18解析几何综合练习题(4)
2023年高考数学真题实战复习(2022高考+模考题)专题18 解析几何中的双曲线问题(解析版)
专题18 解析几何中的双曲线问题【高考真题】1.(2022·北京) 已知双曲线221x y m +=的渐近线方程为y =,则m =__________. 1.答案 3- 解析 对于双曲线221x y m +=,所以0m <,即双曲线的标准方程为221x y m-=-,则1a =,b =,又双曲线221x ym +=的渐近线方程为y =,所以a b =,=解得3m =-;故答案为3-.2.(2022·全国甲理) 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.2.答案解析 双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =. 3.(2022·全国甲文) 记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________. 3.答案 2(满足1e <≤) 解析 2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为by x a=±, 结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”,所以c e a ===1e >,所以1e <≤2(满足1e <≤4.(2022·全国乙理) 双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A B .32 C D4.答案 C 解析 依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥, 因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos bcβ=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c cαβαβ+=+=⨯+⨯=,由正弦定理得211225sin sin sin 2NF NF c c F F N αβ===∠,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=,又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率c e a ==.故选C .5.(2022·浙江)已知双曲线22221(0,0)x y a b ab-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点 ()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.5.答案 解析 过F 且斜率为4b a 的直线:()4b AB y x c a =+,渐近线2:b l y x a =,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a=,所以离心率e =. 【知识总结】1.双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹. (2)符号表示:||MF 1|-|MF 2||=2a (常数)(0<2a <|F 1F 2|).(3)焦点:两个定点F 1,F 2. (4)焦距:两焦点间的距离,表示为|F 1F 2|. 2.双曲线的标准方程和简单几何性质F (-c ,0),F (c ,0)F (0,-c ),F (0,c )【题型突破】题型一 双曲线的标准方程1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=11.答案 B 解析 由y =52x 可得b a =52,①.由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+ b 2=9,②.由①②可得a 2=4,b 2=5.所以C 的方程为x 24-y 25=1.故选B .2.(2016·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A .x 24-y 2=1B .x 2-y 24=1C .3x 220-3y 25=1D .3x 25-3y 220=12.答案 A 解析 依题意得b a =12,①,又a 2+b 2=c 2=5,②,联立①②得a =2,b =1.∴所求双曲线 的方程为x 24-y 2=1.3.(2018·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=13.答案 C 解析 因为双曲线的离心率为2,所以ca =2,c =2a ,b =3a ,不妨令A (2a,3a ),B (2a ,-3a ), 双曲线其中一条渐近线方程为y =3x ,所以d 1=|23a -3a |(3)2+(-1)2=23a -3a 2,d 2=|23a +3a |(3)2+(-1)2=23a +3a 2;依题意得:23a -3a 2+23a +3a 2=6,解得:a =3,b =3,所以双曲线方程为:x 23-y 29=1.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=14.答案 D 解析 根据题意画出草图如图所示⎝⎛ 不妨设点A⎭⎫在渐近线y =ba x 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线的渐近线y =b a x 上,∴b a =tan 60°=3.又a 2+b 2=4,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1,故选D5.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A .x 24-3y 24=1 B .x 24-4y 23=1 C .x 24-y 24=1 D .x 24-y 212=15.答案 D 解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,选D . 6.已知双曲线E 的中心为原点,(3, 0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中 点为(12, 15)N --,则E 的方程式为( )A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=6.答案 B 解析 设双曲线方程为22222222221, x y b x a y a b a b-=-=即,1122(,),(,)A x y B x y ,由221b x -221a y =2222222222, a b b x a y a b -=得,2212121212()()()0()y y b x x a y y x x -+-+=-,1215AB PN N k k =又中点(-,-),,212b ∴-+222150, 45a b a ==即,22+9b a =,所以224, =5a b =.7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A .x 26-y 25=1B .x 28-y 212=1C .x 28-y 24=1D .x 24-y 26=17.答案 D 解析 不妨设B (0,b ),由BA →=2AF →,F (c ,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得 49×c 2a 2-19=1,即49·a 2+b 2a 2=109,所以b 2a 2=32,①.又|BF →|=b 2+c 2=4,c 2=a 2+b 2,所以a 2+2b 2=16,②.由①②可得,a 2=4,b 2=6,所以双曲线C 的方程为x 24-y 26=1,故选D .8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM的面积为5,其中O 为坐标原点,则双曲线的方程为( ) A .x 2-4y 25=1 B .x 22-2y 25=1 C .x 24-y 25=1 D .x 216-y 220=1 8.答案 C 解析 由题意可知e =c a =32,可得b a =52,取双曲线的一条渐近线为y =ba x ,可得F 到渐近线y =b a x 的距离d =bca 2+b2=b ,在Rt △FOM 中,由勾股定理可得|OM |=|OF |2-|MF |2=c 2-b 2=a ,由题意可得12ab =5,联立⎩⎨⎧b a =52,12ab =5,解得⎩⎨⎧a =2,b =5,所以双曲线的方程为x 24-y25=1.故选C .9.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐 标为-23,则此双曲线的方程是( ).A .x 23-y 24=1B .x 24-y 23=1C .x 25-y 22=1D .x 22-y 25=19.答案 D 解析:设所求双曲线方程为x 2a 2-y 27-a 2=1.由⎩⎪⎨⎪⎧x 2a 2-y 27-a 2=1,y =x -1,得x 2a 2-(x -1)27-a 2=1,(7-a 2)x 2-a 2(x -1)2=a 2(7-a 2),整理得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.又MN 中点的横坐标为-23,故x 0=x 1+x 22=-2a 22(7-2a 2)=-23,即3a 2=2(7-2a 2),所以a 2=2,故所求双曲线方程为x 22-y 25=1.10.双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( ) A .x 22-y 2=1 B .x 2-y 22=1 C .x 2-y 23=1 D .x 23-y 2=110.答案 B 解析 ∵∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,∴|PF 1|=|P Q|,P ,F 2,Q 三点共线,而|PF 1|-|PF 2|=2a ,∴|P Q|-|PF 2|=2a ,即|F 2Q|=2=2a ,解得a =1.又e =c a =3,∴c =3,∴b 2=c 2-a 2=2,∴双曲线的方程为x 2-y 22=1.故选B . 题型二 双曲线中的求值11.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A .32 B .3 C .23 D .411.答案 B 解析 由已知得双曲线的两条渐近线方程为y =±13x .设两渐近线的夹角为2α,则有tan α =13=33,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |=3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan60°=3.故选B .12.(2019·全国Ⅰ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A .324 B .322C .22D .3212.答案 A 解析 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 13.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC=θ,若Γ的离心率为2,则( )A .θ∈⎝⎛⎭⎫0,π2B .θ=π2C .θ∈⎝⎛⎭⎫3π4,πD .θ=3π413.答案 B 解析 ∵e =ca=2,∴c =2a ,∴b 2=c 2-a 2=a 2,∴双曲线方程可变形为x 2-y 2=a 2.设B (x 0,y 0),由对称性可知C (-x 0,y 0),∵点B (x 0,y 0)在双曲线上,∴x 20-y 20=a 2.∵A (a ,0),∴AB →=(x 0-a ,y 0),AC →=(-x 0-a ,y 0),∴AB →·AC →=(x 0-a )·(-x 0-a )+y 20=a 2-x 20+y 20=0,∴AB →⊥AC →,即θ=π2.故选B .14.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 14.答案 34 解析 化双曲线的方程为x 22-y 22=1,则a =b =2,c =2,因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上,则由双曲线的定义,知|PF 1|-|PF 2|=2a =22,解得|PF 1|=42,|PF 2|=22,根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34.15.如图,双曲线的中心在坐标原点O ,A ,C 分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则∠BDF 的余弦值是________.15.答案 714 解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由e =ca=2知,c =2a ,又c 2=a 2+b 2,故b =3a ,所以A (0,3a ),C (0,-3a ),B (-a ,0),F (-2a ,0),则BA →=(a ,3a ),CF →=(-2a ,3a ),结合题图可知,cos ∠BDF =cos <BA →,CF →>=BA →·CF →|BA →|·|CF →|=-2a 2+3a 22a ·7a =714.16.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A ,B 两点,若P 为AB 的中点,则|AB |=( )A .22B .23C .33D .4316.答案 D 解析 法一:由已知可得点P 的位置如图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,由⎩⎪⎨⎪⎧y =k x -4+2,x 22-y 2=1,消去y 得(1-2k 2)x 2+(16k 2-8k )x -32k 2+32k -10=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=-16k 2+8k1-2k 2,x 1x 2=-32k 2+32k -101-2k 2,因为P (4,2)为AB 的中点,所以-16k 2+8k 1-2k 2=8,解得k =1,满足Δ>0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .法二:由已知可得点P 的位置如法一中图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21-2y 21-2=0,x 22-2y 22-2=0,所以(x 1+x 2)(x 1-x 2)=2(y 1+y 2)(y 1-y 2),因为P (4,2)为AB 的中点,所以k =y 1-y 2x 1-x 2=1,所以AB 的方程为y =x -2,由⎩⎪⎨⎪⎧y =x -2,x 22-y 2=1,消去y 得x 2-8x +10=0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .17.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A 、B 两点,若P 为AB 中点,则|AB |=( )A .22B .23C .33D .4317.答案 D 解析 易知直线AB 不与y 轴平行,设其方程为y -2=k (x -4),代入双曲线C :x 22-y 2=1,整理得(1-2k 2)x 2+8k (2k -1)x -32k 2+32k -10=0,设此方程两实根为x 1,x 2,则x 1+x 2=8k (2k -1)2k 2-1,又P (4,2)为AB 的中点,所以8k (2k -1)2k 2-1=8,解得k =1,当k =1时,直线与双曲线相交,即上述二次方程的Δ>0,所求直线AB 的方程为y -2=x -4化成一般式为x -y -2=0,x 1+x 2=8,x 1x 2=10,|AB |=2|x 1-x 2|=2·82-40=43.故选D .18.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为()A .1B .3C .5D .1218.答案 A 解析 在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A .19.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( )A .215a 2B .15a 2C .30a 2D .15a 2 19.答案 B 解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =ca=2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a ,∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin∠F 1AF 2=12×4a ×2a ×154=15a 2.20.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .-220.答案 B 解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|·cos ∠PF 2F 1=2×4×14=2.故选B .题型三 双曲线的离心率21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线的夹角为60°,则双曲线C 的离心率为( )A .2B .3C .3或233D .233或221.答案 D 解析 秒杀 ∵两条渐近线的夹角为60°,∴一条渐近线的倾斜角为30°,斜率为33.∴e =1+k 2=233.或一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.故选D .通法 ∵两条渐近线的夹角为60°,且两条渐近线关于坐标轴对称,∴b a =tan 30°=33或ba =tan 60°=3.由b a =33,得b 2a 2=c 2-a 2a 2=e 2-1=13,∴e =233(舍负);由b a =3,得b 2a 2=c 2-a 2a 2=e 2-1=3,∴e =2(舍负).故选D .22.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50° D.1cos 50°22.答案 D 解析 秒杀 由题意可得-ba =tan 130°,所以e =1+b 2a 2=1+tan 2130°=1+sin 2130°cos 2130°=1|cos 130°|=1cos 50°.故选D .23.(2019·全国Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________.23.答案 2 解析 秒杀 由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.∴一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.通法一:由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.如图所示,不妨设B 为⎝⎛⎭⎫c 2,-32c .∵点B 在直线y=-b a x 上,∴b a =3,∴离心率e =ca=2.通法二:∵F 1B →·F 2B →=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c .如图,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=ba ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c ,0).又∵F 1A →=AB →,∴A 为F 1B 的中点.∴OA ∥F 2B ,∴b a =b c -a ,∴c =2a ,∴离心率e =c a =2.24.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A .2B .32C .3D .224.答案 A 解析 秒杀 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13=2.故选A .通法 因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义,得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca =2.故选A .25.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为( )A .2B .3C .5D .625.答案 C 解析 秒杀 由已知△F 1PF 2是直角三角形,∠F 2PF 1=90°,sin ∠PF 1F 2=b c ,∠PF 2F 1=ac,∴e =c a =sin90°|sin ∠PF 1F 2+sin ∠PF 2F 1|=1|b c -a c|.即b a=2,所以e =1+⎝⎛⎭⎫b a 2=5.故选C .通法 如图,直线PF 2的方程为y =-a b (x -c ),设直线PF 2与直线y =ba x 的交点为N ,易知N ⎝⎛⎭⎫a 2c ,abc .又线段PF 2的中点为N ,所以P ⎝⎛⎭⎫2a 2-c 2c ,2ab c .因为点P 在双曲线C 上,所以(2a 2-c 2)2a 2c 2-4a 2b 2c 2b 2=1,即5a 2=c 2,所以e =ca =5.故选C .26.已知O 为坐标原点,点A ,B 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,且关于坐标原点O 对称.若双曲线C 上与点A ,B 横坐标不相同的任意一点P 满足k P A ·k PB =3,则双曲线C 的离心率为( ) A .2 B .4 C .10 D .10 26.答案 A 解析 秒杀 ∵k 1·k 2=e 2-1.∴3=e 2-1.∴e =2.故选A .通法 设A (x 1,y 1),P (x 0,y 0)(|x 0|≠|x 1|),则B (-x 1,-y 1),则k P A ·k PB =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21.因为点P ,A 在双曲线C 上,所以b 2x 20-a 2y 20=a 2b 2,b 2x 21-a 2y 21=a 2b 2,两式相减可得y 20-y 21x 20-x 21=b 2a 2,故b 2a 2=3,于是b 2=3a 2.又因为c 2=a 2+b 2,所以双曲线C 的离心率e =1+⎝⎛⎭⎫b a 2=2.故选A .27.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2B .32C .355D .5227.答案 B 解析 秒杀 由题意得,k 0·k =e 2-1.∴e =32.故选B .通法 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),则x 1+x 2=24,y 1+y 2=30,由⎩⎨⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2=(y 1+y 2)(y 1-y 2)b 2,则y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=4b 25a 2,由直线AB 的斜率k =15-612-3=1,所以4b 25a 2=1,则b 2a 2=54,双曲线的离心率e =ca = 1+b 2a 2=32,所以双曲线C 的离心率为32.故选B .28.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A .52 B .62 C .233D .3 28.答案 A 解析 秒杀 由题可知,|31||cos ||31|e θ-=+,即1||2c b a c ⋅=,即12b a =所以e=52,故选B .通法 由题意得直线l 的方程为x =ba y +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b 2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3cb 4-1,y 1y 2=b 4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎨⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c =b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A .29.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0),过双曲线Γ的右焦点F ,且倾斜角为π2的直线l 与双曲线Γ交于A ,B 两点,O 是坐标原点,若∠AOB =∠OAB ,则双曲线Γ的离心率为( ) A .3+72 B .11+332 C .3+396 D .1+17429.答案 C 解析 由题意可知AB 是通径,根据双曲线的对称性和∠AOB =∠OAB ,可知△AOB 为等边三角形,所以tan ∠AOF =b 2a c =33,整理得b 2=33ac ,由c 2=a 2+b 2,得c 2=a 2+33ac ,两边同时除以a 2,得e 2-33e -1=0,解得e =3+396.故选C . 30.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,且FN →=3FM →,若OM ⊥FN ,则C 的离心率为( )A .2B .7C .3D .1030.答案 B 解析 设双曲线的右焦点为F ′,取MN 的中点P ,连接F ′P ,F ′M ,F ′N ,如图所示,由FN →=3FM →,可知|MF |=|MP |=|NP |.又O 为FF ′的中点,可知OM ∥PF ′.∵OM ⊥FN ,∴PF ′⊥FN .∴PF ′为线段MN 的垂直平分线.∴|NF ′|=|MF ′|.设|MF |=t ,由双曲线定义可知|NF ′|=3t -2a ,|MF ′|=2a +t ,则3t -2a =2a +t ,解得t =2a .在Rt △MF ′P 中,|PF ′|=|MF ′|2-|MP |2=16a 2-4a 2=23a ,∴|OM |=12|PF ′|=3a .在Rt △MFO 中,|MF |2+|OM |2=|OF |2,∴4a 2+3a 2=c 2⇒e =7.故选B . 题型四 双曲线的渐近线31.(2018·全国Ⅰ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 31.答案 A 解析 法一:由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,所以ba=2,所以该双曲线的渐近线方程为y =±ba x =±2x ,故选A .法二:由e =ca =1+⎝⎛⎭⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A .32.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线在第一象限上的点,直线PO 交双曲线C 左支于点M ,直线PF 2交双曲线C 右支于点N ,若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±2x D .y =±22x 32.答案 A 解析 由题意得,|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,∴|PF 1|=4a ,|PF 2|=2a ,由于P ,M 关于原点对称,F 1,F 2关于原点对称,∴线段PM ,F 1F 2互相平分,四边形PF 1MF 2为平行四边形,PF 1∥MF 2,∵∠MF 2N =60°,∴∠F 1PF 2=60°,由余弦定理可得4c 2=16a 2+4a 2-2·4a ·2a ·cos60°,∴c =3a ,∴b =c 2-a 2=2a .∴ba =2,∴双曲线C 的渐近线方程为y =±2x .故选A .33.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (1,0)作x 轴的垂线,与双曲线交于A ,B 两点,O 为坐标原点,若△AOB 的面积为83,则双曲线的渐近线方程为________.33.答案 y =±22x 解析 由题意得|AB |=2b 2a ,∵S △AOB =83,∴12×2b 2a ×1=83,∴b 2a =83①,又a 2+b 2=1②,由①②得a =13,b =223,∴双曲线的渐近线方程为y =±bax =±22x .34.已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( )A .y =±xB .y =±2xC .y =±2xD .y =±3x34.答案 A 解析 由双曲线方程可得渐近线为:y =±b a x ,A (a,0),F (c,0),则点A 到渐近线距离d 1=|ab |a 2+b2=ab c ,点F 到渐近线距离d 2=|bc |a 2+b 2=bc c =b ,∴d 1∶d 2=ab c ∶b =a ∶c =1∶2,即c =2a ,则ba =c 2-a 2a =aa =1,∴双曲线渐近线方程为y =±x .故选A .35.双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,F 为其一个焦点,若F 关于l 1的对称点在l 2上,则双曲线的渐近线方程为( )A .y =±2xB .y =±3xC .y =±3xD .y =±2x35.答案 B 解析 不妨取F (c ,0),l 1:bx -ay =0,设其对称点F ′(m ,n )在l 2:bx +ay =0,由对称性可得⎩⎨⎧b ·m +c 2-a ·n 2=0n m -c ·ba =-1,解得⎩⎪⎨⎪⎧m =a 2-b 2a 2+b2cn =2abca 2+b2,点F ′(m ,n )在l 2:bx +ay =0,则a 2-b 2a 2+b 2·bc +2a 2bca 2+b2=0,整理可得b 2a 2=3,∴b a =3,双曲线的渐近线方程为:y =±bax =±3x .故选B.36.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( )A .y =±2xB .y =±12xC .y =±22x D .y =±2x36.答案 D 解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎪⎨⎪⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .37.已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±6x D .y =±66x 37.答案 D 解析 根据双曲线的定义,可得|BF 1|-|BF 2|=2a ,∵△ABF 2为等边三角形,∴|BF 2|=|AB |,∴|BF 1|-|AB |=|AF 1|=2a ,又∵|AF 2|-|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 120°,即4c 2=4a 2+16a 2-2×2a ×4a ×⎝⎛⎭⎫-12=28a 2,亦即c 2=7a 2,则b =c 2-a 2=6a 2=6a ,由此可得双曲线C 的渐近线方程为y =±66x .38.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A .2x ±y =0B .x ±2y =0C .x ±2y =0D .2x ±y =038.答案 A 解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±ba x =±2x ,即2x ±y =0. 题型五 双曲线中的最值与范围39.P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155 C .4+155D .22+1 39.答案 D 解析 如图所示,设双曲线右焦点为F 2,则|PF 1|+|PQ |=2a +|PF 2|+|PQ |,即当|PQ |+|PF 2|最小时,|PF 1|+|PQ |取最小值,由图知当F 2,P ,Q 三点共线时|PQ |+|PF 2|取得最小值,即F 2到直线l 的距离d =1,故所求最值为2a +1=22+1.故选D .40.双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线上在第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( )A .8B .10C .4+37D .3+317 40.答案 B 解析 由已知得⎩⎪⎨⎪⎧a b =233,c =7,c 2=a 2+b 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,c 2=7,则双曲线C 的方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,又点P 在第一象限,则|PF ′|+|P A |的最小值为|AF ′|=3,故△P AF 的周长的最小值为10. 41.过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线, 切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .1941.答案 B 解析 由题意可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1),因此|PM |2-|PN |2=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=13.故选B . 42.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上 的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4B .5C .6D .742.答案 C 解析 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C .43.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为________.43.答案 [3+23,+∞) 解析 由题意,得22=a 2+1,即a =3,设P (x ,y ),x ≥3,FP →=(x +2, y ),则OP →·FP →=(x +2)x +y 2=x 2+2x +x 23-1=43⎝⎛⎭⎫x +342-74,因为x ≥3,所以OP →·FP →的取值范围为[3+23,+∞).44.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,如果|PF 1|=t |PF 2|(t ∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.44.答案 (0,3] 解析 由双曲线的定义及题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=t |PF 2|,解得⎩⎨⎧|PF 1|=2att -1,|PF 2|=2a t -1.又|PF 1|+|PF 2|≥2c ,∴|PF 1|+|PF 2|=2at t -1+2a t -1≥2c ,整理得e =c a ≤t +1t -1=1+2t -1,∵1<t ≤3,∴1+2t -1≥2,∴1<e ≤2.又b 2a 2=c 2-a 2a 2=e 2-1,∴0<b 2a 2≤3,故0<ba ≤3.∴双曲线经过一、三象限的渐近线的斜率的取值范围是(0,3].45.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),P 是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF 1→·PF 2→的最小值的取值范围是________.45.答案 ⎣⎡⎦⎤-1516,-34 解析 设P (m ,n ),则m 2a 2-n 2b 2=1,即m 2=a 2⎝⎛⎭⎫1+n 2b 2.又F 1(-1,0),F 2(1,0),则PF 1→=(-1-m ,-n ),PF 2→=(1-m ,-n ),PF 1→·PF 2→=n 2+m 2-1=n 2+a 2⎝⎛⎭⎫1+n 2b 2-1=n 2⎝⎛⎭⎫1+a 2b 2+a 2-1≥a 2-1,当且仅当n =0时取等号,所以PF 1→·PF 2→的最小值为a 2-1.由2≤1a ≤4,得14≤a ≤12,故-1516≤a 2-1≤-34,即PF 1→·PF 2→的最小值的取值范围是⎣⎡⎦⎤-1516,-34.。
解析几何专题练习题
解析几何练习题1椭圆2212516x y +=的左右焦点分别为12,F F ,弦AB 过1F ,若2ABF ∆的内切圆周长为π,,A B 两点的坐标分别为1122(,),(,)x y x y ,则12y y -值为( )A .53 B .103 C .203 D 2已知直线)0)(2(>+=kx k y 与抛物线x y C 8:2=相交于B A ,两点,F 为C 的焦点,若FB FA 2=.则=k ( )A.31B.32C.32D.3223若双曲线22221x y a b-=-的离心率为54,则两条渐近线的方程为( )A0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y±= 4设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 的距离为4,则双曲线的离心率为( )A 2B 2或3C D 5双曲线92x -42y =1中,被点P(2,1)平分的弦所在直线方程是( )A 8x-9y=7B 8x+9y=25C 4x-9y=16D 不存在6平面上的动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,则动点P 的轨迹方程为7.双曲线的渐近线方程为34y x=±,则双曲线的离心率是 。
8过函数y=-294--x x 的图象的对称中心,且和抛物线y 2=8x 有且只有一个公共点的直线的条数共有 条9如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程.10椭圆C0:x2a2+y2b2=1(a>b>0,a,b为常数),动圆C1:x2+y2=t21,b<t1<a.点A1,A2分别为C0的左,右顶点.C1与C0相交于A,B,C,D四点.(1)求直线AA1与直线A2B交点M的轨迹方程;(2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等.证明:t21+t22为定值.11已知双曲线:C 22221x y a b-=(0,0)a b >>与圆22:3O x y +=相切,过C 的左焦点O 相切. (1)求双曲线C 的方程; (2)P 是圆O 上在第一象限内的点,过P 且与圆O 相切的直线l 与C 的右支交于A 、B 两点,AOB ∆的面积为l 的方程.解析几何练习题参考答案1.A 2。
高三数学习题集:解析几何与立体几何综合练习
高三数学习题集:解析几何与立体几何综合练
习
解析几何与立体几何是高中数学中的重要内容之一,对于高三学生来说,掌握这两个领域的知识和技巧至关重要。
为了帮助同学们更好地复习与训练,以下是一些解析几何与立体几何综合练习题。
一、解析几何部分
1. 已知点A(2,3)、B(5,7),求直线AB的斜率和方程。
2. 设直线L1过点A(1,2),斜率为1,求L1与x轴、y轴的交点坐标。
3. 已知直线L2的方程为y=2x-3,求L2与y轴的交点坐标。
4. 设四边形ABCD的顶点分别为A(1,2)、B(4,5)、C(6,1)、D(3,-2),求四边形ABCD的周长和面积。
二、立体几何部分
1. 已知圆柱体的高为8cm,底面直径为6cm,求圆柱体的表面积和体积。
2. 设正方体的边长为3cm,求正方体的表面积和体积。
3. 设棱长为5cm的正六面体A,另有一条边长为4cm的直线段BC平行于A的一条棱,求BC与正六面体A的交点坐标。
4. 已知圆锥的高为12cm,底面半径为4cm,求圆锥的表面积和体积。
以上是一些解析几何与立体几何的综合练习题,希望同学们能够认真思考并灵活运用所学知识来解答这些问题。
通过不断练习,相信你们对解析几何与立体几何的理解和掌握会更上一层楼,为应对高考数学提供有力的支持。
加油!。
线性代数与空间解析几何综合练习100题
综合练习100题一、填空题1.设A 是n 阶矩阵,满足,||0'=<AA E A ,则||+=A E 0. 2.若4阶行列式D 的某一行的所有元素及其余子式都相等,则D =0.3.在一个n 阶行列式中,如果等于零的元素多于2n n -个,那么这个行列式D =0. 4.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,若m n >,则||=AB 0. 5.若n 阶方阵,A B 满足,||0=-≠AB B A E ,则=B 0. 6.若n 阶方阵,A B 满足+=A AB E ,则+=A BA E . 7.若n 阶方阵,,A B C 满足=ABC E ,则'''=B A C E . 8.若、A B 都是n 阶方阵,||1,||3==-A B ,则*1|3|-=A B13n --.9.若n 阶方阵A 满足*||0.=≠0A A ,则秩()=A 1n -. 10.设,A B 是两个n 阶方阵,||1,||2+=-=A B A B ,则=A B BA2 .11.设矩阵111022003⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*1()-=A 111666110331002⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭. 12.A 为m 阶方阵,B 为n 阶方阵,||,||a b ==A B ,则C=0AB (1)mn ab -.13.设矩阵A 满足24+-=0A A E ,其中E 为单位矩阵,则1()--=A E 1(2)2+A E .14.设A 为3阶方阵,其特征值为3,1,2-,则2||+=A E 100.15.已知11000101100100110100*********a -⎛⎫⎪- ⎪ ⎪=-⎪- ⎪ ⎪-⎝⎭A ,则4,4,()5,4.a R a =-⎧=⎨≠-⎩当时当时A16.已知n 阶方阵A 的各行元素之和都等于0,且()1n =-R A ,则=0AX 的通解为(1,1,,1),k k '为任意常数.17.矩阵m n ⨯A 满足,m n <||0'≠AA ,则=0AX 的基础解系一定由n m -个线性无关的解向量构成.18.若矩阵A 满足3=A A ,则A 的特征值只能是0或1或1-.19.如果(1,1,1)'=-ξ是方阵2125312a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 的一个特征向量,则a =3-;b =0.20.已知A 与B 相似,且3021⎛⎫= ⎪⎝⎭B ,则2||λ-=A A 3(1)(31)λλ--.21.已知33⨯A 的特征值为1,2,3,则1*||-+=A A 376.22.已知2是A 的一个特征值,则2|6|+-=A A E 0.23.设,αβ是n 维列向量,0'=βα,则'αβ的特征值为0()n 重. 24.若n 阶方阵A 的行向量组线性相关,则0一定是A 的一个特征值. 25.直线1022270x y x x y z +-=⎧⎨+-=⎩的单位方向向量为. 26.已知2768444424798188D =,41424344,,,A A A A 为D 中第4行元素的代数余子式,则41424344+++=A A A A 0.27.设A 是3阶方阵,X 是3维列向量,使得2,,X AX A X 线性无关,且3232=-A X AX A X ,记2(,,)=P X AX A X ,则1-=P AP 000103012⎛⎫⎪⎪ ⎪-⎝⎭.28.若两个非零几何向量,a b 满足||||a b a b +=-,则a 与b 是夹角θ=2π.29.直线260:210x y z L x y z +--=⎧⎨-+-=⎩的参数方程为8,5113,55.x t y t z t ⎧=-⎪⎪⎪=+⎨⎪=⎪⎪⎩30.圆22212462402210x y z x y z x y z ⎧++-+-+=⎨+++=⎩的半径R =3.二、选择题1.设n 元齐次线性方程组=0AX 的系数矩阵A 的秩为r ,则=0AX 有非零解的充要条件是(C ).(A )r n =; (B )A 的行向量组线性无关; (C )A 的列向量组线性相关; (D )A 的列向量组线性无关.2.设A 是m n ⨯矩阵,=0AX 是非齐次线性方程组=AX β所对应的齐次线性方程组,则下列结论正确的是(C ).(A )若=0AX 只有零解,则=AX β有唯一解; (B )若=0AX 有非零解,则=AX β有无穷多解; (C )若=AX β有无穷多解,则=0AX 有非零解; (D )=AX β的任两解之和还是=AX β的解.3.设非齐次线性方程组=AX β的系数行列式为零,则(C ). (A )方程组有无穷多解; (B )方程组无解; (C )若方程组有解,则有无穷多解; (D )方程组有唯一解.4.设A 是m n ⨯矩阵,对于线性方程组=AX β,下列结论正确的是(A ). (A )若A 的秩等于m ,则方程组有解; (B )若A 的秩小于n ,则方程组有无穷多解; (C )若A 的秩等于n ,则方程组有唯一解; (D )若m n >,则方程组无解.5.设5阶方阵A 的秩是3,则其伴随矩阵*A 的秩为(C ). (A )3; (B )4; (C )0; (D )2.6.设A 是n 阶方阵,*2,n >A 是A 的伴随矩阵,则下列结论正确的是(B ).(A )*||=AA A ; (B )若||0≠A ,则*||0≠A ; (C )**1||=A A A ; (D )秩()=A 秩*()A . 7.设,AB 是n 阶方阵,A 非零,且=AB 0,则必有(D ).(A )=0B ; (B )=0BA ; (C )222()+=+A B A B ; (D )||0=B . 8.设有两个平面方程 11111:0a x b y c z d π+++=,22222:0a x b y c y d π+++=,如果 秩1112222a b c a b c ⎛⎫=⎪⎝⎭,则一定有(D ) (A )1π与2π平行; (B )1π与2π垂直; (C )1π与2π重合; (D )1π与2π相交.9.设A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随阵*A 的特征根之一是(D ). (A )1n λ-; (B )||λA ; (C )λ; (D )1||λ-A .10.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的(B ). (A )充分必要条件; (B )充分而非必要条件; (C )必要而非充分条件; (D )既非充分条件也非必要条件. 11.已知n 阶方阵A 与某对角阵相似,则(C ).(A )A 有n 个不同的特征值; (B )A 一定是n 阶实对称阵;(C )A 有n 个线性无关的特征向量; (D )A 的属于不同特征值的特征向量正交. 12.下列说法正确的是(D ). (A )若有全不为0的数12,,,m k k k 使11m m k k ++=0αα,则向量组12,,,mααα线性无关;(B )若有一组不全为0的数12,,,m k k k 使得1122m m k k k +++≠0ααα,则向量组12,,,m ααα线性无关;(C )若存在一组数12,,,m k k k 使1122m m k k k +++=0ααα,则向量组12,,,m ααα线性相关;(D )任意4个3维几何向量一定线性相关.13.设,A B 是n 阶方阵,满足:对任意12(,,,)n x x x '=X 都有''X AX =X BX ,下列结论中正确的是(D ).(A )若秩()=A 秩()B ,则=A B ; (B )若'=A A ,则'=B B ;(C )若'=B B ,则=A B ; (D )若,''==A A B B ,则=A B . 14.设,A B 均为n 阶正定矩阵,则必有(B ).(A )AB 正定; (B )2+A B 正定; (C )-A B 正定; (D )k A 正定. 15.设A 是n 阶方阵,2=A E ,则(C ).(A )A 为正定矩阵;(B )A 为正交矩阵;(C )*2()=A E ;(D )2tr()n =A . 16.设,A B 是n 阶方阵,下列结论中错误的是(D ). (A )若,A B 都可逆,则'A B 也可逆;(B )若,A B 都是实对称正定矩阵,则1-+A B 也是实对称正定矩阵; (C )若,A B 都是正交矩阵,则AB 也是正交矩阵; (D )若,A B 都是实对称矩阵,则AB 是实对称矩阵. 17.设,A B 是n 阶方阵,下列结论中错误的是(B ). (A )若A 经列的初等变换化成B ,则秩()=A 秩()B ; (B )若A 经行的初等变换化成B ,则11--=A B ;(C )若A 经行的初等变换化成B ,则=0AX 与=0BX 同解;(D )若A 经列的初等变换化成B ,则A 的列向量组与B 的列向量组等价.18.设111213212223212223111213313233311132123313,a a a a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭A B 12010100100010001101⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P ,则必有(C ).(A )12=AP P B ;(B )21=AP P B ;(C )12=P P A B ;(D )21=P P A B .19.若A 与B 相似,则(B ).(A )λλ-=-E A E B ;(B )||||λλ+=+E A E B ;(C )**=A B ;(D )11--=A B .20.若2=A E ,则(D ).(A )+A E 可逆; (B )-A E 可逆;(C )+=0A E 或-=A E 0; (D )≠A E 时,+A E 不可逆.21.设1111111111111111⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎭A ,4000000000000000⎛⎫⎪⎪= ⎪⎪⎪⎝⎭B ,则A 与B (A ).(A )合同且相似; (B )合同但不相似; (C )不合同但相似; (D )不合同且不相似.22.实二次型f '=X AX 为正定二次型的充要条件是(C ). (A )f 的负惯性指数是0; (B )存在正交阵P 使'=A P P ; (C )存在可逆阵T 使'=A T T ; (D )存在矩阵B 使'=A B B . 23.设B 是m n ⨯实矩阵,'=A B B ,则下列结论中错误的是(D ). (A )线性方程组=0BX 只有零解⇔A 正定;(B )()()R R =A B ; (C )A 的特征值大于等于0; (D )()R m =⇔B A 正定. 24.设A 是n 阶方阵,||0a =≠A ,则*1||-A A 等于(C ). (A )a ; (B )1a; (C )2n a -; (D )na . 25.设,A B 是n 阶方阵,则必有(D ). (A )11||||||--+=+A BA B ; (B )111||---+=+A B B A ;(C )222()=AB A B ; (D )||||'=A B BA .26.已知12,ηη是非齐次线性方程组=AX β的两个不同的解,12,ξξ是对应的齐次线性方程组=0AX 的基础解系,12,k k 为任意常数,则方程组=AX β的通解为(B ). (A )1211222k k -++ηηξξ; (B )1211212()2k k ++++ηηξξξ;(C )112121()k k +-+ξηηη; (D )1121212()()k k +-++ξηηηη.27.设有直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为(C ). (A )6π; (B )4π; (C )3π; (D )2π.28.若12312,,,,αααββ都是4维列向量,且4阶行列式1231||,m =αααβ 1223||n =ααβα,则4阶行列式12312||+αααββ等于(D ).(A )m n +; (B )()m n -+; (C )m n -; (D )n m -. 29.设n 阶矩阵A 非奇异(2)n >,则(C ). (A )**1()||n -=A A A ; (B )**1()||n +=A A A ; (C )**2()||n -=A A A ; (D )**2()||n +=A A A .30.设矩阵111222333a b c a b c a b c ⎛⎫⎪⎪ ⎪⎝⎭的秩是3,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A ).(A )相交于一点; (B )重合; (C )平行但不重合; (D )异面.三、计算题1.设1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭A ,求5A 及10||A . 解:由311111111||(4)11111111λλλλλλλ+---+--==+-+---+E A故A 的特征值为12340,4λλλλ====-.对0λ=,由1()λ-=0E A x ,可解得三个线性无关的特征向量,1(1,1,0,0)'=ξ,2(1,0,1,0)'=ξ,3(1,0,0,1)'=-ξ.对4λ=-,由(4)--=0E A x ,可解得特征向量4(1,1,1,1)'=--ξ,令 12341111010010(),0101000114D⎛⎫⎛⎫⎪⎪- ⎪ ⎪== ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭T T T T T ,由=AT TD 得 11*13111131111113||41111---⎛⎫ ⎪- ⎪=== ⎪--- ⎪ ⎪--⎝⎭A TDTT T T 故 1111013111001011311()0101011134001141111-⎛⎫⎛⎫⎛⎫ ⎪⎪⎪-- ⎪⎪⎪=⋅ ⎪⎪⎪---- ⎪⎪⎪ ⎪⎪⎪----⎝⎭⎝⎭⎝⎭A 1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭551511110131110010113110101011134001141111--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-⎪⎪ ⎪==⋅ ⎪⎪ ⎪---- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭A TD T 88111111112211111111--⎛⎫ ⎪-- ⎪== ⎪-- ⎪ ⎪--⎝⎭A . 又10161016642,|||2|2||0====A A A A A .2.设0100102a c b ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A ,(1),,a b c 满足什么条件时,A 的秩是3;(2),,a b c 取何值时,A 是对称矩阵; (3)取一组,,a b c ,使A 为正交阵.解:(1)01002002000010010010120120100102a c a bc a bc a c b b b ⎛⎫⎪--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭A当2a bc ≠时,A 的秩是3.(2)0100102a b c ⎛⎫ ⎪ ⎪'= ⎪ ⎪ ⎪⎝⎭A ,要想A 成为对称矩阵,应满足'=A A ,即1,0a b c ===.(3)要想A 为正交阵,应满足'=A A E ,即00101001000010110010022a b a c c b ⎛⎫⎛⎫⎪⎪⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭ ⎪⎪⎝⎭⎝⎭.2221,10,211,2a b ac b c ⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 解得1,2a b c ===. 3.设有三维列向量123211101,1,1,111λλλλλ⎛⎫+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ 问λ取何值时,(1)β可由123,,ααα线性表示,且表达式唯一; (2)β可由123,,ααα线性表示,但表达式不唯一; (3)β不能由123,,ααα线性表示.解法1: 设111111111λλλ+⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭A , 21110111111λλλλλ+⎛⎫⎪=+ ⎪ ⎪+⎝⎭B由22211100(2)(1)1110(1)111111λλλλλλλλλλλλλλλλ⎛⎫+--+-+⎛⎫⎪ ⎪=+−−→-- ⎪ ⎪⎪ ⎪++⎝⎭⎝⎭行B 22222003(12)1110(1)0(1)11100(3)(12)λλλλλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫----+ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪+-+--⎝⎭⎝⎭行行(1)当0λ≠且3λ≠-时,()()3R R ==A B ,此时β可由123,,ααα线性表示,且表达式唯一.(2)当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一.(3)当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示. 解法2:2111||111(3)111λλλλλ+=+=++A① 当0λ≠且3λ≠-时,||0≠A ,β可由123,,ααα线性表示,且表达式唯一, ② 当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一, ③ 当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示.4.设3阶矩阵A 的特征值为1231,2,3λλλ===,对应的特征向量依次为,1231111,2,3149⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ,又12322=-+βξξξ,求nA β(n 为正整数).解:由于 123123222(,,)21⎛⎫⎪=-+=- ⎪ ⎪⎝⎭βξξξξξξ又由于 1111n n λ==A ξξξ,22222n n nλ==A ξξξ,33333n n n λ==A ξξξ. 所以 12312322(,,)2(,,)211n n n n n⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A A A A A βξξξξξξ111232221232(,2,3)2123211231nn n n n n n n ++++⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ 12132223223223n n n n n n +++++⎛⎫-+ ⎪=-+ ⎪ ⎪-+⎝⎭.5.设122212221-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,(1)求A 的特征值;(2)求1-+E A 的特征值.解:(1)2122||212(1)(5)0221λλλλλλ+---=-+=-+=-+E A得A 的特征值为1231,5λλλ===-.·129·(2)由A 是对称阵,A 的特征值是1,1,5-,存在可逆阵T 使1115-⎛⎫ ⎪= ⎪ ⎪-⎝⎭T AT 于是 111115--⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪⎝⎭T A T , 112()245--⎛⎫⎪ ⎪+= ⎪ ⎪⎪⎝⎭T E A T ,故1-+E A 的特征值为42,2,5.6.已知(1,,1)k '=α是211121112⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的逆阵1-A 的特征向量,试求常数k 的值.解:设α为A 的特征值为λ的特征向量,则λ=A αα.即 2111112111211k k λ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.即 322k k kλλ+=⎧⎨+=⎩解得 220k k +-=,即1k =或2-.7.设11 111, 1112a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A β,已知线性方程组=AX β有无穷多解,试求:(1)a 的值;(2)正交阵P ,使'P AP 为对角阵.解:(1)211111111101101120112a a a a aa a a a ⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭B 111011000(1)(2)2a a a a a a ⎛⎫ ⎪→-- ⎪ ⎪-+--⎝⎭要使=AX β有无穷多解,必须()()3R R =<A B ,因此2a =-.·130· (2)此时112121211-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,112||121(3)(3)0211λλλλλλλ---=-+-=-+=--E A ,得A 的特征值1230,3,3λλλ===-.对于10λ=,由1112121211ξ--⎛⎫⎪--=⎪ ⎪--⎝⎭0,得特征向量1111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,单位化得13⎛⎫ ⎪=⎝⎭η; 对于23λ=,由2212151212ξ-⎛⎫⎪--= ⎪ ⎪-⎝⎭0,得特征向量2101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得2202⎛⎫⎪⎪= ⎪ - ⎝⎭η;对于34λ=-,由3412111214ξ--⎛⎫ ⎪---= ⎪ ⎪--⎝⎭0,得特征向量3121⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得363η⎛⎫ ⎪ =- ⎪⎪⎪⎪⎝⎭;·131·令3260⎛⎫ ⎪=⎪⎪⎪⎪⎝⎭P ,此时P 为正交阵,并且'P AP 为对角阵033⎛⎫⎪⎪ ⎪-⎝⎭. 8.已知线性方程组(I )1111221331442112222332440a x a x a x a x a x a x a x a x +++=⎧⎨+++=⎩的一个基础解系为112112221213231424, b b b bb b b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,试求线性方程组.(II )11112213314421122223324400b y b y b y b y b y b y b y b y +++=⎧⎨+++=⎩的通解.解:设11121314111213142122232421222324a a a a b b b b a a a a b b b b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭A B由12,ξξ为(I )的一个基础解系得0'=AB .由12,ξξ线性无关,所以()2R =B ,又0'=BA ,所以1111213142(,,,),a a a a '==ηη21222324(,,,)a a a a '是B 的基础解系,通解为112212,,k k k k +ηη为任意常数.9.已知方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有三个线性无关的解向量,求,a b 的值及方程组的通解.解:1111111111(|)43511011531310131a b a a b a a --⎛⎫⎛⎫⎪ ⎪=--−−→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭行A β10242011530042452a b a a -⎛⎫⎪−−→-- ⎪ ⎪-+--⎝⎭行由于该非齐次线性方程组有三个线性无关的解向量,故()(|),()1 3.R R A n R =-+=A A β·132· 其中4n =. 于是()(|)2R R ==A A β.从而2,3a b ==-. 该方程组与方程组13423424253x x x x x x =-++⎧⎨=--⎩ 同解. 令3142,x k x k ==得该方程组的通解112212314224253x k k x k k x k x k -++⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭X 12242153100010k k -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中12,k k 为任意常数.10.设3221423kk -⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ,问当k 为何值时,存在可逆阵P ,使得1-P AP 为对角阵,并求出一个P 及相应的对角阵A . 解:A 的特征方程为:322122||11423123k k k λλλλλλλλ-----=+-=+---+--+E A2122(1)01(1)(1)0123k λλλλλ-=-+-=-+=-+.解得特征根为1231,1λλλ===-.当1λ=时,()2,R -=E A A 有1个线性无关的特征向量.当1λ=-时,211422211100022422000000E A -⎛⎫---⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭⎝⎭k k k k k k·133·因存在可逆阵P ,使1-P AP 为对角阵,所以(1)1R --=E A ,从而0k =.因此 322010423-⎛⎫⎪=-⎪ ⎪-⎝⎭A , 对应于11λ=的特征向量为1ξ,由222020424--⎛⎫⎪⎪ ⎪--⎝⎭1=0ξ得1(1,0,1)'=ξ 对应于231λλ==-的特征向量为23,ξξ,由422000422--⎛⎫ ⎪= ⎪ ⎪--⎝⎭0ξ,得 23(1,2,0),(0,1,1)''=-=ξξ令110021101⎛⎫⎪=- ⎪ ⎪⎝⎭P 且P 为可逆阵,相应的对角阵111⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .11.设101020101⎛⎫⎪=⎪ ⎪⎝⎭A ,方阵B 满足2+=+AB E A B ,求B . 解:由2+=+AB E A B 得 2()()()-=-=-+A E B A E A E A E由于001010100⎛⎫ ⎪-= ⎪ ⎪⎝⎭A E ,所以-A E 可逆,得 201030102⎛⎫ ⎪=+= ⎪ ⎪⎝⎭B A E ,12.已知将3阶可逆阵A 的第2行的2倍加到第3行得矩阵B ,求1-AB .解:令100010021⎛⎫⎪= ⎪ ⎪⎝⎭C ,则=CA B ,由于,A C 均可逆,故B 可逆,所以 11100010021--⎛⎫ ⎪== ⎪ ⎪-⎝⎭AB C .13.设有线性方程组·134· 123123123000ax bx bx bx ax bx bx bx ax ++=⎧⎪++=⎨⎪++=⎩ (,a b 不全为0) (1),a b 为何值时方程组有非零解; (2)写出相应的基础解系及通解; (3)求解空间的维数.解:(1)齐次方程组有非零解的充要条件是系数行列式0a b bba b b b a=即 2()(2)0a b a b -+= 故0a b =≠,或20a b =-≠时,方程组有非零解. (2)当0a b =≠时,方程组为1230x x x ++=,即123x x x =--.其基础解系为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ξξ,通解为12121110,,10k k k k --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.当20a b =-≠时,方程组为123123123202020x x x x x x x x x -++=⎧⎪-+=⎨⎪+-=⎩,解得基础解系为111⎛⎫ ⎪⎪ ⎪⎝⎭,通解为11,1k k ⎛⎫ ⎪⎪ ⎪⎝⎭为任意常数.(3)当0a b =≠时,解空间维数为2;当20a b =-≠时,解空间维数为1.14.设二次型222123122313222f x x x ax x bx x x x =+++++经正交变换=X PY 化成22232f y y =+,其中123123(,,),(,,),x x x y y y ''==X Y P 是3阶正交矩阵,求,a b 及满足上述条件的一个P .解:正交变换前后,二次型的矩阵分别为11111a a b b ⎛⎫ ⎪= ⎪ ⎪⎝⎭A , 000010002⎛⎫⎪= ⎪ ⎪⎝⎭B故二次型可以写成f '=X AX 和f '=Y BY ,且1-'==B P AP P AP .·135·由,A B 相似知||||λλ-=-E A E B ,即322223(2)()a b a b λλλ-+--+-3232λλλ=-+,比较系数得:0,0a b ==.由1000010002-⎛⎫ ⎪== ⎪ ⎪⎝⎭P AP B ,知A 的特征值是0,1,2.解方程组(0)-=0E A x ,得1101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得11120||2ξξ⎛⎫⎪ ⎪== ⎪ - ⎝⎭P 解方程组()-=0E A x ,得22201,0⎛⎫ ⎪== ⎪ ⎪⎝⎭P ξξ,解方程组(2)-=0E A x ,得3101⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得33320||2⎛ ⎪== ⎪ ⎝⎭P ξξ故123022()010022⎛ ⎪== ⎪ - ⎝⎭P P P P . 15.求直线110:220x y z L x y z +--=⎧⎨+--=⎩与2220:2240x y z L x y z +--=⎧⎨+++=⎩的公垂线方程.解:1L 与2L 的标准式及参数形式分别为:11:011x y z L -==与1,,;x y t z t =⎧⎪=⎨⎪=⎩22:210x y z L +==-与2,,2.x y z λλ=⎧⎪=-⎨⎪=-⎩·136· 1L 的方向向量为12(0,1,1),L =s 的方向向量为2(2,1,0)=-s .设1L 与2L 公垂线垂足为(1,,),(2,,2)t t λλ--A B ,则应有(21,,2)AB t t λλ=-----,且1220s λ⋅=---=AB t ,2520s λ⋅=+-=AB t .解得4,32.3t λ⎧=-⎪⎪⎨⎪=⎪⎩所以1{1,2,2}3AB =-,故公垂线方程为 44133122y z z ++-==-. 16.求直线210:10x y z L x y z -+-=⎧⎨+-+=⎩在平面:20x y z π+-=上投影的方程.解:A 点坐标为44(1,,)33--.设通过直线L 垂直于平面π的平面0π的方程为21(1)0x y z x y z λ-+-++-+=.0π的法向量为1(2,1,1)λλλ=+-+-n . 平面π的法向量为(1,2,1)=-n . 由0ππ⊥,知10⋅=n n ,得 22(1)(1)0λλλ++-+--= 解得14λ=. 从而得0π方程为310.x y z -+-=所以所求直线0L 方程为310,20.x y z x y z -+-=⎧⎨+-=⎩17.设矩阵A 与B 相似,且111200242,0203300a b -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B , (1)求,a b 的值;(2)求一个可逆阵P ,使1-=P AP B .解:(1)因为A 与B 相似,所以有||||λλ-=-E A E B ,32111||242(5)(53)6633a a a aλλλλλλλ---=--=-++++--E A232||(2)()(4)(44)4b b b b λλλλλλ-=--=-+++-E BππL 0L·137·比较两式系数可得:5344664a b a b +=+⎧⎨-=-⎩解得56a b =⎧⎨=⎩.(2)因A 与226⎛⎫⎪= ⎪ ⎪⎝⎭B 相似,所以A 的特征值为2,2,6. 1112222333-⎛⎫ ⎪-=-- ⎪ ⎪-⎝⎭E A . 解(2)-=0E A X 得A 的对应于特征值2的特征向量12111,001-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,5116222331-⎛⎫ ⎪-=- ⎪ ⎪⎝⎭E A . 解()E A X -=60得A 的对应于特征值6的特征向量3123⎛⎫⎪=- ⎪ ⎪⎝⎭ξ.令123111()102013P -⎛⎫ ⎪==- ⎪ ⎪⎝⎭ξξξ,则有1-=P AP B .18.已知3阶实对称阵A 的特征值为03,2,2,10⎛⎫ ⎪- ⎪ ⎪⎝⎭及01 ⎪ ⎪⎝⎭分别是A 的对应于特征值3,2的特征向量,(1)求A 的属于特征值2-的一个特征向量;(2)求正交变换=X PY 将二次型f '=X AX 化为标准形.解:(1)设2-对应的特征向量为X ,则有12(,)0,(,)0==X X ξξ,可取310⎛⎫⎪= ⎪ ⎝ξ.(2)把特征向量规范正交化后得:·138·12310221,0,00122⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ - ⎪⎝⎭⎝⎭P P P .令10221001022⎛⎫ ⎪⎪= ⎪ - ⎝⎭P , 则在正交变换=X PY 下f 化为 222123322f y y y =+-.19.已知二次型22212312232355266f x x cx x x x x x x =++-+-的秩为2,求c 及此二次型对应矩阵的特征值,指出123(,,)1f x x x =代表三维几何空间中何种几何曲面.解:二次型f 所对应的矩阵为51315333c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ,因f 的秩为2,即A 的秩为2,故有||0=A ,所以3c =.513||153(4)(9)0333λλλλλλλ---=-=--=--E A ,得特征值为0,4,9. 与特征值相对应的单位特征向量分别为123(,,'''===P P P , 取正交变换阵0⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭P ,则在正交线性变换=X PY 下,方程123(,,)1f x x x =化为椭圆柱面2223491y y +=.20.设有数列01201321120,1,,,,,n n n a a a a a a a a a a a --===+=+=+,求1000a .解法1:·139·由1121110n n n n a a a a ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 得9991000109991110a a a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.记 1110⎛⎫=⎪⎝⎭A 得A,并且1211,2211⎛⎫⎛⎫+ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ分别是A的对应于特征值1122+的特征向量.记1211(,)2211⎛⎫+ ⎪== ⎪ ⎪⎝⎭T ξξ,于是111-⎛ ⎪=⎪-⎪⎝⎭T则100-⎫⎪ = ⎝A T T99999911020-⎛⎫+ ⎪= ⎝A T T1000100010001000999999999999]]-+⎪= ⎪-+⎪⎝⎭所以10001000100011(()())522a +-=-. 解法2:设 1111n D +++=++αβαβαβαβαβαβαβαβ·140· 将n D 按第一行展开可得1n n n D D αβ--= (1)由, αβ的对称性可得1nn n D D βα--= (2)若αβ≠,(1)、(2)联立解之11n n n D αβαβ++-=- (3)若αβ=,由(1)1(1)n nn n D D n ααα-=+=+ (4)考察令 11111111111n D --=-补充定义100,1D D -==,则12,1,2,n n n D D D n --=+= 于是1n n a D -= 解:11αβαβ+=⎧⎨=-⎩, 得001122αβ+==,由(3)知 00000000001000999000000111a D αβαβαβαβαβαβαβαβ+++==++100010000000αβαβ-=-10001000⎡⎤⎥=-⎥⎝⎭⎝⎭⎦.·141·四、证明题1.证明69169169(1)316916n n D n ==+,(n 为正整数). 证:1 1n =时,16(11)3D ==+⋅2 假设当n k ≤时结论成立,当1n k =+时,若12k +=,由226936927(21)316D ==-==+⋅知命题成立.若13k +≥,将1k D +按第一行展开得11169169696(1)39316916k k k k k D D D k k -+-==-=+-⋅⋅1(2)3k k +=+⋅由数学归纳法,对一切自然数n 结论都成立.2.设A 为2阶方阵,证明:若存在大于等于2的自然数m 使m=0A ,则=20A .证:因m=0A ,所以||||0mm==A A ,又A 为2阶方阵,故()1R ≤A .所以A 经初等变换可以化为100000000000⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,于是存在可逆阵,P Q ,使 1000100000(100)00000⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A P Q P Q ,·142· 取10,(100)0⎛⎫ ⎪ ⎪'== ⎪ ⎪⎝⎭U P V Q ,则'=A UV .令k '=V U ,则2.k k '''===A UV UV UV A 由m m k -==10A A 知0k =,或者=0A ,故2k ==0A A . 3.设A 是幂等阵2()=A A ,试证 (1)A 的特征值只能是1或0, (2)()()n R R n +-=A A E , (3)A 可相似对角化; (4)()tr()R =A A .证:(1)设λ是A 的任一特征值,则存在≠0X 使λ=AX X . 于是22λ=A X X .由2=A A 知,2λλ=X X . 由≠0X 得2λλ=,故1λ=或0. (2)由2=A A 知,()-=0A A E ,于是()()R R n +-≤A A E (1)由()n n +-=A E A E 知()()()()()n n n R R R R R =≤+-=+-E A E A A A E (2)综合(1),(2)可得()().n R R n +-=A A E(3)记12(),()n R r R r =-=A A E .当10r =或20r =时,=0A 或n =A E ,命题显然成立. 以下设120,0r r ≠≠,由12r r n +=知10r n <<,20r n <<. 取112,,,n r -ξξξ为=0AX 的基础解系212,,,n r -ηηη是()n -=0A E X 的基础解系,则112,,,n r -ξξξ是A 的属于特征值0的线性无关的特征向量,212,,,n r -ηηη是A 的属于特征值1的线性无关的特征向量,故由12()()n r n r n -+-=知A 有n 个线性无关的特征向量1211,,,,,n r n r --ξξηη. 从而A可相似对角化.(4)由(1)、(3)可知存在可逆阵T 使10r-⎛⎫=⎪⎝⎭E T AT 于是1()tr()tr()R r -===A TAT A .4.设,A B 是n 阶正定矩阵,证明:AB 的特征值全大于0.·143·证:因,A B 正定,则存在可逆阵12,P P ,使11221122''''===A P P B P P AB P P P P12221121212()()()-'''''==P AB P P P P P P P P P因12,P P 可逆,则12'P P 可逆,从而1212()()''P P PP 正定,它的特征值全大于0, 因AB 与1212()()''''P P P P 相似,从而AB 的特征值全大于0. 5.设A 为n 阶方阵,试证:(1)若1k +=0A α且k≠0A α,则1,,,,kk -A A A αααα线性无关;(2)1n +=0A X 的解一定是n =0A X 的解; (3)1()()n nR R +=A A .证:(1)反证法若1,,,,kk +A A A αααα线性相关,则存在不全为零的数01,,,k l l l ,使01k k l l l +++=0αααA A ,设i l 是第一个不等于零的系数,即0110,0i i l l l l -====≠, 则 11i i k i i k l l l +++++=0A A A ααα,两边乘以矩阵k i -A ,得121k k k i i i k l l l +-++++=0A A A ααα,由于1k +=0Aα,故对任意1m k ≥+都有m =0A α,从而由上式得k i l α=0A ,但k ≠0A α,故0i l =与假设矛盾. (2)证明:假设α是1n +=0A X 的解,但不是n =0A X 的解,即有 1n +=0A α 但n≠0A α.由(1)知1,,,,nn -A A A αααα线性无关,与1n +个n 维向量1,,,,n n -A A A αααα线性相关矛盾,故α是n =0A X 的解. (3)由(2)知1n +=0AX 的解一定是n =0A X 的解,且易知n =0A X 的解一定是1n +=0A X 的解,所以方程1n +=0A X 与n =0A X 同解,所以1()()n n +=R A R A .6.已知向量组12,,,(2)m m ≥ααα线性无关,试证:向量组1112,m k =+=βααβ22111,,,m m m m m m m k k ---+=+=ααβααβα线性无关.证:假设有一组数121,,,,m m l l l l -使得112211m m m m l l l l --++++=0ββββ.则有11222111()()()m m m m m m m m l k l k l k l ---+++++++=0ααααααα,即有·144· 112211112211()m m m m m m l l l l k l k l k l ----++++++++=0αααα由于12,,,m ααα线性无关,所以 1211122110m m m m l l l l k l k l k l ---====++++=,所以1210m m l l l l -=====.故12,,,m βββ线性无关.7.设12,,,m ααα线性无关,m 为奇数,试证:1122231,,,m -=+=+=βααβααβ11,m m m m -+=+ααβαα线性无关.证:假设存在一组数12,,,m k k k 使112211m m m m k k k k --++++=0ββββ,则有112223111()()()()m m m m m k k k k --++++++++=0αααααααα,即111221()()()m m m m k k k k k k -++++++=0ααα 又由于12,,,m ααα线性无关,所以11210m m m k k k k k k -+=+==+=,因为m 是奇数,所以线性方程组(1)的系数行列式1101111(1)20010001m D +==+-=≠, 1121000m m m k k k k k k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ (1) 故(1)只有零解,所以120m k k k ====,故12,,,m βββ线性无关.8.设n 阶矩阵A 的n 个列向量为12,,,n ααα,n 阶矩阵B 的n 个列向量为122311,,,,,()n n n R n -++++=ααααααααA ,问齐次线性方程组=0BX 是否有非零解,证明你的结论.证:当n 为奇数时,齐次线性方程组=0BX ,没有非零解. 当n 为偶数时,=0BX 有非零解.·145·由于()R n =A ,所以n 阶矩阵A 的n 个列向量12,,,n ααα线性无关,由上题知,当n 为奇数时,122311,,,,n n n -++++αααααααα也线性无关,所以()R n =B ,因此齐次线性方程组=0BX 没有非零解,但当n 为偶数时,因122311()()()()n n n -+-++++-+=0αααααααα,122311,,,,n n n -++++αααααααα线性相关,所以()R n <B .因此,齐次线性方程组=0BX 有非零解.9.设12,,,n ξξξ是n 阶方阵A 的分别属于不同特征值的特征向量,12n =+++αξξξ. 试证:1,,,n -A A ααα线性无关.证:设A 的n 个互不相同的特征值为12,,,n λλλ,对应的特征向量依次为12,,,n ξξξ,则1111(),,n n n n λλ=++=++=++A A A A αξξξξξξ11111n n n n n λλ---=++A αξξ.设有一组数011,,,n k k k -,使得1011n n k k k --+++=0αααA A 即1101111111()()()n n n n n n n k k k λλλλ---+++++++++=0ξξξξξξ.可得1101111101212201(λλ)(λλ)(λn n n n n k k k k k k k k ξξ----+++++++++++11)n n n n k λ--+=0ξ.由于12,,,n ξξξ线性无关,所以1011111012121011000n n n n n nn n k k k k k k k k k λλλλλλ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 即 1011212211111n n n n n n k k k ----⎛⎫⎛⎫⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0λλλλλλ又由于1111221111()01n n i j j i nn nn --≤<≤-=-≠∏λλλλλλλλ.所以0110n k k k -====, 即21,,,,n -A A A αααα线性无关.·146· 10.已知,A B 是两个n 阶实对称矩阵,试证A 与B 相似的充要条件是,A B 的特征多项式相等.证:(1)若A 与B 相似,记1-=T AT B ,则11||||||||||||λλλλ---=-=-=-E B E T AT T E A T E A .(2)若,A B 的特征多项式相等,则,A B 有相同的特征值12,,,n λλλ. 因,A B 都是实对称矩阵,存在正交阵,P Q 使112211,n n λλλλλλ--⎛⎫⎛⎫⎪⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP Q BQ 于是11--=P AP Q BQ .即111()()---=PQ A PQ B故A 与B 相似.11.设A 是n 阶实矩阵,证明当0k >时,k '+E A A 正定.证:()()()k k k ''''''+=+=+E A A E A A E A A ,即k '+E A A 是实对称阵. 对任意n 维非零实列向量X ,有()()()()k k k '''''''+=+=+X E A A X X E X X A AX X X AX AX由于0k >,所以()0k '>X X ,又()0'≥AX AX ,所以()0k ''+>X E A A X .即k '+E A A 正定.12.设A 是m n ⨯实矩阵,证明:()()()R R R ''==A A AA A ,并举例说明A 是复矩阵时,结论未必成立. 证:考察方程组'=0A AX , (1)=0AX (2)显然(2)的解均为(1)的解,因而()()n R n R '-≤-A A A ,即有()()R R '≤A A A (3)·147·另一方面,对任意1nn x x ⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭R X 如果'=0A AX ,则()0''=X A AX , 即()()0'=AX AX (4)设12(,,,)n a a a '=AX ,由(4)知210ni i a ==∑,因为A 为实矩阵,X 为实向量,故i a 均为实数,所以120n a a a ====,即=0AX ,由于(2)的解也是(1)的解,故有()()n R n R '-≤-A A A ,即()()R R '≤A A A (5)综合(3),(5)式知()()R R '=A A A由()()R R '=A A 知()(())()()R R R R '''''===AA A A A A故有()()()R R R ''==A A AA A .令1i ⎛⎫= ⎪⎝⎭A ,则(1,)i '=A ,于是(0)'=A A ,即A 是复矩阵,结论不成立. 13.若任意n 维列向量都是n 阶方阵A 的特征向量,试证:A 一定是标量矩阵. 证:先证A 的任两个特征值都相等,否则设1212,()λλλλ≠是A 的两个特征值,≠0X ,≠0Y ,使12,λλ==AX X AY Y . 因12λλ≠,所以,X Y 线性无关,+≠0X Y . 依题意存在k ,使()()k +=+A X Y X Y ,于是1212()(),k k k λλλλ-+-===0X Y ,矛盾,故A 的所有特征值都相等,记为λ.令j e 为n 阶单位阵E 的第j 个列向量,1,,j n =,于是 1()E e e e =jn由已知,1,2,,j j j n λ==Ae e得11()(),,A e e e e e e AE E A E λλλ===j n j n即A 是数量矩阵.14.设A 是n 阶正定矩阵,试证:存在正定矩阵B 使2=A B . 证:A 是正定阵,则存在正交矩阵P ,使得·148· 121n λλλ-⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭P AP D ,其中0,(1,2,,)ii n λ>=令(1,2,,)i i n δ==,则21111222222n n n n λδδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪===⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭D 而 11221n n δδδδδδ-⎛⎫⎛⎫ ⎪⎪⎪⎪'== ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭A PDP P P 1122n n δδδδδδ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪''= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P 令 12n δδδ⎛⎫ ⎪⎪'= ⎪ ⎪ ⎪⎝⎭B P P ,易验证B 为正定阵,故2=A B . 15.设α是n 维非零实列向量,证明:2'-'E αααα为正交矩阵.证:因为22()'''-=-''E E αααααααα,故2222()()()()'''''--=--''''E E E E αααααααααααααααα 224444()()()()()''''''=-+=-+''''E E αααααααααααααααααααα 44''=-+=''E E αααααααα. 因而2'-'E αααα为正交矩阵.16.设方程组=0AX 的解都是=0BX 的解,且()()R R =A B ,试证:=0AX 与·149·=0BX 同解.证:设()()R R r ==A B ,则=0AX 的基础解系含有n r -个线性无关的向量,不妨设为12,,,n r -ξξξ. 有,(,,)A ==-01i i n r ξ.又=0AX 的解必为=0BX 的解,从而,(,,)i i n r ξ==-01B从而12,,,n r -ξξξ也是=0BX 的基础解系.于是=0BX 的通解为11.n r n r k k --+ξξ则=0AX 与=0BX 同解.17.设A 是n 阶方阵,12(,,,)n b b b '=β是n 维列向量,0⎛⎫= ⎪'⎝⎭A B ββ,若()()R R =A B ,则=AX β有解.证:由于()()()R R R ≤=A B A β,又由于()()R R ≤A A β,所以()()R R =A A β即=AX β有解.18.设12(,,,)(1,2,,,)i i i in a a a i r r n '==<α是r 个线性无关的n 维实向量,12(,,,)n b b b '=β 是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的实非零解向量,试证:12,,,,r αααβ线性无关.证:假设12,,,,r αααβ线性相关,由已知12,,,r ααα线性无关,必有1122r r k k k =+++βααα, (1)又由β为方程组的解,从而(,)0,(1,,)i i r ==βα于是11(,)(,)0r r k k =++=βββαα, 从而=0β,矛盾.所以12,,,,r αααβ线性无关. 19.设,A B 是两个n 阶正定矩阵,若A 的特征向量都是B 的特征向量,则AB 正定. 证:因为,A B 是两个n 阶正定矩阵,因此,A B 也必为实对称矩阵,设12,,,n P P P 为A 的n 个标准正交的特征向量,记12()n =P P P P ,则·150· 112211,,n n k k k λλλ--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP P BP 并且,0,(1,,)i i k i n λ>=,所以 1122111n n k k k λλλ---⎛⎫⎛⎫ ⎪⎪ ⎪⎪=⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭P ABP P AP P BP 1122n n k k k λλλ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ 且0,(1,,)i i k i n λ>=. 再由1-'=P P 得()'=AB AB ,因此AB 正定.20.设12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,试证向量组12,,,,t +++ββαβαβα线性无关. 证:设有一组数01,,,t k k k 使得011()()t t k k k +++++=0ββαβα即0121122()t t t k k k k k k k ++++++++=0βααα (1)由于12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,所以β不能表为1,,t αα的线性组合,所以0120t k k k k ++++=,因此(1)式变为1122t t k k k +++=0ααα,由于1,,t αα线性无关,所以120t k k k ====,进而00k =,故向量组12,,,,t +++ββαβαβα线性无关.。
解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k =-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
初中理科数学解析几何练习题
初中理科数学解析几何练习题
解析几何是数学中的一个重要分支,它将代数和几何相结合,用代数的方法研究几何问题。
初中阶段的学生通过研究解析几何可以培养抽象思维能力和几何直观性,同时提升数学解题能力。
以下是一些初中理科数学解析几何的练题,供学生们进行训练和巩固知识。
题目一:点的坐标
1. 已知平面直角坐标系中的点A的坐标为(2, 3),点B的坐标为(-1, 4),求线段AB的中点坐标。
题目二:距离公式
2. 已知平面上点A的坐标为(3, 2),点B的坐标为(-5, -1),求线段AB的长度。
题目三:直线方程
3. 已知直线L过点A(4, 1)和点B(-2, 3),求直线L的方程。
题目四:线段垂直平分
4. 已知平面上线段AB的中点坐标为(1, 2),直线L的方程为2x - 3y = 7,判断线段AB是否被直线L垂直平分。
题目五:两线段相交
5. 已知平面上线段AB的端点坐标为A(1, -2)和B(4, 3),线段CD的端点坐标为C(1, 2)和D(3, 0),判断线段AB和线段CD是否相交。
题目六:求斜率
6. 已知平面上直线L的方程为2x + 3y = 6,求直线L的斜率。
以上是初中理科数学解析几何的练习题,希望能够帮助学生们更好地理解和掌握解析几何的知识。
通过不断地练习和思考,相信你们可以在解析几何方面取得更好的成绩!加油!。
解析几何课后习题答案
解析几何课后习题答案解析几何是数学中的一个重要分支,它研究的是空间中的点、线、面等几何图形的性质和变换。
在解析几何中,习题是巩固和深化学生对知识的理解和运用的重要手段。
然而,很多学生在解析几何的习题中常常会遇到困惑和困难,特别是对于一些较为复杂的问题。
因此,本文将为大家解析几何课后习题的答案,希望能够帮助大家更好地掌握解析几何的知识。
第一题:已知平面上三点A(1,2),B(3,4),C(5,6),求直线AB的斜率。
解答:直线的斜率可以通过两点的坐标计算得到。
设直线AB的斜率为k,则有k=(y2-y1)/(x2-x1)。
代入A(1,2)和B(3,4)的坐标,得到k=(4-2)/(3-1)=1。
所以直线AB的斜率为1。
第二题:已知直线y=2x-1与x轴的交点为A,与y轴的交点为B,求线段AB的中点坐标。
解答:线段的中点坐标可以通过两个端点的坐标计算得到。
设线段AB的中点坐标为M(x,y),则有x=(x1+x2)/2,y=(y1+y2)/2。
代入A(0,-1)和B(0,1)的坐标,得到x=(0+0)/2=0,y=(-1+1)/2=0。
所以线段AB的中点坐标为M (0,0)。
第三题:已知直线y=3x+2与直线y=-2x+5的交点为P,求直线OP的斜率,其中O为坐标原点。
解答:直线OP的斜率可以通过两点的坐标计算得到。
设直线OP的斜率为k,则有k=(y2-y1)/(x2-x1)。
代入O(0,0)和P的坐标,得到k=(y-0)/(x-0)=(3x+2-(-2x+5))/(x-0)=(5x+3)/(x-0)=5。
所以直线OP的斜率为5。
第四题:已知直线y=kx-2与x轴的交点为A,与y轴的交点为B,求k的值使得线段AB的长度为10。
解答:线段的长度可以通过两个端点的坐标计算得到。
设线段AB的长度为d,直线y=kx-2与x轴的交点为A(x1,0),与y轴的交点为B(0,y1),则有d=sqrt((x2-x1)^2+(y2-y1)^2)=sqrt((0-x1)^2+(y1-0)^2)=sqrt(x1^2+y1^2)。
高中数学解析几何测试题(答案版)
解析几何练习题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12- C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .211.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --=B .50x y -+=C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A. 304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,,C. ⎡⎢⎣⎦ D. 203⎡⎤-⎢⎥⎣⎦, 二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是 。
解析几何经典练习题(含答案)
解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。
解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。
斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。
题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。
解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。
题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。
解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。
经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。
解析几何向量积练习题
解析几何向量积练习题一、基础题1. 已知向量a = (2, 3),向量b = (4, 1),求向量a与向量b 的向量积。
2. 计算向量a = (1, 2, 3)与向量b = (2, 3, 1)的向量积。
3. 已知向量a = (3, 4, 5),向量b = (2, 1, 4),求向量a与向量b的向量积的模。
4. 已知向量a = (2, 1, 3),向量b = (4, 5, 2),求向量a与向量b的向量积的方向。
5. 判断向量a = (1, 2, 3)与向量b = (2, 1, 4)是否垂直。
二、进阶题6. 已知向量a = (x, y),向量b = (y, x),求向量a与向量b 的向量积。
7. 设向量a = (2, 3, 4),向量b = (4, 3, 2),求向量a与向量b的向量积,并判断其与向量a是否垂直。
8. 已知向量a = (3, 4, 5),向量b = (2, 1, 4),求向量a与向量b的向量积在x轴、y轴和z轴上的分量。
9. 设向量a = (cosα, sinα),向量b = (sinα, cosα),求向量a与向量b的向量积的模。
10. 已知向量a = (2t, t^2),向量b = (t, 3t^2),求向量a与向量b的向量积,并讨论t为何值时,向量积为零。
三、综合题11. 在空间直角坐标系中,已知点A(1, 2, 3),点B(4, 1, 2),点C(3, 5, 2),求向量AB与向量AC的向量积。
12. 已知向量a = (2, 3, 4),向量b = (4, 3, 2),向量c = (1, 2, 3),求向量a、向量b和向量c的混合积。
13. 设向量a = (x, y, z),向量b = (y, z, x),向量c = (z, x, y),求向量a、向量b和向量c的混合积。
14. 已知向量a = (2, 1, 3),向量b = (4, 5, 2),求向量a与向量b的向量积,并求该向量积与向量a的夹角。
大学解析几何考试题及答案
大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是解析几何的研究对象?A. 平面曲线B. 空间曲线C. 空间曲面D. 质点运动答案:D2. 在平面直角坐标系中,点P(x, y)关于原点的对称点的坐标是:A. (-x, -y)B. (x, -y)C. (-x, y)D. (y, x)答案:A3. 如果直线l的方程为2x - 3y + 6 = 0,那么它的斜率k等于:A. 2/3B. -2/3C. 3/2D. -3/2答案:B4. 椭圆的标准方程是:A. (x/a)^2 + (y/b)^2 = 1B. (x/a)^2 - (y/b)^2 = 1C. (x/a)^2 + (y/b)^2 = 0D. (x/a)^2 - (y/b)^2 = 0答案:A5. 一个圆的圆心在原点,半径为1,那么它的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. x^2 + y^2 = 2D. x^2 + y^2 = -1答案:A6. 如果两条直线的方程分别为y = mx + b1和y = mx + b2,那么这两条直线:A. 相交B. 平行C. 重合D. 垂直答案:B7. 抛物线y^2 = 4ax的准线方程是:A. x = -aB. x = aC. y = -aD. y = a答案:A8. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程是:A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±(a/b)xD. y = ±(b/a)x答案:D9. 点A(3, 4)关于直线y = x的对称点B的坐标是:A. (4, 3)B. (2, 3)C. (3, 2)D. (4, 5)答案:A10. 直线x = 2y + 3与圆x^2 + y^2 = 25相交于两点,这两点的距离是:A. 2√5B. 4√5C. 5√2D. 10答案:C二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点P(2, -1)到原点的距离是_________。
专题18 解析几何(选填压轴题)(教师版)-备战2022年高考数学高分必刷必过题(全国通用版)
专题18解析几何(选填压轴题)一、单选题1.(2021·河南高三月考(理))已知点1F ,2F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是()A.13B.12【答案】C 【详解】由题意知,()1,0F c -,()2,0F c ,直线l 为x a =-,设直线1MF ,2MF 的倾斜角分别为α,β,由椭圆的对称性,不妨设M 为第二象限的点,即(),M a t -,()0t >,则tan tc aα=-,tan tc aβ-=+.12F MF βα∠=- ,()12222222tan tan 222tan tan 1tan tan 21t t ct c c cc a c a F MF t b t b b b t c a t βαβααβ---+-∴∠=-====≤==++-+-,当且仅当2b t t=,即t b =时取等号,又12tan F MF ∠得最大值为tan 60c b =︒=c ∴=,即2223c c a =-,整理得c a =C故选:C.2.(2021·山东肥城·高三模拟预测)已知EF 是圆22:2430C x y x y +--+=的一条弦,且CE CF ⊥,P 是EF 的中点,当弦EF 在圆C 上运动时,直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则线段AB 长度的最小值是()A.1B.C.D.2【答案】B 【详解】由题可知:22:(1)(2)2C x y -+-= ,圆心()1,2C ,半径r =又CE CF ⊥,P 是EF 的中点,所以112CP EF ==,所以点P 的轨迹方程22(1)(2)1x y -+-=,圆心为点()1,2C ,半径为1R =,若直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则以AB 为直径的圆要包括圆22(1)(2)1x y -+-=,点()1,2C 到直线l 的距离为d ==所以AB 长度的最小值为()212d +=+,故选:B.3.(2021·丽水外国语实验学校高三期末)如图,在棱长为1的正方体1111ABCD A B C D -中,E 是线段1B C 的中点,F 是棱11A D 上的动点,P 为线段1BD 上的动点,则PE PF +的最小值是()B.12C.6D.2【答案】C 【详解】在11D C 上取点1F 使得111D F D F =,由对称性可知1PF PF =.连接1BC ,则11BC B C E = ,点P 、E 、1F 都在平面11BC D 内,且111BC C D ⊥,11=1C D ,1BC =在11Rt BC D 所在平面内,以11C D 为x 轴,1C B 为y 轴建立平面直角坐标系如图所示.则1(1,0)D,B,0,2E ⎛ ⎝⎭,所以直线1BD的方程为1x =.设点E 关于直线1BD 的对称点为(,)E m n ',则22122n m n m ⎧⎪=⎪⎪⎨⎪⎪+=⎪⎩,解得236m n ⎧=⎪⎪⎨⎪=⎪⎩,即2,36E ⎛' ⎝⎭.因此,1116PE PF PE PF PE PF E F ''+=+=+≥≥所以,当且仅当1,,E P F '三点共线且111E F C D '⊥时,PE PF +有最小值6.故选:C.4.(2021·四川成都七中高三三模(理))已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=()A.15B.25C.35D.45【详解】由双曲线方程知,12a =,b =,2c =,设2MF x =,则11MF x =+,12F F 120MF MF →→⋅=,则22(1)13x x ++=,解得2x =或-3(舍),设折叠后点1F 达到F 点,如图所示,作FA MN ⊥于A 点,易知FA ⊥平面12MF F ,1FAN F AN ≅ ,1F A MA ⊥,设1F MN α∠=,则22F MN πα∠=-,在1Rt MAF 中,13sin FA F A α==,3cos MA α=,在2MAF 中,由余弦定理知,222222222cos (3cos )423cos 2sin AF MA MF MA MF F MN ααα=+-⋅∠=+-⨯⨯29cos 6sin 24αα=-+,则2222222(3sin )9cos 6sin 24136sin 27FF AF AF αααα=+=+-+=-≥,当且仅当sin 21α=,即4πα=时,等号成立,折叠后点1F ,2F 距离最小.此时MN 为12F MF ∠的角平分线,由角平分线定理知,112232F N MF NF MF ==,则11235F N F F →→=,35λ=故选:C5.(2021·安徽师范大学附属中学高三开学考试(理))已知F 是椭圆2221(1)x y a a+=>的左焦点,A 是该椭圆的右顶点,过点F 的直线l (不与x 轴重合)与该椭圆相交于点,M N .记MAN α∠=,设该椭圆的离心率为e ,下列结论正确的是()A.当01e <<时,2πα<B.当0e <2πα>C.当12e <<23πα>1e <<时,34πα>【详解】不失一般性,设M 在x 轴上方,N 在x 轴下方,设直线AM 的斜率为1k ,倾斜角为θ,直线AN 的斜率为2k ,倾斜角为β,则210,0k k ><,,2πθπ⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且()0,απθβπ=-+∈.又()2121tan tan tan tan 1+tan tan 1k k k k βθαπθββθ--=-+==+.又直线AM 的方程为()1y k x a =-,由()12222y k x a x a y a ⎧=-⎨+=⎩可得22232422111(1)20a k x a k x a k a +-+-=,故42212211M a k a x a a k -⨯=+,所以3212211Ma k ax a k -=+,故122121M ak y a k -=+,同理3222221N a k ax a k -=+,故222221N ak y a k -=+,因为,,M F N 共线,故21222221323221222221221111ak ak a k a k a k a a k ac ca k a k --++=--++++,整理得到()()()()21212210a a c k k k k c a k k +-+--=即()122c ak k a a c -=+,若01e <<,()()122211c a e k k a a c a e --==++,因为()1211,011e e e -=-∈-++,21a >,故121k k >-,所以2121tan 01k k k k α-=>+,故2πα<.6.(2021·全国高三专题练习)已知过抛物线24y x =的焦点F 的直线与抛物线交于点A 、B ,若A 、B 两点在准线上的射影分别为M 、N ,线段MN 的中点为C ,则下列叙述不正确的是()A.AC BC⊥B.四边形AMCF 的面积等于AC MF ⋅C.AF BF AF BF +=⋅D.直线AC 与抛物线相切【答案】B 【详解】如图,由题意可得()1,0F ,抛物线的准线方程为1x =-.设211,4y A y ⎛⎫ ⎪⎝⎭、222,4y B y ⎛⎫⎪⎝⎭,设直线AB 的方程为1x ty =+,联立214x ty y x=+⎧⎨=⎩,可得2440y ty --=,利用根与系数的关系得124y y =-,因为线段MN 的中点为C ,所以121,2y y C +⎛⎫- ⎪⎝⎭,所以21121,42y y y CA ⎛⎫-=+ ⎪⎝⎭ ,22211,42y y y CB ⎛⎫-=+ ⎪⎝⎭ ,所以,()()2222121212121111210444162y y y y y y y yCA CB -⎛⎫⎛⎫⋅=++-=++=-+= ⎪⎪⎝⎭⎝⎭,所以,AC BC ⊥,A 选项正确;对于B 选项,因为()11,M y -,所以()12,MF y =-,所以()2112112220222y y y y y yCA MF -⋅=+-=+= ,所以AC MF ⊥,所以四边形AMCF 的面积等于12AC BF ⋅,B 选项错误;对于C 选项,根据抛物线的定义知2114y AF AM ==+,2214y BF BN ==+,所以221224y y AF BF ++=+,22222222121212121112441644y y y y y y y y AF BF ⎛⎫⎛⎫++⋅=++=++=+ ⎪⎪⎝⎭⎝⎭,所以,AF BF AF BF +=⋅,C 选项正确;对于D 选项,直线AC 的斜率为()12111212221111422224414ACy y y y y y y k y y y y ⎛⎫++ ⎪--⎝⎭====+++,抛物线24y x =在点A 处的切线方程为2114y y y k x ⎛⎫-=- ⎪⎝⎭,联立211244y y y k x y x⎧⎛⎫-=-⎪ ⎪⎨⎝⎭⎪=⎩,消去x 可得2211440ky y y ky -+-=,由题意可得()211016440k k y ky ≠⎧⎪⎨∆=--=⎪⎩,可得12ky =,即12k y =,则AC k k =.所以,直线AC 与抛物线24y x =相切,D 选项正确.故选:B.7.(2021·全国高三模拟预测(理))如图,已知双曲线()222210x y b a a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于一条渐近线的直线交双曲线于点A ,若12AF F △的内切圆半径为4b,则双曲线的离心率为()A.53B.54C.43D.32【答案】A 【详解】设双曲线的左、右焦点分别为1(,0)F c -,2(,0)F c ,设双曲线的一条渐近线方程为b y x a=,可得直线2AF 的方程为()b y x c a =-,与双曲线22221(0)x yb a a b-=>>联立,可得22(2c a A c +,22()2b a c ac-,设1||AF m =,2||AF n =,由三角形的等面积法可得2211()(2)22422b b c a m n c c ac -⨯++=⨯⋅,化简可得2442c m n a c a+=--,①由双曲线的定义可得2m n a -=,②在三角形12AF F 中22()sin 2b c a n acθ-=,(θ为直线2AF 的倾斜角),由tan baθ=,22sin cos 1θθ+=,可得sin b cθ==,可得222c a n a-=,③由①②③化简可得223250c ac a --=,即为(35)()0c a c a -+=,可得35c a =,则53ce a==.故选:A.8.(2021·湖南天心·长郡中学高三二模)已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是()B.3C.2D.1【答案】B 【详解】解:A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ',记d 为直线EB '与AC 之间的距离,则MT NT M TNT M N d ''+=+≥≥,由//B E D C '',d 为E 到平面ACD '的距离,因为111111333D ACE ACE V S '-=⨯⨯==⨯⨯= ,而21346D ACE E ACD V V d d ''--==⨯⨯⨯=,故3d =,故选:B.9.(2021·贵州贵阳·高三模拟预测(理))在平面内,已知动点P 与两定点,A B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,1BB =,90ABC ∠=︒,点M 为AB 的中点,点P在三棱柱内部或表面上运动,且PA =,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =()A.12B.13C.14D.15【答案】D 【详解】如图,在平面PAB 中,作MPN MAP ∠=∠,交AB 于点N ,则MPN NAP ∠=∠,又因PNM ANP ∠=∠,所以PNM ANP ,所以2PN AN PA MN PN MP ===22,2AN MN PN =,所以22AM AN MN PN =-=.因为112AM AB ==,所以2,1PN MN ==,所以B、N 重合且2BP PN ==所以点P 落在以B 2作BH AC ⊥于H ,则222BH AB ==因为1AA ⊥面ABC ,所以1AA ⊥BH ,又因为1AA AC A = ,所以BH ⊥面11AA CC ,所以B 到面11AA CC 的距离为=2=BH BP ,所以球面与面11AA CC 相切,而122BB π=>所以球面不会与面111A B C 相交,则31142833V BP π== ,111=222222V AB BC AA ππ⨯⨯⨯=⨯⨯=三棱柱,所以2125222=33V V V πππ=-=-三棱柱,所以12V V =15.故选:D.10.(2021·吉林高三月考(理))已知双曲线C :22197x y -=的左焦点为F ,过原点的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,则14FA FB-的取值范围是()A.13,67⎡⎫-⎪⎢⎣⎭B.13,67⎡⎤-⎢⎥⎣⎦C.1,06⎡⎫-⎪⎢⎣⎭D.1,6⎡⎫-+∞⎪⎢⎣⎭【答案】B 【详解】设FA r =,则1r c a ≥-=.设双曲线的右焦点为F ',由对称性可知BF FA r '==,则26FB r a r =+=+,所以14146FA FB r r -=-+.令21463()66r f r r r r r -=-=++,[1,)r ∈+∞,则222223(412)3(2)(6)()(6)(6)r r r r f r r r r r --+-'==++,令()0f r '=得6r =,当(1,6)x ∈时,()0f r '<,()f r 单调递减;当(6,)x ∈+∞时,()0f r '>,()f r 单调递增.所以min 1()(6)6f r f ==-,又当(6,)x ∈+∞时()0f r <,所以max 3()(1)7f r f ==.故14FA FB -的取值范围是13,67⎡⎤-⎢⎥⎣⎦.故选:B.11.(2021·浙江高三月考)如图,椭圆22:143x y C +=,P 是直线4x =-上一点,过点P 作椭圆C 的两条切线PA ,PB ,直线AB 与OP 交于点M ,则sin PMB ∠的最小值是()437B.86565721032【答案】A 【详解】设11(,)A x y 若A 在椭圆的上半部分,则2314xy =-22332214144x x y x x ⎛⎫- ⎪⎝⎭'=---A 在椭圆上,2211143x y +=,111211334414x x x x y y x ===--'.∴过A 点的切线方程是11113()4x y y x x y -=--,221111343412x x y y x y +=+=,即11143x x y y+=,同理可证当A 在下半圆时,过A 的切线方程也是11143x x y y+=,A 是椭圆的左右顶点时,切线方程也是.∴无论A 在椭圆的何处,切线方程都是11143x x y y +=.设22(,)B x y ,则过B 点的切线方程是22143x x y y +=,P 在直线4x =-,设(4,)P m -,则由两切线都过P 点∴11221313y m x y m x ⎧-+=⎪⎪⎨⎪-+=⎪⎩,∴直线AB 方程是13my x -+=,易知直线AB 过定点(1,0)-,该定点为椭圆左焦点F .直线OP 方程为4m y x =-,则由134my x m y x ⎧-+=⎪⎪⎨⎪=-⎪⎩,得221212312x m m y m ⎧=-⎪⎪+⎨⎪=⎪+⎩,即22123,1212m M m m ⎛⎫- ⎪++⎝⎭,3AB k m=,4(1)3PF m m k ==----,1AB PF k k =-,∴PF AB ⊥,PF =PM =∴2sin PFPMB PM =7===≥=.当且仅当22144m m =,即m =±时等号成立.故选:A.12.(2021·吉林长春·高三模拟预测(理))已知F 是椭圆2222+1(0)x y a b a b=>>的一个焦点,若直线y kx =与椭圆相交于,A B 两点,且60AFB ∠=︒,则椭圆离心率的取值范围是()A.(1)2B.(02,C.1(0)2,D.1(1)2,【答案】A 【详解】如图设1,F F 分别为椭圆的左、右焦点,设直线y kx =与椭圆相交于,A B ,连接11,,,AF AF BF BF .根据椭圆的对称性可得:四边形1AF BF 为平行四边形.由椭圆的定义有:12,AF AF a +=12,FF c =1120F AF ∠=︒由余弦定理有:2221112cos120FF AF AF AF AF =+-⋅︒即()()2221211142AF AF c AF AF AF AF AF AF ⎛⎫+=+-⋅≥+- ⎪⎝⎭所以()221222214432AF AF c AF AFa a a⎛⎫+≥+-=-= ⎝⎭当且仅当1AF AF =时取等号,又y kx =的斜率存在,故A B ,不可能在y 轴上.所以等号不能成立,即即2234c a >,所以12e >>故选:A13.(2021·山西阳泉·高三期末(理))已知双曲线()2222100x y a b a b-=>,>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的直线与双曲线在第一象限的交点为A ,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,则此双曲线的标准方程可能为()A.x 2212y -=1B.22134x y -=C.221169x y -=D.221916x y -=【答案】D 【详解】解:由题可知,1212F A F F F A →→→=-+,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,即为2221210F F F F A F F A →→→→⎛⎫+⋅ ⎛⎫-+⎪⎝ ⎭⎪⎭=⎝,可得21222F AF F →→=,即有221||||2AF F F c ==,由双曲线的定义可知122AF AF a -=,可得1||22AF a c =+,由于过F 2的直线斜率为247,所以在等腰三角形12AF F 中,2124tan 7AF F ∠=-,则217cos 25AF F ∠=-,由余弦定理得:22221744(22)cos 25222c c a c AF F c c+-+∠=-= ,化简得:35c a =,即35a c =,45b c =,可得:3:4a b =,22:9:16a b =,所以此双曲线的标准方程可能为:221916x y -=.故选:D.14.(2021·全国高三专题练习(理))已知O 为坐标原点,抛物线()220C y px p =>:上一点A 到焦点F 的距离为4,若点M 为抛物线C 准线上的动点,给出以下命题:①当MAF △为正三角形时,p 的值为2;②存在M 点,使得0MF MA -=;③若3MF FA =,则p 等于3;④OM MA +的最小值为p 等于4或12.其中正确的是()A.①③④B.②③C.①③D.②③④【答案】C 【详解】对于①,当MAF △为正三角形时,如下图所示,抛物线的准线交x 轴于N ,4AF AM MF ===,由抛物线定义可知AF AM =,则AM 与准线垂直,所以60AMF AFM ∠=∠= ,则30FMN ∠= ,所以12NF MF =,而NF p =,即122p MF ==,所以①正确;对于②,假设存在M 点,使得0MF MA -= ,即MA MF =,所以M 点为AF 的中点,由抛物线图像与性质可知,A 为抛物线上一点,F 为焦点,线段AF 在y 轴右侧,点M 在抛物线C 准线上,在y 轴左侧,因而M 不可能为AF 的中点,所以②错误;对于③,若3MF FA =,则:3:4MF MA =,作AE 垂直于准线并交于E ,准线交x 轴于N ,如下图所示:由抛物线定义可知4AE AF ==,根据相似三角形中对应线段成比例可知MF FN MAAE=,即344p =,解得3p =,所以③正确;对于④,作O 关于准线的对称点O ',连接AO '交准线于M ,作AD 垂直于准线并交于D ,作AH 垂直于x 轴并交于H ,如下图所示:根据对称性可知,此时AO '即为OM MA +的最小值,由抛物线定义可知4AD AF ==,所以A 的横坐标为42p -,代入抛物线可知22242A p y AHp ⎛⎫==- ⎪⎝⎭,OM MA AO +='的最小值为1342pO H NH O N '=+'=+,则22O O AHA H '='+,即(224241322p p p ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,化简可得216480p p -+=,即()()4120p p --=,解得4p =或12p =,当p =12时,不满足点A 到焦点F 的距离为4,所以④错误;综上所述,正确的为①③.故选:C.15.(2021·全国高三专题练习(理))关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是()A.{}5B.{}1-C.()0,1D.(){}0,11- 【答案】D 【详解】解:由已知x 2﹣4x +5=0的解为2i ±,设对应的两点分别为A ,B ,得A (2,1),B (2,﹣1),设x 2+2mx +m =0的解所对应的两点分别为C ,D ,记为C (x 1,y 1),D (x 2,y 2),(1)当△<0,即0<m <1时,220x mx m ++=的根为共轭复数,必有C 、D 关于x 轴对称,又因为A 、B 关于x 轴对称,且显然四点共圆;(2)当△>0,即m >1或m <0时,此时C (x 1,0),D (x 2,0),且122x x +=﹣m ,故此圆的圆心为(﹣m ,0),半径122x x r -==,又圆心O 1到A 的距离O 1A=,解得m =﹣1,综上:m ∈(0,1)∪{﹣1}.故选:D.16.(2021·信阳市实验高级中学高三开学考试(理))在正方体1111ABCD A B C D -中,球1O 同时与以A 为公共顶点的三个面相切,球2O 同时与以1C 为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,1AB 为准线的抛物线经过12O O ,,设球12O O ,的半径分别为12r r ,,则12r r=()A.12C.12-D.2【答案】D 【详解】根据抛物线的定义,点2O 到点F 的距离与到直线1AB 的距离相等,其中点2O 到点F 的距离即半径2r ,也即点2O 到面11CDD C 的距离,点2O 到直线1AB 的距离即点2O 到面11ABB A 的距离,因此球2O 内切于正方体,不妨设21r =,两个球心12O O ,和两球的切点F 均在体对角线1AC 上,两个球在平面11ABC D 处的截面如图所示,则122212AC O F r AO ===,221AF AO O F =-.又因为111AF AO O F r =+=+,因此)111r=,得12r =-所以122r r =-故选:D17.(2021·信阳市实验高级中学高三开学考试(理))过抛物线()220y px p =>的焦点F作直线与抛物线在第一象限交于点A ,与准线在第三象限交于点B ,过点A 作准线的垂线,垂足为H .若tan 2AFH ∠=,则AF BF=()A.54B.43C.32D.2【答案】C 【详解】如图,设准线与x 轴的交点为M ,过点F 作FC AH ⊥.由抛物线定义知AF AH =,所以AHF AFH α∠=∠=,2FAH OFB πα∠=-=∠,()()cos 2cos 2MF pBF παπα==--,()()()tan tan sin 2sin 2sin 2CF CH p AF ααπαπαπα===---,所以()2tan tan tan 13tan 2tan 222AFBF αααπαα-====--.故选:C18.(2021·西工大附中分校高三模拟预测(理))设1F ,2F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点()0,2P x a 为双曲线上一点,若12PF F ∆的重心和内心的连线与x 轴垂直,则双曲线的离心率为A.2【答案】A 【详解】画出图形如图所示,设12PF F ∆的重心和内心分别为,G I ,且圆I 与12PF F ∆的三边1212,,F F PF PF 分别切于点,,M Q N ,由切线的性质可得1122||||,||||,||||PN PQ F Q F M F N F M ===.不妨设点()0,2P x a 在第一象限内,∵G 是12PF F ∆的重心,O 为12F F 的中点,∴1||||3OG OF =,∴G 点坐标为02(,33x a .由双曲线的定义可得121212||||2||||||||PF PF a F Q F N F M F M -==-=-,又12||||2F M F M c +=,∴12||,||F M c a F M c a =+=-,∴M 为双曲线的右顶点.又I 是12PF F ∆的内心,∴12IM F F ⊥.设点I 的坐标为(,)I I x y ,则I x a =.由题意得GI x ⊥轴,∴3x a =,故03x a =,∴点P 坐标为()3,2a a .∵点P 在双曲线22221(0,0)x y a b a b-=>>上,∴22222294491a a a a b b -=-=,整理得2212b a =,∴2c e a ==.故选A .19.(2021·河西·天津市新华中学高三月考)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,以线段12F F 为直径的圆与C 的渐近线在第一象限的交点为P ,且122PF PF b -=.设C 的离心率为e ,则2e =A.12B.12+【答案】B 【详解】由题意12F P F P ⊥,则222212124F P F P F F c +==①,又122PF PF b -=②,2①-②得12PF PF =22a ,∵P 在渐近线上且OP c =,设A 为双曲线右顶点,如图,则PA b =,且12PA F F ⊥,由1212PF PF F F PA =得222a cb =,于是422222()a b c c c a ==-,变形为4210e e --=,解得212e =(12舍去),故选B.20.(2021·陕西西安·高新一中高三二模(理))我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知1F 、2F 是一对相关曲线的焦点,P 是椭圆和双曲线在第一象限的交点,当1260F PF ∠=时,这一对相关曲线中双曲线的离心率是C.3D.2【答案】A 【详解】设椭圆的长半轴长为1a ,椭圆的离心率为1e ,则11c e a =,11c a e =.双曲线的实半轴长为a ,双曲线的离心率为e ,c e a =,c a e=,设1PF x =,2PF y =(x >0)y >,则2222242cos60c x y xy x y xy =+-=+- ,当点P 被看作是椭圆上的点时,有()22214343c x y xy a xy =+-=-,当点P 被看作是双曲线上的点时,有24c =()224x y xy a xy -+=+,两式联立消去xy 得222143c a a =+,即222143c c c e e ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以2211134e e ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,又11e e =,所以2234e e+=,整理得42430e e -+=,解得23e =或21e =(舍去),所以e =故选A.二、多选题21.(2021·广东茂名·高三月考)已知曲线C :1x x y y +=,则下列结论正确的是()A.直线0x y +=与曲线C 没有公共点B.直线x y m +=与曲线C 最多有三个公共点C.当直线x y m +=与曲线C 有且只有两个不同公共点()111,P x y ,()222,P x y 时,12x x 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭D.当直线x y m +=与曲线C 有公共点时,记公共点为()*,()i i P x y i N ∈.则1ni i x =∑的取值范围为(【答案】ACD 【详解】由题设得:曲线C 为()()()22222210,010,010,0x y x y x y x y y x x y ⎧+=≥≥⎪-=><⎨⎪-=<>⎩,A:由0x y +=是221x y -=和221y x -=的渐近线,且0x y +=与()2210,0y x y x +=≥≥没有公共点,故正确;B:由A 中的分析知:x y m +=与曲线C 最多有两个公共点,故错误;C:由图可知,若x y m +=与曲线C 有两个公共点或一个公共点,当0m <<x y m +=与曲线C 有两个公共点()111,P x y ,()222,P x y ,由对称性知,()111,P x y ,()222,P x y 关于直线y x =对称,则12y x =,∴1211x x x y =,(1)当01m <<时,120x x -∞<<.(2)当12m ≤<时,由12x x ≠,则21112112122x y x x x y +=<=.(3)当2m =l 与曲线C 只有一个公共点,不合题意.(4)当2m >0m ≤时,直线l 与曲线C 无公共点,综上可知,C 正确;D:由C 的分析,02m <<x y m +=与曲线C 有且只有两个不同公共点,则12111nii xx x x y m ==+=+=∑,即102ni i x =<∑.当2m =x y m +=与曲线C 只有一个公共点,此点为2222⎛⎫⎪ ⎪⎝⎭.此时(111222ni x x ===∑.故正确.故选:ACD.22.(2021·江苏鼓楼·南京市第二十九中学高三开学考试)已知F 为抛物线C :22y px =(0p >)的焦点,下列结论正确的是()A.抛物线2y ax =的的焦点到其准线的距离为12a.B.已知抛物线C 与直线l :4320x y p --=在第一、四象限分别交于,A B 两点,若||||AF FB λ=,则4λ=.C.过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于D ,E 两点,则四边形ADBE 面积的最小值为28p .D.若过焦点F 的直线l 与抛物线C 相交于,M N 两点,过点,M N 分别作抛物线C 的切线1l ,2l ,切线1l 与2l 相交于点P ,则点P 在定直线上.【答案】BCD【详解】A:抛物线2y ax =的的焦点到其准线的距离为12a,故A 错误;B:联立243202x y p y px--=⎧⎨=⎩,则22163440x px p -+=,解得12,28px x p ==,由题意可知25||2222p p p AF x p =+=+= ,15||2828p p p pFB x =+=+= ,故55428p p=⨯,所以4λ=,故B 正确;C:由题意可知直线1l ,2l 的斜率均存在,且不为0,设直线1:2pl x my =+,联立222p x my y px⎧=+⎪⎨⎪=⎩,则2220y pmy p --=,设两交点为()()1122,,,A x y B x y ,结合韦达定理122y y pm +=,所以()()21212221AB x x p m y y p p m =++=++=+;同理2121DE p m ⎛⎫=+ ⎪⎝⎭,所以()22111212122ADBE S AB DE p m p m ⎛⎫=⋅=⨯+⨯+ ⎪⎝⎭222122p m m ⎛⎫=++ ⎪⎝⎭222p ⎛⎫≥+ ⎪ ⎪⎝⎭28p =,当且仅当1m =±时,等号成立;所以四边形ADBE 面积的最小值为28p ,故C 正确;D:设221212,,,22y y M y N y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,不妨设120,0y y ><因为22y px =(0p >),若0y >,则y =y ',所以在点M1p y =,因此在M 处的切线方程为21112y p y y x y p ⎛⎫-=- ⎪⎝⎭,即112y p y x y =+,同理在N 处的切线方程为222y py x y =+,则112222y py x y y py x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得122y y x p=,因为直线MN 过点F ,所以122212002222y y y y p p p p --=--,即212y y p =-,所以2p x =-,故点P 在定直线2px =-上,故D 正确;故选:BCD.23.(2021·全国高三模拟预测)已知点F 为椭圆2222:1x y C a b+=(0a b >>)的左焦点,过原点O 的直线l 交椭圆于P ,Q 两点,点M 是椭圆上异于P ,Q 的一点,直线MP ,MQ 分别为1k ,2k ,椭圆的离心率为e ,若3PF QF =,23PFQ π∠=,则()A.4e =B.4e =C.12916k k =-D.12916k k =【答案】AC 【详解】设椭圆的右焦点F ',连接PF ',QF ',根据椭圆对称性可知四边形PFQF '为平行四边形,则QF PF '=,且由120PFQ ∠=︒,可得60FPF '∠=︒,所以42PF PF PF a ''+==,则12PF a '=,32PF a =.由余弦定理可得()22222931122cos60244222a c PF PF PF PF a a a ''=+-⋅=+-⨯⋅⋅°,所以22716c a =,所以椭圆的离心率e ==.设()00,M x y ,()11,P x y ,则()11,Q x y --,01101y y k x x -=-,01201y y k x x +=+,所以220101011222010101y y y y y y k k x x x x x x -+-=⋅=-+-,又2200221x y a b +=,2211221x y a b +=,相减可得2220122201y y b x x a -=--.因为22716c a =,所以22916b a =,所以12916k k =-.故选:AC.24.(2021·全国高三专题练习(理))已知抛物线2:(0)C y mx m =>的焦点为(4,0)F ,直线l 经过点F 交C 于A ,B 两点,交y 轴于点P ,若2PB BF →→=,则()A.8m =B.点B 的坐标为8,3⎛ ⎝⎭C.50||3AB =D.弦AB 的中点到y 轴的距离为133【答案】CD 【详解】由于(4,0)F 得到16m =,故A 错误;抛物线方程为216y x =,过B 点作BD 垂直于y 轴,垂足为D 点,则//BD OF ,因为2PB BF →→=,所以23PB BD PFOF==,所以83BD =,即83B x =,代入抛物线方程216y x =,解得B y =B 错误;不妨取点B 的坐标为8,3⎛ ⎝⎭,所以直线AB 的方程为:4)y x =-,联立抛物线方程得到:2326480x x -+=,韦达定理可知:12263x x +=,由抛物线的弦长公式可知:12268350|38|AB x x ++=+==,故C 正确;弦AB 的中点到y 轴的距离为121323x x +=,故D 正确;故选:CD.25.(2021·江苏南通·高三模拟预测)已知双曲线222:1(0)5x y C a a -=>的左、右焦点分别为1F ,2F ,O 为坐标原点,圆222:5O x y a +=+,P 是双曲线C 与圆O 的一个交点,且21tan 3PF F ∠=,则下列结论中正确的有()A.双曲线CB.点1FC.21PF F ∆的面积为D.双曲线C 上任意一点到两条渐近线的距离之积为2【答案】ABD 【详解】解:∵双曲线222:105()x y C a a -=>,∴225c a =+,又圆222:5O x y a +=+,∴圆O 的半径为c ,∴12||F F 为圆O 的直径,∴122F PF π∠=,故作图如下:对于A ,∵21tan 3PF F ∠=,∴1212tan 3PF PF F PF ∠==,∴123||PF PF =,令20||()PF m m =>,则1||3PF m =,∴()22221231||0F F m m m =+=,∴12||2F F c ==,又12||22m PF PF a -==,∴双曲线C的离心率2222c e a m ===,故A 正确;对于B,由于()1,0F c -到渐近线y =的距离d ===B 正确;对于C,由离心率2e a ==得2103a =,21025533c =+=,∴122||F F c ===,∴2||m PF ==,1||3PF m ==,∴21PF F的面积为152=,故C 错误;对于D,由2103a =得双曲线C 的方程为:2211053x y -=,故其两条渐近线方程为y =0=,设(),M p q 为双曲线C 上任意一点,则2211053q p -=,即223211010p q -=①,(),M p q到两条渐近线的距离1d =,2d =,∴22123210255p q d d -====,故D 正确;故选:ABD.26.(2021·广东汕头·高三二模)已知抛物线方程为24x y =,直线:220l x y --=,点00(,)P x y 为直线l 上一动点,过点P 作抛物线的两条切线,切点为,A B ,则以下选项正确的是()A.当00x =时,直线AB 方程为1y =B.直线AB 过定点()0,1C.AB 中点轨迹为抛物线D.PAB ∆的面积的最小值为2【答案】ACD 【详解】解析:214y x =Q ,12y x '∴=,设11(,)A x y ,22(,)B x y 则1111:()2PA y y x x x -=-,即211111111222y x x x y x x y =-+=-,同理221:2PB y x x y =-,PA PB 、都过点00(,)P x y ,010102021212y x x y y x x y⎧=-⎪⎪∴⎨⎪=-⎪⎩∴直线001:2AB y x x y =-,即0012y x x y =-,当000,1x y ==-时,:1AB y =.故A 正确;00112y x =- ,01:(1)12AB y x x ∴=-+,∴直线AB 过定点(1,1),故B 错误;联立021(1)124y x x x y⎧=-+⎪⎨⎪=⎩,消去y 得2002240x x x x -+-=,1202x x x ∴+=,12024x x x ⋅=-,212002y y x x +=-+,A B ∴、中点坐标为200011(,1)22x x x -+,故其轨迹方程为211122y x x =-+,故C正确;AB ==d2001122S x x ∴=-+∴当01x =时,min 2S =,故D 正确;故选:ACD 三、填空题27.(2021·浙江高三模拟预测)设正四面体ABCD 的棱长是1,E 、F 分别是棱AD 、BC 的中点,P 是平面ABC 内的动点.当直线EF 、DP 所成的角恒为θ时,点P 的轨迹是抛物线,此时AP 的最小值是______.【详解】设点D 在底面ABC 的射影点为O ,连接OA,则132sin3OA π==,OD =以点O 为坐标原点,CB 、AO 、OD uuu r分别为x 、y 、z 轴的正方向建立如下图所示的空间直角坐标系,则30,3A ⎛⎫- ⎪ ⎪⎝⎭、13,026B ⎛⎫ ⎪ ⎪⎝⎭、13,26C ⎛⎫- ⎪ ⎪⎝⎭、63D ⎛⎫ ⎪ ⎪⎝⎭、360,66E ⎛⎫- ⎪ ⎪⎝⎭、30,6F ⎛⎫⎪ ⎪⎝⎭,设点(),,0P x y ,则3636EF ⎛⎫=- ⎪ ⎪⎝⎭ ,6,,3DP x y ⎛⎫= ⎪ ⎪⎝⎭,223133cos 2223y DP EFDP EFx y θ+⋅==⋅++整理可得2222121231cos 23399x y y y θ⎛⎫++=+ ⎪⎝⎭,由题意可知,方程2222121231cos 2339x y y y θ⎛⎫++=+ ⎪⎝⎭表示的曲线为抛物线,所以211cos 23θ=,故22cos 3θ=,即有2122313999x y ++,可得23326y x =,则()22222423335331344242AP x y x x x x ⎛⎫=++++=++≥ ⎪ ⎪⎝⎭当且仅当0x =时,等号成立,故AP 323228.(2021·全国高三开学考试(理))设1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =,若23cos 5AF B ∠=,则椭圆E 的离心率为___________.【答案】2【详解】设1||(0)F B k k =>,则1||3AF k =,||4AB k =,2||23AF a k ∴=-,2||2BF a k =-.23cos 5AF B ∠= ,在2ABF 中,由余弦定理得,22222222||||||2||||cos AB AF BF AF BF AF B =+-⋅∠,2226(4)(23)(2)(23)(2)5k a k a k a k a k ∴=-+----,化简可得()(3)0a k a k +-=,而0a k +>,故3a k =,21||||3AF AF k ∴==,2||5BF k =,22222||||||BF AF AB ∴=+,12AF AF ∴⊥,∴12AF F △是等腰直角三角形,2c a ∴=,∴椭圆的离心率c e a ==,故答案为:2.29.(2021·黑龙江大庆中学高三模拟预测(理))已知圆22:1C x y +=,点(,2)M t ,若C上存在两点,A B 满足2MA AB = ,则实数t 的取值范围___________【答案】⎡⎣【详解】由题意,可得如下示意图,令(,)A x y ,由2MA AB = 知:332(,)22x t y B --,又,A B 在C 上,∴22221(3)(32)144x y x t y +=--+=⎧⎪⎨⎪⎩,整理得22221{24339x y t x y +=⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即两圆有公共点,∴两圆的圆心距离为243t d +=,半径分别为1、23,故当1533d ≤≤时符合题意,∴2021t ≤≤,即t ∈[21,21]-.故答案为:[21,21].30.(2021·全国高三专题练习(理))焦点为F 的抛物线21:4C y x =与圆()()2222:10C x y R R -+=>交于A 、B 两点,其中A 点横坐标为A x ,方程()22224,1,A A y x x x x y R x x ⎧=≤⎪⎨-+=>⎪⎩的曲线记为Γ,C 是圆2C 与x 轴的交点,O 是坐标原点.有下面的四个命题,请选出所有正确的命题:_________.①对于给定的角()0,απ∈,存在R ,使得圆弧 ACB 所对的圆心角AFB α∠>;②对于给定的角0,3πα⎛⎫∈ ⎪⎝⎭,存在R ,使得圆弧 ACB 所对的圆心角AFB α∠<;③对于任意R ,该曲线有且仅有一个内接正△O P Q ;④当2021R >时,存在面积大于2021的内接正△O P Q .【答案】①②③【详解】联立抛物线与圆的方程,消去y 得22(1)4x x R -+=,即22(1)x R +=,而0R >且0x ≥,∴11R x =+≥,即A 、B 横坐标与半径R 的关系,∵抛物线与圆有两个交点,即11R x =+>,∴当2,1R x ==时,AFB πα∠=>,①正确;∵由题意知:,A B 关于x 轴对称,则对于给定的角0,3πα⎛⎫∈ ⎪⎝⎭,存在R 使得圆弧 ACB 所对的圆心角AFB α∠<,即只需存在R 使)3AFB π∠∈(0,即可.∴令||2210sin 212A y AFB x x R R x ∠<==<,则10x x ->23x >+23x <,1、当0743x <<-AFB ∠在如下图阴影部分变化,有)3AFB π∠∈(0,,23x >+x →+∞时0AFB ∠→︒,故AFB ∠在如下图阴影部分变化,有)3AFB π∠∈(0,,∴7x >+07x <<-10sin 22AFB ∠<<即)3AFB π∠∈(0,,所以对于给定的角0,3πα⎛⎫∈ ⎪⎝⎭,存在R ,使得圆弧 ACB 所对的圆心角AFB α∠<,故②正确;由OP OQ =,于是PQ x ⊥轴,直线::OP y x =,同理:OQ y =,∴,OP OQ 与Γ分别都只有一个交点,即对于任意R ,该曲线有且仅有一个内接正△O P Q ,③正确;当1R =时,如下图示,抛物线1C 与圆2C 只有一个交点且交点为原点,不符合题意,但此时1||||sin 23OPQ S OP OQ π==∴当113R <≤时,,OP OQ 与Γ的交点在圆2C 上,OPQ S 会一直增大,如下图示,直到13R =,即,P Q 与A 、B 重合分别为(12,、(12,-,此时1||||sin 23OPQ S OP OQ π==∴OPQ S ∈ (4.当13R >时,,OP OQ 与Γ的交点在抛物线1C 上,R 的变化对OPQ S 没有影响,如下图示,OPQ S =∴④错误.。
18第一部分 板块二 专题五 解析几何 第4讲 圆锥曲线中的定点、定值、存在性问题(大题)
解 假设存在常数 λ 使得|AB|+|CD|=λ|AB|·|CD|成立,则 λ=|A1B|+|C1D|. 由题意知,l1,l2的斜率存在且均不为零, 设l1的方程为y=kx+1, 则由yx=2=k4xy+,1, 消去 y 得 x2-4kx-4=0. 设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=-4.
(2)若过F的直线交抛物线C于不同的两点A,B(均与P不重合),直线PA,PB分别 交抛物线的准线l于点M,N.试判断以MN为直径的圆是否过点F,并说明理由.
解 以MN为直径的圆一定过点F,理由如下: 设A(x1,y1),B(x2,y2), 设直线AB的方程为x=my+1(m∈R),代入抛物线C:y2=4x, 化简整理得y2-4my-4=0, 则yy11+y2=y2=-44m,,
例 1 (2019·济南模拟)已知抛物线 C1:y2=2px(p>0)与椭圆 C2:x42+y32=1 有一个相同的
焦点,过点A(2,0)且与x轴不垂直的直线l与抛物线C1交于P,Q两点,P关于x轴的对 称点为M. (1)求抛物线C1的方程;
解 由题意可知抛物线的焦点为椭圆的右焦点,坐标为(1,0), 所以p=2,所以抛物线的方程为y2=4x.
例3 (2019·济南模拟)设M是抛物线E:x2=2py(p>0)上的一点,抛物线E在点M处 的切线方程为y=x-1. (1)求E的方程;
解 方法一 由xy2==x2-py1,, 消 y 得 x2-2px+2p=0.
由题意得Δ=4p2-8p=0,
因为p>0,所以p=2.
故抛物线E:x2=4y.
方法二 设 Mx0,2xp20 ,
由(1)知P(4,4), 所以直线 PA 的方程为 y-4=xy11--44(x-4)=myy1-1-43(x-4), 令 x=-1 得 y=4mm-y15-y31+8,即 M-1,4mm-y15-y31+8,
解析几何第四章习题及解答
解析几何第四章习题及解答第4章二次曲线和二次曲面习题 1.在直角坐标系xOy中,以直线l:4x?3y?12?0为新坐标系的x?轴,取通过A(1,?3)且垂直于l的直线为y?轴,写出点的坐标变换公式,并且求直线l1:3x?2y?5?在新坐标系中的方程。
0解:直线l:4x?3y?12?0的方向是(3,4),与它垂直的方向是?(?4,3),新坐标系的x?轴的坐标向量取为(3443,),y?轴坐标向量取为(?,),与直线5555l:4x?3y?12?0垂直且的直线方程可设为3x?4y?c?0,于过点A(1,?3),得到直线方程是3x?4y?9?0,两直线的交点(?3,0)是新坐标原点,所以点的坐标变换公式:?3?x??5y??4??5?4?5??x? 3?. ?3??y??0?5??直线l1:3x?2y?5?0在新坐标系中的方程:l1:3(35x??45y??3)?2(45x??35y?)?5?0,化简有l1:x??18y??20?0. 2.作直角坐标变换,已知点A(6,?5),B(1,?4)的新坐标分别为(1,?3),(0,2),求点的坐标变换公式。
解:设同定向的点的坐标变换公式是:?x??cosy??sin??sin???x? a?. cosyb?它的向量的坐标变换公式是:?u??cosv??sin??sin???u? . cosv??题意知向量AB?(?5,1)变为A?B??(?1,5),于是有??5??cos1??sin??sin????1? 125得到于是点的坐标变换公.sin??,cos??.1313cos5?式是:?5?x??13y??12??13?12?1 3??xa?,.将点B(1??5??y??b?13??4及)它的像点(0,2)代入得到?37??a??13??,所以点的坐标变换公式是:b??62????13???5?x??13y 121312?135?13?37x?13. ? y??62????13???设反定向的点的坐标变换公式是:?xcosy??sin?sinx?a. cosy??b?它的向量的坐标变换公式是:?ucosv??sin?sinco su??. ?v题意知向量AB?(?5,1)变为A?B??(?1,5),于是有??5cos??1sin?sincos 1?于是点的坐标变换公式s?0.??.得到sin1,co??5?是:?x??0y???1?1??x???a???? .将点B(1?,0??yb?及它的像点(0,2)代入得到4?a??3,所以点的坐标变换公式是:b?4x??0y???1?1??x???3? . 0y?4?3.设新旧坐标系都是右手直角坐标系,点的坐标变换公式为?22x??y??5,?x?22(1)??22x??y??3 ;?y22?xy?3, (2)??y?x?2.?其中,(x,y)与(x?,y?)分别表示同一点的旧坐标与新坐标,求新坐标系的原点的旧坐标,并且求坐标轴旋转的角?。
解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是( ) B .-3D .-33解析:斜率k =-1-33--3=-33,故选D. 答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:①当a =0时,y =2不合题意. ②a ≠0,x =0时,y =2+a . y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D. 答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( ) A .4B .21313D .71020解析:把3x +y -3=0转化为6x +2y -6=0, 由两直线平行知m =2, 则d =|1--6|62+22=71020. 故选D. 答案:D4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -5=0D .x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )B .⎝ ⎛⎭⎪⎫π6,π2D .⎣⎢⎡⎦⎥⎤π3,π2 解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫π6,π2.故选B.答案:B6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0D .x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2, ∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A 二、填空题7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________. 解析:由题意知截距均不为零. 设直线方程为x a +y b=1,由⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得⎩⎪⎨⎪⎧a =3b =3或⎩⎪⎨⎪⎧a =4b =2.故所求直线方程为x +y -3=0或x +2y -4=0. 答案:x +y -3=0或x +2y -4=08.(2014湘潭质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0, ∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0, 即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________. 解析:令k =0,得y +3=0,令k =1,得x +3=0.解方程组⎩⎪⎨⎪⎧y +3=0,x +3=0,得⎩⎪⎨⎪⎧x =-3,y =-3,所以定点坐标为(-3,-3). 答案:(-3,-3) 三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z . 故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二 由l 1∥l 2,得⎩⎪⎨⎪⎧2sin 2α-1=0,1+sin α≠0,∴sin α=±22, ∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0. ∴α=k π,k ∈Z . 故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0. (1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一 由方程组⎩⎪⎨⎪⎧y =k 1x +1,y =k 2x -1解得交点P 的坐标为⎝⎛⎭⎪⎫2k 2-k 1,k 2+k 1k 2-k 1,而2x 2+y 2=2⎝⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上. 即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二 交点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧y -1=k 1x ,y +1=k 2x ,故知x ≠0.从而⎩⎪⎨⎪⎧k 1=y -1x ,k 2=y +1x .代入k 1k 2+2=0,得y -1x ·y +1x+2=0, 整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇 第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1 B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1解析:由题意,设圆心(0,t),则12+t-22=1,得t=2,所以圆的方程为x2+(y-2)2=1,故选A.答案:A2.(2014郑州模拟)动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P 的轨迹方程为( )A.x2+y2=32 B.x2+y2=16C.(x-1)2+y2=16 D.x2+(y-1)2=16解析:设P(x,y),则由题意可得2x-22+y2=x-82+y2,化简整理得x2+y2=16,故选B.答案:B3.(2012年高考陕西卷)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则( ) A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能解析:x2+y2-4x=0是以(2,0)为圆心,以2为半径的圆,而点P(3,0)到圆心的距离为d=3-22+0-02=1<2,点P(3,0)恒在圆内,过点P(3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考辽宁卷)将圆x2+y2-2x-4y+1=0平分的直线是( )A.x+y-1=0 B.x+y+3=0C.x-y+1=0 D.x-y+3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C符合,故选C.答案:C5.(2013年高考广东卷)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是( )A.x+y-2=0 B.x+y+1=0C.x+y-1=0 D.x+y+2=0解析:与直线y=x+1垂直的直线方程可设为x+y+b=0,由x+y+b=0与圆x2+y2=1相切,可得|b|12+12=1,故b=± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考福建卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于( )A .2 5B .23D .1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2, 所以弦长|AB |=222-12=2 3. 故选B. 答案:B 二、填空题7.(2013年高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25, 故圆心为(3,4),半径r =5. 又直线方程为2x -y +3=0, ∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5. 答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2. 答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上, ∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1, ∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1. 答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________. 解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1 三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0. (1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一 直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0, ∵Δ=4m 2+16(m 2+1)=20m 2+16>0, ∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二 直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5内部, ∴对m ∈R ,直线l 与圆C 总有两个不同交点. (2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ), 由方程(m 2+1)x 2-2mx -4=0, 得x 1+x 2=2mm 2+1, ∴x =mm 2+1.当x =0时m =0,点M (0,1), 当x ≠0时,由mx -y +1=0,得m =y -1x, 代入x =mm 2+1,得x ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫y -1x 2+1=y -1x , 化简得x 2+⎝ ⎛⎭⎪⎫y -322=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2+⎝ ⎛⎭⎪⎫y -322=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切, 则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=22,|DA |=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇 第3节一、选择题1.设P 是椭圆x 225+y 216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D. 答案:D2.(2014唐山二模)P 为椭圆x 24+y 23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于( )A .3B .3C .2 3D .2解析:由椭圆方程知a =2,b =3,c =1,∴⎩⎪⎨⎪⎧|PF 1|+|PF 2|=4,|PF 1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.3.(2012年高考江西卷)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )B .55D .5-2解析:本题考查椭圆的性质与等比数列的综合运用. 由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c , |F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列, 故(a -c )(a +c )=(2c )2, 可得e =c a =55.故应选B. 答案:B4.(2013年高考辽宁卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )B .57D .67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos ∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°, 半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2, 连结AF 2,由对称性知|AF 2|=|FB |=8, 2a =|AF 2|+|AF |=6+8=14, 即a =7,则e =c a =57.故选B.5.已知椭圆E :x 2m +y 24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx +1被椭圆E 截得的弦长不可能相等的是( )A .kx +y +k =0B .kx -y -1=0C .kx +y -k =0D .kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等. 选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等. 选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等. 排除选项A 、B 、C ,故选D. 答案:D6.(2014山东省实验中学第二次诊断)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin ∠PF 1F 2=csin ∠PF 2F 1,则该椭圆的离心率的取值范围为( )A .(0,2-1)B .⎝⎛⎭⎪⎫22,1D .(2-1,1)解析:由题意知点P 不在x 轴上, 在△PF 1F 2中,由正弦定理得 |PF 2|sin ∠PF 1F 2=|PF 1|sin ∠PF 2F 1,所以由a sin ∠PF 1F 2=csin ∠PF 2F 1可得a |PF 2|=c|PF 1|,即|PF 1||PF 2|=ca=e , 所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a , 所以e |PF 2|+|PF 2|=2a , 解得|PF 2|=2a e +1. 由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c , 即1-e <2e +1<1+e , 也就是⎩⎪⎨⎪⎧1-e 1+e <2,2<1+e2,解得2-1<e . 又0<e <1,∴2-1<e <1.故选D. 答案:D 二、填空题7.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6, 又|PF 1|+|PF 2|=10, ∴|PF 1|=4. 答案:48.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1, ∵直线MF 2的倾斜角为120°, ∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3, 2c =|F 1F 2|=1. ∴e =c a=2- 3. 答案:2-39.(2014西安模拟)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y 225-m +x 29-m=1(m <9), 代入点(3,-5),得525-m +39-m=1, 解得m =5或m =21(舍去), ∴椭圆的标准方程为y 220+x 24=1.答案:y 220+x 24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:由题意得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2, 即4a 2-2|PF 1||PF 2|=4c 2, ∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3. 答案:3 三、解答题11.(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 1上,可得⎩⎪⎨⎪⎧a 2-b 2=1,b =1,∴⎩⎪⎨⎪⎧a 2=2,b 2=1.故椭圆C 1的方程为x 22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0, 设其方程为y =kx +b , 由直线l 与抛物线C 2相切得⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1. ①由直线l 与椭圆C 1相切得⎩⎪⎨⎪⎧y =kx +b ,x 22+y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②①②联立得⎩⎪⎨⎪⎧kb =1,2k 2=b 2-1,解得b 4-b 2-2=0, ∴b 2=2或b 2=-1(舍去), ∴b =2时,k =22,b =-2时,k =-22. 即直线l 的方程为y =22x +2或y =-22x - 2. 12.(2014海淀三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y 2b2=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.所以a =3,b =1, 椭圆C 的方程为x 23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3, 所以∠PAO =60°, 所以△PAB 是等边三角形, 所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时, 则直线AB 的方程为y =kx ,所以⎩⎪⎨⎪⎧x 23+y 2=1,y =kx ,化简得(3k 2+1)x 2=3, 所以|x 1|=33k 2+1, 则|AO |=1+k233k 2+1=3k 2+33k 2+1. 设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),所以⎩⎪⎨⎪⎧y =-x +3,y =-1k x ,解得⎩⎪⎨⎪⎧x 0=3k k -1,y 0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形, 所以应有|PO |=3|AO |, 代入得9k 2+9k -12=33k 2+33k 2+1, 解得k =0(舍去),k =-1. 综上,k =0或k =-1.第八篇 第4节一、选择题1.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17D .以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8, 又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1, ∴|PF 2|=17. 故选B. 答案:B2.(2013年高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y2cos 2θ-x 2sin 2θ=1的( ) A .实轴长相等 B .虚轴长相等 C .离心率相等D .焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D. 答案:D3.(2012年高考湖南卷)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )-y 25=1 B .x 25-y 220=1-y 220=1 D .x 220-y 280=1 解析:由焦距为10,知2c =10,c =5. 将P (2,1)代入y =b ax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x 220-y 25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )B .35D .45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22, |PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42, 由余弦定理可知cos ∠F 1PF 2=422+222-422×42×22=34.故选C. 答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )-y 232=1 B .x 2132-y 252=1 -y 242=1 D .x 2132-y 2122=1 解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10, 则椭圆两焦点为(-5,0),(5,0), 根据题意,可知曲线C 2为双曲线, 根据双曲线的定义可知, 双曲线C 2中的2a 2=8, 焦距与椭圆的焦距相同, 即2c 2=10, 可知b 2=3,所以双曲线的标准方程为x 242-y 232=1.故选A.答案:A6.(2014福州八中模拟)若双曲线x 29-y 216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16内,则实数m 的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞)C .[-5,5]D .(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16内,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m的取值范围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考辽宁卷)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5, 则|PQ |=16,又因为|PF |-|PA |=6, |QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12, |PF |+|QF |=28, 则△PQF 的周长为44. 答案:448.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1, 又e =c a=2,两式联立得a =1,c =2, ∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y 23=1.答案:x 2-y 23=19.(2014合肥市第三次质检)已知点P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径, 故∠F 1PF 2=90°,∠PF 1F 2=30°, 设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m , 该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m=3+1.答案:3+110.(2013年高考湖南卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上, 由题意,在Rt △F 1PF 2中, |F 1F 2|=2c ,∠PF 1F 2=30°, 得|PF 2|=c ,|PF 1|=3c , 根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =c a =23-1=3+1. 答案:3+1 三、解答题11.已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一 设点A (x 1,y 1),B (x 2,y 2)在双曲线上, 且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意. 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2 =0(2-k 2≠0). ①∴x 0=x 1+x 22=k 1-k2-k2. 由题意,得k 1-k2-k2=1, 解得k =2.当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.法二 设A (x 1,y 1),B (x 2,y 2), 若直线l 的斜率不存在, 即x 1=x 2不符合题意,所以由题得x 21-y 212=1,x 22-y 222=1,两式相减得(x 1+x 2)(x 1-x 2)-y 1+y 2y 1-y 22=0,即2-y 1-y 2x 1-x 2=0, 即直线l 斜率k =2,得直线l 方程y -1=2(x -1), 即y =2x -1,联立⎩⎪⎨⎪⎧y =2x -1,x 2-y 22=1得2x 2-4x +3=0,Δ=16-24=-8<0,即直线y =2x -1与双曲线无交点,即所求直线不合题意, 所以过点P (1,1)的直线l 不存在.12.(2014南京质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值. 解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b , 双曲线实半轴、虚半轴长分别为m 、n ,则⎩⎪⎨⎪⎧a -m =4,7·13a =3·13m ,解得a =7,m =3.∴b =6,n =2. ∴椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14, |PF 1|-|PF 2|=6, ∴|PF 1|=10,|PF 2|=4. 又|F 1F 2|=213,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇 第5节一、选择题1.(2014银川模拟)抛物线y =2x 2的焦点坐标为( ) B .(1,0)D .⎝ ⎛⎭⎪⎫0,14 解析:抛物线y =2x 2,即其标准方程为x 2=12y ,它的焦点坐标是⎝ ⎛⎭⎪⎫0,18.故选C.答案:C2.抛物线的焦点为椭圆x 24+y 29=1的下焦点,顶点在椭圆中心,则抛物线方程为( )A .x 2=-45y B .y 2=-45x C .x 2=-413yD .y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5), ∴抛物线方程为x 2=-45y .故选A. 答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( ) A .相离 B .相交 C .相切D .不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014洛阳高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为( )B .83D .10解析:设点A (x 1,y 1),B (x 2,y 2), 其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1, 将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,则由⎩⎪⎨⎪⎧x 1+1=3x 2+1,x 1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )B .1D .74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54. 故选C. 答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2), 准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4, 故4<y 0+2,∴y 0>2.故选C. 答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b , 联立⎩⎨⎧y =3x +b ,x 2=2py消去y ,得x 2=2p (3x +b ), 即x 2-23px -2pb =0, ∴x 1+x 2=23p =3, ∴p =32,则抛物线的方程为x 2=3y . 答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________. 解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8. 所以,圆的方程为x 2+(y -4)2=64. 答案:x 2+(y -4)2=649.(2012年高考北京卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x , ∴焦点F 的坐标为(1,0). 又∵直线l 倾斜角为60°, ∴直线斜率为3,∴直线方程为y =3(x -1).联立方程⎩⎨⎧y =3x -1,y 2=4x ,解得⎩⎪⎨⎪⎧x 1=13,y 1=-233,或⎩⎨⎧x 2=3,y 2=23,由已知得A 的坐标为(3,23), ∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A ⎝ ⎛⎭⎪⎫72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为⎝ ⎛⎭⎪⎫12,0. 求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值. 由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时, |PA |+|PF |有最小值|AF |=5, 所以|PA |+|PM ′|≥5, 又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,求实数m 的值.解:法一 如图所示,连接AB , ∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上. 可设l AB :y =-x +n ,由⎩⎪⎨⎪⎧y =-x +n ,y =2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n 2.由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14, y 0=-x 0+n =14+1=54,即点M 为⎝ ⎛⎭⎪⎫-14,54, 由点M 在直线l 上,得54=-14+m ,∴m =32.法二 ∵A 、B 两点在抛物线y =2x 2上.∴⎩⎪⎨⎪⎧y 1=2x 21,y 2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2). 设AB 中点M (x 0,y 0), 则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0. 又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上, ∴y 0=x 0+m =m -14,即M ⎝ ⎛⎭⎪⎫-14,m -14,∴AB 的方程是y -⎝ ⎛⎭⎪⎫m -14=-⎝ ⎛⎭⎪⎫x +14,即y =-x +m -12,代入y =2x 2,得2x 2+x -⎝ ⎛⎭⎪⎫m -12=0,∴x 1x 2=-m -122=-12,∴m =32.12.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值. 解:(1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22), 即C (4λ+1,42λ-22), 所以[22(2λ-1)]2=8(4λ+1), 即(2λ-1)2=4λ+1, 解得λ=0或λ=2.。
高二数学解析几何练习题及答案
高二数学解析几何练习题及答案解析几何是高中数学的重要内容之一,是数学中的一个分支,它主要研究几何图形的性质及其相互之间的关系。
对于高二学生来说,解析几何练习题的掌握与理解是非常关键的。
下面将介绍一些高二数学解析几何的典型练习题及其答案,希望能够帮助到广大学生。
练习题一:已知点A(3,4),B(7,8),C(5,2),D(x,y)为AB的中点,求点D的坐标。
解答:若D为AB的中点,则有以下关系:x = (x1 + x2)/2y = (y1 + y2)/2带入坐标值可得:x = (3 + 7)/2 = 5y = (4 + 8)/2 = 6因此,点D的坐标为(5,6)。
练习题二:已知直线L过点A(2,3),B(5,7),求直线L的斜率和方程。
解答:直线的斜率可以通过两点间的坐标差来计算,即:斜率 k = (y2 - y1)/(x2 - x1)带入坐标值可得:k = (7 - 3)/(5 - 2) = 4/3直线经过点A(2,3),可以得到直线的方程为:y - y1 = k(x - x1)y - 3 = (4/3)(x - 2)3y - 9 = 4x - 84x - 3y = 1因此,直线L的斜率为4/3,方程为4x - 3y = 1。
练习题三:已知点A(3,4),B(7,8),C(5,2),判断三角形ABC是否为等腰三角形。
解答:要判断三角形ABC是否为等腰三角形,需要比较两边的长度是否相等。
我们可以利用两点间的距离公式来计算各边的长度。
已知点A(3,4),B(7,8),C(5,2),则有:AB的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 3)^2 + (8 - 4)^2] = √32AC的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(5 - 3)^2 + (2 - 4)^2] = √8BC的长度为:√[(x2 - x1)^2 + (y2 - y1)^2] = √[(5 - 7)^2 + (2 - 8)^2] = √36因为√32≠√8≠√36,所以三角形ABC不是等腰三角形。
解析几何第四章习题及解答
第4章 二次曲线和二次曲面习题4.11.在直角坐标系x O y 中,以直线:43120l x y -+=为新坐标系的x '轴,取通过(1,3)A -且垂直于l 的直线为y '轴,写出点的坐标变换公式, 并且求直线1:3250l x y -+=在新坐标系中的方程。
解:直线:43120l x y -+=的方向是(3,4),与它垂直的方向是(4,3)±-,新坐标系的x '轴的坐标向量取为34(,)55,y '轴坐标向量取为43(,)55-,与直线:43120l x y -+=垂直且的直线方程可设为340x y c ++=,由于过点(1,3)A -,得到直线方程是3490x y ++=,两直线的交点(3,0)-是新坐标原点,所以点的坐标变换公式:34355.43055x x y y ⎡⎤-⎢⎥'-⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦直线1:3250l x y -+=在新坐标系中的方程:13443:3(3)2()505555l x y x y ''''---++=,化简有1:18200.l x y ''--=2.作直角坐标变换,已知点(6,5),(1,4)A B --的新坐标分别为(1,3),(0,2)-,求点的坐标变换公式。
解:设同定向的点的坐标变换公式是:cos sin .sin cos x x a y y b θθθθ'-⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦它的向量的坐标变换公式是:cos sin .sin cos u u v v θθθθ'-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦由题意知向量(5,1) A B =-变为(1,5)A B ''=-,于是有5cos sin 1.1sin cos 5θθθθ---⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得到125s i n ,c o s .1313θθ==于是点的坐标变换公式是:5121313.1251313x x a y y b ⎡⎤-⎢⎥'⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦将点(1,4)B -及它的像点(0,2)代入得到3713,6213a b ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦所以点的坐标变换公式是: 51237131313.12562131313x x y y ⎡⎤⎡⎤-⎢⎥⎢⎥'⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦设反定向的点的坐标变换公式是:cos sin .sin cos x x a y y b θθθθ'-⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦它的向量的坐标变换公式是:cos sin .sin cos u u v v θθθθ'-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦由题意知向量(5,1)A B =-变为(1,5) A B ''=-,于是有5cos sin 1.1sin cos 5θθθθ---⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得到s i n 1,c o s 0.θθ=-=于是点的坐标变换公式是:01.10x x a y y b '-⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥'-⎣⎦⎣⎦⎣⎦⎣⎦将点(1,4B -及它的像点(0,2)代入得到3,4a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦所以点的坐标变换公式是: 013.104x x y y '-⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥'--⎣⎦⎣⎦⎣⎦⎣⎦3.设新旧坐标系都是右手直角坐标系,点的坐标变换公式为5,3,22(1)(2) 2.3;22x x y x y y x y x y ⎛''=++ '=-+⎧⎨' =-⎩''=-+- ⎝ 其中,(,)x y 与(,)x y ''分别表示同一点的旧坐标与新坐标,求新坐标系的原点的旧坐标,并且求坐标轴旋转的角θ。
解析几何大题精选四套(答案)
解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。
(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I)求椭圆C 的离心率; (II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何综合练习题(4)
一、选择题
1. 过点A (3,4)及双曲线22
163
x y -=的两焦点的圆为( ) A. 228
145()39
x y +-= B. 22(2)13x y -+= C. 22(2)13x y +-= D. 22(3)10x y +-=
2. 曲线22(1)44x y ++=与2260x y -+=有且只有( )个公共点
A. 0
B. 1
C. 2
D. 3
3. a ≤”是“曲线22
01(0)x y Ax By C a b a b ++=+=>>与有公共点”的( )条件
A. 充分不必要
B. 必要不充分
C. 充要
D. 不充分也不必要
4. 有一抛物线型拱桥,当水面离拱顶2米时,水面宽4米,则水面下降1米后,水面宽度为( )米
5. 圆22(2)(3)4x y -++=上与直线20x y -+=距离最远的点的坐标是( )
A. (1222
+-- B. (23-
C. 1,2)-
D. (34-
6. 已知点(3,8)(2,2)A B -和,则x 轴上与点A 、B 距离之和最短的点的坐标是( ) A. (-1,0) B. (1,0) C. 1(,0)2- D. 1(,0)2
7. 从点P(3,-2)发出的光线l 经直线m :20x y --=反射,若反射线恰经过点Q(5,1),则光线l 所在直线的方程是( )
A. 3x =
B. 1y =
C. 270x y --=
D. 210x y ++=
8. 曲线()y f x =经过平移,使点(1,2)的新位置为(2,0),则此曲线的新方程为( )
A. 2(1)y f x +=-
B. 2(1)y f x -=+
C. 2(1)y f x -=-
D. 2(1)y f x +=+
9. 已知点A(-1,3)、B(3,1)及C(x,0),若∠ACB 为直角,则这样的点C 有( )个
A. 1
B. 2
C. 3
D. 4
10. 若22
14520
x y +=的两焦点为1F 、2F ,点P 在椭圆上,且12PF PF ⊥,则12PF PF - 的值为( )
A. 3 D. 3
二、填空题
1. 当k = 时,曲线(1)y k x =+与24y x =恰有一个公共点
2. 人造卫星的轨道为椭圆,其近地点距地面的距离为p ,远地点距地面的距离为q ,若地球半径为R ,则此运行轨道的短轴长为
3. 在x 轴上有一动点A ,在直线y x =上有一动点B ,又有定点C(2,1),则⊿ABC 的最小周长等于
4. ABC 中,角A 的平分线所在直线方程为1x y +=,又知定点(1,2)B 和(2,2)C --,则点A 的坐标是
三、解答题
1. 过点(1,2)P -的直线l 与坐标轴交成三角形的面积等于10,求直线l 的方程
2. 已知定点(1,1)A 、(3,3)B ,点P 在x 轴上,求θ=APB ∠的最大值(用反三角函数表示),并求此时点P 的坐标
3. 如果不论a 为何值,经过抛物线222y x ax =-- 与 222y x x a =-+-的两个交点的直线总过某一个定点,求这个定点的坐标
【解析几何综合练习题(4)答案】
一、选择题 C B B B B B A A B B
1. C [∵焦点为(3,0)F ±,故圆直径为1AF ,圆方程为(3)(3)(4)0x x y y +-+-=,即22(2)13x y +-=]
2. B [联立得2102103,7x x x x ++=⇒=-=-(不满足第二方程,舍去),故只有一个公共点]
3. B [有交点⇒椭圆中心到已知直线距
离d a =≤;反之不一定成立] 4. B [将(2,-2)代入 22x py =-
1p ⇒=;令3y =-
,得x =] 5. B [过圆心与已知直线垂直的直线方程为10x y ++=,与圆方程联立得两点,借助图形选距离最大者即可] 6. B [点B 关于x 轴的对称点为(2,2)B '-,直线AB ':220x y +-=与x 轴交点即为所求] 7. A
[将Q (5,1)代入22
x y y x '=+⎧⎨'=-⎩得3x y ==,即点Q 关于直线m 的对称点为Q 1(3,3),故l 所在直线AQ 1的方程为3x =] 8. A [易知,平移向量为(1,2)a =- ,将12
x x y y '=-⎧⎨'=+⎩代入即得] 9. B [由以AB 为直径的圆与x 轴有两个交点即知] 10. B [
由已知,
5a b c ===
,显然,12122212280100
PF PF PF PF PF PF ⎧+=⎪⇒⋅=⎨+=⎪⎩,从而有212()20
PF PF -
=12PF PF ⇒-=二、填空题
1. 1,0,1k =- [联立得:2440ky y k -+=,讨论0,0k k =≠即可]
由1(2)21()2
a p q R a c q R a c p R c q p ⎧=++⎪+=+⎧⎪⇒⎨⎨-=+⎩⎪=-⎪⎩,即可求
b ] 3.点C 关于直线y x =的对称点为(1,2)P ,
点P 关于x 轴的对称点为(1,2)Q -,连结
CQ 交x 轴于A ,连结AP 交直线y x =
于B ,即可看出,ABC 的周长最小,其
周长恰等于CQ =
4. 1
4(,)33
- [易求得,点B 关于1x y +=的对称点为 (1,0)B '-,从而可得B C '即 AC 的方程为220x y -+=,与1x y +=联立即得14(,)33
A -] 三、解答题
1. 设l 的方程为(2)0kx y k -++=,则 22220(2)20k k k k k
+⋅+=⇒+=
2081640k k k k >⎧⇒=±⎨-+=⎩;
20122440
k k k k <⎧⇒=-±⎨++=⎩∴ 所求直线l
2. 解:设(,0)P x ,(画图可知,当θ=APB ∠的最大时0x >)
由 21322,tan 613464PA PB x k k x x x x x x
θ--==⇒==≤---+-+(当且仅当x =
故:θ=APB ∠的最大值为 2
P 的坐标为P 【注】亦可用判别式法求之
3. 由a 的任意性,可选a 的特殊值求之
令a =0,则已知抛物线方程为22y x =-和22y x x =-+,相加即得过二者交点的直线方程:1y x =-…………………………①
令a =1,则已知抛物线方程为222y x x =--和222y x x =-+-,相加即得过二者交点的直线方程:2y =-…………………………②
①、② 联立即得所求定点坐标为 (1,2)--.。