Linux驱动程序编写基础(精选)
linux驱动开发(一)
linux驱动开发(⼀)1:驱动开发环境要进⾏linux驱动开发我们⾸先要有linux内核的源码树,并且这个linux内核的源码树要和开发板中的内核源码树要⼀直;⽐如说我们开发板中⽤的是linux kernel内核版本为2.6.35.7,在我们ubuntu虚拟机上必须要有同样版本的源码树,我们再编译好驱动的的时候,使⽤modinfo XXX命令会打印出⼀个版本号,这个版本号是与使⽤的源码树版本有关,如果开发板中源码树中版本与modinfo的版本信息不⼀致使⽆法安装驱动的;我们开发板必须设置好nfs挂载;这些在根⽂件系统⼀章有详细的介绍;2:开发驱动常⽤的⼏个命令lsmod :list moduel 把我们机器上所有的驱动打印出来,insmod:安装驱动rmmod:删除驱动modinfo:打印驱动信息3:写linux驱动⽂件和裸机程序有很⼤的不同,虽然都是操作硬件设备,但是由于写裸机程序的时候是我们直接写代码操作硬件设备,这只有⼀个层次;⽽我们写驱动程序⾸先要让linux内核通过⼀定的接⼝对接,并且要在linux内核注册,应⽤程序还要通过内核跟应⽤程序的接⼝相关api来对接;4:驱动的编译模式是固定的,以后编译驱动的就是就按照这个模式来套即可,下⾯我们来分下⼀下驱动的编译规则:#ubuntu的内核源码树,如果要编译在ubuntu中安装的模块就打开这2个#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build# 开发板的linux内核的源码树⽬录KERN_DIR = /root/driver/kernelobj-m += module_test.oall:make -C $(KERN_DIR) M=`pwd` modulescp:cp *.ko /root/porting_x210/rootfs/rootfs/driver_test.PHONY: cleanclean:make -C $(KERN_DIR) M=`pwd` modules cleanmake -C $(KERN_DIR) M=`PWD` modules这句话代码的作⽤就是到 KERN_DIR这个⽂件夹中 make modules把当前⽬录赋值给M,M作为参数传到主⽬录的Makefile中,实际上是主⽬录的makefile中有⽬标modules,下⾯有⼀定的规则来编译驱动;#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build我们在ubuntu中编译内核的时候⽤这两句代码,因为在ubuntu中为我们保留了⼀份linux内核的源码树,我们编译的时候直接调⽤那个源码树的主Makefile以及⼀些头⽂件、内核函数等;了解规则以后,我们设置好KERN_DIR、obj-m这两个变量以后直接make就可以了;经过编译会得到下⾯⼀些⽂件:下⾯我们可以使⽤lsmod命令来看⼀下我们ubuntu机器现有的⼀些驱动可以看到有很多的驱动,下⾯我们使⽤insmod XXX命令来安装驱动,在使⽤lsmod命令看⼀下实验现象可以看到我们刚才安装的驱动放在了第⼀个位置;使⽤modinfo来打印⼀下驱动信息modinfo xxx.ko这⾥注意vermagic 这个的1.8.0-41是你⽤的linux内核源码树的版本号,只有这个编译的版本号与运⾏的linux内核版本⼀致的时候,驱动程序才会被安装注意license:GPL linux内核开元项⽬的许可证⼀般都是GPL这⾥尽量设置为GPL,否则有些情况下会出现错误;下⾯使⽤rmmod xxx删除驱动;-------------------------------------------------------------------------------------5:下⾯我们分析⼀下驱动。
设计Linux系统网络设备驱动程序
1 n u x / i in c 1U d e / 1 n u x / i
net vi e. 。 de c h
■
网络物 理 设备 媒介
2 初 始 化
网 络 设 备 的 初 始 化 主 要 是 由
设 备 媒 介 层
图 1 iu L n x网络驱 动程 序体 系结 构 图
开藏豸 统世界奠 ; ≯
维普资讯
开 放 系统 世界
一 [ i u ] Ln x 技 术 开 发 一
・
序 会 很 轻 松 , 并 且 能 够 形 成 固 定 的 模
备 接 口 f r (hi_ v = 0: t s de < o t s de hi _ v
数 h — a rd
s art x m  ̄ t _ t,
d vc e i e数 据 结 构 中 的 i i n t函 数 指 针 所 指 的 初 始 化 函 数 来 完 成 的 。当 内 核 启 动 或 加 载 网 络 驱 动 模 块 的 时 候 ,就 会 调 用 初 始 化 过 程 。这 个 过 程 将 首 先 检 测 网 络 物
计 Li nux 防 火 墙 和 网 络 入 侵 检 测 系 统 时, 可 以在 网络 驱 动程 序 的基 础上 拦 截 网 络 数 据 包 ,继 而 对 其 进 行 分 析 。由 于 Li nux是 开 放 源 代 码 的 ,所 以 给 我 们 提 供 了一个分析 和改造 网络驱r c e i e tu td vc
网络 设 备接 口层
ne _de c t vie)
的 详 细 内容 , 请 参 看 /
数 据包 发 送 h r tr mi a d sa tx t O
中 断处 理 ( 据 包 数 接收)
Linux设备驱动程序原理及框架-内核模块入门篇
Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。
为此,的内核一般不能动态的增加新的功能。
为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。
利用这个机制“模块”(module)。
利用这个机制,可以)。
利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。
正是这种机制,走已经安装的模块。
正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。
和可扩充性。
内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。
严格来说,卸载的内核软件。
严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。
但是,另一方面,可安装模块的形式实现的。
但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。
密切相关的部分(如文件系统等)。
课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。
且创建好该系统中的硬件设备的列表树:/sys 文件系统。
(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。
)。
Linux驱动之USB鼠标驱动编写
Linux驱动之USB⿏标驱动编写本篇博客分以下⼏部分讲解1、介绍USB四⼤描述符USB设备驱动程序⾥定义了许多与驱动程序密切相关的描述符。
这⾥介绍⼀下四种⽐较关键的描述符:设备描述符、配置描述符、接⼝描述符、端点描述符。
这⼏个描述符都位于include\linux\usb\ch9.h中,先看⼀下每个描述直接的关系,从图中可以看出每⼀个查到USB主机上的USB设备都有⼀个设备描述符,设备描述符下⾯可以接多个配置描述符,配置描述符下⾯⼜可以接多个当USB设备接到USB控制器上后,USB控制器第⼀次读取到的数据包,总共8字节/*当USB设备接到USB控制器上后,USB控制器第⼀次读取到的数据包,总共8字节*/struct usb_ctrlrequest {__u8 bRequestType;__u8 bRequest;__le16 wValue;__le16 wIndex;__le16 wLength;} __attribute__ ((packed));设备描述符是在设备连接时,主机第⼀个读取的描述符,包含了主机需要从设备读取的基本信息。
设备描述符有14个字段,如下所⽰。
依照功能来分,设备描述符的字段包含了描述符本⾝、设备、配置以及类别4⼤类。
/* USB_DT_DEVICE: Device descriptor */struct usb_device_descriptor {__u8 bLength; //描述符长度__u8 bDescriptorType; //描述符类型__le16 bcdUSB; //USB规范版本号码,BCD码表⽰__u8 bDeviceClass; //USB设备类别__u8 bDeviceSubClass; //USB设备⼦类别__u8 bDeviceProtocol; //USB设备协议码__u8 bMaxPacketSize0; //端点0的最⼤信息包⼤⼩(端点0⽤于控制传输,既能输出也能输⼊)__le16 idVendor; //⼚商ID__le16 idProduct; //产品ID__le16 bcdDevice; //设备版本编号,BCD码表⽰__u8 iManufacturer; //制造者的字符串描述符的索引值__u8 iProduct; //产品的字符串描述符的索引值__u8 iSerialNumber; //序号的字符串描述符的索引值__u8 bNumConfigurations;//可能配置的数⽬} __attribute__ ((packed));在读取设备描述符后,主机可以读取该设备的配置、接⼝以及端点描述符。
一、如何编写LinuxPCI驱动程序
⼀、如何编写LinuxPCI驱动程序PCI的世界是⼴阔的,充满了(⼤部分令⼈不快的)惊喜。
由于每个CPU体系结构实现不同的芯⽚集,并且PCI设备有不同的需求(“特性”),因此Linux内核中的PCI⽀持并不像⼈们希望的那么简单。
这篇简短的⽂章介绍⽤于PCI设备驱动程序的Linux APIs。
1.1 PCI驱动程序结构PCI驱动程序通过pci_register_driver()在系统中"发现"PCI设备。
事实上,恰恰相反。
当PCI通⽤代码发现⼀个新设备时,具有匹配“描述”的驱动程序将被通知。
详情如下。
pci_register_driver()将设备的⼤部分探测留给PCI层,并⽀持在线插⼊/删除设备[因此在单个驱动程序中⽀持热插拔PCI、CardBus和Express-Card]。
pci_register_driver()调⽤需要传⼊⼀个函数指针表,从⽽指⽰驱动程序的更⾼⼀级结构体。
⼀旦驱动程序知道了⼀个PCI设备并获得了所有权,驱动程序通常需要执⾏以下初始化:启⽤设备请求MMIO / IOP资源设置DMA掩码⼤⼩(⽤于⼀致性DMA和流式DMA)分配和初始化共享控制数据(pci_allocate_coherent())访问设备配置空间(如果需要)注册IRQ处理程序(request_irq())初始化non-PCI(即LAN/SCSI/等芯⽚部分)启⽤DMA /处理引擎当使⽤设备完成时,可能需要卸载模块,驱动程序需要采取以下步骤:禁⽌设备产⽣irq释放IRQ (free_irq())停⽌所有DMA活动释放DMA缓冲区(包括流式DMA和⼀致性DMA)从其他⼦系统注销(例如scsi或netdev)释放MMIO / IOP资源禁⽤该设备下⾯⼏节将介绍这些主题中的⼤部分。
其余部分请查看LDD3或<linux/pci.h>。
如果PCI⼦系统没有配置(没有设置CONFIG_PCI),下⾯描述的⼤多数PCI函数都被定义为内联函数,要么完全空,要么只是返回⼀个适当的错误代码,以避免在驱动程序中出现⼤量ifdefs。
Linux视频设备驱动编程(v4l2编程)
Linux视频设备驱动编程(v4l2编程)一.什么是video4linuxVideo4linux2(简称V4L2),是linux中关于视频设备的内核驱动。
在Linux 中,视频设备是设备文件,可以像访问普通文件一样对其进行读写,摄像头在/dev/video0下。
二、一般操作流程(视频设备):1. 打开设备文件。
int fd=open(”/dev/video0″,O_RDWR);2. 取得设备的capability,看看设备具有什么功能,比如是否具有视频输入,或者音频输入输出等。
VIDIOC_QUERYCAP,struct v4l2_capability3. 选择视频输入,一个视频设备可以有多个视频输入。
VIDIOC_S_INPUT,struct v4l2_input4. 设置视频的制式和帧格式,制式包括PAL,NTSC,帧的格式个包括宽度和高度等。
VIDIOC_S_STD,VIDIOC_S_FMT,struct v4l2_std_id,struct v4l2_format5. 向驱动申请帧缓冲,一般不超过5个。
struct v4l2_requestbuffers6. 将申请到的帧缓冲映射到用户空间,这样就可以直接操作采集到的帧了,而不必去复制。
mmap7. 将申请到的帧缓冲全部入队列,以便存放采集到的数据.VIDIOC_QBUF,struct v4l2_buffer8. 开始视频的采集。
VIDIOC_STREAMON9. 出队列以取得已采集数据的帧缓冲,取得原始采集数据。
VIDIOC_DQBUF10. 将缓冲重新入队列尾,这样可以循环采集。
VIDIOC_QBUF11. 停止视频的采集。
VIDIOC_STREAMOFF12. 关闭视频设备。
close(fd);三、常用的结构体(参见/usr/include/linux/videodev2.h):struct v4l2_requestbuffers reqbufs;//向驱动申请帧缓冲的请求,里面包含申请的个数struct v4l2_capability cap;//这个设备的功能,比如是否是视频输入设备struct v4l2_input input; //视频输入struct v4l2_standard std;//视频的制式,比如PAL,NTSCstruct v4l2_format fmt;//帧的格式,比如宽度,高度等struct v4l2_buffer buf;//代表驱动中的一帧v4l2_std_id stdid;//视频制式,例如:V4L2_STD_PAL_Bstruct v4l2_queryctrl query;//查询的控制struct v4l2_control control;//具体控制的值下面具体说明开发流程(网上找的啦,也在学习么)打开视频设备在V4L2中,视频设备被看做一个文件。
Linux中设备驱动程序的编写
Ln x作 为 源代 码 开 放 、 定 、 iu 稳 网络 功 能强 大 的免 费系统 , 经越 来越 广泛 应 用 于各个 领域 。 已 Ln x系统是从 Unx系统 演 变而来 , iu i 故其 驱 动程 序 的设计 思 想 和 Unx系 统 驱 动 程 序 相 似 。 当前 , i 还 有 相 当一部 分特殊 设备在 L n x系统 中找不到驱 动 iu
1 Ln x中的 设备 i u
‘ 1 1 设 备 文 件 .
化 。这部 分驱动 程序仅 在初 始化 的时候 调用一 次 。
() 2 服务 于 IO请求 的子程序 /
调 用 这 部 分 是 由 于 系 统 调 用 的 结 果 。这 部 分 程
每个设 备用 “ 备 文件 ” 代 表 , 有 对硬 件 设 设 来 所
2 Ln x中 的设 备 驱 动 程 序 的 编 写 i u
2 1 Ln x下 设 备 驱 动 程 序 的 基 本 结 构 . i u
对 用 户程 序 而 言 , 备 驱 动程 序 隐藏 了设 备 的 设 具体细 节 , 对各 种 不 同设 备提 供 了一 致 的接 口。一 般设 备驱动程 序可 以分 为三个 主要 组成部 分 : () 1 自动 配置 和初始 化子 程序 自动配 置和 初 始 化 子 程 序 常 在 相应 的 d ie— r r v ii ) nt 中实 现 , ( 负责检 测所要 驱动 的硬件 设备 是 否存 在和是 否 能正常 工 作 。如 果该 设 备 正 常 , 则对 这 个 设 备及其 相关 的设备驱 动程 序需要 的状 态进行 初始
文 件和字 符设备 文件 。通过 块 ( 符) 备文件 存取 字 设 的设备称 为块 ( 字符 ) 设备 。 1 3 设备 号 的表示 . 设备 由一个 主设 备号和 一个 次设 备号标识 。主
如何编写Linux设备驱动程序
Ke wo d y rs: L n x S s e i u y t m;D v c r v r e i e D i e
0 引言
w i e c oe等。如何把系统调用和驱动 程序关联起来 , rt 、l s 这 需要 了解一个 非常关键的数 据结 构:i e o ea i n 。 f l— p r t o s 这个
—
样对硬件设备进行操作。设备驱动程序是 内核的一 部分 ,
①对设备初始化和释放 ;
它完成以下功 能: ②把数据传送到硬 件和从硬件读取数据 ; ④读 取应用程序传送给设备 文件的数据和 回送 应用程 序请求 的数据 ; ④检查和处理设备 出现 的错误。
2 实 例 剖 析
f l ’i ec a b f i tc u t ( ie f l ,hr u ,n o n )
关 键 词 :Ln x 作 系统 ; 备 驱 动 程 序 iu 操 设
中图分类号 :T 3 4 P1
文献标识码 : A
文章编号 : 6 1 49 一 20 )— 09 0 1 7 — 7 2 (088 09 — 2
Ab t c : T e o c p o i u d v c d i e s a i t o u e , a d h n h i t r a m c a i m a d h s r t h c n e t f L n x e i e r v r w s n r d c d a n t e t e n e n l e h n s s n t e
1 iu e i r e 的概 念 l xd vc di r n e v
结构的每一个成员的名字都对应着一个系统调用。 用户进程 利用系统调用在对设备 文件进行诸如 ra/rt edwie操作时, 系统调 用通过设备文件 的主设 备号找 到相应 的设备 驱动程
linux 开发新驱动步骤
linux 开发新驱动步骤Linux作为一款开源的操作系统,其内核源码也是开放的,因此,许多开发人员在Linux上进行驱动开发。
本文将介绍在Linux上进行新驱动开发的步骤。
第一步:确定驱动类型和接口在进行驱动开发前,需要确定驱动类型和接口。
驱动类型包括字符设备驱动、块设备驱动、网络设备驱动等。
接口包括设备文件、系统调用、ioctl等。
根据驱动类型和接口的不同,驱动开发的流程也有所不同。
第二步:了解Linux内核结构和API驱动开发需要熟悉Linux内核的结构和API。
Linux内核由许多模块组成,每个模块都有自己的功能。
API是应用程序接口,提供了许多函数和数据结构,开发人员可以使用这些函数和数据结构完成驱动开发。
第三步:编写驱动代码在了解了Linux内核结构和API后,就可以编写驱动代码了。
驱动代码需要按照Linux内核的编码规范编写,确保代码风格统一、可读性好、可维护性强等。
在编写代码时,需要使用API提供的函数和数据结构完成相应的功能。
第四步:编译驱动代码和内核模块驱动代码编写完成后,需要编译成内核模块。
编译内核模块需要使用内核源码中的Makefile文件。
编译完成后,会生成一个.ko文件,这个文件就是内核模块。
第五步:加载和卸载内核模块内核模块编译完成后,需要加载到Linux系统中。
可以使用insmod命令加载内核模块,使用rmmod命令卸载内核模块。
在加载和卸载内核模块时,需要注意依赖关系,确保依赖的模块已经加载或卸载。
第六步:调试和测试驱动开发完成后,需要进行调试和测试。
可以使用printk函数输出调试信息,在/var/log/messages文件中查看。
测试时需要模拟各种可能的情况,确保驱动程序的稳定性和可靠性。
Linux驱动开发需要掌握Linux内核结构和API,熟悉驱动类型和接口,按照编码规范编写驱动代码,并进行编译、加载、调试和测试。
只有掌握了这些技能,才能进行高效、稳定和可靠的驱动开发。
Linux设备驱动开发入门-Read
Linux设备驱动开发入门本文以快捷而简单的方式讲解如何像一个内核开发者那样开发linux设备驱动源作者: Xavier Calbet版权:GNU Free Documentation License 翻译: 顾宏军()中文版权:创作共用.署名-非商业用途-保持一致知识准备要开发Linux 设备驱动,需要掌握以下知识:•C 编程 需要掌握深入一些的C 语言知识,比如,指针的使用,位处理函数,等。
•微处理器编程 需要理解微机的内部工作原理:存贮器地址,中断,等。
这些内容对一个汇编程序员应该比较熟悉。
Linux 下有好几种不同的设备。
为简单起见,本文只涉及以模块形式加载的字符设备。
使用2.6.x 的内核。
(特别是Debian Sarge 使用的2.6.8内核。
)用户空间和内核空间当你开发设备驱动时,需要理解“用户空间”和内核空间之间的区别。
1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20:21:22:23:24:25:•内核空间 :Linux 操作系统,特别是它的内核,用一种简单而有效的方法管理机器的硬件,给用户提供一个简捷而统一的编程接口。
同样的,内核,特别是它的设备驱动程序,是连接最终用户/程序员和硬件的一坐桥或者说是接口。
任何子程序或者函数只要是内核的一部分(例如:模块,和设备驱动),那它也就是内核空间的一部分。
•用户空间. 最终用户的应用程序,像UNIX 的shell 或者其它的GUI 的程序(例如,gedit),都是用户空间的一部分。
很显然,这些应用程序需要和系统的硬件进行交互。
但是,他们不是直接进行,而是通过内核支持的函数进行。
它们的关系可以通过下图表示:图1: 应用程序驻留在用户空间, 模块和设备驱动驻留在内核空间26:27:28:29:30:31:32:33:34:35:36:37:38:39:40:用户空间和内核空间之间的接口函数内核在用户空间提供了很多子程序或者函数,它们允许用户应用程序员和硬件进行交互。
2-Linux驱动和内核模块编程
设备驱动的Hello World模块 设备驱动的 模块
模块卸载函数
static void __exit cleanup_function(void) { /* 释放资源 */ } module_exit(cleanup_function);
在模块被移除前注销接口并 释放所有所占用的系统资源
标识这个代码是只用于模块卸载( 标识这个代码是只用于模块卸载 通过使编译器把它放在 特殊的 ELF 段) 原型: 原型:#define __exit __attribute__ ((__section__(“.exit.text”)))
查看已加载模块
lsmod cat /proc/modules.
卸载驱动模块 卸载模块
从内核中卸载模块可以用rmmod工具.
注意,如果内核认为该模块任然在使用状态, 注意,如果内核认为该模块任然在使用状态,或 者内核被禁止移除该模块,则无法移除该模块。 者内核被禁止移除该模块,则无法移除该模块。
内核打印函数
隐藏硬件细节,提高应用软件的可移植性 提供安全性 开发模式 内核态驱动 用户态驱动
提供机制,而不是提供策略
机制:驱动程序能实现什么功能 策略:用户如何使用这些功能
设备的分类和特点Biblioteka 设备分类字符设备(char device) 字符设备 块设备(block device) 块设备 网络设备(network device) 网络设备
MODULE_LICENSE()---模块许可证声明 模块许可证声明
模块许可证(LICENSE)声明描述内核模块的许可权限 如果不声明LICENSE,模块被加载时,将收到内核被污染(kernel tainted)的警告
动手写一个内核模块
linux驱动编程初级+makefile
驱动编程1 模块的概述 (2)2 source insight 加载内核源码方法 (2)3 模块makefile的编写 (3)4 模块makefile编写方法 (4)5 在X86上运行模块: (5)6 编写模块 (5)7 模块的加载进内核命令 (5)8 最简单的上层调用+ 调用驱动方法 (6)9 复杂框架上层应用+驱动调用方法 (7)10 复杂框架字符设备创建并注册过程 (7)11 file_operations常用函数 (9)12 同步互斥操作 (10)13 同步互斥函数总结 (10)14 阻塞IO编程流程 (11)15 轮询操作上层select 下层poll (12)16 信号处理 (12)17 中断 (13)18 中断新模型--上半部中断和下半部中断的实现 (14)19 内核定时器编程 (15)20 内核延时函数 (15)21 内核源代码中头文件分配方式 (15)22 linux内核管理和内核的内存管理 (16)23 设备io端口和io内存访问–如何控制led的亮灭 (16)24 * 驱动-设备分离思想编程————内核进阶 (18)25 驱动-设备分离-核心最小架构 (18)26 驱动设备分离思想- 上层架构(基于封装) (20)27 头文件总结 (24)28 设置系统自启动命令u-boot (24)第一天需要理清的东西1)模块的概念,模块与应用的区别2)模块主要的组成头文件、module_init() modoule_exit() module_lisence()3)模块的如何编辑,如何编译,如何加载到内核中运行使用makefile4)模块驱动编写,必须通过上层应用程序调用。
1模块的概述模块是内核的一部分,为了防止内核太大,把它放在文件系统里面。
也可以在编译内核的直接编译进内核。
1,存储位置可以在开始时编译进内核,也可以编译进模块,最后加载2、运行时环境在哪个内核树下编译,就对应这个运行环境3、模块的编译问题:前提条件是需要对应的内核源码树,或者必须有对应的内核版本匹配4、模块编译使用makefile 注意makefile的编写2source insight 加载内核源码方法在windows下创建工程,使用source insight查看内核代码:2.1 先将内核源码拷到对应的文件夹2.2 在source insight 里添加工程,筛选需要添加的文件注意选择按照树来添加,然后按照remove来踢出不需要的文件夹2.3 最后同步3模块makefile的编写模块的编译:1)、模块编译的核心语句:$(MAKE) -C $(KERNELDIR) M=$(PWD) modules-C :进入内核源码树M= : 返回到当前目录,再次执行该目录下的makefileeg: /tnt/abc.c -----> abc.ko1、在/tnt目录下敲make,只有/tnt目录下的Makefile被调用2、目的是要进入到内核源码树中,一进一回,-C来进,M=带着内核源码树中的makefile的功能回来了-------内核源码树中Makefile的目标:obj-y:汇集了所有编译进内核的目标文件obj-m:汇集了所有编译成模块的目标文件3、回来过后,我们只有确定obj-m变量的集合4、make modules告诉内核的makefile,只做编译模块的功能4模块makefile编写方法ifeq ($(KERNELRELEASE),)KERNELDIR := /work/linux-2.6.35-farsightPWD := $(shell pwd)modules:$(MAKE) -C $(KERNELDIR) M=$(PWD) modulesinstall:$(MAKE) -C $(KERNELDIR) M=$(PWD) modules_installclean:rm -rf .tmp_versions *.ko *.o .*.cmd *.mod.c *.order *.symvers.PHONY: modules cleanelseobj-m := ex1.oendif以上是makefile的内容,●注意原来的内核目录树不要进行make clean 或者make distclean●KERNELDIR 表示模块加载在哪个内核的文件夹(又叫内核源码树),●$(MAKE) -C $(KERNELDIR) M=$(PWD) modules 表示进入该内核文件夹,将顶层makefile 中的内容带回,再重新执行一次该makefile 将obj-m := ex1.o 编译,并执行make modules (并只编译ex1.c ,不编译其它模块)●$(MAKE) -C $(KERNELDIR) M=$(PWD) modules_install 表示执行顶层makefile的modules install 标签下的命令●安装的位置原来默认在/lib 下面,所以需要修改其到我们制作的根文件系统下/work/rootfs/在顶层Makefile位置搜索:MODLIB修改为:●obj-m := ex1.o 你需要编译的.c的文件名****************************此时简单的编译环境已经搭建完毕******************* ****************************执行make ***********************************************执行make install *******************在/work/rootfs/lib/modules/2.6.35/extra即可找到该模块.ko*****************************************************************************搭建好环境,保证虚拟机与板子与计算机网络连通,并设置板子u-boot 从nfs挂载,启动内核,并成功通过nfs 加载rootfs,此时环境完毕,进入/work/rootfs/lib/modules/2.6.35/extra ,找到模块,加载卸装模块操纵5在X86上运行模块:修改Makefile中的内核源码树的目录X86下的内核源码树:/lib/modules/2.6.35-22-generic/build如果没有在控制台上交互,默认是看不到信息的,需要dmesg这个命令去查看6编写模块模块最小组成如下:●注意:module_init module_exit 必须放在末尾●注意:函数的原型返回值●头文件7模块的加载进内核命令insmodrmmodlsmod8最简单的上层调用+ 调用驱动方法8.1 首先在module_init(abc) abc函数中注册设备register_chrdev(注册设备号,上层可见的设备名,操作封装)该函数完成设备注册,在板子上用cat /proc/devices 便可以看见该设备8.2 完成fops 操作的封装●注意格式●必须在函数后面声明该结构体●头文件#include <linux/fs.h>8.3 查看到该字符设备后,创建设备节点,则上层通过设备字符名与该设备号绑定mknod /dev/hf_char c 245 0ls /dev/ 可以查看注册的所有设备节点8.4 此时上层应用的open(”hf_char”,O_RDWR),即可完成该设备的打开,即可以完成上层应用于下层驱动相关fops 的操作。
linux中编译驱动的方法
linux中编译驱动的方法
在Linux中编译驱动的方法通常涉及以下步骤:
1. 编写驱动代码:首先,您需要编写适用于Linux内核的驱动代码。
这通常是在内核源代码树之外编写的。
驱动代码通常以C语言编写,并遵循内核编程约定。
2. 获取内核源代码:为了编译驱动,您需要获得Linux内核的源代码。
您可以从Linux官方网站或镜像站点下载内核源代码。
3. 配置内核:在编译驱动之前,您需要配置内核以包含您的驱动。
这可以通过运行`make menuconfig`命令来完成。
在配置菜单中,您可以选择要编译的驱动以及相关的内核选项。
4. 编译驱动:一旦您配置了内核并选择了要编译的驱动,您可以使用`make`命令来编译驱动。
这将在内核源代码目录下生成可执行文件或模块文件。
5. 加载和测试驱动:一旦驱动被编译,您可以将其加载到Linux 内核中以进行测试。
您可以使用`insmod`命令将模块加载到内核,然后使用`dmesg`命令检查内核日志以查看驱动是否正确加载。
这些是基本的步骤,但具体的步骤可能会因您的环境和需求而有所不同。
在编译和加载驱动时,请确保您具有适当的权限和知识,因为这可能需要管理员权限,并且错误的操作可能会导致系统不稳定或损坏。
Linux底层驱动开发从入门到精通的学习路线推荐
Linux底层驱动开发从入门到精通的学习路线推荐Linux底层驱动开发是一项涉及操作系统核心的技术,对于想要深入了解Linux系统内部工作原理的开发人员来说,是一门重要的技能。
本文将为你推荐一条学习路线,帮助你从入门到精通掌握Linux底层驱动开发。
一、基础知识学习阶段在开始学习Linux底层驱动开发之前,你需要掌握一些基础知识。
以下是你可以参考的学习路线:1.1 Linux操作系统基础学习Linux操作系统的基础知识是理解和使用Linux底层驱动的前提。
可以选择阅读《鸟哥的Linux私房菜》等入门书籍,了解Linux的基本概念、命令行操作等。
1.2 C语言编程C语言是Linux底层驱动开发的主要语言。
建议学习《C Primer Plus》等经典教材,掌握C语言的基本语法和编程技巧。
1.3 Linux系统编程学习Linux系统编程是理解Linux内核和驱动开发的关键。
推荐学习《Linux系统编程手册》等教材,学习Linux系统调用、进程管理等知识。
1.4 数据结构与算法良好的数据结构和算法基础对于优化和设计高效的驱动程序至关重要。
可以学习《算法导论》等经典教材,掌握数据结构和常用算法的原理和实现。
二、Linux内核了解与分析阶段在掌握了基础知识后,你需要进一步了解Linux内核和驱动的工作原理。
以下是你可以参考的学习路线:2.1 Linux内核源码阅读通过阅读Linux内核源码,你可以深入了解Linux的内核机制和实现细节。
可以选择《深入理解Linux内核》等相关书籍,逐步学习Linux内核代码的组织结构和关键部分。
2.2 设备驱动模型了解Linux内核的设备驱动模型对于编写高效且可维护的驱动程序至关重要。
可以学习Linux设备驱动模型的相关文档和教程,例如Linux Device Drivers (LDD)等。
2.3 内核调试与分析工具掌握一些常用的内核调试和分析工具是进行底层驱动开发的必要技能。
linux下pcie驱动编写流程
linux下pcie驱动编写流程英文回答:PCIe Driver Development Process on Linux.Step 1: Create a skeleton driver.Use the `pci_driver.c` template to create a skeleton driver. This template provides the basic framework for a PCIe driver, including the necessary function hooks.Step 2: Define the PCI device ID.In the header file of the driver, define the PCI device ID that the driver will support. This ID identifies the specific type of PCIe device that the driver can handle.Step 3: Initialize the driver.Implement the `probe()` function, which is called whena new PCIe device is found that matches the driver's device ID. In this function, initialize the driver and allocate any necessary resources.Step 4: Register the driver.Register the driver with the kernel using the`pci_register_driver()` function. This function tells the kernel that the driver is available to handle PCIe devices with the specified device ID.Step 5: Release resources.Implement the `remove()` function, which is called when a PCIe device is removed. In this function, release any resources that were allocated by the driver.Step 6: Test the driver.Use the `lspci` command to verify that the driver is recognized by the kernel. Install the driver on a system with the PCIe device connected and test the functionalityof the driver.中文回答:Linux下PCIe驱动编写流程。
linux驱动开发流程
linux驱动开发流程Linux驱动开发流程。
Linux驱动开发是一项复杂而又重要的工作,它涉及到操作系统内核的底层编程和硬件设备的交互。
在进行Linux驱动开发时,需要按照一定的流程来进行,以确保驱动程序的稳定性和可靠性。
下面将介绍一般的Linux驱动开发流程,希望能够对初学者有所帮助。
1. 硬件设备了解。
在进行Linux驱动开发之前,首先需要对要开发的硬件设备有一个全面的了解。
需要了解硬件设备的型号、接口、工作原理等信息,以便于后续的驱动程序编写和调试工作。
2. 硬件设备驱动框架选择。
针对不同的硬件设备,可以选择不同的驱动框架进行开发。
常用的驱动框架包括字符设备驱动、块设备驱动、网络设备驱动等。
根据硬件设备的特点和需求,选择合适的驱动框架进行开发。
3. 编写驱动程序。
在选择好驱动框架之后,就可以开始编写驱动程序了。
驱动程序是连接硬件设备和操作系统内核的桥梁,需要按照一定的规范和接口来进行编写。
在编写驱动程序时,需要考虑到硬件设备的特性和操作系统的要求,确保驱动程序能够正确地控制硬件设备。
4. 调试和测试。
编写完驱动程序后,需要进行调试和测试工作。
通过调试和测试,可以发现驱动程序中的bug和问题,及时进行修复和优化。
调试和测试是保证驱动程序稳定性和可靠性的重要环节,需要认真对待。
5. 集成到内核。
当驱动程序经过调试和测试后,可以将其集成到Linux内核中。
在将驱动程序集成到内核时,需要按照内核的规范和流程来进行,确保驱动程序能够正确地被内核加载和使用。
6. 发布和维护。
最后,当驱动程序集成到内核后,可以进行发布和维护工作。
发布驱动程序时,需要提供清晰的文档和说明,以便其他开发者能够正确地使用和理解驱动程序。
同时,还需要对驱动程序进行定期的维护和更新,以适应不断变化的硬件设备和内核版本。
总结。
通过以上的介绍,我们可以看到Linux驱动开发流程是一个系统而又复杂的过程。
需要对硬件设备有深入的了解,选择合适的驱动框架,编写稳定可靠的驱动程序,并经过严格的调试和测试,最终将其集成到内核并进行发布和维护。
如何编写驱动程序
如何编写驱动程序编写驱动程序是一项相对复杂的任务,它与硬件交互并与操作系统进行通信。
在这篇文章中,我将提供一个简要的指南,帮助您了解如何编写驱动程序。
驱动程序是操作系统的一部分,用于管理和控制硬件设备。
它们允许操作系统与硬件交互,并提供硬件访问的接口。
驱动程序不仅仅是通过读写硬件寄存器来实现的,还需要处理中断请求、DMA、内存映射和其他底层硬件访问。
以下是编写驱动程序的一般步骤:1.硬件设备的了解:要编写一个驱动程序,首先需要了解所要驱动的硬件设备的工作原理和规范。
这包括它的寄存器布局、通信方式、中断请求等。
也可以查找相关的文档和参考资料。
2.操作系统的了解:每个操作系统都有自己的驱动程序开发框架和API。
要编写驱动程序,必须熟悉所使用的操作系统。
这包括操作系统的内核机制、设备管理、中断处理程序和设备驱动接口等。
3.驱动程序的架构设计:在开始编写驱动程序之前,需要设计一个驱动程序的架构。
这包括确定驱动程序的基本功能、组织结构和接口。
在这一阶段,可以考虑使用合适的设计模式,如观察者模式或策略模式。
4.编写设备初始化代码:设备初始化代码负责初始化硬件设备并确保它在操作系统中正确识别和配置。
这通常包括读写设备寄存器、设置中断请求、设置DMA等。
5.编写设备访问代码:设备访问代码负责实现驱动程序的主要功能,如读写数据、处理中断请求并与操作系统进行通信。
这可能涉及到编写ISR(中断服务例程)处理中断,实现设备驱动接口等。
6.进行驱动程序测试:在编写完驱动程序之后,应该对其进行测试以确保其正确性和稳定性。
可以编写一些测试用例来验证驱动程序是否按预期工作。
7.驱动程序的部署和调试:一旦驱动程序测试通过,就可以将其部署到操作系统中。
在部署过程中,可能需要进行一些调试和优化,以确保驱动程序的性能和可靠性。
可以使用调试工具来帮助定位和修复错误。
编写驱动程序需要一定的硬件和软件知识,并且需要耐心和细心来处理底层问题。
linux驱动面试题
linux驱动面试题1. 概述在Linux系统中,驱动程序的作用是使硬件设备与操作系统能够有效地通信和合作。
在Linux驱动面试中,考察的内容主要包括对Linux驱动的基本原理和相关技术的理解、驱动开发经验以及解决实际问题的能力等方面。
2. 驱动开发基础2.1 驱动与内核Linux驱动是在内核中运行的模块,通过向内核注册相应的设备驱动接口,实现设备与操作系统的交互。
驱动开发需要对内核的基本原理和架构有一定的了解。
2.2 设备模型Linux采用了设备树(Device Tree)来描述硬件设备,驱动开发者需要理解设备树的基本概念和使用方法。
此外,掌握相关的API接口,如设备注册和资源管理等也是重要的。
2.3 驱动开发工具驱动开发通常需要使用一些工具来辅助开发和调试,如GCC编译器、Makefile、Kconfig等。
熟悉这些工具的使用可以提高开发效率。
3. 驱动开发技巧3.1 驱动加载与卸载了解驱动的加载和卸载过程是驱动开发的基础,掌握相关的函数和接口,如module_init()、module_exit()等。
3.2 设备操作对于设备操作,驱动开发者需要实现相应的接口函数,如open()、read()、write()和release()等。
同时,需要注意多个进程对设备的并发访问问题。
3.3 中断处理了解中断的基本原理,驱动开发者需要实现中断处理函数,通过适当地使能和屏蔽中断,确保设备的稳定工作。
3.4 内存管理驱动开发过程中需要对内存进行分配和释放,应注意内存的合理管理,避免内存泄漏和越界访问问题。
4. 驱动性能与调试4.1 性能优化优化驱动程序可以提高系统的效率和响应速度。
常见的性能优化方法包括减少不必要的资源竞争、提高中断处理效率等。
4.2 调试技巧在驱动开发过程中,面对各种问题,掌握一些调试技巧可以快速定位和解决问题。
例如,使用printk()打印调试信息、使用GDB调试等。
5. 驱动安全与稳定性5.1 安全性考虑驱动程序需要处理来自用户空间的输入,必须保证输入的合法性,防止恶意代码等对系统造成危害。
精选嵌入式LINUX设备驱动程序课件
设备的控制操作
对设备的控制操作可通过文件操作数据结构中的ioctl()函数来完成。控制操作与具体的设备有密切关系,需要根据设备实际情况进行具体分析。
设备的轮询和中断处理
轮询方式对于不支持中断的硬件设备,读写时需要轮流查询设备的状态,以便决定随后的数据操作。如果轮询处理方式的驱动程序被链接到内核,则意味着查询过程中,内核一直处于闲置状态。解决办法是使用内核定时器,进行定期查询。
主设备号与次设备号
次设备号用于标识使用同一设备驱动程序的不同硬件,并仅由设备驱动程序解释 当应用程序操作某个设备文件时,Linux内核根据其主设备号调用相应的驱动程序,并从用户态进入内核态驱动程序判断次设备号,并完成相应的硬件操作。
用户空间和内核空间
Linux运行在2种模式下内核模式用户模式内核模式对应内核空间,而用户模式对应用户空间。驱动程序作为内核的一部分,它对应内核空间,应用程序不能直接访问其数据,
帧缓冲设备驱动程序
LCD分类
LCD可由为液晶照明的方式有两种:传送式和反射式传送式屏幕要使用外加光源照明,称为背光(backlight),照明光源要安装在LCD的背后。传送式LCD在正常光线及暗光线下,显示效果都很好,但在户外,尤其在日光下,很难辩清显示内容。 反射式屏幕,则不需要外加照明电源,使用周围环境的光线(或在某些笔记本中,使用前部照明系统的光线)。这样,反射式屏幕就没有背光,所以,此种屏幕在户外或光线充足的室内,才会有出色的显示效果,但在一般室内光线下,这种显示屏的显示效果就不及背光传送式的。
文件操作结构体的主要函数
open: 用于打开文件设备release: 在关闭文件的调用read: 用于从设备中读取数据write: 向设备发送数据poll: 查询设备是否可读或可写ioctl: 提供执行设备特定命令的方法fasync: 用于设备的异步通知操作