,函数f(x)满足f(x-1x)=x2+1x2,则f(x)表达式为()A.f(x)=x+1x(x≠0)B.f(x)=x2+2(x≠0) C.f(x)=x2(x≠0)D.f(x)=(x-1x)2(x≠0)解析:f(x-1x)=x2+1x2=(x-1x)2+2,∴f(x)=x2+2(x≠0).答案:B6.已知函数f(x)对任意实数a,b都满足:f(a+b)=f(a)+f(b),且f(2)=3,则f(3)=________. 解析:∵f(2)=f(1)+f(1)=2f(1)=3,∴f(1)=3 2,∴f(3)=3f(1)=3×32=92或f(3)=f(2)+f(1)=92.答案:9 27.已知函数f(2x+1)=3x+2,且f(a)=4,则a=________.解析:因为f(2x+1)=32(2x+1)+12,所以f(a)=32a+12.又f(a)=4,所以32a+12=4,则a=7 3.答案:7 38.已知f(x)=x+2,则f(x)=________. 解析:令x=t,则x=t2且t≥0.∴f(t)=t2+2,∴f(x)=x2+2(x≥0)答案:f(x)=x2+2(x≥0)9.已知f (x )是一次函数,且f (f (x ))=4x +3,求f (x )解析式. 解析:设f (x )=ax +b (a ≠0),∴f (f (x ))=af (x )+b =a (ax +b )+b =a 2x +ab +b . ∴a 2x +ab +b =4x +3.∴⎩⎨⎧ a 2=4,ab +b =3.∴⎩⎨⎧a =2,b =1,或⎩⎨⎧a =-2,b =-3.∴f (x )=2x +1或f (x )=-2x -3.10.已知函数f (x )是二次函数,且它图象过点(0,2),f (3)=14,f (-2)=8+52,求f (x )解析式. 解析:设f (x )=ax 2+bx +c (a ≠0),则由题意,得⎩⎨⎧c =2,9a +3b +c =14,2a -2b +c =8+52,解得⎩⎨⎧c =2,a =3,b =-5.所以f (x )=3x 2-5x +2.[B 组 能力提升]1.对于任意两个实数对(a ,b )和(c ,d ),规定(a ,b )=(c ,d ),当且仅当a =c ,b =d ;运算“⊗”为(a ,b )⊗(c ,d )= (ac -bd ,bc +ad );运算“⊕”为:(a ,b )⊕(c ,d )=(a +c ,b +d ).设p ,q ∈R ,若(1,2)⊗(p ,q )=(5,0),则(1,2)⊕(p ,q )=( ) A .(4,0) B .(2,0) C .(0,2)D .(0,-4)解析:由题设可知:⎩⎨⎧ p -2q =2p +q =0,解得⎩⎨⎧p =1,q =-2, ∴(1,2)⊕(p ,q )=(1+p,2+q )=(2,0). 答案:B2.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6 C .f (x )=6x +9 D .f (x )=2x +3解析:用3-x 代替原方程中x 得f (3-x )+2f [3-(3-x )]=f (3-x )+2f (x )= (3-x )2=x 2-6x +9,∴⎩⎨⎧f (x )+2f (3-x )=x 2①f (3-x )+2f (x )=x 2-6x +9 ②①-②×2得-3f (x )=-x 2+12x -18, ∴f (x )=13x 2-4x +6. 答案:B 3.设f (3x )=9x +52,则f (1)=________.解析:令3x =1,则x =13.∴f (1)=9×13+52=4=2.答案:24.已知函数f (x )=x 2+2x +a ,f (bx )=9x 2-6x +2,其中x ∈R ,a ,b 为常数, 则方程f (ax +b )=0解集为________.解析:f (bx )=(bx )2+2bx +a =b 2x 2+2bx +a =9x 2-6x +2,∴⎩⎨⎧b 2=9,2b =-6,a =2,解得⎩⎨⎧a =2,b =-3,∴f (ax +b )=f (2x -3)=4x 2-8x +5. ∵Δ=64-4×4×5=-16<0, ∴方程f (ax +b )=0解集为∅. 答案:∅5.画出函数f (x )=-x 2+2x +3图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)大小; (2)若x 1<x 2<1,比较f (x 1)与f (x 2)大小; (3)求函数f (x )值域.解析:因为函数f (x )=-x 2+2x +3定义域为R ,列表:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数图象是以(1,4)为顶点,开口向下抛物线,因此,函数值域为(-∞,4].6.已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件: f (x -1)=f (3-x )且方程f (x )=2x 有等根. (1)求f (x )解析式;(2)是否存在实数m ,n (m <n ),使f (x )定义域和值域分别为[m ,n ]和[4m,4n ].如果存在,求出m ,n 值;如果不存在,请说明理由.解析:(1)∵二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)与方程f (x )=2x 有等根,即方程ax 2+bx -2x =0有等根, ∴Δ=(b -2)2=0,得b =2.由f (x -1)=f (3-x ),知此函数图象对称轴方程为x =-b2a =1,得a =-1, 故f (x )=-x 2+2x .(2)∵f (x )=-(x -1)2+1≤1, ∴4n ≤1,即n ≤14.而抛物线y =-x 2+2x 对称轴为x =1, ∴若满足题设条件m ,n 存在,则{ f (m )=4m ,f (n )=4n ,即⎩⎨⎧-m 2+2m =4m ,-n 2+2n =4n⇒⎩⎨⎧m =0或m =-2,n =0或n =-2,又m <n ≤14,∴m =-2,n =0,这时,定义域为[-2,0],值域为[-8,0]. 由以上知满足条件m ,n 存在,m =-2,n =0.。
人教版高中数学A版必修1课后习题及答案(全)
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形. 等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得0)l d ===>,即(0)l d =>.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x= (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x .因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x 在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.。
2018版高中数学人教版A版必修一学案:第一单元 章末复习课 Word版含答案 (6)
§1.3 函数的基本性质1.3.1 单调性与最大(小值)第1课时 函数的单调性学习目标 1.理解单调区间、单调性等概念,会用定义证明函数的单调性(重点、难点).2.会求函数的单调区间,判断单调性(重点).预习教材P27-P28,完成下面问题: 知识点1 增函数与减函数设函数f (x )的定义域为I ,D ⊆I ,对任意x 1,x 2∈D【预习评价】 (正确的打“√”,错误的打“×”)(1)已知f (x )=1x,因为f (-1)<f (2),所以函数f (x )是增函数.( )(2)增减函数定义中的“任意两个自变量的值x 1,x 2”可以改为“存在两个自变量的值x 1,x 2”.( )(3)若函数f (x )在区间(1,2]和(2,3)上均为增函数,则函数f (x )在区间(1,3)上为增函数.( ) 提示 (1)× 由函数单调性的定义可知,要证明一个函数是增函数,需对定义域内的任意的自变量都满足自变量越大,函数值也越大,而不是个别的自变量.(2)× 不能改为“存在两个自变量的值x 1、x 2”.(3)× 反例:f (x )=⎩⎪⎨⎪⎧x ,x ∈(1,2],x -4,x ∈(2,3).知识点2 函数的单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.【预习评价】(1)函数f (x )=x 2+2x -3的单调减区间是________. (2)函数y =|x |在区间[-2,-1]上( ) A .递减B .递增C .先减后增D .先增后减解析 (1)二次函数f (x )的图象开口向上,对称轴为x =-1,故其单调减区间是(-∞,-1).(2)函数y =|x |的单减区间是(-∞,0),又[-2,-1]⊆(-∞,0),所以函数y =|x |在区间[-2,-1]上递减.答案 (1)(-∞,-1) (2)A题型一 求函数的单调区间【例1】 (1)如图所示的是定义在区间[-5,5]上的函数y =f (x )的图象,则函数的单调递减区间是________、________,在区间________、________上是增函数.(2)画出函数y =-x 2+2|x |+1的图象并写出函数的单调区间.(1)解析 观察图象可知,y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5].其中y =f (x )在区间[-5,-2],[1,3]上是增函数,在区间[-2,1],[3,5]上是减函数.答案 [-2,1] [3,5] [-5,-2] [1,3](2)解 y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.函数的大致图象如图所示,单调增区间为(-∞,-1],[0,1],单调减区间为[-1,0],[1,+∞).规律方法 根据函数的图象求函数单调区间的方法 (1)作出函数图象;(2)把函数图象向x 轴作正投影;(3)图象上升对应增区间,图象下降对应减区间. 【训练1】 函数y =1x -1的单调减区间是________.解析 y =1x -1的图象可由函数y =1x 的图象向右平移一个单位得到,如图所示,其单调递减区间是(-∞,1)和(1,+∞).答案 (-∞,1),(1,+∞) 题型二 证明函数的单调性【例2】 证明函数f (x )=x +4x 在区间(2,+∞)上是增函数.证明 任取x 1,x 2∈(2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)x 1x 2-4x 1x 2.因为2<x 1<x 2,所以x 1-x 2<0,x 1x 2>4,x 1x 2-4>0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).所以函数f (x )=x +4x 在(2,+∞)上是增函数.规律方法 利用定义证明函数单调性的步骤【训练2】 证明函数f (x )=1x 2在(-∞,0)上是增函数.证明 设x 1,x 2是区间(-∞,0)上任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=1x 21-1x 22=x 22-x 21x 21x 22=(x 2-x 1)(x 2+x 1)x 21x 22. 因为x 1<x 2<0,所以x 2-x 1>0,x 1+x 2<0,x 21x 22>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )=1x 2在(-∞,0)上是增函数.题型三 用单调性解不等式【例3】 已知函数y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求实数a 的取值范围.解 由题知⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23,即所求a 的取值范围是⎝⎛⎭⎫0,23. 规律方法 利用函数的单调性解不等式的方法当函数f (x )的解析式未知时,欲求解不等式,可以依据函数单调性的定义和性质,将符号“f ”脱掉,列出关于未知量的不等式(组),然后求解,此时注意函数的定义域.【训练3】 已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围是________.解析 由题意得⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.答案 ⎣⎡⎭⎫-1,12.答案 (-∞,0)【探究2】 已知函数y =x 2+2ax +3在区间(-∞,1]上是减函数,则实数a 的取值范围是________.解析 函数y =x 2+2ax +3的图象开口向上,对称轴为x =-a ,要使其在区间(-∞,1]上是减函数,则-a ≥1,即a ≤-1.答案 (-∞,-1]【探究3】 分别作出函数f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤1,-2x +3,x >1和g (x )=⎩⎪⎨⎪⎧-2x +5,x ≤1,-2x +7,x >1的图象,并根据其图象的变化趋势判断它们在(-∞,+∞)上的单调性.解 函数f (x )的图象如图(1)所示,由其图象可知f (x )在(-∞,+∞)上是减函数; 函数g (x )的图象如图(2)所示,由其图象可知g (x )在(-∞,+∞)上既不是增函数,也不是减函数.【探究4】 已知函数f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤1,-2x +a ,x >1是减函数,求实数a 的取值范围.解 由题意得,要使f (x )是减函数,需-2×1+5≥-2×1+a ,即a ≤5.【探究5】 若函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +3,x ≤1,ax +1,x >1是减函数,求实数a 的取值范围.解 由题意可得⎩⎪⎨⎪⎧-a ≥1,a <0,12+2a ×1+3≥a ×1+1,解得-3≤a ≤-1,则实数a 的取值范围是[-3,-1].规律方法 已知函数的单调性求参数的关注点(1)视参数为已知数,依据基本初等函数的单调性、函数的图象或函数的单调性的定义,确定函数的单调区间,与已知的单调区间比较求参数;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的函数值的大小关系.课堂达标1.下列函数在区间(0,+∞)上不是增函数的是( ) A .y =2x +1 B .y =x 2+1 C .y =3-xD .y =x 2+2x +1解析 函数y =3-x 在区间(0,+∞)上是减函数. 答案 C2.函数f (x )=-x 2+2x +3的单调减区间是( )A .(-∞,1)B .(1,+∞)C .(-∞,2)D .(2,+∞)解析 易知函数f (x )=-x 2+2x +3是图象开口向下的二次函数,其对称轴为x =1,所以其单调减区间是(1,+∞).答案 B3.若f (x )=(2k -3)x +2是R 上的增函数,则实数k 的取值范围是________. 解析 由题意得2k -3>0,即k >32,故k 的取值范围是⎝⎛⎭⎫32,+∞. 答案 ⎝⎛⎭⎫32,+∞ 4.若函数f (x )是R 上的减函数,且f (a -1)>f (2a ),则a 的取值范围是________. 解析 由条件可知a -1<2a ,解得a >-1. 答案 (-1,+∞)5.证明f (x )=x 2+x 在(0,+∞)上是增函数.证明 设x 1>x 2>0,则f (x 1)-f (x 2)=x 21+x 1-x 22-x 2=(x 1-x 2)(x 1+x 2)+(x 1-x 2)=(x 1-x 2)(x 1+x 2+1),因为x 1>x 2>0,所以x 1-x 2>0,x 1+x 2+1>0,所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )=x 2+x 在(0,+∞)上是增函数.课堂小结1.对函数单调性的理解(1)单调性是与“区间”紧密相关的概念,一个函数在定义域的不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x 1,x 2有以下几个特征:一是任意性,即任意取x 1,x 2,“任意”二字绝不能丢掉,证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x 1<x 2;三是属于同一个单调区间.(3)单调性能使自变量取值之间的不等关系和函数值的不等关系正逆互推,即由f(x)是增(减)函数且f(x1)<f(x2)⇔x1<x2(x1>x2).(4)并不是所有函数都具有单调性.若一个函数在定义区间上既有增区间又有减区间,则此函数在这个区间上不存在单调性.2.单调性的证明方法证明f(x)在区间D上的单调性应按以下步骤:(1)设元:设x1,x2∈D且x1<x2;(2)作差:将函数值f(x1)与f(x2)作差;(3)变形:将上述差式(因式分解、配方等)变形;(4)判号:对上述变形的结果的正、负加以判断;(5)定论:对f(x)的单调性作出结论.其中变形为难点,变形一定要到位,即变形到能简单明了的判断符号的形式为止,切忌变形不到位就定号.。
高一数学人教A版必修1优化训练1-2-1函数的概念 含解析
1.2 函数及其表示1.2.1 函数的概念5分钟训练 (预习类训练,可用于课前)1.设集合A={x|-1≤x ≤2},B={x|0≤x ≤4},则A ∩B 等于( )A.[0,2]B.[1,2]C.[0,4]D.[1,4]思路解析:在数轴上表示出两个集合,通过观察公共部分可以得出A ∩B=A={x|0≤x ≤2}. 答案:A2.试判断以下各组函数中,是否表示同一函数? (1)f(x)=2x ,g(x)=33x ; (2)f(x)=x x ||,g(x)=⎩⎨⎧<-≥;01,0,1x x (3)f(x)=1212++n n x ,g(x)=(12-n x )2n-1(n ∈N ); (4)f(x)=1+x x ,g(x)=x x +2.思路解析:两个函数相同的充要条件是它们的定义域与对应关系分别相同.解:(1)由于f(x)=2x =|x |,而g(x)= 33x =x.故它们的值域、对应法则都不相同,所以它们不是同一函数.(2)由于函数f(x)=x x ||的定义域为{x|x ≠0,x ∈R },而g(x)=⎩⎨⎧<-≥0,1,0,1x x 的定义域为R.故它们不是同一函数.(3)由于当n ∈N *时,2n ±1为奇数,∴f(x)= 1212++n n x =x ,g(x)= ( 12-n x )2n-1=x ,它们的定义域、值域及对应法则都相同,因此它们是同一函数.(4)由于函数f(x)= 1+x x 的定义域为{x |x ≥0},而g(x)= x x +2的定义域为{x |x ≤-1或x ≥0},它们的定义域不同,所以它们不是同一函数.3.求下列函数的定义域: (1)f(x)=21-x ; (2)f(x)=23+x ; (3)f(x)=xx -++211. 思路解析:函数的定义域通常由问题的实际背景确定.如果只给出函数解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数x 的集合.(1)解:∵x-2=0,即x=2时,分式21-x 无意义,而x ≠2时,分式21-x 有意义,∴这个函数的定义域是{x|x ≠2}.(2)解:∵3x+2<0,即x<-32时,根式23+x 无意义,而3x+2≥0,即x ≥-32时,根式23+x 才有意义,∴这个函数的定义域是{x|x ≥-32}. (3)解法一:∵当x+1≥0且2-x ≠0,即x ≥-1且x ≠2时,根式1+x 和分式x -21同时有意义,∴这个函数的定义域是{x|x ≥-1且x ≠2}.解法二:要使函数有意义,必须⎩⎨⎧≠-≥⇒⎩⎨⎧≠-≥+.2,10201x x x x ∴这个函数的定义域是{x|x ≥-1且x ≠2}.4.已知f(x)=x+11(x ∈R 且x ≠-1),g(x)=x 2+2(x ∈R ). (1)求f(2)、g(2)的值;(2)求f [g(2)]的值;(3)求f [g(x)]的函数解析式.思路解析:在解本题时,要理解对应法则“f ”和“g ”的含义,在求f [g(x)]时,一般遵循先里后外的原则.(1)、(2)是求函数值,把自变量的值代入函数解析式即可;(3)是求函数的表达式,解出的是含x 的式子.解:(1)f(2)=211+ =31,g(2)=22+2=6. (2)f [g(2)]=f(6)= 71611-+. (3)f [g(x)]=f(x 2+2)=31)2(1122+=++x x . 10分钟训练 (强化类训练,可用于课中)1.下列四个图形中,不可能是函数y=f (x )的图象的是( )思路解析:本题考查函数的定义.对函数y=f (x ),x 为自变量,y 为函数值.在选项D 中,一个x 值对应两个y 的值,所以不满足函数多对一或一对一的条件.故选D.答案:D2.已知函数f (x )=322--x x 的定义域为F ,g (x )=31-+x x 的定义域为G ,那么集合F 、G 的关系是( )A.F=GB.F ⊆GC.G ⊆FD.F ∪G=G思路解析:函数的定义域是使函数解析式有意义的自变量的值.F={x|x 2-2x-3≥0}={x|x ≤-1或x ≥3},G={x 31-+x x ≥0且x-3≠0}={x|x ≤-1或x >3},∴G ⊆F ,选C. 答案:C3.函数f (x )的定义域为[0,2],则函数f (x+1)的定义域是( )A.[-2,2]B.[-1,1]C.[0,2]D.[1,3]思路解析:f (x )与f (x+1)的定义域都是指的x 的取值范围,由函数的对应法则知0≤x+1≤2,即可求出x 的范围.解不等式0≤x+1≤2,得-1≤x ≤1,∴选B.答案:B4.设函数f (x )=ax+b ,若f (1)=-2,f (-1)=0,则( )A.a=1,b=-1B.a=-1,b=-1C.a=-1,b=1D.a=1,b=1思路解析:已知函数的对应法则,此题可用待定系数法求a 、b 的值.由已知⎩⎨⎧=+--=+,0,2b a b a 得a=-1,b=-1,选B. 答案:B5.下列4对函数中表示同一函数的是( )A.f (x )=x ,g (x )=(x )2B.f (x )=x ,g (x )=2xC.f (x )=x ,g (x )=33x D.f (x )=242--x x ,g (x )=x+2 思路解析:考查函数的概念和同一函数的判断方法.两函数若是同一函数,需定义域和对应法则均相同(即值域相同,图象完全重合),由此可知A 、B 、D 均不正确,故选C. 答案:C6.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文−→−明文(解密),已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 …( )A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7思路解析:由题意,可知⎪⎪⎩⎪⎪⎨⎧==+=+=+.284,232,92,142d d c c b b a 解得⎪⎪⎩⎪⎪⎨⎧====.7,1,4,6d c b a 7.右图是某校在2005年2月份的一次考试中,一个解题的分数分布图,这个图是使用图象法表示的函数吗?_________.为什么?_________.思路解析:因为每个分数都对应一个不同的人数,符合函数的定义,并且函数中两变量的对应关系用图表反映出来,故是.答案:是 符合函数的定义8.已知函数y=,1,1,3,1>≤⎩⎨⎧+-+x x x x 求f [f (25)]的值. 思路解析:考查函数的概念及函数值的求法,注意分段求解.解:f (25)=-25+3=21<1, 所以f [f (25)]=21+1=23. 快乐时光感 想A :听说你最近去美国考察了一次,感受不浅吧?B :是啊,感触太深了,人家的文化水平就是高.A :何以见得呢?B :人家大人小孩都会说英语.30分钟训练 (巩固类训练,可用于课后)1.设M={x |-2≤x ≤2},N={y |0≤y ≤2},给出下列4个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )思路解析:由于函数是特殊的映射,因而判断某一对应(或某一式子)是否表示函数时,可先考查它能否构成映射.A 中,当0<x ≤2时,N 中没有元素与x 对应,不能构成映射.C 中一个x 有两个y 与之对应,所以不是映射.D 中的对应是映射,但不是以M 为定义域,N 为值域的函数.所以选B. 答案:B2.设集合A={x||x-2|≤2,x ∈R },B={y=-x 2,-1≤x ≤2},则(A ∩B)等于( )A.RB.{x|x ∈R ,x ≠0}C.{0}D. ∅思路解析:A=[0,2],B=[-4,0],所以 (A ∩B)= {0}.答案:B3.有一位商人,从北京向上海的家中打电话,通话m 分钟的电话费,由函数f (m )=1.06×(0.5[m ]+1)(元)决定,其中m >0,[m ]是大于或等于m 的最小整数.则从北京到上海通话时间为5.5分钟的电话费为( )A.3.71元B.3.97元C.4.24元D.4.77元思路解析:∵m=5.5,∴[5.5]=6.代入函数解析式中,f (5.5)=1.06×(0.5×6+1)=1.06×4=4.24.故选C.答案:C4.小刚离开家去学校,由于怕迟到,所以一开始就跑步,跑累了再走余下的路程.在下图所示图形中,纵轴表示离校的距离,横轴表示出发后的时间,则下列四个图象中较符合小刚走法的是()思路解析:首先审清题意,特别是横、纵两轴的含义.纵轴表示离校的距离,所以排除A 、C ,在B 、D 中选择答案.由于开始时是跑步前进,所以同一时间内,位置变化大,所以选择D. 答案:D5.函数f (x )=31++-x x -1的定义域是( )A.x ≤1或x ≥-3B.(-∞,1)∪[-3,+∞]C.-3≤x ≤1D.[-3,1]思路解析:考查函数的定义域.由1-x ≥0,x+3≥0可知,-3≤x ≤1,所以原函数的定义域为[-3,1],故选D.答案:D6.某城镇近20年常住人口y (千人)与时间x (年)之间的函数关系如右图.考虑下列说法:①前16年的常住人口是逐年增加的;②第16年后常住人口实现零增长;③前8年的人口增长率大于1;④第8年到第16年的人口增长率小于1.在上述四种说法中,正确说法的序号是_________.思路解析:由题图知前16年中人口不断增加,但增长率小于1,16年后人口零增长. 答案:①②④7.函数y=1,10,0,5,3,32>≤<≤⎪⎩⎪⎨⎧+-++x x x x x x 的最大值为_________.思路解析:画出该分段函数的图象(如下图),即可获得y 的最大值为4.答案:48.已知f(x)的定义域是[a,b ],求F(x)=f(x-1)+f(x+1)的定义域.思路解析:函数的定义域就是使函数解析式有意义的实数的集合.本题中x-1和x+1都应在在区间[a,b ]内.解:要使F(x)有意义,必须f(x-1)且f(x+1)都有意义,于是有⎩⎨⎧≤+≤≤-≤,12,1b x b x a 即)2()1(.11,11⎩⎨⎧-≤≤-+≤≤+b x a b x a 当b-a ≥2时,①与②的交集为[a+1,b-1]即是F(x)的定义域;当b-a <2时,①与②的交集是空集.此时F(x)无意义.9.已知函数y=54322++-kx kx x 的定义域为R ,求k 的取值范围. 思路解析:在解不等式kx 2+4kx +5≠0对一切x ∈R 都成立时要注意对二次项系数k 的讨论.解:由已知kx 2+4kx +5≠0的解集为R,当k=0时,函数y=532-x 的定义域为R. 当k ≠0时,Δ=(4k)2-20k <0,解得0<k <45.∴所求k 的范围是[0,45]. 10.已知y=32341++-ax ax ax 的定义域为R ,求实数a 的取值范围.思路解析:确定a 的取值范围,使之对任意实数x 都有ax 2+4ax+3≠0.解:当a=0时,ax 2+4ax+3=3≠0对任意x ∈R 都成立;当a ≠0时,要使二次三项式ax 2+4ax+3对任意实数x 恒不为零,必须满足:其判别式Δ=4a(4a-3)<0,于是,0<a <43. 综上,a ∈[0,43). 11.已知函数f(x)=12++x b ax 的值域为[-1,4],求实数a 、b 的值. 思路解析:由函数的解析式可确定一个含有a 、b 的值域,比照已知条件,可确定a 、b 的值. 解:设y=12++x b ax ,去分母、整理得yx 2-ax+y-b=0.y=0显然在函数的值域[-1,4]内. 若y ≠0时,由于x ∈R ,故Δ=a 2-4y(y-b)≥0,∴y 2-by-42a ≤0. ① 由已知,有-1≤y ≤4,从而,(y+1)(y-4)≤0,∴y 2-3y-4≤0. ② 比较不等式①与②,得b=3,a 2=16.∴⎩⎨⎧=-=⎩⎨⎧==3,43,4b a b a 或 12.求函数f (x )=x 2-2ax-1在区间[0,2]上的最大值和最小值.思路解析:考查函数的最值的求法及分类讨论的思想方法.二次函数在给定区间上的最值(值域)通常与它的开口方向、对称轴和区间的相对位置有关,因此此类题也常常需要分类讨论. 解:f (x )=x 2-2ax-1=(x-a )2-a 2-1为二次函数,图象为开口向上的抛物线,在区间[0,2]上的最值与对称轴x=a 和区间[0,2]的相对位置相关,所以需要对对称轴x=a 进行讨论:①当a<0时,f(x)min=-1,f(x)max=3-4a;②当0≤a<1时,f(x)min =-1-a2,f(x)max =3-4a;③当1≤a≤2时,f(x)min =-1-a2,f(x)max =-1;④当a>2时,f(x)min =3-4a,f(x)max =-1.。
高中数学人教A版必修一优化练习第一章 函数的概念含解析
C.(-∞,1)∪(1,2) 2-x
D.(-∞,1)∪(1,2]
解析:要使函数 y=
有意义,则Error!解得 x≤2 且 x≠1,所以所求函数的
x-1
定义域为(-∞,1)∪(1,2]. 答案:D 5.图中可以表示以 M={x|0≤x≤1}为定义域,以 N={y|0≤y≤1}为值域的函数 的图象的是( )
6.对于函数 f(x),若 f(x)=x,则称 x 为 f(x)的“不动点”,若 f(f(x))=x,则称 x 为 f(x)的“稳定点”,函数 f(x)的“不动点”和“稳定点”的集合分别记为 A 和 B,即 A={x|f(x)=x},B={x|f(f(x))=x}. (1)求证:A⊆B; (2)设 f(x)=x2+ax+b,若 A={-1,3},求集合 B. 解析:(1)若 A=∅,则 A⊆B 显然成立.
3
(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3}; (2)f(x)=(x-1)2+1; (3)f(x)=5xx-+14; (4)f(x)=x- x+1.
解析:(1)函数的定义域为{-1,0,1,2,3},则 f(-1)=[(-1)-1]2+1=5,同理可得
f(0)=2,f(1)=1,f(2)=2,f(3)=5,所以函数的值域为{1,2,5}.
y∈[0,3],故选 D.
答案:D
2.已知 f(x)的定义域是[0,+∞),则函数(x-2)0+f(x-1)的定义域是( )
A.[0,2)∪(2,+∞)
B.[1,2)∪(2,+∞)
C.[-1,2)∪(2,+∞)
D.[1,+∞)
解析:Error!得 1≤x 且 x≠2.
答案:B 3.已知函数 f(x),g(x)分别由下表给出:
2018学年数学人教A版必修一优化练习:第一章 1.1 1.1.2 集合间的基本关系
[课时作业][A 组 基础巩固]1.已知M ={1,2,3,4},N ={2,3},则有( )A .M ⊆NB .N MC .N ∈MD .M =N解析:由子集概念可知N M .答案:B2.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =( )A .0或 3B .0或3C .1或 3D .0或1或 3解析:(1)m =3,此时A ={1,3,3},B ={1,3},满足B ⊆A .(2)m =m ,即m =0或m =1.①m =0时,A ={0,1,3},B ={0,1},满足B ⊆A ;②m =1时,A ={1,3,1},B ={1,1},不满足互异性,舍去.答案:B3.已知集合A ={x |ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 取值是() A .1 B .-1C .-1或0或1D .0或1解析:由题设可知集合A 中只有一个元素,(1)a =0时,原方程等价转化为2x =0,即x =0,满足题设;(2)⎩⎨⎧ a ≠Δ=4-4a 2=0得a =±1.答案:C4.已知集合A ={x |x =k 2+14,k ∈Z},集合B ={x |x =k 4+12,k ∈Z},则A 与B 关系为() A .A B B .B AC .A =BD .以上答案都不对解析:对两集合中限制条件通分,使分母相同.观察分子不同点及其关系.集合A 中:x =k 2+14=2k +14;集合B 中:x =k 4+12=k +24;而{2k +1}表示奇数集,{k +2}表示整数集,∴A B.答案:A5.满足{x|x2+1=0}A⊆{x|x2-1=0}集合A个数是()A.1 B.2C.3 D.4解析:{x|x2+1=0}=∅,{x|x2-1=0}={-1,1},故集合A是集合{-1,1}非空子集,所以A个数为22-1=3.故选C.答案:C6.已知集合M={(x,y)|x+y<0,且xy>0},集合P={(x,y)|x<0,且y<0},那么集合M与P之间关系是________.解析:M中元素满足{x+y<xy>0,即{x<y<0,∴M=P.答案:M=P7.已知集合A={x||x|≤2,x∈R},B={x|x≥a},且A⊆B,则实数a取值范围是________.解析:因为A={x||x|≤2,x∈R}={x|-2≤x≤2,x∈R},B={x|x≥a},A⊆B,所以a≤-2.答案:a≤-28.已知集合A{1,2,3},且A中至多有一个奇数,则所有满足条件集合A为________.解析:集合A是集合{1,2,3}真子集,且A中至多有一个奇数,那么当集合A中有0个奇数时,集合A=∅,{2};当集合A中有1个奇数时,集合A={1},{3},{1,2},{2,3}.综上,A=∅,{1},{2},{3},{1,2},{2,3}.答案:∅,{1},{2},{3},{1,2},{2,3}9.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m取值范围.解析:A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A.①若B=∅,则m+1>2m-1,解得m<2,此时有B⊆A;②若B≠∅,则m+1≤2m-1,即m≥2,由B⊆A,得{m≥m+1≥-2,m-1≤5解得2≤m≤3.由①②得m≤3.∴实数m取值范围是{m|m≤3}.10.已知集合M={a-3,2a-1,a2+1},N={-2,4a-3,3a-1},若M=N,求实数a值.解析:因为M=N,所以(a-3)+(2a-1)+(a2+1)=-2+(4a-3)+(3a-1),即a2-4a+3=0,解得a=1或a=3.当a=1时,M={-2,1,2},N={-2,1,2},满足M=N;当a=3时,M={0,5,10},N={-2,9,8},不满足M=N,舍去.故所求实数a值为1.[B组能力提升]1.集合A={x|x=(2n+1)π,n∈N}与B={x|x=(4n±1)π,n∈N}之间关系是()A.A B B.B AC.A=B D.不确定解析:对于集合A,当n=2k时,x=(4k+1)π,k∈N;当n=2k+1时,x=[4(k+1)-1]π=(4m -1)π,m∈N,其中m=k+1.所以A中元素形如(4k±1)π,k∈N.答案:C2.定义集合A*B={x|x∈A,且x∉B},若A={1,2,3,4,5},B={2,4,5},则A*B子集个数为() A.1 B.2C.3 D.4解析:由题意知A*B={1,3},∴A*B子集个数为22=4个.答案:D3.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间关系是________.解析:∵y=(x-1)2-2≥-2,∴M={y|y≥-2}.∴N M.答案:N M4.定义集合A,B之间运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B}.若A={1,2,3},B={1,2},则集合A*B中最大元素为________,集合A*B所有子集个数为________.解析:当x1=1时,x1+x2值为2,3;当x1=2时,x1+x2值为3,4;当x1=3时,x1+x2值为4,5;∴A*B={2,3,4,5}.故A*B中最大元素为5,所有子集个数为24=16.答案:5165.已知集合A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B⊆A,求实数a取值集合.解析:A={-2,4},因为B⊆A,所以B=∅,{-2},{4},{-2,4}.若B=∅,则a2-4(a2-12)<0,即a2>16,解得a>4或a<-4.若B={-2},则(-2)2-2a+a2-12=0且Δ=a2-4(a2-12)=0,解得a=4.若B={4},则42+4a+a2-12=0且Δ=a2-4(a2-12)=0,此时a 无解;若B ={-2,4},则⎩⎨⎧-a =4-2,a 2-12=-2×4.所以a =-2.综上知,所求实数a 集合为{a |a <-4或a =-2或a ≥4}.6.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m -6≤x ≤2m -1,m 为常数},求实数m 取值范围;(2)若A ⊆B ,B ={x |m -6≤x ≤2m -1,m 为常数},求实数m 取值范围;(3)若A =B ,B ={x |m -6≤x ≤2m -1,m 为常数},求实数m 取值范围. 解析:(1)由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5}.∵B ⊆A ,∴①若B =∅,则m -6>2m -1,即m <-5,此时满足B ⊆A ; ②若B ≠∅, 则⎩⎨⎧ m -6≤2m -1,-2≤m -6,2m -1≤5,解得-5≤m ≤3.由①②可得,m <-5或-5≤m ≤3.(2)若A ⊆B ,则依题意应有⎩⎨⎧ 2m -1>m -6,m -6≤-2,2m -1≥5,解得⎩⎨⎧ m >-5,m ≤4,m ≥3,故3≤m ≤4.(3)若A =B ,则必有⎩⎨⎧ m -6=-2,2m -1=5,此方程组无解,即不存在m 值使得A =B .。
2018学年数学人教A版必修一优化练习:第一章 1.1 1.1.1 集合的含义与表示
[课时作业][A组基础巩固]1.已知集合M={3,m+1},且4∈M,则实数m等于()A.4B.3C.2 D.1解析:由题设可知3≠4,∴m+1=4,∴m=3.答案:B2.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是() A.梯形B.平行四边形C.菱形D.矩形解析:由集合中元素互异性可知,a,b,c,d互不相等,从而四边形中没有边长相等的边.答案:A3.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析:∵x-3<2,∴x<5,又∵x∈N+,∴x=1,2,3,4.答案:B4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为() A.5 B.4C.3 D.2解析:利用集合中元素的互异性确定集合.当x=-1,y=0时,z=x+y=-1;当x=1,y=0时,z=x+y=1;当x=-1,y=2时,z=x +y=1;当x=1,y=2时,z=x+y=3,由集合中元素的互异性可知集合{z|z=x+y,x∈A,y ∈B}={-1,1,3},即元素个数为3.答案:C5.由实数x,-x,|x|,x2,-3x3所组成的集合中,最多含有的元素个数为()A.2个B.3个C.4个D.5个解析:确定集合中元素的个数,应从集合中元素的互异性入手考虑.若是相同的元素,则在集合中只能出现一次.因为x2=|x|,-3x3=-x,所以当x=0时,这几个数均为0.当x>0时,它们分别是x,-x,x,x,-x.当x<0时,它们分别是x,-x,-x,-x,-x.均最多表示两个不同的数,故所组成的集合中的元素最多有2个.故选A.答案:A6.设a,b∈R,集合{0,ba,b}={1,a+b,a},则b-a=________.解析:由题设知a≠0,则a+b=0,a=-b,所以ba=-1,∴a=-1,b=1,故b-a=2.答案:27.已知-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________.解析:由-5∈{x|x2-ax-5=0}得(-5)2-a×(-5)-5=0,所以a=-4,所以{x|x2-4x+4=0}={2},所以集合中所有元素之和为2.答案:28.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数为________.解析:∵P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q={1,2,6},∴当a=0时,a+b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11.∴P+Q={1,2,3,4,6,7,8,11},故P+Q中有8个元素.答案:89.集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.解析:(1)当k=0时,原方程变为-8x+16=0,x=2.此时集合A={2}.(2)当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根.只需Δ=64-64k=0,即k=1.此时方程的解为x1=x2=4,集合A={4},满足题意.综上所述,实数k的值为0或1.当k=0时,A={2};当k=1时,A={4}.10.已知集合A含有两个元素a-3和2a-1,(1)若-3∈A,试求实数a的值;(2)若a∈A,试求实数a的值.解析:(1)因为-3∈A,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0.此时集合A含有两个元素-3,-1,符合题意.若-3=2a-1,则a=-1.此时集合A含有两个元素-4,-3,符合题意,综上所述,满足题意的实数a的值为0或-1.(2)因为a∈A,所以a=a-3或a=2a-1.当a=a-3时,有0=-3,不成立.当a=2a-1时,有a=1,此时A中有两个元素-2,1,符合题意.综上知a=1.[B组能力提升]1.有以下说法:①0与{0}是同一个集合;②由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}是有限集.其中正确说法是()A.①④B.②C.②③D.以上说法都不对解析:0∈{0};方程(x-1)2(x-2)=0的解集为{1,2};集合{x|4<x<5}是无限集;只有②正确.答案:B2.已知集合P={x|x=a|a|+|b|b,a,b为非零常数},则下列不正确的是()A.-1∈P B.-2∈P C.0∈P D.2∈P解析:(1)a>0,b>0时,x=a|a|+b|b|=1+1=2;(2)a<0,b<0时,x=a|a|+b|b|=-1-1=-2;(3)a,b异号时,x=0. 答案:A3.已知集合M={a|a∈N,且65-a∈N},则M=________.解析:5-a整除6,故5-a=1,2,3,6,a∈N所以a=4,3,2.答案:{4,3,2}4.当x∈A时,若x-1∉A且x+1∉A,则称x为A的一个“孤立元素”,所有孤立元素组成的集合称为“孤星集”,则集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为________.解析:由“孤立元素”的定义知,对任意x∈A,要成为A的孤立元素,必须是集合A中既没有x-1,也没有x+1,因此只需逐一考查A中的元素即可.0有1“相伴”,1,2则是前后的元素都有,3有2“相伴”,只有5是“孤立的”,从而集合A={0,1,2,3,5}中“孤立元素”组成的“孤星集”为{5}.故填{5}.答案:{5}5.已知集合A={x|ax2+2x+1=0,a∈R}.(1)若1∈A,求a的值;(2)若集合A中只有一个元素,求实数a组成的集合;(3)若集合A中含有两个元素,求实数a组成的集合.解析:(1)因为1∈A,所以a×12+2×1+1=0,所以a=-3.(2)当a=0时,原方程为2x+1=0,解得x=-12,符合题意;当a≠0时,方程ax2+2x+1=0有两个相等实根,即Δ=22-4a=0,所以a=1.故当集合A只有一个元素时,实数a组成的集合是{0,1}.(3)由集合A中含有两个元素知,方程ax2+2x+1=0有两个不相等的实根,即a≠0且Δ=22-4a>0,所以a≠0且a<1.故当集合A中含有两个元素时,实数a组成的集合是{a|a≠0且a<1}.6.设S是由满足下列条件的实数所构成的集合:①1∉S;②若a∈S,则11-a∈S.请解答下列问题:(1)若2∈S,则S中必有另外两个数,求出这两个数;(2)求证:若a∈S,且a≠0,则1-1a∈S.解析:(1)∵2∈S,2≠1,∴11-2=-1∈S.∵-1∈S,-1≠1,∴11-(-1)=12∈S.又∵12∈S,12≠1,∴11-12=2∈S.∴集合S中另外两个数为-1和12.(2)由a∈S,则11-a∈S,可得11-11-a∈S,即11-11-a=1-a1-a-1=1-1a∈S.∴若a∈S,且a≠0,则1-1a∈S.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321AC1F B正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DF45°DBa+b-aa 45°A BE1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°DBa+b-aa 45°A BE挖掘图形特征:a+bx-aa 45°D Ea +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.DC变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.AB CFEDCDC。
2018学年数学人教A版必修一优化练习:第一章 1.2 1.2.2 第2课时 分段函数及映射
[课时作业] [A 组 基础巩固]1.已知函数f (x )=⎩⎨⎧2x ,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3解析:因为f (1)=2,所以由f (a )+f (1)=0,得f (a )=-2,所以a 肯定小于0, 则f (a )=a +1=-2,解得a =-3,故选A. 答案:A2.给出如图所示的对应:其中构成从A 到B 的映射的个数为( ) A .3 B .4 C .5D .6解析:①是映射,是一对一;②③是映射,满足对于集合A 中的任意一个元素在集合B 中都有唯一的元素和它对应;④⑤不是映射,是一对多;⑥不是映射,a 3、a 4在集合B 中没有元素与之对应. 答案:A3.函数f (x )=⎩⎨⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3]解析:f (x )图象大致如下:由图可知值域为[0,2]∪{3}. 答案:B4.已知函数f (x )=⎩⎨⎧2x ,x ≥0,x 2,x <0,则f (f (-2))的值是( )A . 4B .-4C .8D .-8解析:∵-2<0,∴f (-2)=(-2)2=4,∴f (f (-2))=f (4); 又∵4≥0,∴f (4)=2×4=8. 答案:C5.下列对应是从集合M 到集合N 的映射的是( )①M =N =R ,f :x →y =1x ,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2, x ∈M ,y ∈N ;③M =N =R ,f :x →y 1|x |+x ,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N . A .①② B .②③ C .①④D .②④解析:根据映射的定义进行判断.对于①,集合M 中的元素0在N 中无元素与之对应,所以①不是映射.对于③,M 中的元素0及负实数在N 中没有元素与之对应,所以③不是映射.对于②④,M 中的元素在N 中都有唯一的元素与之对应,所以②④是映射.故选D. 答案:D6.若函数f (x )=⎩⎨⎧3x 2-4,x >0,π,x =0,0,x <0,则f (f (0))=________.解析:∵f (0)=π,∴f (f (0))=f (π)=3π2-4.答案:3π2-47.已知f (x )=⎩⎨⎧2x ,x >0,f (x +1),x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于________.解析:∵43>0,∴f ⎝ ⎛⎭⎪⎫43=2×43=83;-43≤0,∴f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13; -13≤0,∴ f ⎝ ⎛⎭⎪⎫-13 =f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23;23>0,∴f⎝ ⎛⎭⎪⎫23=2×23=43, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4.答案:48.设f :A →B 是从A 到B 的一个映射,f :(x ,y )→(x -y ,x +y ),那么A 中的元素(-1,2)的象是________,B 中的元素(-1,2)的原象是________. 解析:(-1,2)→(-1-2,-1+2)=(-3,1). 设(-1,2)的原象为(x ,y ),则⎩⎨⎧x -y =-1,x +y =2,解得⎩⎪⎨⎪⎧x =12,y =32.答案:(-3,1) (12,32)9.作函数y =|x +3|+|x -5|图象,并求出相应的函数值域. 解析:因为函数y =|x +3|+|x -5|,y =⎩⎨⎧-2x +2 (x ≤-3),8 (-3<x <5),2x -2 (x ≥5).所以y =|x +3|+|x -5|的图象如图所示:由此可知,y =|x +3|+|x -5|的值域为[8,+∞). 10.已知(x ,y )在映射f 的作用下的象是(x +y ,xy ), 求:(1)(3,4)的象;(2)(1,-6)的原象. 解析:(1)∵x =3,y =4,∴x +y =7,xy =12. ∴(3,4)的象为(7,12).(2)设(1,-6)的原象为(x ,y ),则有⎩⎨⎧x +y =1,xy =-6,解得⎩⎨⎧ x =-2,y =3或⎩⎨⎧x =3,y =-2.故(1,-6)的原象为(-2,3)或(3,-2).[B 组 能力提升]1.若已知函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2,且f (x )=3,则x 的值是( )A .1B .1或32 C .±3D. 3解析:由x +2=3,得x =1>-1,舍去.由x 2=3,得x =±3,-1<3<2,-3<-1,-3舍去. 由2x =3,得x =32<2,舍去. 所以x 的值为 3. 答案:D2.已知函数f (x )=⎩⎨⎧x +2,x ≤0-x +2,x >0,则不等式f (x )≥2x 的解集是( )A .(-∞,23] B .(-∞,0] C .(0,23]D .(-∞,2)解析:(1)当x >0时,f (x )=-x +2≥2x ,得3x ≤2,即0<x ≤23; (2)当x ≤0时,f (x )=x +2≥2x ,得x ≤2,又x ≤0,∴x ≤0; 综上所述,x ≤23. 答案:A3.已知集合A =Z ,B ={x |x =2n +1,n ∈Z},C =R ,且从A 到B 的映射是 f :x →y =2x -1,从B 到C 的映射是f :x →y =13x +1,则从A 到C 的映射是________. 解析:根据题意,f :A →B ,x →y =2x -1 f :B →C ,y →z =13y +1. 所以,从A 到C 的映射是f :x →z =13(2x -1)+1=16x -2,即从A 到C 的映射是f :x →y =16x -2.答案:f :x →y =16x -24.已知f (x )=⎩⎨⎧x +2(x ≤-2),x 2(-2<x <2),2x (x ≥2),若f (a )=8,则a =________.解析:当a ≤-2时,由a +2=8,得a =6.不合题意. 当a ≥2时,由2a =8,得a =4,符合题意. 当-2<a <2时,a 2=8,a =±22,不合题意. 答案:45.已知直线y =1与曲线y =x 2-|x |+a 有四个交点,求a 的取值范围.解析:y =x 2-|x |+a =⎩⎨⎧x 2-x +a ,x ≥0x 2+x +a ,x <0如图,在同一直角坐标系内画出直线y =1与曲线y =x 2-|x |+a ,观图可知,a 的取值必须满足⎩⎪⎨⎪⎧a >14a -14<1,解得1<a <54.6.等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =4 5°,作直线MN ⊥AD 交AD 于M ,交折线ABCD 于N .设AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数.解析:作BH ⊥AD ,H 为垂足,CG ⊥AD ,G 为垂足,依题意,则有AH =a 2,AG =32a ,∠A =∠D =45°. (1)当M 位于点H 的左侧时,N ∈AB , 由于AM =x ,∠A =45°,∴MN =x . ∴y =S △AMN =12x 2(0≤x ≤a 2).(2)当M 位于H 、G 之间时,由于AM =x ,AH =a 2,BN =x -a2, ∴y =S 直角梯形AMNB =12·a 2[x +(x -a 2)]=12ax -a 28(a 2<x ≤32a ). (3)当M 位于点G 的右侧时, 由于AM =x ,DM =MN =2a -x ,∴y =S 梯形ABCD -S △MDN =12·a 2(2a +a )-12(2a -x )2=3a 24-12(4a 2-4ax +x 2)=-12x 2+2ax -5a 24(32a <x ≤2a ).综上有y =⎩⎪⎨⎪⎧12x 2(0≤x ≤a 2),12ax -a 28(a 2<x ≤32a ),-12x 2+2ax -5a 24(32a <x ≤2a ).赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DAC1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DBa +bx -b-ab a45°ABE1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DBa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DEa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM(2)当AE =1时,求EF 的长.DE3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.DC变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DAB CFEDCDC。
2018学年数学人教A版必修一优化练习:第一章 1.3 1.3.1 第1课时 函数的单调性
[课时作业] [A 组 基础巩固]1.若函数f (x )在区间(a ,b ]上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,c )上( ) A .必是增函数 B .必是减函数 C .是增函数或是减函数 D .无法确定单调性 答案:D2.如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是( ) A .[-3,+∞) B .(-∞,-3] C .(-∞,5]D .[3,+∞)解析:二次函数开口向上,对称轴为x =-2(a -1)2=1-a ,要使f (x )在(-∞,4]上是减函数,需满足1-a ≥4,即a ≤-3. 答案:B3.函数y =|x +2|在区间[-3,0]上是( ) A .递减 B .递增 C .先减后增D .先增后减解析:y =|x +2|的图象是由y =|x |图象向左平移2个单位得来,由图可知y =|x +2|在[-3,-2]上递减,在[-2,0]上递增. 答案:C4.函数f (x )=x -1x 在(0,+∞)上( ) A .递增 B .递减 C .先增再减D .先减再增解析:∵y =x 在(0,+∞)上递增,y =-1x 在(0,+∞)上也递增, ∴f (x )=x -1x 在(0,+∞)上递增.答案:A5.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( )A .f (x )=2x B .f (x )=-3x +1 C .f (x )=x 2+4x +3D .f (x )=x 2-4x +3解析:∵x 1,x 2∈(0,+∞)时, f (x 1)-f (x 2)x 1-x 2>0恒成立,∴f (x )在(0,+∞)是增函数. 答案:C6.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.解析:f (x )=2(x -m 4)2+3-m 28,由题意m4=2,∴m =8. ∴f (1)=2×12-8×1+3=-3. 答案:-37.函数y =-(x -3)|x |的递增区间是________. 解析:y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x (x >0),x 2-3x (x ≤0).作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案:⎣⎢⎡⎦⎥⎤0,328.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________. 解析:由f (x )在[1,2]上单调递减可得a ≤1;由g (x )在[1,2]上单调递减可得a >0 ∴a ∈(0,1]. 答案:(0,1]9.函数f (x )是定义在(0,+∞)上的减函数,对任意的x ,y ∈(0,+∞), 都有f (x +y )=f (x )+f (y )-1,且f (4)=5. (1)求f (2)的值;(2)解不等式f (m -2)≤3.解析:(1)∵f (4)=f (2+2)=2f (2)-1=5, ∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2). ∵f (x )是(0,+∞)上的减函数. ∴⎩⎪⎨⎪⎧m -2≥2,m -2>0解得m ≥4. ∴不等式的解集为{m |m ≥4}.10.求函数f (x )=|x 2-6x +8|的单调区间.解析:先作出y =x 2-6x +8的图象,然后x 轴上方的不变,x 轴下方的部分关于x 轴对称翻折,得到如图f (x )=|x 2-6x +8|的图象,由图象可知f (x )的增区间为[2,3],[4,+∞];减区间为(-∞,2],[3,4].[B 组 能力提升]1.已知f (x )=x 2+bx +4,且f (1+x )=f (1-x ),则f (-2),f (2),f (3)的大小关系为( ) A .f (-2)<f (2)<f (3) B .f (-2)>f (2)>f (3) C .f (2)<f (-2)<f (3)D .f (2)<f (3)<f (-2)解析:∵f (x )=x 2+bx +4,且f (1+x )=f (1-x ),∴f (x )图象开口向上且关于x =1对称,∴f (x )在[1,+∞)上递增,而f (-2)=f (1-3)=f (1+3)=f (4),∴f (2)<f (3)<f (4)=f (-2). 答案:D2.已知,a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:∵f (0)=f (4),∴二次函数图象关于直线x =2对称,又f (0)>f (1), ∴f (x )在(-∞,2]上递减,∴二次函数图象开口向上,即a >0. 答案:A3.若函数f (x )=|2x +a |的单调递增区间是 [3,+∞),则a =________. 解析:利用函数图象确定单调区间.f (x )=|2x +a |=⎩⎪⎨⎪⎧2x +a ,x ≥-a 2,-2x -a ,x <-a2.作出函数图象,由图象知:函数的单调递增区间为[-a2,+∞), ∴-a2=3,∴a =-6. 答案:-64.函数f (x )=⎩⎨⎧(2-a )x ,x ≤1ax ,x >1在R 上是增函数,则a 的取值范围为________.解析:⎩⎪⎨⎪⎧2-a >0,a >0,2-a ≤a ,解得1≤a <2.答案:[1,2) 5.若函数f (x )=ax -1x +1在(-∞,-1)上是减函数,求实数a 的取值范围. 解析:f (x )=ax -1x +1=a -a +1x +1.设x 1<x 2<-1, 则f (x 1)-f (x 2)=(a -a +1x 1+1)-(a -a +1x 2+1)=a +1x 2+1-a +1x 1+1=(a +1)(x 1-x 2)(x 2+1)(x 1+1). 又函数f (x )在(-∞,-1)上是减函数, 所以f (x 1)-f (x 2) >0. 由于x 1<x 2<-1,所以x 1-x 2<0,x 1+1<0,x 2+1<0, 所以a +1<0,即a <-1. 故a 的取值范围是(-∞,-1).6.设f (x )是定义在(0,+∞)上的函数,满足条件:(1)f (xy )=f (x )+f (y ); (2)f (2)=1;(3)在(0,+∞)上是增函数.如果f (2)+f (x -3)≤2,求x 的取值范围. 解析:∵f (xy )=f (x )+f (y ),∴令x =y =2, 得f (4)=f (2)+f (2)=2f (2). 又f (2)=1,∴f (4)=2.∵f (2)+f (x -3)=f (2(x -3))=f (2x -6), ∴f (2x -6)≤2=f (4),即f (2x -6)≤f (4). ∵f (x )在(0,+∞)上递增,∴⎩⎪⎨⎪⎧x -3>0,2x -6≤4解得3<x ≤5.故x 的取值范围为(3,5].赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DAC1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DBa +b-aa45°ABE1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DBa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DEa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM(2)当AE =1时,求EF 的长.DE3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°. (1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形;(3)求AE -CE 的值.DC变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.AB CFEDCDC。
【人教A版】2017-2018学年数学必修一优化练习:第一章 1.1 1.1.3 第2课时 补 集 Word版含解析
[课时作业][A组基础巩固]1.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)解析:M∪N={1,2,3,4},M∩N=∅,(∁U M)∪(∁U N)={1,2,3,4,5,6},(∁U M)∩(∁U N)={5,6},故选D.答案:D2.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B 等于()A.{1,3} B.{3,5}C.{1,5} D.{1, 3,5}解析:如图所以B={1,3,5}.答案:D3.已知集合A={x|x<3或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为() A.a>3 B.a≥3C.a≥7 D.a>7解析:因为A={x|x<3或x≥7},所以∁U A={x|3≤x<7},又因(∁U A)∩B≠∅,则a>3.答案:A4.已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N=()A.M B.NC.I D.∅解析:因为N∩∁I M=∅,所以N⊆M,则M∪N=M,选A.答案:A5.已知集合I,M,N的关系如图所示,则I,M,N的关系为()A.(∁I M)⊇(∁I N)B.M⊆(∁I N)C.(∁I M)⊆(∁I N)D.M⊇(∁I N)解析:由题图知M⊇N,∴(∁I M)⊆(∁I N).答案:C6.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________.解析:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.解析:∵U={0,1,2,3},∁U A={1,2}.∴A={x|x2+mx=0}={0,3}.∴0,3是方程x2+mx=0的两根,∴0+3=-m,即m=-3.答案:-38.已知全集U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},求∁U A,(∁U B)∩A. 解析:∵U={x|-1≤x≤4},A={x|-1≤x≤1},B={x|0<x≤3},结合数轴(如图).可知∁U A={x|1<x≤4},∁U B={x|3<x≤4或-1≤x≤0}.结合数轴(如图).可知(∁U B)∩A={x|-1≤x≤0}.9.设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},且A∩B={2}.(1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(∁U A )∪(∁U B );(3)写出(∁U A )∪(∁U B )的所有子集.解析:(1)由交集的概念易得,2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a =-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={}-5,2.(2)由并集的概念易得,U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2. 由补集的概念易得,∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12. 所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12. (3)(∁U A )∪(∁U B )的所有子集即集合⎩⎨⎧⎭⎬⎫-5,12的所有子集:∅,⎩⎨⎧⎭⎬⎫12, {-5},⎩⎨⎧⎭⎬⎫-5,12. 10.设全集U ={a 2-2,2, 1},A ={a,1},求∁U A .解析:由补集的定义可知A ⊆U .若a =2;则a 2-2=2,集合U 中的元素不满足互异性,所以a ≠2.若a 2-2=a ,则a =2或a =-1,因为a ≠2,所以a =-1.此时,U ={-1,2,1},A ={-1,1},所以∁U A ={2}.[B 组 能力提升]1.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 是非空集合,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:画出Venn 图,如图.∵U =A ∪B 中有m 个元素,(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素.答案:D2.设U为全集,对集合X,Y,定义运算“*”,X*Y=∁U(X∩Y).对于任意集合X,Y,Z,则(X*Y)*Z =()A.(X∪Y)∩∁U Z B.(X∩Y)∪∁U ZC.(∁U X∪∁U Y)∩Z D.(∁U X∩∁U Y)∪Z解析:依题意得(X*Y)=∁U(X∩Y)=(∁U X)∪(∁U Y),(X*Y)*Z=∁U[ (X*Y)∩Z]=∁U[∁U(X∩Y)∩Z]={∁U[∁U(X∩Y)]}∪(∁U Z)=(X∩Y)∪(∁U Z).答案:B3.设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.解析:U={1,2,3,4,5,6,7,8}.则A={1,3,5,7},B={3,6}∴A∪B={1,3,5,6,7}∴∁U(A∪B)={2,4,8}.答案:{2,4,8}4.设集合A={x|0≤x≤4},B={y|y=x-3,-1≤x≤3},则∁R(A∩B)=________.解析:∵A={x|0≤x≤4},B={y|-4≤y≤0},∴A∩B={0},∴∁R(A∩B)={x|x∈R,且x≠0}.答案:{x|x∈R,且x≠0}5.某班共有30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,求喜爱篮球运动但不喜爱乒乓球运动的人数.解析:设全集U={全班30名学生},A={喜爱篮球运动的学生},B={喜爱乒乓球运动的学生},画出Venn图如图所示:设既喜爱篮球运动又喜爱乒乓球运动的人数为x ,则喜爱篮球运动但不喜爱乒乓球运动的人数为15-x ,喜爱乒乓球运动但不喜爱篮球运动的人数为10-x ,则有(15-x )+x +(10-x )+8=30,解得x =3.所以喜爱篮球运动但不喜爱乒乓球运动的人数为15-x =15-3=12.6.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁UB )={4},U =R ,求实数a 、b 的值.解析:因为(∁U A )∩B ={2},A ∩(∁U B )={4},知2∈B ,但2∉A,4∈A ,但4∉B .将x =2和x =4分别代入B ,A 两集合的方程中得⎩⎪⎨⎪⎧ 22-2a +b =0,42+4a +12b =0,即⎩⎪⎨⎪⎧ 4-2a +b =0,4+a +3b =0.解得a =87,b =-127.。
2018人教A版高中数学必修一第一章测试题含答案
第一章章末检题测有一一、选择题(本大题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只的)项是符合题目要求1.集合{1 ,2,3} 的所有真子集的个数为( )A.3B.6C.7D.8答案 C解析含一个元素的有{1} ,{2} ,{3} ,共3 个;含两个元素的有{1 ,2} ,{1 ,3} ,{2 ,3} ,共3 个;空集是任何非空集合的真子集,故有7 个.2.下列五个写法,其中错误写法的个数为( )①{0} ∈{0 ,2,3} ;②? {0} ;③{0 ,1,2} ? {1 ,2,0} ;④0∈?;⑤0∩?=?A.1B.2C.3D.4答案 C解析②③正确.2-2} ,N={y|y =x2-2} ,则M ∩N 等于( )3.已知M ={x|y =xA.NB.MC.RD.?答案 A解析M ={x|y =x2-2} =R,N={y|y =x2-2} ={y|y ≥-2} ,故M ∩N=N.2+2x+3(x≥0)的值域为( )4.函数y=xA.RB.[0 ,+∞)C.[2,+∞)D.[3 ,+∞)答案 D解析y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.5.某学生离开家去学校,为了锻炼身体,开始跑步前进,跑累了再走余下的路程,图中 d 轴是( )表示离学校的距离,t 轴表示所用的时间,则符合学生走法的只可能答案 D解析t=0 时,学生在家,离学校的距离d≠0,因此排除A、C 项;学生先跑后走,因此 d 随t 的变化是先快后慢,故选 D.6.函数f(x)=x-1x-2的定义域为( )A.(1,+∞)B.[1 ,+∞)C.[1,2)D.[1 ,2)∪(2,+∞)答案 Dx-1≥0,解析根据题意有x-2≠0,解得x≥ 1 且x≠2.2-1 不是减函数的是( ) 7.在下面的四个选项所给的区间中,函数f(x) =xA.( -∞,-2)B.(-2,-1)C.(-1,1)D.(-∞,0)答案 C解析函数f(x) =x2-1 为二次函数,单调减区间为(-∞,0],而(-1,1)不是(-∞,0]的子集,故选 C.5+x3+x 的图像( )8.函数f(x)=xA.关于y 轴对称B.关于直线y=x 对称C.关于坐标原点对称D.关于直线y=-x 对称答案 C解析易知f(x) 是R上的奇函数,因此图像关于坐标原点对称.9.已知f(x)=122x-1(x<),f(x-1)+1(x≥12),1则f()+f(476)=( )A.-1616B.5 5C.6 D.-6答案A1 1 解析f( -1=- )= 2× 4 4 1 2 ,f( 7 6 )=f( 7 6 -1)+ 1=f( 1 6 )+1=2×1 1 1 -1+1= ,∴f( )+f( 6 3 47 6 )=- 1 6, 故选A .7.函数 y =f(x) 与 y =g(x)的图像如下图,则函数y =f(x) · g(x)的图像可能是 ()答案 A解析由于函数 y =f(x) g ·(x) 的定义域是函数 y =f(x) 与 y =g(x) 的定义域的交集 (-∞,0)∪(0,+∞ ),所以函数图像在 x =0 处是断开的, 故可以排除 C 、D 项;由于当 x 为很小的正数时, f(x) >0 且 g(x) < 0,故 f(x) g ·(x)<0,可排除 B 项,故选A .8.若 f(x) 是偶函数且在 (0,+∞ )上减函数,又 f(- 3)=1,则不等式f (x)<1 的解集为 ( )A.{x|x>3 或- 3<x<0}B.{x|x< -3 或 0<x<3}C.{x|x< -3 或 x>3}D.{x| - 3<x<0 或 0<x<3}答案 C解析由于 f(x) 是偶函数, ∴f(3) =f(-3)=1,f(x) 在 (-∞,0)上是增函数, ∴当 x>0 时,f(x)<1即 f(x)<f(3) ,∴ x>3,当 x<0 时, f(x)<1 即 f(x)<f( -3),∴ x<-3,故选C . 9.已知函数 y = 1-x + x +3的最大值为 M ,最小值为 m ,则 mM的值为 ()A. 2 2B. 2C.2 2D.2答案 A解析本题考查函数的最值及求法.∵y ≥ 0,∴ y = 1-x + x +3= 4+2 (x + 3)( 1-x )(- 3≤ x ≤ 1),∴当 x =- 3 或 1 时, y min =2;当 x =- 1 时, y max =2 2,即 m =2, M =2 2,∴m M= 2. 2二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分)2+4} ,A ∩B ={3} ,则实数 a =________.10.设集合A ={ -1,1,3} ,B ={a +2,a 答案 1解析 ∵A ∩B ={3} ,∴ 3∈B.∵a2+4≥4,∴ a +2=3,∴ a =1.11.若函数 f(x) =2x 4-|3x +a|为偶函数,则 a =________.答案 0解析 f(- x)=2x4-|a -3x|,由偶函数定义得|3x +a|=|a -3x|,∴ (a +3x)+ (a - 3x)=0,∴ a=0.12.函数 f(x) 是定义在 [-1,3]上的减函数, 且函数 f(x) 的图像经过点 P(-1,2),Q(3,- 4), 则该函数的值域是 ________. 答案 [-4,2]解析∵f(x) 的图像经过点 P ,Q ,∴f( -1)=2,f(3) =- 4.又 f(x) 在定义域 [- 1,3]上是减函数, ∴f(3) ≤ f(x) ≤ f( -1),即- 4≤ f(x) ≤ 2. ∴该函数的值域是 [-4,2].13.偶函数 f(x) 在(0,+∞ )上为增函数,若 x 1<0,x 2>0,且 |x 1|>|x 2|,则 f(x 1)与 f(x 2)的大小关系是 ________. 答案 f(x 1)>f(x 2)解析∵x 1<0,∴- x 1>0,又 |x 1|>|x 2|, x 2>0,∴- x 1>x 2>0.∵f(x) 在(0,+∞ )上为增函数,∴ f(-x 1)>f(x 2). 又∵ f(x) 为偶函数,∴ f(x 1)>f(x 2).三、解答题 (本大题共6 个小题,共70 分,解答应写出文字说明,证明过程或演算步骤 ) 14.(10 分)已知集合 A ={x| -4≤ x<8} ,函数 y = x - 5的定义域构成集合 B ,求:(1)A ∩ B ; (2)(?R A) ∪B. 解析y = x -5的定义域为 B ={x|x ≥ 5} ,则(1)A ∩ B = {x|5≤ x<8}.(2) ?R A ={x|x< -4 或 x ≥ 8} ,∴ (?R A) ∪B ={x|x< -4 或 x ≥ 5}.2+ax +b 的图像关于直线x =1 对称. 15.(12 分)已知函数 f(x) =x (1)求实数 a 的值;(2)若 f(x) 的图像过 (2,0)点,求 x ∈[0,3]时, f(x) 的值域 . 解析 (1)二次函数 f(x) =x2+ax +b 的对称轴为 x =- a2+ax +b 的对称轴为 x =- a ,∴- 2a2= 1,∴ a =- 2.(2)若 f(x) 过(2,0)点,∴ f(2) =0. ∴22-2×2+b =0,∴ b =0,∴ f(x) =x 2-2x.当 x =1 时 f(x)最小为 f(1) =- 1,当 x =3 时, f(x) 最大为 f(3)= 3, ∴f(x) 在[0,3]上的值域为 [-1,3]. 2x +1 16.(12 分)已知函数 f(x) = . 17. x +1(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.解析(1)f(x) 在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,f(x1)-f(x 2)=2x1+1x1+1-2x2+1x2+1=x1-x2(x1+1)(x2+1).∵x1-x2<0,(x1+1)(x2+1)>0,∴f(x 1)<f(x2).∴函数f(x) 在[1,+∞)上是增函数.(2)由(1)知函数f(x) 在[1,4]上是增函数,∴最大值为f(4)=2×4+1 9=,最小值为f(1) =4+1 52×1+1 3=.1+1 218.(12 分)商店出售茶壶和茶杯,茶壶每个定价20 元,茶杯每个定价 5 元,该店推出两种优惠办法:(1)买1 个茶壶赠送1 个茶杯;(2)按总价的92%付款.某顾客需购茶壶 4 个,茶杯若干个(不少于 4 个),若购买茶杯数为x个,付款数为y(元),试分别建立两种优惠办法中y与x 之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更省钱.解析由题知,按照第 1 种优惠办法得y1=80+(x-4) ·5=5x+60(x≥4).按照第 2 种优惠办法得y2=(80+5x)×92%=4.6x+73.6(x ≥4),y1-y2=0.4x-13.6(x ≥4),当4≤x<34 时,y1-y2<0,y1<y2;当x=34 时,y1-y2=0,y1=y2;当x>34 时,y1-y2>0,y1>y2.故当4≤x<34 时,第一种办法更省钱;当x=34 时,两种办法付款数相同;当x>34 时,第二种办法更省钱.19.(12 分)函数f(x)是R上的偶函数,且当x>0 时,函数的解析式为f(x) =2x-1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求当x<0 时,函数的解析式.解析证明(1)设0<x1<x2,则2 2-1)-( -1)=x1 x2f(x 1)-f(x 2)=( 2(x2-x1),x1x2∵0<x1<x2,∴x1x2>0,x2-x1>0. ∴f(x 1)-f(x2)>0,即f(x 1)>f(x 2).∴f(x) 在(0,+∞)上是减函数.(2)设x<0,则-x>0,∴f(-x)=-2x-1.又f(x) 为偶函数,∴f(-x)=f(x) =-2x-1.故f(x) =-2-1(x<0). x20.(12 分)已知函数对任意的实数a,b,都有f(ab)=f(a)+f(b) 成立.(1)求f(0),f(1) 的值;(2)求证:f( 1x)+f(x) =0(x≠0);(3)若f(2)=m,f(3) =n(m,n 均为常数),求f(36) 的值.解析(1)令a=b=0,则f(0×0)=f(0)+f(0) ,∴f(0) =0. 令a=b=1,则f(1×1)=f(1) +f(1),∴f(1)=0.1(2)f(1) =f(x ·)=f(x) +f(x 1x),又f(1) =0,1∴f(x) +f(x)=0.(3)∵f(4)=f(2×2)=f(2) +f(2)=2f(2)=2m,f(9)=f(3×3)=f(3) +f(3)=2f(3)=2n,∴f(36) =f(4×9)=f(4)+f(9) =2m+2n.。
【人教A版】2017-2018学年数学必修一优化练习:第一章 1.3 1.3.1 第1课时 函数的单调性 Word版含解析
[课时作业][A 组 基础巩固]1.若函数f (x )在区间(a ,b ]上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,c )上( )A .必是增函数B .必是减函数C .是增函数或是减函数D .无法确定单调性答案:D2.如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是( )A .[-3,+∞)B .(-∞,-3]C .(-∞,5]D .[3,+∞)解析:二次函数开口向上,对称轴为x =-2(a -1)2=1-a ,要使f (x )在(-∞,4]上是减函数,需满足1-a ≥4,即a ≤-3.答案:B3.函数y =|x +2|在区间[-3,0]上是( )A .递减B .递增C .先减后增D .先增后减解析:y =|x +2|的图象是由y =|x |图象向左平移2个单位得来,由图可知y =|x +2|在[-3,-2]上递减,在[-2,0]上递增.答案:C4.函数f (x )=x -1x 在(0,+∞)上( )A .递增B .递减C .先增再减D .先减再增解析:∵y =x 在(0,+∞)上递增,y =-1x 在(0,+∞)上也递增,∴f (x )=x -1x 在(0,+∞)上递增.答案:A5.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( ) A .f (x )=2xB .f (x )=-3x +1C .f (x )=x 2+4x +3D .f (x )=x 2-4x +3 解析:∵x 1,x 2∈(0,+∞)时,f (x 1)-f (x 2)x 1-x 2>0恒成立, ∴f (x )在(0,+∞)是增函数.答案:C6.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.解析:f (x )=2(x -m 4)2+3-m 28,由题意m 4=2,∴m =8.∴f (1)=2×12-8×1+3=-3.答案:-37.函数y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x (x >0),x 2-3x (x ≤0). 作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32. 答案:⎣⎢⎡⎦⎥⎤0,32 8.若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是________. 解析:由f (x )在[1,2]上单调递减可得a ≤1;由g (x )在[1,2]上单调递减可得a >0∴a ∈(0,1].答案:(0,1]9.函数f (x )是定义在(0,+∞)上的减函数,对任意的x ,y ∈(0,+∞),都有f (x +y )=f (x )+f (y )-1,且f (4)=5.(1)求f (2)的值;(2)解不等式f (m -2)≤3.解析:(1)∵f (4)=f (2+2)=2f (2)-1=5,∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2).∵f (x )是(0,+∞)上的减函数.∴⎩⎪⎨⎪⎧m -2≥2,m -2>0解得m ≥4. ∴不等式的解集为{m |m ≥4}.10.求函数f (x )=|x 2-6x +8|的单调区间.解析:先作出y =x 2-6x +8的图象,然后x 轴上方的不变,x轴下方的部分关于x 轴对称翻折,得到如图f (x )=|x 2-6x +8|的图象,由图象可知f (x )的增区间为[2,3],[4,+∞];减区间为(-∞,2],[3,4].[B 组 能力提升]1.已知f (x )=x 2+bx +4,且f (1+x )=f (1-x ),则f (-2),f (2),f (3)的大小关系为( )A .f (-2)<f (2)<f (3)B .f (-2)>f (2)>f (3)C .f (2)<f (-2)<f (3)D .f (2)<f (3)<f (-2) 解析:∵f (x )=x 2+bx +4,且f (1+x )=f (1-x ),∴f (x )图象开口向上且关于x =1对称,∴f (x )在[1,+∞)上递增,而f (-2)=f (1-3)=f (1+3)=f (4),∴f (2)<f (3)<f (4)=f (-2).答案:D2.已知,a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0解析:∵f (0)=f (4),∴二次函数图象关于直线x =2对称,又f (0)>f (1),∴f (x )在(-∞,2]上递减,∴二次函数图象开口向上,即a >0.答案:A3.若函数f (x )=|2x +a |的单调递增区间是 [3,+∞),则a =________.解析:利用函数图象确定单调区间.f (x )=|2x +a |=⎩⎪⎨⎪⎧ 2x +a ,x ≥-a 2,-2x -a ,x <-a 2.作出函数图象,由图象知:函数的单调递增区间为[-a 2,+∞),∴-a 2=3,∴a =-6.答案:-64.函数f (x )=⎩⎨⎧ (2-a )x ,x ≤1ax ,x >1在R 上是增函数,则a 的取值范围为________. 解析:⎩⎪⎨⎪⎧ 2-a >0,a >0,2-a ≤a ,解得1≤a <2. 答案:[1,2)5.若函数f (x )=ax -1x +1在(-∞,-1)上是减函数,求实数a 的取值范围. 解析:f (x )=ax -1x +1=a -a +1x +1. 设x 1<x 2<-1,则f (x 1)-f (x 2)=(a -a +1x 1+1)-(a -a +1x 2+1)=a +1x 2+1-a +1x 1+1=(a +1)(x 1-x 2)(x 2+1)(x 1+1). 又函数f (x )在(-∞,-1)上是减函数,所以f (x 1)-f (x 2) >0.由于x 1<x 2<-1,所以x 1-x 2<0,x 1+1<0,x 2+1<0,所以a +1<0,即a <-1.故a 的取值范围是(-∞,-1).6.设f (x )是定义在(0,+∞)上的函数,满足条件:(1)f (xy )=f (x )+f (y );(2)f (2)=1;(3)在(0,+∞)上是增函数.如果f (2)+f (x -3)≤2,求x 的取值范围.解析:∵f (xy )=f (x )+f (y ),∴令x =y =2,得f (4)=f (2)+f (2)=2f (2).又f (2)=1,∴f (4)=2.∵f (2)+f (x -3)=f (2(x -3))=f (2x -6),∴f (2x -6)≤2=f (4),即f (2x -6)≤f (4).∵f (x )在(0,+∞)上递增,∴⎩⎪⎨⎪⎧x -3>0,2x -6≤4解得3<x ≤5.故x 的取值范围为(3,5].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[课时作业] [A 组 基础巩固]
1.函数y =f (x )图象与直线x =1公共点有( ) A .0个 B .1个 C .0或1个
D .无数个
解析:当x =1在函数f (x )定义域内时,函数y =f (x )图象与直线x =1有一个公共点 (1,f (1));当x =1不在定义域内时,函数y =f (x )图象与直线x =1没有公共点. 答案:C
2.已知四组函数:
①f (x )=x ,g (x )=(x )2;②f (x )=x ,g (x )=3
x 3;③f (n )=2n -1, g (n )=2n +1(n ∈N);④f (x )=x 2-2x -1,g (t )=t 2-2t -1. 其中是同一函数为( ) A .没有 B .仅有② C .②④
D .②③④
解析:对于第一组,定义域不同;对于第三组,对应法则不同;对于第二、四组,定义域与对应法则都相同.故选C. 答案:C
3.y =x 2(-1≤x ≤2)值域是( ) A .[1,4] B .[0,1] C .[0,4]
D .[0,2]
解析:由图可知f (x )=x 2(-1≤x ≤2)值域是[0,4].
答案:C 4.函数y =
2-x
x -1
定义域为( ) A .(-∞,2] B .(-∞,2) C .(-∞,1)∪(1,2)
D .(-∞,1)∪(1,2]
解析:要使函数y=
2-x
x-1
有意义,则{2-x≥0,x-1≠0,解得x≤2且x≠1,所以所求函
数定义域为(-∞,1)∪(1,2].
答案:D
5.图中可以表示以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域函数图象是()
解析:根据函数定义,在定义域[0,1]内任意一个元素都有唯一函数值与它对应,同样,对于值域[0,1]中任意一个函数值,在定义域内也一定有自变量和它对应.A中函数值域不是[0,1],B 中函数定义域不是[0,1],故可排除A,B;再结合函数定义,可知对于集合M中任意一个x,N 中都有唯一元素与之对应,故排除D.故选C.
答案:C
6.下列说法正确有________.(只填序号)
①函数值域中每一个数都有定义域中一个数与之对应;②函数定义域和值域一定是无限集合;
③若函数定义域只有一个元素,则值域也只有一个元素;④对于任何一个函数,如果x不同,那么y值也不同;⑤f(a)表示当x=a时,函数f(x)值,这是一个常量.
解析:函数是一个数集与另一个数集间特殊对应关系,所给出对应是否可以确定为y是x函数,主要是看其是否满足函数三个特征.①是正确.函数值域中每一个数一定有定义域中一个数与之对应,但不一定只有一个数与之对应.②是错误.函数定义域和值域不一定是无限集合,也可以是有限集,但一定不是空集,如函数f(x)=1,x=1定义域为{1},值域为{1}.③是正确.根据函数定义,定义域中每一个元素都能在值域中找到唯一元素与之对应.④是错误.当x不同时,函数值y值可能相同,如函数y=x2,当x=1和-1时,y都为1.⑤是正确.f(a)表示当x =a时,函数f(x)值是一个常量.故填①③⑤.
答案:①③⑤
7.已知函数f(x)=2x2-mx+3,若f(x)定义域为R,则m取值范围是________.
解析:由已知得2x2-mx+3≥0对x∈R恒成立,即Δ=m2-24≤0,∴-26≤m≤2 6.
答案:[-26,26]
8.若函数f (x )定义域为[2a -1,a +1],值域为[a +3,4a ],则a 取值范围为________. 解析:由区间定义知 ⎩⎨
⎧
2a -1<a +a +3<4a ⇒1<a <2.
答案:(1,2)
9.若f (x )定义域为[-3,5],求φ(x )=f (-x )+f (x )定义域.
解析:由f (x )定义域为[-3,5],得φ(x )定义域需满足⎩⎨
⎧
-3≤-x ≤5,
-3≤x ≤5
即⎩⎨
⎧
-5≤x ≤3,-3≤x ≤5
解得-3≤x ≤3.
所以函数φ(x )定义域为[-3,3]. 10.试求下列函数定义域与值域: (1)f (x )=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f (x )=(x -1)2+1; (3)f (x )=5x +4
x -1;
(4)f (x )=x -x +1.
解析:(1)函数定义域为{-1,0,1,2,3},则f (-1)=[(-1)-1]2+1=5,同理可得f (0)=2,f (1)=1,f (2)=2,f (3)=5,所以函数值域为{1,2,5}.
(2)函数定义域为R ,因为(x -1)2+1≥1,所以函数值域为{y |y ≥1}. (3)函数定义域是{x |x ≠1},y =5x +4x -1=5+9
x -1
,所以函数值域为{y |y ≠5}.
(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数定义域是{x |x ≥-1}.设t =x +1,则x
=t 2-1(t ≥0),于是f (t )=t 2-1-t =⎝ ⎛⎭⎪⎫t -122-5
4.又t ≥0,故f (t )≥-54.所以函数值域是⎩⎨⎧⎭
⎬⎫y |y ≥-54.
[B 组 能力提升]
1.函数y =5+4x -x 2值域为( ) A .(-∞,3) B .[3,+∞) C .[0,9]
D .[0,3]
解析:由函数性质可得5+4x -x 2≥0值域开方即是.结合函数图象(图略)可得y ∈[0,3],故选D. 答案:D
2.已知f (x )定义域是[0,+∞),则函数(x -2)0
+f (x -1)定义域是( ) A .[0,2)∪(2,+∞) B .[1,2)∪(2,+∞) C .[-1,2)∪(2,+∞) D .[1,+∞)
解析:{ x -2≠x -1≥0得1≤x 且x ≠2.
答案:B
3.已知函数f (x ),g (x )分别由下表给出:
则f (g (1))值为________;满足f (g (x ))>g (f (x ))x 值是________. 解析:g (1)=3,f (g (1))=f (3)=1; f (g (1))=1,f (g (2))=3, f (g (3))=1,g (f (1))=3, g (f (2))=1,g (f (3))=3, ∴满足f (g (x ))>g (f (x ))x 值为x =2. 答案:1 2
4.在实数原有运算中,我们定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )-(2⊕x ),x ∈[-2,2],则函数f (x )值域为________. 解析:由题意知,f (x )=⎩⎨⎧
-1,x ∈[-2,
x 2
-2,x ∈(1,2].
当x ∈[-2,1]时,f (x )=-1; 当x ∈(1,2]时,f (x )∈(-1,2]. ∴当x ∈[-2,2]时,f (x )∈[-1,2]. 答案:[-1,2]
5.如图,某灌溉渠横断面是等腰梯形,底宽为2 m ,渠深为1.8 m ,斜坡倾斜角是45°.(临界状态不考虑)
(1)试将横断面中水面积A (m 2)表示成水深h (m)函数; (2)确定函数定义域和值域;
(3)画出函数图象.
解析:(1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h )m ,高为h m ,∴水面积A =[2+(2+2h )]h 2
=h 2+2h (m 2).
(2)定义域为{h |0<h <1.8}.值域由二次函数A =h 2+2h (0<h <1. 8)求得.
由函数A =h 2+2h =(h +1)2-1图象可知,在区间(0,1.8)上函数值随自变量增大而增大,
∴0<A <6.84.
故值域为{A |0<A <6.84}.
(3)由于A =(h +1)2-1,对称轴为直线h =-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h <1.8,∴A =h 2+2h 图象仅是抛物线一部分,如图所示.
6.对于函数f (x ),若f (x )=x ,则称x 为f (x )“不动点”,若f (f (x ))=x ,则称x 为f (x )“稳定点”,函数f (x )“不动点”和“稳定点”集合分别记为A 和B ,即A ={x |f (x )=x },B ={x |f (f (x ))=x }. (1)求证:A ⊆B ;
(2)设f (x )=x 2+ax +b ,若A ={-1,3},求集合B . 解析:(1)若A =∅,则A ⊆B 显然成立. 若A ≠∅,设t ∈A , 则f (t )=t ,f (f (t ))=t ,t ∈B , 从而A ⊆B ,故A ⊆B 成立. (2)∵A ={-1,3}, ∴f (-1)=-1,且f (3)=3.
即⎩⎨⎧
(-1)2
-a +b =-32
+3a +b =3
,∴⎩⎨⎧
a -
b =3a +b =-6
,
∴⎩⎨
⎧
a =-
b =-3
,∴f (x )=x 2-x -3.
∵B ={x |f (f (x ))=x },
∴(x 2-x -3)2-(x 2-x -3)-3=x , ∴(x 2-x -3)2-x 2=0, 即(x 2-3)(x 2-2x -3)=0, ∴(x 2-3)(x +1)(x -3)=0, ∴x =±3或x =-1或x =3. ∴B ={-3,-1,3,3}.。