北师大版八年级上册第四章《一次函数》单元测试试卷(含答案)
第四章 一次函数数学八年级上册-单元测试卷-北师大版(含答案)
第四章一次函数数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A. B.1 C. D.2、函数中,自变量x的取值范围是()A.x>4B.x≥﹣2且x≠4C.x>﹣2且x≠4D.x≠43、一次函数y=﹣3x+b图象上有两点A(x1,y1),B(x2,y2),若x1<x2,则y1,y2的大小关系是()A. y1>y2B. y1<y2C. y1=y2D.无法比较y1,y的大小24、在同一平面直角坐标系中,二次函数y1=ax²+bx与一次函数y2=ax+b的大致图象可能是()A. B. C. D.5、函数y=的自变量x的取值范围是()A.x>1B.x<1C.x≥1D.x≤16、若y=kx+2的函数值y随着x的增大而增大,则k的值可能是()A.0B.1C.-30D.-27、下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.变量x,y,y是x的函数,但x不是y的函数D.正比例函数不是一次函数,一次函数也不是正比例函数8、下列函数(1)y=x(2)y=2x﹣1 (3)y= (4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个9、点在第一象限内,且,点的坐标为,设的面积为,则下列图像中,能正确反映面积与之间的函数关系式的图像是()A. B. C. D.10、如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,811、一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A. B. C.4 D.812、如图,的顶点的坐标为,顶点的坐标为,点在轴上,若直线与的边有交点,则的取值范围为()A. B. C. D.13、函数y=,自变量x的取值范围是()A.x>2B.x<2C.x≥2D.x≤214、若正比例函数的图像经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)15、甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们的骑行路程s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:(1)他们都骑了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法中正确的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、P1(x1, y1),P2(x2, y2)是平面直角坐标系中的任意两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的“直角距离”,记作d(P1, P2).(1)令P0(2,﹣4),O为坐标原点,则d(O,P0)=________ ;(2)已知Q(2,1),动点P(x,y)满足d(Q,P)=3,且x、y均为整数.①满足条件的点P有________ 个②若点P在直线y=3x上,请写出符合条件的点P的坐标________ .17、直线是由直线向上平移________个单位长度得到的一条直线.直线是由直线向右平移________个单位长度得到的一条直线.18、在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2 h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是________(填写所有正确结论的序号).19、若是一次函数图象上两个不同的点,且,则________.20、如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点A1(1,)作x轴的垂线交于点A2,过点A2作y轴的垂线交于点A3,过点A3作x轴的垂线交于点A4…,一次进行下去,则点的横坐标为________ .21、如图,...,都是等腰直角三角形,点...均在轴正半轴上,直角顶点...,均在直线上.设的面积分别为···,则________;依据图形所反映的规律,________.22、对于圆的周长公式c=2πr,其中自变量是________,因变量是________.23、一次函数的图象与x轴的交点坐标是________ ,与y轴的交点坐标是________.24、我们已经学习过反比例函数y= 的图象和性质,请回顾研究它的过程,对函数y=进行探索.下列结论:①图象在第一、二象限,②图象在第一、三象限,③图象关于y轴对称,④图象关于原点对称,⑤当x>0时,y随x增大而增大;当x<0时,y随x增大而增大,⑥当x>0时,y随x增大而减小;当x<0时,y随x增大而增大,是函数y= 的性质及它的图象特征的是:________.(填写所有正确答案的序号)25、函数与图像的交点坐标为,则的值为________.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、已知x无论取何正值,y1=-3x+7都比y2=kx+5大,求k的取值范围.28、小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.29、某校长暑假带领该校“三好学生”去旅游,甲旅行社说:“若校长买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括校长在内都6折优惠”若全票价是1200元,则:设学生数为x,甲旅行社收费y甲,乙旅行社收费y乙,求:①分别写出两家旅行社的收费与学生人数的关系式.②当学生人数是多少时,两家旅行社的收费是一样的?③就学生人数讨论那家旅行社更优惠.30、已知一次函数的图象经过点P(0,-2),且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、D6、B7、A8、B9、C10、D11、B12、D13、C14、15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
北师大版八年级数学上册《第4章一次函数》单元测试含答案
第4章一次函数一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B. C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么=.30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B.C. D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟【考点】函数的图象.【分析】A.从4分钟到8分钟时间增加而离家的距离没变,所以这段时间在看报;B.4分钟时散步到了报栏,据此知公共阅报栏距小明家200米;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米;D.据图知小明从出发到回家共用时16分钟.【解答】解:A.小明看报用时8﹣4=4分钟,本项错误;B.公共阅报栏距小明家200米,本项正确;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米,本项正确;D.据图知小明从出发到回家共用时16分钟,本项正确.故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米【考点】函数的图象.【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时【考点】函数的图象.【专题】行程问题.【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.【解答】解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店距离无法确定,因为题目没说体育馆,早餐店和家三者在同一直线上,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.【点评】此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.。
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)一、单选题1.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-2.下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x =D .5x y = 3.在函数23y x =-中,当自变量5x =时,函数值等于( )A .1B .4C .7D .134.如图,在平面直角坐标系中,线段AC 所在直线的解析式为4y x =-+,E 是AB 的中点,P 是AC 上一动点,则PB PE +的最小值是( )A .42B .22C .25D .55.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,关于x 的方程x +5=ax +b 的解是( )A .x =20B .x =25C .x =20或25D .x =﹣20 6.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( )A .-15B .15C .35D .53- 7.已知某汽车耗油量为0.1L/km ,油箱中现有汽油50L .如果不再加油,记此后汽车行驶的路程为x km ,油箱中的油量为y L .则此问题中的常量和变量是( )A .常量50;变量x .B .常量0.1;变量y .C .常量0.1,50;变量x ,y .D .常量x ,y ;变量0.1,50.8.一次函数y =(a +1)x +a +2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣19.已知,甲、乙两地相距720米,甲从A 地去B 地,乙从B 地去A 地,图中分别表示甲、乙两人离B 地的距离y (单位:米),下列说法正确的是( )A .乙先走5分钟B .甲的速度比乙的速度快C .12分钟时,甲乙相距160米D .甲比乙先到2分钟 10.函数13y x =+中自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x <- D .3x ≠-11.汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,则汽车距B 地路程s (km )与行驶时间t (h )的关系式为( ).A .12060s t =-B .12060s t =+C .60s t =D .120s t =12.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定二、填空题(共0分)13.一次函数(21)y m x m =-+的函数值y 随x 值的增大而增大,则m 的取值范围是____ ____.14.从﹣1,2,3这三个数中随机抽取两个数分别记为x ,y ,把点M 的坐标记为(x ,y ),若点N 为(﹣4,0),则在平面直角坐标系内直线MN 经过第一象限的概率为___ .15.一个正方形的边长为3cm ,它的边长减少cm x 后,得到的新的正方形周长(cm)y 与(cm)x 之间的函数关系式为124y x =-,自变量x 的取值范围是________ __.16.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是____ __cm .17.方程328x +=的解是x =______,则函数32y x =+在自变量x 等于_______时的函数值是818.如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP 的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.19.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .20.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______x x千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额(10)的函数解析式为______.三、解答题21.某天小刚骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续前行,按时赶到学校,如图是小刚从家到学校这段所走的路程s(米)与时间t(分)之间的关系.(1)小刚从家到学校的路程是________米,从家出发到学校,小刚共用了________分;(2)小刚修车用了多长时间;(3)小刚修车前的平均速度是多少?22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当△ABC的面积是17.5时,求点C的坐标.23.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.24.如图1,在长方形ABCD 中,点P 从点B 出发,沿B →C →D →A 运动到点A 停止.设点P 的运动路程为x ,△P AB 的面积为y ,y 与x 的关系图象如图2所示.(1)AB 的长度为______,BC 的长度为______.(2)求图象中a 和b 的值.(3)在图象中,当m =15时,求n 的值.25.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?26.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA 表示小明与甲地的距离y 1(米)与行走的时间x (分钟)之间的函数关系:折线BCDA 表示小亮与甲地的距离y 2(米)与行走的时间x (分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是 米/分钟,小亮骑自行车的速度是 米/分钟;(2)线段OA 与BC 相交于点E ,求点E 坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x 的值.27.如图1,在Rt △ABC 中,AC =BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以每秒1cm 的速度沿F →E →D →A →B 的路径运动,连接BP 、CP ,△BCP 的面积y (2cm )与运动时间x (秒)之间的图象关系如图2所示.(1)求EF 的长度和a 的值;(2)当x =6时,连接AF ,判断BP 与AF 的数量关系,说明理由.28.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过320m 时,按2.5元/ 3m 计费;月用水量超过320m 时,其中320m 仍按2.5元/3m 收费,超过部分按3.2元/ 3m 计费,设每户家庭月用水量为3xm 时,应交水费y 元.(1)分别写出020x ≤≤和20x >时,y 与x 的函数表达式.(2)小明家第二季度缴纳水费的情况 如下:月份四月份 五月份 六月份 交费金额 40元 45元 56.4元小明家第二季度共用水多少立方米?29.一慢车和一快车沿相同路线从A 地到B 地,两车所行的路程s (千米)与慢车行驶的时间x (时)关系如图所示.根据图像解决下列问题:(1)快车比慢车晚 小时出发,快车比慢车早到 小时.快车追上慢车时,快车行驶了 千米.(2)求A 、B 两地相距多少千米?30.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人) 500 10001500 2000 2500 3000 … y (元)3000- 2000- 1000- 01000 2000 … (1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润参考答案1.C2.D3.C4.C5.A6.D7.C8.D9.D10.A11.A12.C13.12m > 14.2315.03x ≤<16.1517. 2 218.519.37.220. 3 42y x =+##24y x =+21.(1)由图象可得,小刚从家到学校的路程共2000米,从家出发到学校,小明共用了20分钟;故答案为:2000,20;(2)小刚修车用了:15-10=5(分钟),答:小刚修车用了5分钟;(3)由图象可得,小刚修车前的速度为:1000÷10=100米/分钟.答:小刚修车前的平均速度是100米/分钟.22.解:(1)设正比例函数的解析式为y kx =,将点(3,7)A 代入得:37k =,解得73k =, 则正比例函数的解析式为73y x =; (2)如图,过点A 作AD x ⊥轴于点D ,(3,7)A ,7AD ∴=,设点C 的坐标为(,0)a ,则1BC a =-,ABC 的面积是175., 117.52BC AD ∴⋅=,即17117.52a ⨯-=, 解得6a =或4a =-,故点C 的坐标为(6,0)或(4,0)-.23.解:(1)∵一次函数y kx b =+与正比例函数3y x =的图象交于点C ,点C 的横坐标为1,∴把x =1代入正比例函数得:3y =,∴点()1,3C ,∴把点()1,5A -、()1,3C 代入一次函数得:53k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩, ∴AB 的函数解析式为4y x =-+;(2)由(1)得:()1,3C ,AB 的函数解析式为4y x =-+, ∴令y =0时,则有4x =,∴点()4,0B ,∴OB =4,令C x 表示点C 的横坐标,C y 表示点C 的纵坐标,则由图象可得:1143622BOC C S OB y =⋅=⨯⨯=, ∵13COD BOC S S =△△, ∴2COD S =, ∴122COD C S OD x =⋅=△, ∴4OD =,∵点D 在y 轴负半轴,∴()0,4D -;(3)由图象可得:当3kx b x +<时,则x 的取值范围为1x >.24.解:由图2知,当x =5时,点P 与C 重合, ∴BC =5,当x =13时,点P 与D 重合,∴BC +CD =13,∴CD =8=AB ,故答案为:8,5;(2)当P 与C 点重合时,b =185202⨯⨯=,当点P 与A 重合时,a =5+8+5=18; (3)∵15m =58>+,∴此时点P 在AD 边上,且AP =3. ∴183122n =⨯⨯=. 25.由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=(h),到达乙地一共:3+3=6(h ),6-4.8=1.2(h),∴轿车比货车早1.2h 时间到达乙地.26.(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500÷10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.27.解:当点P在边EF上运动时,y=S△BCP12=BC•PF12=BC×1×x12=BC•x,∵BC为定值,∴y随x的增大而增大,∴当x=3时,y=a,此时EF=1×3=3(cm),当点P在边ED上运动时,点P到BC的距离等于3,y=S△BCP12=BC×332=BC,∴y的值不变,∵四边形FEDC是正方形,∴DE=EF=3cm,∴x331+==6(秒),∴b=6,当点P在DA上运动时,y=S△PBC12=BC•PC,∴y随PC的增大而增大,当点P与点A重合时,即x=8时,y最大,此时AD=8×1﹣3﹣3=2,∴AC=BC=3+2=5(cm),∴a12=BC×EF12=⨯5×3152=;(2)由(1)知,当点x =6时,点P 在点D 处,如图所示:此时,BD =AF ,理由:∵BC =AC ,CD =CF ,∠ACB =∠ACF =90°,∴△BDC ≌△AFC (SAS ),∴BD =AF .28.(1)当020x ≤≤时,1 2.5y x =;当20x >时,()2 2.520 3.220 3.214y x x =⨯+-=-;()2当20x 时,150y =4050,4550,56.450<<>∴四、五月份的月用水量比320m 少,六月份的月用水量比320m 多令140y =,得16x =令145y ,得18x =令256.4y =,得22x =16182256++=(立方米)∴第二季度共用水56立方米29.解:由图像可得,慢车比快车晚2小时出发,快车比慢车早到18﹣14=4(小时),快车追上慢车时,快行驶了276千米,故答案为:2,4,276;(2)解:由图像可得,慢车的速度为:276÷6=46(千米/时),46×18=828(千米),答:A 、B 两地相距828千米.30.解:(1)在这个变化过程中,每月的乘车人数x 是自变量,每月的利润y 是因变量; 故答案为每月的乘车人数x ,每月的利润y ;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;故答案为3000;(4)设y 与x 的表达式为y=kx+b ,则依题意得:500300020000x b x b +=-⎧⎨+=⎩解得:24000k b =⎧⎨=-⎩ ∴y 与x 的表达式为24000y x =-;当5000y =时,500024000x =-.解得4500x =.答:5月乘车人数为4500人时,可获得利润5000元。
北师大版八年级数学上册 第四章 一次函数单元测试(含答案)
三、解答题 20.已知正比例函数的图象上有一点 P,它的纵坐标与横坐标的比值是﹣ . (1)求这个函数的解析式; (2)点 P1(10,﹣12),P2(﹣3,36)在这个函数的图象上吗?为什么?
21.如图一次函数 y=kx+b 的图象经过点 A 和点 B. (1)写出点 A 和点 B 的坐标并求出 k、b 的值; (2)求出当 x= 时的函数值.
25.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过 7 立方米时, 每立方米收费 1.0 元并加收 0.2 元的城市污水处理费;超过 7 立方米的部分每立方米收费 1.5 元并 加收 0.4 元的城市污水处理费,设某户每月用水量为 x(立方米),应交水费为 y(元). (1)分别写出用水未超过 7 立方米和多于 7 立方米时,y 与 x 间的函数关系式; (2)如果某单位共有用户 50 户,某月共交水费 541.6 元,且每户的用水量均未超过 10 立方米, 求这个月用水未超过 7 立方米的用户最多可能有多少户?
16.已知一次函数 y=(k﹣1)x+5 随着 x 的增大,y 的值也随着增大,那么 k 的取值范围是 ______. 17.一次函数 y=1﹣5x 经过点(0,______)与点(______,0),y 随 x 的增大而______. 18.一次函数 y=(m2﹣4)x+(1﹣m)和 y=(m﹣1)x+m2﹣3 的图象与 y 轴分别交于点 P 和点 Q,若点 P 与点 Q 关于 x 轴对称,则 m=______. 19.假定甲、乙两人在一次赛跑中,路程 s 与时间 t 的关系如图所示,那么可以知道: (1)这是一次______米赛跑; (2)甲、乙两人中先到达终点的是______; (3)乙在这次赛跑中的速度是______米/秒.
北师大版八年级上册数学第4章《一次函数》 单元测试卷(含答案)
北师大版八年级上册数学第4章《一次函数》单元测试卷一.选择题1.下列函数:①y=;②y=﹣;③y=3﹣x;④y=3x2﹣2.其中是一次函数的有()A.4个B.3个C.2个D.1个2.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.3.下列函数中,y是x的正比例函数的是()A.y=4x+1 B.y=C.y=﹣x D.y=4.用总长50m米的篱笆围成矩形场地,矩形面积S(m2)与一边长l(m)之间的关系式为S =l(25﹣l),那么下列说法正确的是()A.l是常量,S是变量,S是l的函数B.25是常量,S与l是变量,l是S的函数C.25是常量,S与l是变量,S是l的函数D.l是变量,25是常量,l是S的函数5.直线y=﹣x+1不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.直线y=﹣2x+6与两坐标轴围成的三角形的面积是()A.8 B.6 C.9 D.27.一次函数y=kx+2的图象沿直线y=x平移4个单位长度后经过原点,则k的值为()A.B.C.或D.或8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表,下面能表示日销售量y(件)与销售价x(元)的关系式是()x(元)15 20 25 …y(件)25 20 15 …A.y=x+15 B.y=﹣x+15 C.y=x+40 D.y=﹣x+409.在平面直角坐标系xOy中,将横纵坐标之积为1的点称为“好点”,则函数y=|x|﹣3的图象上的“好点”共有()A.1个B.2个C.3个D.4个10.生物活动小组的同学们观察某植物生长,得到该植物高度y(单位:cm)与观察时间x (单位:天)的关系,并画出如图所示的图象(CD∥x轴),该植物最高的高度是()A.50cm B.20cm C.16cm D.12cm二.填空题11.已知一次函数y=(m+4)x+2m+2,无论m取何值时,它的图象恒过的定点P,求点P 的坐标.若m为整数,又知它的图象不过第四象限,则m的最小值为.12.将一次函数y=3x的图象向上平移2个单位的长度,平移后的直线与x轴的交点坐标为.13.已知函数y=x+m﹣2019(m常数)是正比例函数,则m=.14.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表所示.如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为.数量(千0.5 1 1.5 2 2.5 3 3.5 …克)售价(元) 1.5 3 4.5 6 7.5 9 10.5 …15.甲,乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:(1)这是一次米赛跑;(2)乙在这次赛跑中的速度为米/秒.三.解答题16.已知正比例函数y=kx(k≠0)的图象过点(﹣1,2).(1)求此函数的表达式;(2)在同一直角坐标系内画出(1)中所得函数和函数y=x﹣2的图象.17.甲乙两位老师同住一小区,该小区与学校相距2000米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,骑行若干米到达还车点后,立即步行走到学校.已知乙骑车的速度为170米/分,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给的信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求直线BC的解析式;(3)在图2中,画出当20≤x≤25时,s关于x的函数的大致图象.18.直线l:y=x﹣1分别交x轴,y轴于A,B两点,(1)求线段AB的长;(2)如图,将l沿x轴正方向平移,分别交x轴,y轴于E,F两点,若直线EF上存在两点C,D,使四边形ABCD为正方形,求此时E点坐标和直线AD的解析式;(3)在(2)的条件下,将EF绕E点旋转,交直线l于P点,若∠OAB+∠OEP=45°,求P点的坐标.19.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟,乙的速度为米/分钟;(2)图中点A的坐标为;(3)求线段AB所直线的函数表达式;(4)在整个过程中,何时两人相距400米?20.已知在平面直角坐标系中,点Q的坐标为(4,0),点P是直线y=﹣1.5x+3上在第一象限内的一点,设点P的坐标是(x,y),△OPQ的面积为S.(1)求S与x函数关系式,并写出这个函数自变量的取值范围.(2)当点P的坐标为何值时,△OPQ的面积等于直线y=﹣1.5x+3与坐标轴围成的三角形面积的一半?参考答案一.选择题1.解:由题可得,是一次函数的有:①y=;③y=3﹣x,∴一次函数有2个,故选:C.2.解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.3.解:对于y=﹣x,y是x的正比例函数.故选:C.4.解:在S=l(25﹣l)中,25是常量,S与l是变量,S是l的函数.故选:C.5.解:∵直线y=﹣x+1中,k=﹣1<0,b=1>0,∴直线的图象经过第一,二,四象限.∴不经过第三象限,故选:C.6.解:在直线y=﹣2x+6中,当x=0时,y=6;当y=0时,x=3;∴直线y=﹣2x+6与坐标轴交于(0,6),(3,0)两点,∴直线y=﹣2x+6与两坐标轴围成的三角形面积=×6×3=9.故选:C.7.解:一次函数y=kx+2的图象沿直线y=x平移4个单位长度后所得的一次函数为y =k(x﹣4)+2+4或为y=k(x+4)+2﹣4,∵平移后经过原点,∴把(0,0)代入求得k=或,故选:C.8.解:由题可得,销售量y(件)与销售价x(元)的关系式是y=25﹣,即y=﹣x+40,故选:D.9.解:设函数y=|x|﹣3的图象上的“好点”的坐标为(x,y),当x≥0时,则y=x﹣1,所以,x(x﹣3)=1,解得:x1=(不合题意,舍去),x2=;当x<0时,则y=﹣x﹣3,所以,x(﹣x﹣3)=1,解得:x3=,x4=.∴函数y=|x|﹣3的图象上的“好点”共有3个.故选:C.10.设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴,解得.所以,直线AC的解析式为y=x+6(0≤x≤50),当x=50时,y=×50+6=16cm.故选:C.二.填空题(共5小题)11.解:由y=(m+4)x+m+2,得y=m(x+1)+4x+2;∵直线y=(m+4)x+m+2无论m取何值时恒经过定点P,∴x+1=0,即x=﹣1,∴y=﹣4+2=﹣2,即y=﹣2,∴直线y=(m+4)x+m+2无论m取何值时恒经过的定点坐标为(﹣1,﹣2);若该函数不经过第四象限,则,解得m≥﹣1;∴m的最小值为﹣1;故答案是:(﹣1,﹣2);﹣1.12.解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位长度所得函数的解析式为y=3x+2,∵此时与x轴相交,则y=0,∴3x+2=0,即x=﹣,∴点坐标为(﹣,0),故答案为(﹣,0).13.解:由题意得:m﹣2019=0,解得:m=2019,故答案为:2019.14.解:由图表可知,香蕉数量(千克)与售价(元)之间的关系满足一次函数关系,设一次函数解析式为y=kx+b,把(1,3)与(2,6)代入上式,得,解得,香蕉数量(千克)与售价(元)之间的关系满足一次函数关系为y=3x.故答案为:y=3x.15.解:(1)这是一次100米赛跑;(2)乙在这次赛跑中的速度为:100÷12.5=8(米/秒).故答案为:(1)100;(2)8.三.解答题(共5小题)16.解:(1)∵点(﹣1,2)在正比例函数y=kx的图象上,∴2=﹣k,即:k=﹣2,∴函数的表达式为:y=﹣2x;(2)列表:x…0 1 …y=﹣2x…0 ﹣2 …y=x﹣2 …﹣2 ﹣1 …描点、连线:17.解:(1)由图可知,甲步行的速度为:2000÷25=80(米/分),乙出发时甲离开小区的路程是80×10=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)(20﹣10)×170=1700(米),则点C的坐标为(20,1700),设直线BC对应的解析式为y=kx+b,,得,即直线BC的解析式为y=170x﹣1700;(3)∵甲步行的速度比乙步行的速度每分钟快5米,甲步行的速度是80米/分,∴乙步行的速度为80﹣5=75(米/分),则乙到达学校的时间为:20+(2000﹣1700)÷75=24(分钟),当乙到达学校时,甲离学校的距离是:80×(25﹣24)=80(米),则当20≤x≤25时,s关于x的函数的大致图象如下图所示:18.解:(1)令x=0,则y=﹣1,B(0,﹣1),令y=0,则x=2,∴A(2,0),∴AB==.(2)过点C作CG⊥OF于G,∵∠ABC=∠CGB=∠AOB=90°,∴∠CBG=∠BAO,∵AB=BC,∴△AOB≌△BGC(AAS),∴CG=OB=1,BG=OA=2,∴C(1,﹣3),过点D作DH⊥AE于H,同理可得,D(3,﹣2),设EF:y=kx+b,将C(1,﹣3),D(3,﹣2)代入y=kx+b中,得,解得:,∴直线EF的解析式为y=x﹣.令y=0,则y=x﹣=0,解得:x=7,∴E(7,0),设直线AD的解析式为y=k'x+b',∵A(2,0),D(3,﹣2),∴,∴,∴直线AD的解析式为y=﹣2x+4,(3)①当P在x轴上方时,设P(t,t﹣1),过点E作EQ⊥EP交AP于Q,∴∠OAB=∠PAE,∠OAB+∠OEP=45°,∴∠EPQ=45°,过点P作PG⊥x轴于G,过点Q作QH⊥x轴于H,∴PE=EQ,∵∠PGE=∠QHE=90°,∠PEG=∠EQH,∴△PEG≌△EQH(AAS),∴PG=EH,EG=QH=7﹣t,∴OH=OE+EH=7+=,∴Q(t+6,7﹣t),将Q(t+6,7﹣t),代入y=x﹣1中,得(t+6)﹣1=7﹣t,解得t=4,∴P(4,1).②当P在x轴下方时,可得点P关于x轴的对称点为N(4,﹣1),求得直线EN的解析式为y=,∴,解得:.∴P(﹣8,﹣5).综合以上可得点P的坐标为P(4,1)或(﹣8,﹣5).19.解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).故答案为:24,40,60;(2)乙从图书馆回学校的时间为2400÷60=40(分钟),40×40=1600,∴A点的坐标为(40,1600).故答案为:(40,1600);(3)设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40t;(4)两种情况:①迎面:(2400﹣400)÷100=20(分钟),②走过:(2400+400)÷100=28(分钟),∴在整个过程中,第20分钟和28分钟时两人相距400米.20.解:令x=0,则y=﹣1.5×0+3=3;令y=0,则﹣1.5x+3=0,解得:x=2.∴直线y=﹣1.5x+3与坐标轴的交点坐标为(0,3)和(2,0).∵点P是直线y=﹣1.5x+3上在第一象限内的一点,∴0<x<2,0<y<3.(1)∵S=2y,且y=﹣1.5x+3,∴S=2•(﹣1.5x+3)=﹣3x+6(0<x<2);(2)直线y=﹣1.5x+3与坐标轴围成的三角形面积为×3×2=3.∵S=2y=×3,解得:y=,此时=﹣1.5x+3,解得:x=.即点P的坐标为(,).故当点P的坐标为(,)时,△OPQ的面积等于直线y=﹣1.5x+3与坐标轴围成的三角形面积的一半.。
北师大版八年级上册数学第四章一次函数单元测试(含答案)
八年级上册数学第四章单元测试一、选择题(每题3分,共30分)1.下列函数中,是一次函数的是()A.y=1-x B.y=1 xC.y=kx+1 D.y=x2+12.下列图象中,y不是x的函数的是()3.下列变量之间是函数关系的有()①三角形的周长C与底边a;②长方形的面积S与宽a;③圆的面积S与半径R;④x-y=3中的x与y.A.4个B.3个C.2个D.1个4.“漏壶”是一种古代计时器,如图所示.在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y与x对应关系的是()5.根据如图的程序,计算当输入x=3时,输出的结果y是() A.2 B.4 C.6 D.86.正比例函数y=2x,y=-3x,y=-12x的共同特点是()A.图象经过同样的象限B.y随x的增大而减小C.y随x的增大而增大D.图象都过原点7.如图,直线y=ax+b过点A(0,3)和点B(-7,0),则方程ax+b=0的解是() A.x=0 B.x=3C.x=-7 D.x=-48.李大爷要围一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC 边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12) B.y=-12x+12(0<x<24)C.y=2x-24(0<x<12) D.y=12x-12(0<x<24)9.已知一次函数图象过点(0,3),且与两坐标轴所围成的三角形的面积为3,则这个一次函数的表达式为()A.y=1.5x+3 B.y=-1.5x+3C.y=1.5x+3或y=-1.5x+3 D.y=1.5x-3或y=-1.5x-3 10.甲、乙两运动员在直线跑道上同起点、同终点、同方向匀速跑步630米,先到的运动员原地休息.已知甲先出发1秒,两运动员之间的距离y(米)与乙出发的时间x(秒)之间的关系如图所示.给出以下结论:①a=3.5;②b=140;③c=89.其中正确的是()A.①②③B.②③C.①②D.①③二、填空题(每题3分,共15分)11.函数y=-2x-5的图象不经过第________象限.12.已知正比例函数y=-3x,那么y的值随x值的增大而________.(填“增大”或“减小”)13.如图,已知点M(1,a)和点N(-2,b)是一次函数y=kx+b图象上的两点,则a与b的大小关系是________.14.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为__________.15.1号探测气球从海拔5 m处出发,与此同时2号探测气球从海拔15 m处出发,两个气球所在位置的海拔y(m)关于上升时间x(min)的函数关系如图所示,当上升______min时,两球之间的距离是5 m.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16. “五一”假期,小明一家随团到某风景区旅游,集体门票的收费标准:25人以内(含25人),每人30元;超过25人的,超过部分每人10元.(1)写出应收门票费y(元)与旅游人数x(人)之间的关系式;(2)若小明一家所在的旅游团购买门票花了1 050元,则该旅游团共有多少人?17.某校一课外小组准备进行“西乡县半程马拉松”的宣传活动,需要制作宣传单,校园附近有一家印刷社,收费y(元)与印刷数量x(张)之间的关系如表:印刷数量x(张)…50100200300…收费y(元)…5153045…________;(2)从上表可知:收费y(元)随印刷数量x(张)的增加而________;(3)若要印刷10 000张宣传单,则收费________元.18.已知y=(m-2)x+|m|-2.(1)当m满足什么条件时,y=(m-2)x+|m|-2是一次函数?(2)当m满足什么条件时,y=(m-2)x+|m|-2是正比例函数?19.如图,一次函数y=kx-3的图象经过点M.(1)求这个一次函数的表达式.(2)判断点(2,-7)是否在该函数的图象上.20.已知,一次函数y=-2x+3.(1)画出该函数图象;(2)求该图象与坐标轴围成的三角形的面积.21.如图,已知直线y=-2x+6与x轴交于点A,与y轴交于点B.(1)点A的坐标为________,点B的坐标为________,线段AB的长为________;(2)求出△AOB的面积;(3)直线AB上是否存在一点C(C与B不重合),使△AOC的面积等于△AOB的面积?若存在,求出点C的坐标;若不存在,请说明理由.22.某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x(件),销售人员的月收入为y(元),原有的薪酬计算方式y1(元)采用的是底薪+提成的方式,且y1=k1x+b,已知每销售一件商品另外获得15元的提成,修改后的薪酬计算方式为y2(元),且y2=k2x+b,根据图象回答下列问题:(1)求y1和y2的表达式,并说明b的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义.23.综合与探究:如图1,平面直角坐标系中,一次函数y=12x+3的图象分别交x轴,y轴于点A,B,一次函数y=-x+b的图象经过点B,并与x轴交于点C,点P是直线AB上的一个动点.(1)求A,B两点的坐标;(2)求直线BC的表达式和点C的坐标;(3)如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.试探究直线AB上是否存在点P,使PQ=BC,若存在,求出点P的坐标;若不存在,说明理由.答案一、1.A 2.B 3.C 4.C 5.A 6.D 7.C 8.B 9.C 10.D二、11.一 12.减小 13.a >b 14.(-12,-12) 15.10或30 三、16.解:(1)当x ≤25时,y =30x ;当x >25时,y =30×25+10(x -25)=10x +500; 综上所述,y =⎩⎨⎧30x (x ≤25),10x +500(x >25).(2)因为1 050>30×25,所以该旅游团的人数超过了25人, 所以10x +500=1 050, 所以x =55.答:该旅游团共有55人.17.解:(1)收费;印刷数量;印刷数量;收费(2)增加 (3)1 50018.解:(1)由题意得m -2≠0,解得m ≠2.(2)由题意得|m |-2=0,且m -2≠0,解得m =-2. 19.解:(1)因为一次函数y =kx -3的图象经过点M (-2,1),所以-2k -3=1,解得k =-2,所以这个一次函数的表达式为y =-2x -3. (2)当x =2时,y =-2×2-3=-7, 所以点(2,-7)在该函数的图象上. 20.解:(1)函数图象如图所示.(2)因为一次函数y =-2x +3的图象与两坐标轴交于点(32,0)和(0,3), 所以一次函数y =-2x +3的图象与两坐标轴围成的三角形的面积=12×32×3=94.21.解:(1)(3,0);(0,6);3 5(2)S △AOB =12×3×6=9. (3)存在.设点C 的坐标为(t ,-2t +6), 因为△AOC 的面积等于△AOB 的面积, 所以12×3×|-2t +6|=9,解得t 1=6,t 2=0(与点B 重合,舍去), 所以点C 的坐标为(6,-6).22.解:(1)因为y 1=k 1x +b 的图象过点(0,3 000),所以b =3 000,又因为每销售一件商品另外获得15元的提成, 所以k 1=15,所以y 1=15x +3 000, 因为y 2=k 2x +b 的图象过点(100,3 000), 由图象可得b =0,所以100k 2=3 000,解得k 2=30, 所以y 2=30x ,所以y 1中b 的实际意义为底薪为3 000元,y 2中b 的实际意义为底薪为0元.(2)⎩⎨⎧y =15x +3 000,y =30x ,解得⎩⎨⎧x =200,y =6 000.所以F (200,6 000),所以F 点的实际意义是当销售200件商品时,两种薪酬计算方式所得薪酬相等,为6 000元.23.解:(1)当y =0时,12x +3=0,解得x =-6,则A 点坐标为(-6,0);当x =0时,y =12x +3=3,则B 点坐标为(0,3). (2)将B 点坐标(0,3)代入一次函数y =-x +b ,得b =3, 所以直线BC 的表达式为y =-x +3,当y =0时,-x +3=0,解得x =3,则C 点坐标为(3,0). (3)存在,设点P (x ,12x +3),则Q (x ,-x +3), 所以PQ =|12x +3-(-x +3)|=|32x |.因为B 点坐标为(0,3),C 点坐标为(3,0), 所以OB =OC =3,所以BC =32, 因为PQ =BC ,所以|32x |=32, 解得x =22或x =-22,所以点P 的坐标为(22,2+3)或(-22,-2+3).。
北师大版八年级上册数学第4章 《一次函数》 单元测试卷(含答案)
北师大版八年级上册数学第4章《一次函数》单元测试卷时间:90分钟满分:100分学校:_____班级:_____姓名:_____得分:______一.选择题(每题3分,共30分)1.小颖站在离家不远的公交车站等车,下列各图中能够最好地刻画等车这段时间小颖离家距离与时间关系的是()A.B.C.D.2.下列说法不正确的是()A.当k≠0时,y=是正比例函数B.如果y=,那么y与x2成正比例C.如果y=(n+2)x+n2﹣4是正比例函数.那么n=±2D.y=的定义域是一切实数.3.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1 B.﹣≤b≤1 C.﹣≤b≤D.﹣1≤b≤4.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.5.已知函数,当y=6时,x的值是()A.B.C.D.6.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()用电量x(千瓦时) 1 2 3 4 …应交电费y(元)0.55 1.1 1.65 2.2 …A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.当交电费20.5元时,用电量为37千瓦时D.若用电量为8千瓦时,则应交电费4.4元7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.1008.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=19.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④10.小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;②他步行的速度是100m/min;③他在校车站台等了6min;④校车运行的速度是200m/min;其中正确的个数是()个.A.1 B.2 C.3 D.4二.填空题(每题4分,共20分)11.在函数y=中,自变量x的取值范围是.12.如果A(1,2),B(2,4),P(4,m)三点在同一直线上,则m=.13.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C 在第二象限,若BC=OC=OA,则点C的坐标为.14.已知直线y=mx﹣1上有一点(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形面积为.15.如图,在平面直角坐标系中,点A的坐标是(0,2),点B的坐标是(2,0),连结AB,点P是线段AB上的一个动点(包括两端点),直线y=﹣x上有一动点Q,连结OP,PQ,已知△OPQ的面积为,则点Q的坐标为.三.解答题(共50分)16.已知关于x的正比例函数y=(k﹣1)x+k+1,求这个正比例函数的解析式.17.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?18.定义:在平面直角坐标系中,一个图形向右平移1个单位再向下平移2个单位称为一个跳步.如:点P(1,2)一个跳步后对应点P'(2,0).已知点A(﹣1,4),B(2,3).(1)求点A,B经过1个跳步后的对应点A',B'的坐标.(2)求直线AB经过一个跳步后对应直线的函数表达式.19.在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y(米)与施工时间x(时)之间关系的部分图象.请解答下列问题:(1)求乙队在2≤x≤6的时段内,y与x之间的函数关系式;(2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到完工所铺设的彩色道砖的长度为多少米?20.如图,直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB的上的一点,若将△ABM沿M折叠,点B恰好落在x轴上的点B′处.(1)求A、B两点的坐标;(2)求直线AM的表达式;(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰三角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵小明站在离家不远的公共汽车站等车,∴这段时间离家距离不随时间的变化而变化,故选:A.2.解:A、当k≠0时,y=是正比例函数,故本选项错误;B、如果y=,那么y与x2成正比例,故本选项错误;C、如果y=(n+2)x+n2﹣4是正比例函数.那么n≠﹣2,故本选项正确;D、由已知函数关系式得到:y=|x﹣1|,故其定义域是一切实数,故本选项错误.故选:C.3.解:直线y=x+b经过点B时,将B(3,1)代入直线中,可得+b=1,解得b=﹣;直线y=x+b经过点A时:将A(1,1)代入直线中,可得+b=1,解得b=;直线y=x+b经过点C时:将C(2,2)代入直线中,可得1+b=2,解得b=1.故b的取值范围是﹣≤b≤1.故选:B.4.解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.5.解:∵函数y=,∴当x<2时,x2+1=6,得x1=﹣,x2=(不合题意,舍去),当x≥2时,=6,得x=(不合题意,舍去),故当y=6时,x的值是﹣,故选:A.6.解:由图表可知:应交电费与用电量间的关系为y=0.55x,对于这个函数关系,x、y都是变量,x是自变量,y是x的函数.所以选项A正确;根据图表可知,用电量每增加1千瓦时,电费增加0.55元,选项B正确;当y=20.5元时,x=≈37.3(千瓦时),故选项C错误;当x=8千瓦时,y=0.55×8=4.4(元),故选项D正确.故选:C.7.解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA==8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.8.解:A.图象经过原点,错误;B.y随x的增大而减小,错误;C、图象经过第二、四象限,正确;D.当x=时,y=﹣1,错误;故选:C.9.解:由图象可知A、B两城市之间的距离为300km,小带行驶的时间为5小时,而小路是在甲出发1小时后出发的,且用时3小时,即比早小带到1小时,∴①②都正确;设小带车离开A 城的距离y 与t 的关系式为y 小带=kt , 把(5,300)代入可求得k =60, ∴y 小带=60t ,设小路车离开A 城的距离y 与t 的关系式为y 小路=mt +n , 把(1,0)和(4,300)代入可得 ,解得:,∴y 小路=100t ﹣100,令y 小带=y 小路,可得:60t =100t ﹣100, 解得:t =2.5,即小带、小路两直线的交点横坐标为t =2.5,此时小路出发时间为1.5小时,即小路车出发1.5小时后追上小带车, ∴③不正确;令|y 小带﹣y 小路|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50, 当100﹣40t =50时,可解得t =, 当100﹣40t =﹣50时,可解得t =,又当t =时,y 小带=50,此时小路还没出发,当t =时,小路到达B 城,y 小带=250;综上可知当t 的值为 或或或时,两车相距50千米,∴④不正确; 故选:C .10.解:根据题意得:小明用了10分钟步行了1km 到校站台,即小明步行了1km到校车站台,①正确,1000÷10=100m/min,即他步行的速度是100m/min,②正确,小明在校车站台从第10min等到第16min,即他在校车站台等了6min,③正确,小明用了14min的时间坐校车,走了7km的路程,7000÷14=500m/min,即校车运行的速度是500m/min,④不正确,即正确的是①②③,故选:C.二.填空题(共5小题)11.解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.解:设直线AB的解析式为y=kx+b,把A(1,2),B(2,4)代入得到:,解得,∴直线AB的解析式为y=2x,把P(4,m)代入,可得m=4×2=8,故答案为:8.13.解:∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).14.解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.∴(1,±3),∴一次函数的解析式为:y=4x﹣1或y=﹣2x﹣1.当一次函数的解析式为y=4x﹣1时,与两坐标轴围成的三角形的面积为:××1=;当一次函数的解析式为y=﹣2x﹣1时,与两坐标轴围成的三角形的面积为:××1=.故答案为:或.15.解:方法一:∵点Q在直线y=﹣x上,∴设点Q的坐标为(m,﹣m).∵点A的坐标是(0,2),点B的坐标是(2,0),∴△AOB为等腰直角三角形,点O(0,0)到AB的距离h=OA=.设直线AB的解析式为y=kx+b,∵点A(0,2),点B(2,0)在直线AB上,∴有,解得.即直线AB的解析式为y=﹣x+2,∵直线y=﹣x+2与y=﹣x平行,∴点P到底OQ的距离为(平行线间距离处处相等).∵△OPQ的面积S=OQ•h=OQ=,△OPQ∴OQ=2.由两点间的距离公式可知OQ==2,解得:m=±,∴点Q的坐标为(,﹣)或(﹣,).故答案为:(,﹣)或(﹣,).方法二:当P点与A重合时,则△OPQ底OP为2,∵△OPQ的面积为,∴△OPQ的高为,即点Q的横坐标为﹣,∵点Q在直线y=﹣x上,∴点Q的坐标为(﹣,);当P点与B重合时,同理可求出点Q的坐标为(,﹣).综上即可得出点Q的坐标为(,﹣)或(﹣,).三.解答题(共5小题)16.解:由题意得:k+1=0解得:k=﹣1,∴k﹣1=﹣2,∴这个正比例函数的解析式为y=﹣2x.17.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.18.解:(1)点A(﹣1,4)经过1个跳步后对应点A'(0,2),点B(2,3)经过1个跳步后对应点B'(3,1).(2)设直线AB经过一个跳步后对应直线A'B'的函数表达式为y=kx+b,由题意得:,∴,b=2.∴直线AB经过一个跳步后对应直线A'B'的函数表达式为.19.解:(1)设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=kx+b,由图可知,函数图象过点(2,30),(6,50),∴,解得,∴y=5x+20;(2)由图可知,甲队速度是:60÷6=10(米/时),设甲队从开始到完工所铺设彩色道砖的长度为z米,依题意,得=,解得z=110,答:甲队从开始到完工所铺设彩色道砖的长度为110米.20.解:(1)当x=0时,y=8,∴B(0,8),当y=0时,﹣x+8=0,x=6,∴A(6,0);(2)在Rt △AOB 中,∠AOB =90°,OA =6,OB =8,∴AB =10,由折叠得:AB =AB '=10,∴OB '=10﹣6=4,设OM =a ,则BM =B 'M =8﹣a ,由勾股定理得:a 2+42=(8﹣a )2,a =3,∴M (0,3),设AM :y =kx +b ,则,解得:,∴直线AM 的解析式为:y =﹣x +3;(3)在x 轴上存在点P ,使得以点P 、M 、B ′为顶点的三角形是等腰二角形,如图∵M (0,3),B ′(﹣4,0),∴B ′M =5,当PB ′=B ′M 时,P 1(﹣9,0),P 2(1,0);当B ′M =PM 时,P 3(4,0),当PB ′=PM 时,作BM 的垂直平分线,交x 轴于P 4,交B ′M 与Q ,连接MP 4, 设OP 4=m ,则P 4M =P 4B ′=4﹣m ,∵PM 2=OP 2+PM 2,∴(4﹣m )2=m 2+32解得m=,∴P(﹣,0),4综上,P点的坐标为(﹣9,0)或(1,0)或(4,0)或(﹣,0).。
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间t C.某班学生的身高y与学生的学号x D.一个正数的平方根与这个数2.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x3.【教材P88习题T4改编】正比例函数y=x的图象向上平移2个单位长度,所得函数为( )A.y=x+2 B.y=x-2 C.y=2x D.y=x 24.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3B.x=-3C.x=4D.x=-45.已知点P(a,-3)在一次函数y=2x+9的图象上,则a的值为( ) A.-3 B.-6 C.15 D.36.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.【教材P98复习题T3变式】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )A.x与y都是变量,且x是自变量B.弹簧不挂物体时的长度为10 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg,弹簧长度为14.5 cm8.若直线y=-3x+m与两坐标轴所围成的三角形的面积是6,则m的值为( ) A.6 B.-6 C.±6 D.±39.【教材P99复习题T8变式】已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是( )10.【2020·铜仁】如图,在长方形ABCD中,AB=3,BC=4,动点P沿折线BCD 从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x 之间的函数关系的图象大致是( )二、填空题(每题3分,共24分)11.【2021·黑龙江】在函数y =1x -5中,自变量x 的取值范围是__________.12.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________. 13.直线y =3x +1与y 轴的交点坐标是__________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +1上,则m 与n 的大小关系是__________.15.拖拉机油箱中有54 L 油,拖拉机工作时,每小时平均耗油6 L ,则油箱里剩下的油量Q (L)与拖拉机的工作时间t (h)之间的函数关系式是________________(写出自变量的取值范围).16.【教材P 90习题T 2改编】一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是________.17.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是____________.(第17题) (第18题)18.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法:①两人出发1小时后相遇;②赵明阳跑步的速度为8 km/h;③王浩月到达目的地时两人相距10 km;④王浩月比赵明阳提前1.5 h到目的地.其中错误的序号是________.三、解答题(每题11分,共66分)19.已知y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.21.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值,(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C的坐标.22.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.23.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y (元)与通信时间x (分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元; (2)分别求出①②两种收费方式中,收费金额y (元)与通信时间x (分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.参考答案一、1.D 2.B 3.A 4.D 5.B 6.C 7.D 8.C 9.B 10.D二、11.x ≠5 12.1 13.(0,1) 14.m <n15.Q =54-6t (0≤t ≤9) 16.14 17.y =-x +3 18.③三、19.解:(1)设y -2=kx (k ≠0).把x =2,y =4代入,得k =1.故y 与x 之间的函数关系式是y =x +2. (2)因为点M (m ,3)在这个函数的图象上, 所以3=m +2,解得m =1.所以点M 的坐标为(1,3).20.解:(1)因为一次函数y =(m -3)x +m -8中,y 随x 的增大而增大,所以m -3>0. 所以m >3.(2)因为这个一次函数是正比例函数, 所以m -8=0,即m =8. (3)答案不唯一,如m =4.21.解:将A (2,0)的坐标代入y =2x +b ,得2×2+b =0,解得b =-4.(2)因为S △AOC =4,点A (2,0), 所以OA =2.所以12OA ·y c =4,解得y c =4.把y =4代入y =2x -4,得2x -4=4, 解得x =4.所以点C 的坐标为(4,4).22.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3).把点P (2,3)的坐标代入y =kx +5,得2k +5=3, 解得k =-1.(2)由(1)知一次函数表达式为y =-x +5. 把x =0代入y =-x +5,得y =5,所以点B的坐标为(0,5).所以S△POB=12×5×2=5.23.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.。
北师大版八年级上册数学第四章一次函数单元测试卷(Word版,含答案)
第 1 页 共 9 页北师大版八年级上册数学第四章一次函数单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是( )A .甲、乙两种物质的溶解度均随着温度的升高而增大B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等2.举世瞩目的2022北京冬季奥运会由北京市和河北省张家口市联合举办,以下表述能够准确表示张家口市地理位置的是( ).A .位于东经114.8°,北纬40.8°B .位于中国境内河北省C .西边和西南边与山西省接壤D .距离北京市180千米3.如图,点、、A B C 都在方格纸的格点上,若点A 的坐标为(0,2),点B 的坐标为(2,0),则点C 的坐标是( )第 2 页 共 9 页 A .(2,2) B .(1,2) C .(1,1) D .(2,1)4.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定5.下列函数关系式中,自变量x 的取值范围错误的是( )A .y =2x 2中,x 为全体实数B .yx ≠﹣1 C .yx =0 D .yx >﹣7 6.下列变化过程中,y 是x 的正比例函数是( )A .某村共有5210m 耕地,该村人均占有耕地y (单位:2m )随该村人数x (单位:人)的变化而变化B .一天内,温岭市气温y (单位:℃)随时间x (单位:时)的变化而变化C .汽车油箱内的存油y (单位:升)随行驶时间x (单位:时)的变化而变化D .某人一年总收入y (单位:元)随年内平均月收入x (单位:元)的变化而变化 7.若2x =是关于x 的方程()00,0mx n m n +=≠>的解,则一次函数()1y m x n =---的图象与x 轴的交点坐标是( ) A .()2,0 B .()3,0 C .()0,2 D .()0,38.某个函数的图象由线段AB 和线段BC 组成,如图,其中()0,2A ,()2,1B ,()5,3C ,点()11,M x y ,()22,N x y 是这两条线段上的点,则正确的结论是( )。
北师大版八年级上册数学第四章一次函数单元测试(附答案)
八年级上册数学第四章单元测试一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.根据函数的定义,下列图象中表示函数的是()2.在函数y=1x-2-x+2中,自变量x的取值范围是()A.x>-2 B.x≥-2C.x>-2且x≠2 D.x≥-2且x≠23.已知某一次函数的图象与直线y=-2x+1平行,且过点(2,8),那么此一次函数的表达式为()A.y=-2x-2 B.y=-2x+12C.y=-2x-6 D.y=-2x-124.对于一次函数y=-2x+4,下列结论正确的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(-2,0)C.函数的图象向上平移4个单位长度后得到y=-2x的图象D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y25.两直线y1=kx+b和y2=bx+k(k≠0且b≠0)在同一平面直角坐标系内的图象位置可能是()6.一次函数y=(m-1)x+m的图象必过一定点,此定点的坐标为() A.(-1,1) B.(1,1)C.(0,1) D.(1,-1)7.爷爷在离家2 900 m的公园锻炼后回家,离开公园走了20 min后,爷爷停下来与朋友聊天10 min ,接着又走了15 min 回到家中.下列图象中表示爷爷离家的距离y (m)与爷爷离开公园的时间x (min)之间的函数关系的是( )8.等腰三角形的周长是40 cm ,其腰长y (cm)与底边长x (cm)的函数表达式正确的是( )A .y =-2x +40(10<x <20)B .y =-0.5x +20(10<x <20) C. y =-0.5x +20(0<x <20) D .y =-2x +40(0<x <20)9.某快递公司每天上午9:00-10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当甲、乙两仓库快件数量相同时,此时的时刻为( )A .9:15B .9:20C .9:25D .9:3010.8个边长为1的正方形如图摆放在平面直角坐标系中,若经过原点的一条直线l 将这8个正方形分成面积相等的两部分,则该直线l 的函数表达式为( ) A .y =35x B .y =34x C .y =910x D .y =x(第9题) (第10题) (第12题)11.已知过点(2,-3)的直线y =ax +b (a ≠0)不经过第一象限,设s =a +2b ,则s的取值范围是( )A .-5≤s ≤-32B .-6<s ≤-32 C .-6≤s ≤-32 D .-7<s ≤-3212.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80 km/h 的速度行驶1 h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1 h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km)与乙车行驶时间x (h)之间的函数关系如图所示.下列说法:①乙车的速度是120 km/h ;②m =160;③点H 的坐标是(7,80);④n =7.4. 其中说法正确的有( )A .1个B .2 个C .3个D .4个 二、填空题:本大题共6小题,每小题4分,共24分. 13.如果函数y =(m -1)x m2-3是正比例函数,且y 的值随x 值的增大而增大,那么m 的值是________.14.一次函数y =kx +b 的图象如图所示,当y <5时,x 的取值范围是____________.(第14题) (第18题)15.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是________.16.2021年5月15日7时18分,“天问一号”火星探测器成功在火星着陆,开启了中国人自主探测火星之旅.已知华氏温度f (℉)与摄氏温度c (℃)之间的关系满足下表:c /℃ … -10 0 10 20 30 … f /℉…1432506886…____________℉.17.某直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,则该直线对应的函数表达式为__________________.18.如图①所示,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y .如果y 关于x 的函数图象如图②所示,那么△ABC的面积是________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.已知y与x-1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)求当x=-5时y的值.20.拖拉机开始工作时,油箱中有油40 L,如果工作1 h耗油4 L,求:(1)油箱中的余油量Q(L)与工作时间t(h)的函数关系式及自变量的取值范围;(2)当工作5 h时油箱的余油量.四、解答题(二):本大题共2小题,每小题10分,共20分.21.如图,在平面直角坐标系中,直线l经过原点O和点A(6,4),经过点A的另一条直线交x 轴于点B (12,0). (1)求直线l 对应的函数表达式;(2)若直线l 上有一点P ,使得S △ABP =13S △AOB ,求出点P 的坐标.22.甲、乙两车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2 h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为y甲(km),y 乙(km),甲车行驶的时间为x (h),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题. (1)乙车休息了________h ;(2)已知乙车与甲车相遇后y 乙仍是x 的正比例函数,求乙车与甲车相遇后y 乙与x 的函数表达式,并写出自变量x 的取值范围; (3)当甲、乙两车相距40 km 时,求x 值.五、解答题(三):本大题共2小题,每小题12分,共24分.23.某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x (件),销售人员的薪酬为y (元),原有的薪酬y1(元)计算方式采用的是底薪+提成,且y1=k1x+b1,已知每销售一件商品另外获得15元的提成.修改后的薪酬y2(元)计算方式为y2=k2x+b2.根据图象回答下列问题:(1)分别求y1、y2与x之间的函数表达式,并说明b1和b2的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)请根据函数图象判断哪种薪酬计算方式更适合销售人员.24.如图,直线y=-2x+8分别与x轴,y轴交于A,B两点,点C在线段AB 上,过点C作CD⊥x轴于点D,CD=2OD,点E在线段OB上,且AE=BE.(1)点C的坐标为________,点E的坐标为________;(2)若直线m经过点E,且将△AOB分成面积比为1:2的两部分,求直线m的函数表达式;(3)若点P在x轴上运动,当PC+PE取最小值时,求点P的坐标及PC+PE的最小值.答案一、1.C2.D3.B4.A5.A6.A点拨:将一次函数y=(m-1)x+m变形为m(x+1)-x-y=0,令x+1=0,则-x-y=0,解得x=-1,y=1,故一次函数y=(m-1)x+m的图象必过定点(-1,1).7.B8.C点拨:根据三角形周长的定义可得x+2y=40,所以y=-0.5x+20.又由三角形三边关系,得x<2y,x>y-y,所以x<2(-0.5x+20),x>0,即x<20,x>0,所以0<x<20.9.B10.C11.B点拨:因为直线y=ax+b(a≠0)不经过第一象限,所以a<0,b≤0.因为直线y=ax+b(a≠0)过点(2,-3),所以2a+b=-3,所以a=-b-32,b=-2a-3,所以s=a+2b=-b-32+2b=32b-32≤-32,s=a+2b=a+2(-2a-3)=-3a-6>-6,所以s的取值范围是-6<s≤-32.故选B.12.D二、13.214.x>015.m<n16.-67点拨:由表中数据可得,f=32+18×c10=32+1.8c,当c=-55时,f=32+1.8×(-55)=-67.所以换算成华氏温度约为-67℉.17.y =12x +2或y =-12x -2 18.10三、19.解:(1)设y =k (x -1),把x =3,y =4代入,得(3-1)k =4, 解得k =2,所以y =2(x -1),即y =2x -2. (2)当x =-5时,y =2×(-5)-2=-12.20.解:(1)由题意可知Q =40-4t (0≤t ≤10).(2)把t =5代入Q =40-4t , 得Q =40-4×5=20.所以当工作5 h 时油箱的余油量为20 L . 四、21.解:(1)设直线l 对应的函数表达式为y =kx ,把(6,4)代入,得4=6k , 解得k =23.所以直线l 对应的函数表达式为y =23x .(2)因为A (6,4),B (12,0), 所以S △AOB =12×12×4=24.当S △ABP =13S △AOB =8时,分两种情况, 设点P 的坐标为⎝ ⎛⎭⎪⎫x ,23x .①如图①,当点P 在线段OA 上时,连接BP , 则S △BOP =S △AOB -S △ABP =24-8=16, 即12×12×23x =16. 解得x =4, 则P ⎝ ⎛⎭⎪⎫4,83;②如图②,当点P 在线段OA 的延长线上时,连接BP ,则S △BOP =S △AOB +S △ABP =24+8=32, 即12×12×23x =32. 解得x =8, 则P ⎝ ⎛⎭⎪⎫8,163.故点P 的坐标为⎝ ⎛⎭⎪⎫4,83或⎝ ⎛⎭⎪⎫8,163.22.解:(1)0.5(2)设乙车与甲车相遇后y 乙与x 的函数表达式为y 乙=k 2x ,把(5,400)代入,得5k 2=400. 解得k 2=80.所以y 乙=80x (2.5≤x ≤5).(3)设乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=k 3x ,把(2,200)代入,得2k 3=200. 解得k 3=100.所以乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=100x (0≤x ≤2). 设y 甲与x 的函数表达式为y 甲=k 1x +b 1. 把(0,400),(5,0)代入, 得b 1=400,5k 1+b 1=0, 解得k 1=-80,所以y 甲=-80x +400(0≤x ≤5). 当0≤x ≤2时,y 甲-y 乙=40, 即-80x +400-100x =40. 解得x =2.当2.5≤x ≤5时,y 乙-y 甲=40,即80x-(-80x+400)=40.解得x=11 4.所以当甲、乙两车相距40 km时,x=2或x=11 4.五、23.解:(1)因为y1=k1x+b1的图象过点(0,3 000),所以b1=3 000,又因为每销售一件商品另外获得15元的提成,所以k1=15,所以y1=15x+3 000.因为y2=k2x+b2的图象过点(100,3 000),(0,0),所以b2=0,100k2=3 000,解得k2=30,所以y2=30x.所以b1的实际意义是底薪为3 000元,b2的实际意义是底薪为0元.(2)令y1=y2,即15x+3 000=30x,解得x=200,所以y1=y2=6 000.所以F(200,6 000),所以交点F的实际意义是当销售人员一个月的销售量为200件时,销售人员通过两种薪酬计算方式所得的薪酬相等,为6 000元.(3)结合函数图象可知,当0<x<200时,原有的薪酬计算方式更适合销售人员;当x=200时,两种薪酬计算方式对销售人员一样;当x>200时,修改后的薪酬计算方式更适合销售人员.24.解:(1)(2,4);(0,3)(2)设直线m的函数表达式为y=kx+3,根据k值的不同,可分为两种情况讨论:①当k>0时,如图①,设直线m交AB于点F,过点F作FH⊥y轴于点H.当S△BEF=11+2S△AOB时,易知B (0,8),E (0,3),所以BE =5, 所以5FH 2=13×4×82,解得FH =3215.将x =3215代入y =-2x +8,得y =5615.将点F ⎝ ⎛⎭⎪⎫3215,5615的坐标代入y =kx +3, 得k =1132,所以直线m 的函数表达式为y =1132x +3;②当k <0时,如图②,设直线m 交OA 于点N .当S △OEN =11+2S △AOB时,易知OE =3, 所以3ON 2=13×4×82,解得ON =329.将点N ⎝ ⎛⎭⎪⎫329,0的坐标代入y =kx +3, 得k =-2732,所以直线m 的函数表达式为y =-2732x +3.综上,直线m 的函数表达式为y =1132x +3或y =-2732x +3.(3)作点E 关于x 轴的对称点E ′,连接 CE ′交x 轴于点P ,此时PC +PE取最小值.易知点E ′的坐标为(0,-3), 设直线CE ′的函数表达式为y =nx -3,将点C (2,4)的坐标代入,得n =72,所以y =72x -3.将y =0代入y =72x -3,得x =67,所以点P 的坐标为⎝ ⎛⎭⎪⎫67,0, 作E ′G ⊥CD 交CD 延长线于点G ,易知E ′G =OD =2,CG =7,所以PC +PE 的最小值=CE ′=22+72=53.。
八年级数学上册《第四章 一次函数》单元测试卷及答案-北师大版
八年级数学上册《第四章一次函数》单元测试卷及答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共有10个小题,每小题3分,共30分)1.函数y=x-1的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.自行车发生故障时离家距离为1000米B.学校离家的距离为2000米C .到达学校时共用时间20分钟D .修车时间为15分钟一次函数2y x m =-+的图象经过点P (2-,3),且与x 轴、y 轴分别交于点A 、B则AOB ∆的面积是( )A .12 B .14 C .4 D .85.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过() A .第一象限 B .第二象限 C .第三象限 D .第四象限6.一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( )A .x =2B .y =2C .x =-1D .y =-17.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是()A .﹣5B .32C .52 D .78.如图,直线AB 对应的函数表达式是( )A .332y x =-+B .332y x =+C .233y x =-+D .233y x =+ 9.同一平面直角坐标系中,函数y ax b =+与y bx a =+的图象大致是( )A. B. C. D.10 .如图,一辆汽车和一辆摩托车分别从A ,B 两地去同一城市l 1 ,l 2分别表示汽车、摩托车离A 地的距离s (km )随时间t (h )变化的图象,则下列结论:①摩托车比汽车晚到1 h ;②A ,B 两地的距离为20 km ;③摩托车的速度为45 km/h ,汽车的速度为60 km/h ;④汽车出发1 h 后与摩托车相遇,此时距离B 地40 km ;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有( )A .2个B .3个C .4个D .5个二、填空题(本大题共有8个小题,每小题3分,共24分)11.若函数1(2)n y m x n -=-+是一次函数,则m ,n 应满足的条件是_____________已知油箱中有油25升,每小时耗油5升则剩油量P (升)与耗油时间t (小时)之间的函数关系式为________13.已知一次函数21y x =+的图像经过111(,)P x y ,222(,)Px y 两点 若12x x <,则1y 2y .(填”>”,”<”或”=”)14.一次函数y =(k -2)x +b 的图象如图所示,则k 的取值范围是_______一次函数y kx b =+满足0kb <,且y 随x 的增大而减小则此函数的图像一定不经过_________如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O ′A ′B ′点A 的对应点A ′落在直线34y x =-上,则点B 与其对应点B ′间的距离为 .甲、乙两工程队分别同时开挖两条600米长的管道所挖管道长度y (米)与挖掘时间x (天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有 .(在横线上填写正确的序号)18.正方形111A B C O 、2221A B C C 和3332A B C C …按如图所示的方式放置.点1A 、2A 和3A …和点1C 、2C 和3C …分别在直线1y x =+和x 轴上,则点n B 的坐标是 .(n 为正整数)三、解答题(本大题共有7个小题,共46分)19.已知y 是23x +的正比例函数,且当1x =时5y =-.(1)求y 与x 的函数关系式.(2)若点(,2)a 在该函数的图象上,求a 的值.20.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y (元)与租书时间x (天)之间的关系如下图所示.(1)分别写出用租书卡和会员卡租书金额y (元)与租书时间x (天)之间的关系式.(2)两种租书方式每天的收费是多少元?(x <100)21.如图,直线AC 与x 轴的负半轴交于点C ,与y 轴交于点A .直线AB 与x 轴交于点()2,0B ,与y 轴交于点()0,4A .(1)求直线AB 的函数表达式;(2)若7ABC S =△,求点C 的坐标.22.如图,已知一次函数y kx b =+ 的图象经过A (-2,-1),B (1,3)两点并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.23 .在一次蜡烛燃烧实验中乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间的关系如图所示请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是__________,从点燃到燃尽所用的时间分别是________;(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;(3)燃烧多长时间,甲、乙两根蜡烛的高度相同?(不考虑都燃尽时的情况)24.如图,已知直线y=-2x+6与x轴交于点A,与y轴交于点B.(1)点A的坐标为________,点B的坐标为________.(2)求△AOB的面积.(3)直线AB上是否存在一点C(点C与点B不重合),使△AOC的面积等于△AOB的面积?若存在,求出点C的坐标;若不存在,请说明理由.如图,在平面直角坐标系中,过点B(6,0)的直线AB与y轴相交于点C(0,6)与直线OA相交于点A且点A的纵坐标为2,动点P沿路线O A C→→运动.(1)求直线BC的解析式;(2)在y轴上找一点M,使得△MAB的周长最小,则点M的坐标为______;(请直接写出结果)(3)当△OPC的面积是△OAC的面积的14时,求出这时P的坐标.参考答案一、选择题(本大题共有10个小题,每小题3分,共30分)1D 2A 3D 4B 5C 6C 7C 8A 9B 10B二、填空题(本大题共有8个小题,每小题3分,共24分)11.【答案】m ≠2且n=2 12.【答案】B .P =25-5t 13.【答案】< 14.【答案】k <215.【答案】第三象限 16.【答案】8 17.【答案】①②④ 18.【答案】1(21,2)n n --四、解答题(本大题共有7个小题,共46分)19.解:(1)设(23)y k x =+.∵当1x =时5y =-∴5(213)k -=⨯+∴1k =-∴23y x =--.(2)∵点(,2)a 在23y x =--的图象上∴232a --=.∴ 2.5a =-.20.解:(1)观察图象可知,用租书卡设其函数关系式为y=kx∵函数图象经过点(0,0)和(100,50)∴50=k •100解得k=12,即:函数关系式为y=12x ;用会员卡租书可设其函数关系式为y=ax+b∵图象经过点(0,20)和(100,50)∴2010050b a b =⎧⎨+=⎩解得:31020a b ⎧=⎪⎨⎪=⎩ 即:函数关系式为y=310x+20; (2)用租书卡的方式租书,每天租书的收费为50÷100=0.5元; 用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3元21.解:(1)设直线AB 的函数表达式为()0y kx b k =+≠ 因为直线AB 经过()0,4A 和()2,0B所以420b k b =⎧⎨+=⎩,所以24k b =-⎧⎨=⎩ 所以直线AB 的函数表达式为24y x =-+.(2)由点C 在x 轴的负半轴上,可设点C 的坐标为(),0a 则OC a a ==-因为()0,4A ,()2,0B 所以4OA =,OB=2因为7ABC S =△,所以172BC OA ⋅= 所以72BC = 所以32OC BC OB =-=,即32a -=,所以32a =- 所以点C 的坐标为3,02⎛⎫- ⎪⎝⎭.22.解:(1)把A (-2,-1),B (1,3)代入y =kx +b ,得 213k b k b -+=-⎧⎨+=⎩解得4353k b ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数解析式为4533y x =+; (2)把x =0代入4533y x =+得53y = 所以D 点坐标为(0,53) 所以△AOB 的面积=S △AOD +S △BOD 1515=2+12323⨯⨯⨯⨯5=2.23 .解:(1)30 cm ,25 cm 2 h ,2.5 h(2)设甲蜡烛燃烧时,y 甲与x 之间的函数关系式为y 甲=k 1x+b 1. 由图可知,函数的图象过点(0,30),(2,0)则b 1=30,2k 1+b 1=0,将b 1=30代入2k1+b 1=0解得k 1=-15.所以y 甲=-15x +30;设乙蜡烛燃烧时,y 乙与x 之间的函数关系式为y 乙=k2x+b2. 由图可知,函数的图象过点(0,25),(2.5,0)则b 2=25,2.5k2+b 2=0,将b2=25代入2.5k2+b2=0解得k2=-10.所以y乙=-10x+25.(3)由题意,得-15x+30=-10x+25,解得x=1,即当蜡烛燃烧1 h,甲、乙两根蜡烛的高度相同.24.解:(1)当y=0时,-2x+6=0解得x=3,则A点的坐标为(3,0);当x=0时,y=-2x+6=6,则B点的坐标为(0,6).(2)S△AOB=12×3×6=9.(3)存在.理由如下:设点C的坐标为(t,-2t+6). 因为△AOC的面积等于△AOB的面积所以12×3×|-2t+6|=9解得t1=6,t2=0(与点B重合,舍去). 所以点C的坐标为(6,-6).25.解:(1)设直线BC的解析式是y=kx+b根据题意得:606bk b ⎧⎨+⎩==解得16k b -⎧⎨⎩== 则直线BC 的解析式是:y=-x+6;(2)如图,作点B (6,0)关于y 轴的对称点B'∴B'(-6,0)连接AB'交y 轴于M ,此时MA+MB 最小,得到△MAB 的周长最小 设直线AB'的解析式为y=mx+n∵A (4,2)∴4260m n m n +⎧⎨-+⎩== ∴1565m n ⎧⎪⎪⎨⎪⎪⎩== ∴直线AB'的解析式为y=1655x + 令x=0∴y=65∴M (0,65) (3)设OA 的解析式是y=ax ,则4a=2解得:a=12则直线的解析式是:y=12x ①当P在OA上时∵当△OPC的面积是△OAC的面积的14时∴P的横坐标是14×4=1在y=12x中,当x=1时,y=12,则P的坐标是(1,12);②当P在AC上时∵△OPC的面积是△OAC的面积的1 4∴CP:AP=1:5∵A(4,2)∴在y=-x+6中,当x=1时,y=5,则P的坐标是(1,5)∴P的坐标是:P1(1,12)或P2(1,5).。
初中数学北师大版(2024)八年级上册 第四章 一次函数单元测试(含简单答案)
第四章一次函数一、单选题1.下列曲线中,表示y是x的函数的是()A.B.C.D.2.关于一次函数y=−2x+3,下列结论正确的是( )A.图象过点(1,−1)B.其图象可由y=−2x的图象向上平移3个单位长度得到C.y随x的增大而增大D.图象经过一、二、三象限3.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2B.常量是2C.用C表示r为CD.变量是C和r2π4.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是( )A.B.C.D.5.如果M(−1,y1),N(2,y2)是正比例函数y=kx的图象上的两点,且y1>y2.那么符合题意的k的值可能是()A.1B.1C.3D.−236.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A.42B.10C.42+4D.127.函数y=|kx|(k≠0)的图象可能是()A.B.C.D.8.我们把三个数的中位数记作Z{a,b,c}.例如Z{1,3,2}=2.函数y=|2x+b|的图象为C1,函数y=Z{x+1,-x+1,3}的图象为C2.图象C1在图象C2的下方点的横坐标x满足-3<x<1,则b的取值范围为()A.0<b<3B.b>3或b<0C.0≤b≤3D.1<b<39.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/h B.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为65km/h D.该记者在出发后5h到达采访地10.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个二、填空题11.函数y=−3x+6的图象与x轴.y轴围成的三角形面积为.12.如图,购买一种商品,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次性购买50千克这种商品要付款元.13.直线y=kx+b平行于直线y=−2x,且与y轴交于点(0,3),则此函数的解析式y=.14.已知点A(2,y1),B(3,y2)在直线y=﹣3x+1上,则y1与y2的大小关系为:y1y2.(填“>”,“=”或“<”)15.若y=(m−1)x|m|+2是关于x的一次函数,则m等于.16.已知一次函数y1=kx﹣2k(k是常数)和y2=﹣x+1.若无论x取何值,总有y1>y2,则k的值是.17.杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个小时两车第一次相遇.两车之间的距离y千米运行过程中,两列车均保持匀速行驶,经过103与行驶时间x小时之间的部分函数关系如图所示,当两车第二次相遇时,该旅游专列共行驶了千米.18.如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=−x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x 的图象于点A2,交y=−x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2⋯依此类推,按照图中反映的规律,第2020个正方形的边长是.三、解答题19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了表格.距离地面高度(千米)12345温度(℃)201482−4−10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答;(1)如果用ℎ表示距离地面的高度,用t表示温度,写出t与ℎ的关系式;(2)你能计算出距离地面16千米的高空温度是多少吗?x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的20.已知一次函数y=﹣12图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP 的面积关于x的函数关系式,并写出相应x的取值范围.21.已知直线y=-4x+4与x轴和y轴分别交于B、A两点,另一直线经过点B和点D3(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.22.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?23.如图1,某地铁车站在出入口设有上、下行自动扶梯和步行楼梯,甲、乙两人从车站入口同时下行去乘坐地铁,甲乘自动扶梯,乙走步行楼梯,乙离地铁进站入口地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−15x+6,甲离地铁进站入口地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达地铁进站入口地面.24.已知直线y=kx+b可变形为:kx−y+b=0,则点P(x0, y0)到直线kx−y+b=0的距离d可用公式d=|kx0−y0+b|1+k2计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x−y+1=0,其中k=1,b=1.所以点P(-2,1)到直线y=x+1的距离为d=|kx0−y0+b|1+k2=|1×(−2)−1+1|1+12=22=2.根据以上材料求:(1)点P(2,-1)到直线y=2x−1的距离;(2)已知M为直线y=−x+2上的点,且M到直线y=2x−1的距离为35,求M的坐标;(3)已知线段y=kx+3(−1≤x≤2)上的点到直线y=x+1的最小距离为1,求k的值.25.如图,一次函数y=x+1的图象分别与x轴,y轴交于点B与点A,直线AC与x轴正半轴交于点C,且∠BAO=45°,OC=2OB.(1)求直线AC的函数表达式;(2)点D在直线AB上且不与点B重合,点E在直线AC上.若以A,D,E为顶点的三角形与△ABC全等,请直接写出点D的坐标(不必写解答过程);(3)已知平面内一点P(m,n),作点P关于直线AB的对称点P1,作P1关于y轴的对称点P2,若P2恰好落在直线AC上,则m,n应满足怎样的等量关系?说明理由.26.某企业准备为员工采购20000袋医用口罩.经市场调研,准备购买A,B,C三种型号的口罩,这三种型号口罩的价格如下表所示:型号A B C价格/(元/袋)303540已知购买B型号口罩的数量是A型号口罩的2倍,设购买A型号口罩x袋,该企业购买口罩的总费用为y元.(1)请求出y与x之间的函数表达式;(2)因为A型号口罩的数量严重不足,口罩生产厂家能提供的A型号口罩的数量不大于C型号口罩的数量,怎样购买能使该企业购买口罩的总费用最少?请求出费用最少的购买方案,并求出总费用的最小值.参考答案:1.D 2.B 3.B 4.B 5.D 6.B 7.C 8.C 9.D 10.A 11.612.42013.−2x +314.>15.−116.−117.25018.2×3201919.(1)t =20−6ℎ(ℎ≥0)(2)距离地面16千米的高空温度是−76℃20.(1)5;(3)当x >2时,△NAP 的面积S=52(x ﹣2);当x <2时,△NAP 的面积S=52(2﹣x ).21.(1)A (0,4),B (3,0);(3)C (14122,0).22.(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y 1=t+5 ;y 2=32t ;(4)2海里;23.(1)y =−310x +6;(2)甲先到地铁进站入口地面.24.(1)455;(2)M (6,-4)或M (-4,6);(3)k =−2+3或22x+125.(1)y=−12(2)点D的坐标为(−102,1−102)或(1,2)或(102,1+102);(3)2m+1=n,26.(1)y=−20x+800000(2)当购买A型号口罩5000袋,B型号口罩10000袋,C型号口罩5000袋时,该企业购买口罩的总费用最少,总费用的最小值为700000元。
北师大版八年级上册数学第四章《 一次函数》单元试卷(含答案)
北师大版八年级上册数学第四章《一次函数》单元试卷时间:100分钟满分:120分班级____________姓名____________成绩________________题号一二三总分得分一.选择题(本大题共12小题,共36分,每小题只有一个正确选项)1.已知水池的容量为50米3,每时灌水量为n米3,灌满水所需时间为t(时),那么t与n之间的函数关系式是()A.t=50n B. t=50-n C.nt50D.t=n+502.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶.下面是行驶路程s(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是().3.一次函数y=(k﹣2)x+k2﹣4的图象经过原点,则k的值为()A.2 B.﹣2 C.2或﹣2 D.34.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.23C.25D.75.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如上图所示,由图中给出的信息可知,营销人员没有销售时(最低工资)的收入是()A.310元B.300元C.290元D.280元B C DA收入(元)销售量(万件)1O130028006.已知一次函数y=kx+b的图象如图所示,则k、b的符号是()A.k<0,b<0B.k>0,b<0C.k<0,b>0D.k>0,b>07.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式为()A. y=2x+3B. y=x-3C. y=2x-3D. y=-x+38.如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.21B.21C.-2 D.29.小明用20元零花钱购买水果慰问老人,已知水果单价是每千克4元,设购买水果x千克用去的钱为y元,用图象表示y与x的函数关系,其中正确的是()A B C D10.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终赢得比赛,下列函数图象可以体现这一故事过程的是()s(路程)t(时间)s(路程)t(时间)s(路程)t(时间)s(路程)t(时间)A.B.C.D.O O OOOyxO O。
第四章 一次函数数学八年级上册-单元测试卷-北师大版(含答案)
第四章一次函数数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、直线如图所示,则下列关于直线的说法错误的是()A.直线一定经过点B.直线经过第一、二、三象限C.直线与坐标轴围成的三角形的面积为2D.直线与直线关于轴对称2、如图所示平面内,有一靠在墙面上的梯子AB(粗细忽略不计),因外界因素导致梯子底端A持续向右滑动,直至整架梯子完全滑落到地面(即B与O重合),设A向右滑动的距离为x(cm),梯子的中点M与墙角O之间的距离为y(cm),则在整个滑动过程中,y 与x的关系大致可表达为下列图象中的()A. B. C.D.3、如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y= 与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1B.1C.2D.44、一次函数y=ax+b的图象如图所示,则代数式∣a-b∣+∣a+b∣化简后的结果为( ).A.-2aB.2aC.-2bD.2b5、小明从家出发走了10分钟后到达了离家800米的书店买书,在书店停留了10分钟,然后用15分钟返回到家,下列图象能表示小明离家(米)与时间(分)之间关系的是()A. B.C.D.6、某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是()A.30吨B.31吨C.32吨D.33吨7、一次函数y=-5x+3的图象经过的象限是()A.一,二,三B.二,三,四C.一,二,四D.一,三,四8、生活中太阳能热水器已经慢慢普及使用.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒太阳时间的长短而变化,这个问题中因变量是()A.太阳光的强弱B.水的温度C.晒太阳的时间D.热水器9、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h10、函数y=中自变量x的取值范围是()A.x>4B.x≥4C.x≤4D.x≠411、八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y= xB.y= xC.y= xD.y=x12、在下列四个图形中,能作为y是x的函数的图象的是()A. B. C. D.13、A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶.如图,l1, l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系.根据图象得出的下列结论,正确个数是()①甲骑车速度为30km/小时,乙的速度为20km/小时;②l1的函数表达式为y=80﹣30x;③l2的函数表达式为y=20x;④小时后两人相遇.A.1个B.2个C.3个D.4个14、若正比例函数y=mx的图象经过(﹣1,﹣2),(m,b)两点,则b的值为()A.0B.﹣4C.4D.﹣1215、函数y= +2中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤1二、填空题(共10题,共计30分)16、直线y= x+ 与x轴的交点坐标为________.17、如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为________ .18、在函数y=中,自变量x的取值范围是________.19、直线y=2x-1沿y轴平移3个单位长度,平移后直线与x轴的交点坐标为________.20、直线y=2x-1与x轴交点坐标是________,与y轴交点坐标是________.21、当________时,是一次函数.22、如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为________.23、已知a、b、c均为正数,且满足,下列各点中①;②;③;④在正比例函数上的点是________.(填序号)24、李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x (千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是________升.25、如图,甲、乙两人以相同路线前往距离单位的培训中心参加学习,图中、分别表示甲、乙两人前往目的地所走的路程随时间(分)变化的函数图象,由图可知,乙每分钟比甲________(填“多”或“少”)走________ .三、解答题(共5题,共计25分)26、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.27、写出下列问题中的常量与变量:将一根长60厘米的铁丝折成一个矩形框架,矩形的长y用关于宽x的代数式表示为y=(60﹣2x).28、建立一次函数关系解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A 种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元.两校共购买了35棵树苗.若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.29、在一次实验中,小华把一根弹簧上端固定,在其下端悬挂物体,弹簧挂上物体后的长度l(cm)与所挂物体的质量m(kg)之间的关系如下表:所挂物体的质量m0 1 2 3 4 5(kg)弹簧的长度l15 18 21 24 27 30 (cm)观察表中的数据,回答下列问题:(1)用关系式表示出弹簧的长度l(cm)与所挂物体的质量m(kg)之间的关系.(2)当所挂物体质量为3kg时弹簧的长度为多少cm?没挂物体时呢?(3)如果在允许范围内,弹簧的长度为36cm时,所挂物体的质量应为多少kg?30、已知y=(k-3)x+ -9是关于x的正比例函数,求当x=-4时,y的值.参考答案一、单选题(共15题,共计45分)1、C2、A3、4、D5、D6、C7、C8、B9、C10、B11、C12、B13、14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
第四章 一次函数数学八年级上册-单元测试卷-北师大版(含答案)
第四章一次函数数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、下列函数:①y=-x;②y=2x;③y=-;④y=x2(x<0),y随x的增大而减小的函数有()A.1 个B.2 个C.3 个D.4 个2、设正比例函数y=mx的图象经过点A(m , 4),且y的值随x值的增大而减小,则m=()A.2B.-2C.4D.-43、若函数y=(k﹣1)x|k|+b+1是正比例函数,则k和b的值为()A.k=±1,b=﹣1B.k=±1,b=0C.k=1,b=﹣1D.k=﹣1,b=﹣14、小明和小亮在操场的同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间t(秒)之间的函数关系如图所示,下列四种说法:①小明的速度是4米/秒;②小亮出发100秒时到达了终点;③小明出发125秒时到达了终点;④小亮出发20秒时,小亮在小明前方10米.其中正确的说法为()A.①②③B.②③④C.①②④D.①②③④5、以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O相交,则b的取值范围是()A.0≤b<2B.﹣2C.﹣2 2D.﹣2<b<26、下列关系式中,不是的函数的是()A. B. C. D.7、已知A,B两地相距12km,甲、乙两人沿同一条公路分别从A,B两地出发相向而行,甲、乙两人离B地的路程s(km)与时间t(h)的函数关系图象如图所示,则两人在甲出发后相遇所需的时间是( )A.1.2hB.1.5hC.1.6hD.1.8h8、对于一次函数y=mx-m(m>0),下列说法正确的是( )A.函数图象经过第一、二、三象限B.函数图象y随x的增大而减小 C.函数图象一定交于y轴的负半轴 D.函数图象一定经过点(-1,0)9、函数y=中,自变量x的取值范围是()A.x≥-2B.x>-2C.x>0D.x≠-210、关于函数y=-2x+1,下列结论正确的是()A.图象必经过(-2,1)B.y随x的增大而增大C.图象经过第一、二、三象限 D.当x> 时,y<011、星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离(米)与散步所用的时间(分)之间的关系,下面描述情境与图象大致符合的是()A.从家出发,到了公共阅读报栏,看了一会儿报,就回家了B.从家出发,到了公共阅读报栏,看了一会儿报,继续向前走了一段,然后回家了 C.从家出发,一直散步(没有停留),然后回家了 D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回12、关于函数y=x ,下列结论正确的是()A.函数图像必经过点(1,2)B.函数图像经过二、四象限C.y随x 的增大而减小D.y随x的增大而增大13、在平面直角坐标系中,点M,N,P,Q的位置如图所示.若直线y = kx经过第一、三象限,则直线y = kx - 2可能经过的点是( )A.点MB.点NC.点PD.点Q14、弹簧挂重物后会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系:x 0 1 2 3 4 …y 8 8.5 9 9.5 10 …下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6 kg,弹簧长度为11 cmC.物体每增加1 kg,弹簧长度就增加0.5 cmD.挂30kg物体时,弹簧长度一定比原长增加15 cm15、已知点在一次函数的图像上,且,则的取值范围是()A. B. C. D.二、填空题(共10题,共计30分)16、已知一个正比例函数的图像经过点(﹣1,3),则这个正比例函数的表达式是________.17、已知一次函数,若y随x的增大而减小,则k的取值范围是________.18、将直线y=2x+1向下平移2个单位,所得直线的表达式是________.19、小明家、文具店、学校在一条直线上,小明家到学校的路程为.一天,小明在上学途中到文具店买了学习用品,然后以原速的倍继续匀速步行到学校,图中的折线反映了这天小明从家步行到学校所走的路程与时间之间的函数关系,这天小明上学途中共用的时间是________20、在平面直角坐标系中,以原点为圆心,5为半径的⊙O与直线y=kx+2k+3(k≠0)交于A,B两点,则弦AB长的最小值是________.21、正比例函数的图象是________,当k>0时,直线y=kx过第________象限,y随x的增大而________.22、如图,在直角坐称系中,半径为1的⊙A圆心A的坐标为(﹣1,0),点P为直线y=﹣x+2上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________.23、如图,一次函数y=x﹣2的图象与反比例函数y= (k>0)的图象相交于A.B两点,与x轴交于点C,若tan∠AOC= ,则k的值为________.24、一次函数y=﹣3x﹣5的图象在y轴上的截距为________.25、请写出一个y随x增大而增大的正比例函数表达式,y=________三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中,他们参与了某种水果的销售工作.已知该种水果的进价为8元/kg,下面是他们在活动结束后的对话:小丽:如果以10元/kg的价格销售,那么每天可售出300 kg.小强:如果以13元/kg的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(kg)与销售单价x(元)之间存在一次函数关系.求y与x(x>0)之间的函数表达式.28、在国内投寄平信应付邮资如下表:(1)y是x的函数吗?为什么?(2)分别求当x=5,10,30,50时的函数值.29、某服装专卖店销售的甲品牌西服去年销售总额为50000元,今年每件西服售价比去年便宜400元,若售出的西服件数相同,则销售总额将比去年降低20%.(1)求今年甲品牌西服的每件售价.(2)若该服装店计划需要增进一批乙品牌西服,且甲、乙两种品牌西服共60件,而且乙品牌西服的进货件数不超过甲品牌件数的2倍,请设计出获利最多的进货方案.附:今年乙品牌和甲品牌西服的进货和售价如表:甲品牌乙品牌进价(元/件)1100 1400售价(元/件)﹣200030、函数常用的表示方法有三种.已知A、B两地相距30千米,小王以40千米/时的速度骑摩托车从A地出发匀速前往B地参加活动.请选择两种方法来表示小王与B地的距离y(千米)与行驶时间x(小时)之间的函数关系.参考答案一、单选题(共15题,共计45分)1、2、3、4、A5、6、B7、8、10、11、B12、13、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
第四章 一次函数数学八年级上册-单元测试卷-北师大版(含答案)
第四章一次函数数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次2、体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x, y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与B.y=-x+9与C.y=-x+9与D.y=x+9与3、某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是()A. B. C. D.4、在函数y=-中,自变量的取值范围是()A.x≠2B.x≤-2C.x≠-2D.x≥-25、关于一次函数y=-2x+b(b为常数),下列说法正确的是( )A.y随x的增大而增大B.当b=4时,直线与坐标轴围成的面积是4 C.图象一定过第一、三象限 D.与直线y=-2x+3相交于第四象限内一点6、下列函数中,y是x的正比例函数的是()A.y=2x-1B.y=C.y=2x 2D.y=-2x+17、如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B. C.D.8、如图,直线经过点,则不等式的解集为()A. B. C. D.9、一个正方形的边长为,它的各边边长减少后,得到的新正方形的周长为,y与x的函数关系式为()A. B. C. D.以上都不对10、下列函数中,自变量X的取值范围是X≥3的是()A. B. C.y=x-3 D.11、如图,点P在直线AB上方,且∠APB=90°,PC⊥AB于C,若线段AB=6,AC=x,S△=y,则y与x的函数关系图象大致是()PABA. B. C. D.12、已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0的解集是()A.x>-2B.x≥-2C.x<-2D.x≤-213、下列关系式:①x2-3x=4;②S=3.5t;③y=x2;④y=5x-3;⑤C=2πR;⑥S=v0t+at2;⑦2y+y2=0,其中不是函数关系的是()A.①⑦B.①②③④C.④⑥D.①②⑦14、抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.x<-4或x>1B.x<-3或x>1C.-4<x<1D.-3<x<115、已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1B.﹣3C.3D.7二、填空题(共10题,共计30分)16、已知正比例函数y=kx(k是常数,k≠0)的函数值y随x的值增大而减小,那么k的取值范围是________.17、函数中,自变量x的取值范围是________.18、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,分别以各自的速度在甲乙两地间匀速行驶,行驶1小时后,快车司机发现有重要文件遗忘在出发地,便立即返回出发地,拿上文件后(取文件时间不计)立即再从甲地开往乙地,结果快车先到达乙地,慢车继续行驶到甲地.设慢车行驶时间x(h),两车之间的距离为y(km),y 与x的函数图象如图所示,则a=________ .19、已知函数y=中,自变量x的取值范围是________.20、函数的自变量x的取值范围是________ .21、以直角三角形中的一个锐角的度数为自变量x,另一个锐角的度数y为因变量,则它们的关系式是________.22、如图,在平面直角坐标系中,点,,…在轴上,,,…在直线上.若,且,…都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为,,…,则可表示为________.23、在函数y=x+1中,自变量x的取值范围是________ .24、如图,正比例函数和反比例函数的图像交于A、B两点,分别以A、B两点为圆心,以2为半径画两个圆,则图中两个阴影面积的和是________(用含π的代数式表示).25、甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶________千米.三、解答题(共5题,共计25分)26、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.27、某单位计划组织员工到地旅游,人数估计在之间,甲乙两旅行社的服务质量相同,组织到地旅游的价格都是每人200元,在洽谈时,甲旅行社表示可给予每位旅客七五折(即原价格的75%)优惠;乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠,该单位怎样选择,才能使其支付的旅游总费用较少?28、周六上午8:O0小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x小时,小明离家的路程y(干米)与x(小时)之间的函数图象如图所示,(1)小明去基地乘车的平均速度是多少千米/小时,爸爸开车的平均速度应是多少千米/小时;(2)求线段CD所表示的函数关系式;(3)问小明能否在12:0 0前回到家?若能,请说明理由;若不能,请算出12:00时他离家的路程.29、某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4kg,乙种材料1kg;生产一件B产品需甲、乙两种材料各3kg.经测算,购买甲、乙两种材料各1kg共需资金60元;购买甲种材料2kg和乙种材料3kg共需资金155元.(1)甲、乙两种材料每kg分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.30、一次试验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度y(cm)与所挂砝码的质量x(g)的一组对应值:(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)弹簧的原长是多少?当所挂砝码质量为3g时,弹簧的长度是多少?(3)砝码质量每增加1g,弹簧的长度增加多少厘米?参考答案一、单选题(共15题,共计45分)1、D2、3、C4、C5、B6、7、C8、D9、A10、D11、D13、A14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级上册第四章《一次函数》单元测试试卷一、选择题(共12小题;共36分)1. 下列各曲线中不能表示 是 的函数的是 y x ( )A. B.C. D.2. 函数的自变量 的取值范围是 y =xx ‒2x ( )A. 且B. x ≥0x ≠2x ≥0C.D. x ≠2x >23. 已知方程 的解是 ,则直线 与 的交点是 2x +1=‒x +4x =1y =2x +1y =‒x +4( )A. B. C. D. (‒1,‒1)(‒1,5)(1,3)(1,0)4. 如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间 x 与货车在隧道内的长度 之间的关系用图象描述大致是y ( )A. B.C. D.5. 下列选项中,是正比例函数 的图象,且 的值随 值的增大而减小的是 y =kx y x ( )A. B.C. D.6. 如图,已知直线,过点 作 轴的垂线交直线 于点 ,过点 作直线l:y =33xA (0,1)y lB B l 的垂线交 轴于点 ;过点 作 轴的垂线交直线 于点 ,过点 作直线 的垂y A 1A 1y l B 1B 1l 线交 轴于点 ;;按此作法继续下去,则点 的坐标为y A 2⋯A 4( )A. B. C. D. (0,128)(0,256)(0,512)(0,1024)7. 在某一电路中,电压 ,则电流强度 与电阻 的函数表达式是 U =5 V I (A )R (Ω)( )A. B.C.D.I =5R I =5RI =R5I =25R8. 若点 , 都在函数 ( 为常数)的图象上,则M (‒7,m )N (‒8,n )y =‒(k 2+2k +4)x +1k m 和 的大小关系是 n ( )m>n m<n m=nA. B. C. D. 不能确定205499. 体育课上,人一组进行足球比赛,每人射点球次,已知某一组的进球总数为个,进球情况记录如下表:进球数012345人数15x y322x3y(x,y)其中进个球的有人,进个球的有人,若恰好是两条直线的交点坐标,则这两条直线的解析式是( )y‒x=93y‒2x=22y+x=93y‒2x=22A. 与B. 与y+x=93y+2x=22y=x+93y+2x=22C. 与D. 与y z z x y x( )10. 如果是的正比例函数,是的一次函数,则是的A. 正比例函数B. 一次函数C. 其他函数D. 没有函数关系M‒A‒B‒M11. 如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到M y x( )出发点的距离与时间之间关系的函数图象是A. B.C. D.ABCD AB=1BC=2P B B→C→D D12. 如下图,矩形中,,,点从点出发,沿向终点匀P x△ABP S S x 速运动,设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是( )A. B.C. D.二、填空题(共6小题;共24分)y x(∘C)13. 声音在空气中传播的速度(米/秒)(简称音速)与气温之间的关系如下:气温 x(∘C)05101520音速 y(米/秒)331334337340343y x20 ∘C 从表中可知音速随温度的升高而.在气温为的一天召开运动会,0.2某人看到发令枪的烟秒后,听到了枪声,则由此可知,这个人距发令地点米.24 cm x cm(x>0)y y14. 长方形的周长是,其中一边长为,面积为,则这个长方形面积与边x长之间的关系可以表示为.y=x‒1x15. 在函数中,自变量的取值范围是.ABCD A B C D(‒1,1)(‒1,‒3)16. 如图所示,四边形的四个顶点,,,的坐标分别为,,(5,3)(1,3),,则其对称轴的函数表达式为.x+y=117. 在直角坐标系中描出方程的解组成的坐标点,它们都在一次函数的图象上.y=kx+b k b k≠018. 一次函数(,为常数,且)的图象如图所示,根据图象信息可求得关于x kx+b=0的方程的解为.三、解答题(共7小题;共60分)y=(m+2)x+(m‒3)m19. (8分)已知一次函数,求满足下列条件的的取值.y x(1)随着的增大而增大.(2)图象不经过第四象限.(3)图象经过原点.y x(4)图象与轴的交点在轴的下方.620. (10分)有甲、乙两个长方体形的蓄水池,将甲池中的水以每小时立方米的速度注入乙y x池,甲、乙两个蓄水池中水的深度(米)与注水时间(小时)之间的函数图象如图所示,结合图象回答下列问题:(1)求注水多长时间,乙蓄水池的深度是甲蓄水池的水的深度的 倍;2(2)求注水 小时时,乙蓄水池的水比甲蓄水池的水多多少.221. (8分) 甲、乙两人沿同一路线登山,图中线段 、折线 分别是甲、乙两人登山的OC OAB 路程 (米)与登山时间 (分)之间的函数图象.请根据图象所提供的信息,解答如下问y x 题:(1)求甲登山的路程与登山时间之间的函数关系式;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?22. (6分)在直角坐标系中画出函数的图象.(先填写下表,再描点、连线)y =12x +1x ⋯‒3‒2‒10123⋯y ⋯⋯23. (8分)求下列函数中自变量 的取值范围:x (1);y =3x +2(2);y =x 2‒4(3);y =3+x (4).y =x +1x ‒224. (8分)已知 是 的函数,自变量 的取值范围是 ,下表是 与 的几组对应y x x x >0y x 值.x ⋯123579⋯y ⋯ 1.98 3.95 2.63 1.58 1.130.88⋯小腾根据学习函数的经验,利用上述表格所反映出的 与 之间的变化规律,对该函数的y x 图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系 中,描出了以上表中各对对应值为坐标的点.根据描出xOy 的点,画出该函数的图象;(2)根据画出的函数图象,写出:① 对应的函数值 约为 ;x =4y ②该函数的一条性质:.25. (12分)“龟兔赛跑”的故事同学们非常熟悉,图中的线段 和折线 表示“龟兔赛跑”OD OABC 时路程与时间的关系.请你根据图中给出的信息,解决下列问题.OABC(1)折线表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?4000.5(4)兔子醒来,以米/分的速度跑向终点,结果还是比乌龟晚到了分钟,请你算算兔子中间停下睡觉用了多少分钟?答案第一部分1. B 2. A 3. C 4. A 5. C 6. B 7. B 8. B 9. C 10. B 11. C 12. C【解析】由题意知,点 从点 出发,沿 向终点 匀速运动,则P B B→C→D D 当 ,,0<x ≤2s =12x当 ,,2<x ≤3s =1由以上分析可知,这个分段函数的图象开始是一次函数的一部分,且过点 ,最后为水平直线的(2,1)一部分.第二部分13. 加快,68.614. y =(12‒x )x 15. x ≥116. y =‒x +217. y =‒x +118. x =‒1第三部分19. (1) 随着 的增大而增大,∵y x .∴m +2>0 得 .m >‒2 (2) 图象不经过第四象限.∵∴{m+2>0,m ‒3≥0. 得 .m ≥3 (3) 图象经过原点,∵ .∴m ‒3=0得 .m =3 (4) 图象与 轴的交点在 轴的下方,∵y x 且 ∴m ‒3<0m ≠‒2 且 .∴m <3m ≠‒220. (1) 设 ,y 甲=kx +b 把 , 代入得(0,2)(3,0){2=b,0=3k +b,解得,,k =‒23b =2,∴y 甲=‒23x +2设 ,y 乙=mx +n 把 , 代入得(0,1)(3,4){1=n,4=3m +n,解得 ,,m =1n =1 ,∴y 乙=x +1当乙蓄水池的深度是甲蓄水池的水的深度的 倍时,2有 ,x +1=2(‒23x +2)解得 ,x =97 注水 小时,乙蓄水池的深度是甲蓄水池的水的深度的 倍;∴972 (2) 设甲蓄水池的底面积为 ,乙蓄水池的底面积为 ,p q 根据图象可知,甲水池 个小时深度下降 米,而乙水池深度升高 米,323 甲池中的水以每小时 立方米的速度注入乙池,∵6 ,,∴2p =3×63q =3×6 (立方米),(立方米),∴p =9q =6 小时后甲蓄水池的水量∴2 (立方米),=m ×y 甲=9(‒23×2+2)=6 小时后乙蓄水池的水量2 (立方米),=n ×y 乙=6(2+1)=18注水 小时时,乙蓄水池的水比甲蓄 水池的水多:∴2 (立方米).18‒6=1221. (1) 设甲登山的路程 与登山时间 之间的函数解析式为 ,y x y =kx 点 在函数 的图象上,∵C (30,600)y =kx ,解得,,∴30k =300k =20 .∴y =20x (2) 设乙在 段登山的路程 与登山时间 之间的函数解析式为 ,AB y x y =ax +b 由图形可知,点 ,.A (8,120)B (20,600) 解得∴{8a +b =120,20a +b =600,{a =40,b =‒200, .∴y =40x ‒200设点 为 与 的交点,D OC AB 联立 解得{y =20x,y =40x ‒200,{x =10,y =200,故乙出发后 分钟追上甲,此时乙所走的路程是 米.1020022. 表中依次填:;;;;;;.‒1201213225223. (1) 全体实数(2) 全体实数(3) x ≥‒3(4) x ≠224. (1) 如图即为所求.2x>2y x(2)①;②时,随的增大而减小(答案不唯一)25. (1)兔子;1500∵【解析】乌龟是一直跑的而兔子中间有休息的时刻;∴OABC折线表示赛跑过程中兔子的路程与时间的关系;1500由图象可知:赛跑的路程为米;700(2)结合图象得出:兔子在起初每分钟跑米.1500÷30=50(米)∴50乌龟每分钟爬米.700÷50=14(3)(分钟)∴14乌龟用了分钟追上了正在睡觉的兔子.30+0.5‒1‒(1500‒700)÷400=27.5(4)(分钟),∴27.5兔子中间停下睡觉用了分钟.。