第9章 相关和回归

合集下载

统计学原理第九章(相关与回归)习题答案

统计学原理第九章(相关与回归)习题答案

第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。

()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。

()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。

()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。

()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。

()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。

()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。

()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。

()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。

()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。

()答案:×题目11:完全相关即是函数关系,其相关系数为±1。

()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。

()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。

A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。

A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。

A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。

统计学原理第九章(相关与回归)习题答案

统计学原理第九章(相关与回归)习题答案

第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。

()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。

()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。

()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。

()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。

()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。

()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。

()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。

()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。

()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。

()答案:×题目11:完全相关即是函数关系,其相关系数为±1。

()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。

()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。

A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。

A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。

A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。

9 第九章 回归与相关

9 第九章   回归与相关

估计。
一)、加权最小二乘估计 假定各观测值的权重为Wi,求解回归方 程就要使得以下加权后的残差平方和最小
ss残W Wi Yi aw bw X
2
bw
aW
WX WY WXY W l l WX WX W WY b WX Y b W
二、直线回归方程的求法 直线方程为: a为Y轴上的截距;b为斜率,表示X 每改变一个单位,Y的变化的值,称为回 归系数; 表示在X值处Y的总体均数 估计值。为求a和b两系数,根据数学上 的最小二乘法原理,可导出a和b的算式 如下:
例9-1 某地方病研究所调查了8名正常 儿童的尿肌酐含量(mmol/24h)如表91。估计尿肌酐含量(Y)对其年龄(X) 的关系。
表14,rs界值表,P<0.01,故可认为当地居 民死因的构成和各种死因导致的潜在工作损 失年数WYPLL的构成呈正相关。 二、相同秩次较多时rs的校正 当X及Y中,相同秩次个数多时,宜用下式校 正
第四节
加权直线回归
在一些情况下,根据专业知识考虑 并结合实际数据,某些观察值对于估计 回归方程显得更“重要”,而有些不 “重要”,此时可以采用加权最小二乘
lYY的分析 如图9-4,p点的纵坐标被回归直线与均数 截成三个线段:
图9-4
平方和划分示意图
第一段 第二段
第三段
上述三段代数和为:
移项:
p点是散点图中任取一点,将所有的点子都
按上法处理,并将等式两端平方后再求和,
则有:
它们各自的自由度分别为: 可计算统计量F:
SS回 SS 残
2
F
回 残
表9-3某省1995年到1999年居民死因构成与WYPLL构成

统计学第9章 相关分析和回归分析

统计学第9章 相关分析和回归分析

回归模型的类型
回归模型
一元回归
线性回归
10 - 28
多元回归
线性回归 非线性回归
非线性回归
统计学
STATISTICS (第二版)
一元线性回归模型
10 - 29
统计学
STATISTICS (第二版)
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系


被预测或被解释的变量称为因变量 (dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变 量称为自变量 (independent variable) ,用 x 表示
统计学
STATISTICS (第二版)
3.相关分析主要是描述两个变量之间线性关 系的密切程度;回归分析不仅可以揭示 变量 x 对变量 y 的影响大小,还可以由 回归方程进行预测和控制 4.回归系数与相关系数的符号是一样的,但 是回归系数是有单位的,相关系数是没 有单位的。
10 - 27
统计学
STATISTICS (第二版)
10 - 19
统计学
STATISTICS (第二版)
相关系数的经验解释
1. 2. 3. 4.
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关
10 - 20
10 - 6
统计学
STATISTICS (第二版)
函数关系
(几个例子)

某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)

第九章 第四节 相关性、最小二乘估计、回归分析与独立性检验

第九章 第四节  相关性、最小二乘估计、回归分析与独立性检验
第四节 相关性、最小二乘估计、回归
分析与独立性检验
9/30/2013
9/30/2013
1.相关性 (1)散点图:在考虑两个量的关系时,为了对_____之间的关 变量 系有一个大致的了解,人们通常将___________的点描出来, 变量所对应 这些点就组成了变量之间的一个图,通常称这种图为变量之间 的散点图.
1.利用统计量χ 2来判断“两个变量X,Y有关系”计算公式为:

2
(A)ad-bc越小,说明X与Y关系越弱
(B)ad-bc越大,说明X与Y关系越强 (C)(ad-bc)2越大,说明X与Y关系越强 (D)(ad-bc)2越接近于0,说明X与Y关系越强
a b c d a c b d
1 2
9/30/2013
【拓展提升】线性相关关系与函数关系的区别 (1)函数关系中的两个变量间是一种确定性关系.例如,正 方形面积S与边长x之间的关系S=x2就是函数关系.
(2)相关关系是一种非确定性关系,即相关关系是非随机变
量与随机变量之间的关系.例如,商品的销售额与广告费是相
关关系.两个变量具有相关关系是回归分析的前提.
50 13 20-10 7) ( 4.844, 23 27 20 30
2
因为χ 2≥3.841,所以有
答案:95%
9/30/2013
考向 1
相关关系的判断
【典例1】(1)对变量x,y有观测数据(xi,yi)(i=1,2,„,
10),得散点图(1);对变量u,v有观测数据(ui,vi)(i=1,
9/30/2013
3.独立性检验
(1)2×2列联表
设A,B为两个变量,每一个变量都可以取两个值,变量A:

第九章 相关分析

第九章 相关分析
25
第九章 相关分析
( y y)2
=
( y yc )2
+
( yc y)2
由此可以推导出:
( y yc ) ( y y) ( yc y)
2 2
2
2
Lyy (a bx a b x) Lyy b ( x x)
2 2
Lyy b Lxx
表明两变量完全不相关。 (4)当计算相关系数的原始数据较多(如50项以 上)时,认为相关系数在0.3以下为无相关, 0.3以上为有相关;0.3-0.5为低度相关;0.5-0.8 为显著相关;0.8以上为高度相关。
9
第九章 相关分析
相关系数计算分析例题
生产费用
序 月产量 号 1 1.2 2 2.0 3 3.1 4 3.8 5 5.0 6 6.1 7 7.2 8 8.0 ∑ 36.4
2 2
x n y y
2

2

0.97
说明产量和生产费用之间存在高度正相关。
第九章 相关分析
第三节
回 归 分 析
一、回 归 分 析 的 意 义 回归分析是对具有相关关系的两个或两个以 上变量之间的数量变化的一般关系进行测定,确 立一个相应的数学表达式,以便从一个已知量来 推测另一个未知量,为估算预测提供一个重要的 方法。 二、回 归 的 种 类 按自变量的个数分 按回归线的形态分 一元回归 多元回归 线性回归 非线性回归
Lxx x b b y Lyy
y br r x
Lyy L21 xx
第九章 相关分析
五 回归分析与相关分析的特点
1、回归分析必须区分自变量和因变量,而相关 分析不必区分。 2、回归分析的两个变量一个是自变量,一个是 因变量,通过给定自变量的值来推算因变量 的可能值;而相关分析的两个变量都是随机 变量。 3、回归分析中对于因果关系不甚明确的两个变量, 可以建立两个回归方程;而相关分析只能计算 出一个相关系数。 4、一种回归方程只能做一种推算,即只能给出自 变量的值来推算因变量的值,不能逆推。

西南财经大学向蓉美、王青华《统计学》第三版——第9章:相关与回归分析

西南财经大学向蓉美、王青华《统计学》第三版——第9章:相关与回归分析

相关关系(例)
▪ 单位成本(y)与产量(x) 的关系…… ▪ 父亲身高(y)与子女身高(x)之间的关系 ▪ 社会商品零售额(y)与居民可支配收入(x)之
间的关系 ▪ 收入 (y)与文化程度(x)之间的关系 ▪ 商品销售量(y)与广告费支出(x1)、价格(x2)
之间的关系 ▪ 需要PPT配套视频,请加VX:1033604968
简单相关系数(简单线性相关系数) 对两个变量(定量变量)之间线性相关程 度的度量。 也称直线相关系数, 常简称相关系数。
等级相关(秩相关)
对两个定序变量之间线性相关程度的度量。
9--19
相关系数(Pearson’s
correlation coefficient)
有总体相关系数与样本相关系数之分:
• 总体相关系数ρ
变量间的相互依存关系有 两种类型:
——函数关系 ——相关关系
9--3
函数关系
1. 指变量之间确定性的数量依存关系;
2. 当变量 x 取某个数值时,
y 有确定的值与之对应, 则称 y 是 x 的函数 y = f
(x)
• 通常将作为变动原因的变 量 x 称为自变量,作为变
Y
动结果的变量y 称为因变量
将两个变量成对的观测数据在坐标图上标示出来, 变量 x 的值为横坐标,另一个变量 y 对应的数值 为纵坐标,一对观测值对应一个点,样本数据若 有n 对观测值,则相应的 n 个点形成的图形就称为 散点图。
如果一个是解释变量另一个是被解释变量,则通常 将解释变量放在横轴。
有助于分析者判断相关的有无、方向、形态、密 切程度。
9--5
相关关系
1. 指变量间数量上不确定的依存关系;
2. 一个变量的取值不能唯一地由 另一个变量来确定。当变量 x 取某个值时,与之相关的 变量 y 的取值可能有若干个 (按某种规律在一定范围内

第九章 相关与回归分析

第九章  相关与回归分析

第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。

本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。

【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。

【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。

第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。

这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。

相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。

例如,商品销售额与流通费用率之间的关系就是一种相关关系。

(二)相关关系的特点1、相关关系表现为数量相互依存关系。

2、相关关系在数量上表现为非确定性的相互依存关系。

二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。

其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。

相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。

统计学原理第九章(相关与回归)习题答案

统计学原理第九章(相关与回归)习题答案

第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。

()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。

()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。

()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。

()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。

()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。

()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。

()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。

()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。

()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。

()答案:×题目11:完全相关即是函数关系,其相关系数为±1。

()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。

()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。

A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。

A.相关关系和函数关系B.相关关系和因果关系第 3 页共27页C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。

A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。

第9章直线回归与相关分析(田间试验与统计分析 四川农业大学)

第9章直线回归与相关分析(田间试验与统计分析 四川农业大学)

解正规方程组,得:
田间试验与统计分析
Field Experiment and Statistical Analysis
协同变异的大小和性质
均积
协方差
Copyright © 2019 Sichuan Agricultural University All Rights Reserved Producer:Dr. Liu Yongjian
1、作散点图
(月/日)
y, 5/30 20

代 三
5/25
15

螟 5/20 10


期 5/15
5
田间试验与统计分析
Field Experiment and Statistical Analysis
5/10
0
yˆ 48.5485 1.0996x
5/5
-5
29
34
39
44
49
x,3月下旬至4月中旬平均温度累计值
Copyright © 2019 Sichuan Agricultural University All Rights Reserved Producer:Dr. Liu Yongjian
田间试验与统计分析
Field Experiment and Statistical Analysis
相关变量间的关系
田间试验与统计分析
田间试验与统计分析
Field Experiment and Statistical Analysis
图9-1 (x,y)散点图
Copyright © 2019 Sichuan Agricultural University All Rights Reserved Producer:Dr. Liu Yongjian

第9章 相关与回归分析

第9章 相关与回归分析

第九章相关与回归分析习题一、单选题1.下面的函数关系是()。

A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于()。

A、+1B、0C、0.5D、+1或-13.回归系数和相关系数的符号是一致的,其符号均可用来判断现象()。

A、线性相关还是非线性相关B、正相关还是负相关C、完全相关还是不完全相关D、单相关还是复相关4.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为( )。

A、8B、0.32C、2D、12.55.下面现象间的关系属于相关关系的是()。

A、圆的周长和它的半径之间的关系B、价格不变条件下,商品销售额与销售量之间的关系C、家庭收入愈多,其消费支出也有增长的趋势D、正方形面积和它的边长之间的关系6.下列关系中,属于正相关关系的是()。

A、合理限度内,施肥量和平均单产量之间的关系B、产品产量与单位产品成本之间的关系C、商品的流通费用与销售利润之间的关系D、流通费用率与商品销售量之间的关系7.相关分析是研究()。

A、变量之间的数量关系B、变量之间的变动关系C、变量之间的相互关系的密切程度D、变量之间的因果关系8.在回归直线y=a+bx中,b<0,则x与y之间的相关系数( )。

A、r=0B、r=lC、0<r<1D、-1<r<09.在回归直线y=a+bx中,b表示()。

A、当x增加一个单位时,y增加a的数量B、当y增加一个单位时,x增加b的数量C、当x增加一个单位时,y的平均增加量D、当y增加一个单位时,x的平均增加量10.当相关系数r=0时,表明()。

A、现象之间完全无关B、相关程度较小C、现象之间完全相关D、无直线相关关系11.下列现象相关密切程度最高的是()。

A、某商店的职工人数与商品销售额之间的相关系数0.87B、流通费用水平与利润率之间的相关关系为-0.94C、商品销售额与利润率之间的相关系数为0.51D、商品销售额与流通费用水平的相关系数为-0.8112.估计标准误差是反映()。

(整理)统计学原理第九章相关与回归习题答案

(整理)统计学原理第九章相关与回归习题答案

第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。

()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。

()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。

()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。

()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。

()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。

()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。

()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。

()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。

()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。

()答案:×题目11:完全相关即是函数关系,其相关系数为±1。

()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。

()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。

A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。

A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。

A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。

统计学原理第九章(相关与回归)习题答案

统计学原理第九章(相关与回归)习题答案

第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。

()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。

()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。

()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。

()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。

()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。

()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。

()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。

()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。

()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。

()答案:×题目11:完全相关即是函数关系,其相关系数为±1。

()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。

()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。

A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。

A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。

A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。

第9章 相关分析与一元回归分析

第9章 相关分析与一元回归分析

郑州轻工业学院数学与信息科学系第九章:相关分析与一元回归分析概率统计教研组变量之间的关系可以分为函数关系和相关关系两类,函数关系表示变量间确定的对应关系,而相关关系则是变量间的某种非确定的依赖关系.相关分析主要是研究随机变量间相关关系的形式和程度,在相关关系的讨论中,两个变量的地位是同等的,所使用的测度工具是相关系数,而回归分析则侧重考察变量之间的数量伴随关系,并通过一定的数学表达式将这种数量关系描述出来,用于解决预测和控制等实际问题.本章主要学习相关分析和一元回归分析的有关概念、理论和方法.●【回归名称的来历】―回归”这一词最早出现在1885年,英国生物学家兼统计学家——弗朗西斯⋅高尔顿(Francis Galton )在研究遗传现象时引进了这一名词.他研究分析了孩子和父母身高关系后发现:虽然高个子的父母会有高个子的后代,但后代的增高并不与父母的增高等量.他称这一现象为“向平常高度的回归”.尔后,他的朋友麦尔逊等人搜集了上千个家庭成员的身高数据,分析出儿子的平均身高和父亲的身高x 大致为如下关系:(英寸) 93.33516.0ˆ+=y●【回归名称的来历】这表明:(1)父亲身高增加1英寸,儿子的身高平均增加0.516英寸.(2)高个子父辈有生高个子儿子的趋势,但儿子的平均身高要比于父辈低一些.如x =80,那么低于父辈的平均身高.(3)低个子父辈的儿子们虽为低个子,但其平均身高要比父辈高一些.如x =80,那么高于父辈的平均身高,01.75ˆ=y,01.75ˆ=y●【回归名称的来历】可见儿子的高度趋向于“回归”到平均值而不是更极端,这就是“回归”一词的最初含义.诚然,如今对回归这一概念的理解并不是高尔顿的原意,但这一名词却一直沿用下来,成为数理统计中最常用的概念之一.回归分析的思想早已渗透到数理统计学科的其他分支,随着计算机的发展和各种统计软件的出现,回归分析的应用越来越广泛.主要内容§9.1相关分析§9.2回归分析在大量的实际问题中,随机变量之间虽有某种关系,但这种关系很难找到一种精确的表示方法来描述.例如,人的身高与体重之间有一定的关系,知道一个人的身高可以大致估计出他的体重,但并不能算出体重的精确值.其原因在于人有较大的个体差异,因而身高和体重的关系,是既密切但又不能完全确定的关系.随机变量间类似的这种关系在大自然和社会中屡见不鲜.例如,农作物产量与施肥量的关系,商业活动中销售量与广告投入的关系,人的年龄与血压的关系,每种股票的收益与整个市场收益的关系,家庭收入与支出的关系等等这种大量存在于随机变量间既互相联系,但又不是完全确定的关系,称为相关关系.从数量的角度去研究这种关系,是数理统计的一个任务.这包括通过观察和试验数据去判断随机变量之间有无关系,对其关系大小作出数量上的估计,我们把这种统计分析方法称为相关分析.相关分析通常包括考察随机变量观测数据的散点图、计算样本相关系数以及对总体相关系数的显著性检验等内容.●9.1.1散点图散点图是描述变量之间关系的一种直观方法.我们用坐标的横轴代表自变量X ,纵轴代表因变量Y ,每组观测数据(x i ,y i )在坐标系中用一个点表示,由这些点形成的散点图描述了两个变量之间的大致关系,从中可以直观地看出变量之间的关系形态及关系强度.图9-1 不同形态的散点图(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图从散点图可以看出,变量间相关关系的表现形态大体上可分为线性相关、非线性相关、不相关等几种.就两个变量而言,如果变量之间的关系近似地表现为一条直线,则称为线性相关,如图9-1(a)和(b);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图如果变量之间的关系近似地表现为一条曲线,则称为非线性相关或曲线相关;如图9-1(c);如果两个变量的观测点很分散,无任何规律,则表示变量之间没有相关关系,如图9-1(d).(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变量的数值也随之增加,或一个变量的数值减少,另一个变量的数值也随之减少,则称为正相关,如图9-1(a);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图若两个变量的变动方向相反,一个变量的数值增加,另一个变量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为负相关,如图9-1(b).(a)(b)(c)(d)●9.1.1散点图通过散点图可以判断两个变量之间有无相关关系,并对变量间的关系形态做出大致的描述,但散点图不能准确反映变量之间的关系密切程度.因此,为准确度量两个变量之间的关系密切程度,需要计算相关系数.●9.1.2相关系数相关系数是对两个随机变量之间线性关系密切程度的度量.若相关系数是根据两个变量全部数据计算的,称为总体相关系数.设X ,Y 为两个随机变量,由定义4.5知,当D (X )D (Y )≠0时,总体相关系数的计算公式为:其中Cov (X ,Y )为变量X 和Y 的协方差,D (X )和D (Y )分别为X 和Y 的方差.,),(Cov DY DX Y X XY =ρ●9.1.2相关系数设(x i ,y i ),i =1,2,…,n ,为(X ,Y )的样本,记,11∑==n i i x n x ,11∑==ni i y n y ,)(11122∑=--=n i i x x x n s ∑=--=ni i y y y n s 122)(11●9.1.2相关系数【定义9.1】若s x s y ≠0,称为{x i }和{y i }的相关系数(也可简称为样本相关系数).r xy 常简记为r .r xy 的性质:(1)|r xy |≤1(2)|r xy |=1时,(x i ,y i ),i =1,2,…,n 在一条直线上.∑∑==----==n i i in i i i y x xyxy y y x xy y x x s s s r 1221)()())((●9.1.2相关系数【定义9.2】当r>0时,称{x i}和{y i}正相关,当r xy<0时,xy}和{y i}负相关,当r xy=0时,称{x i}和{y i}不相关称{xi实际应用中,为了说明{x}和{y i}的相关程度,通常将相i关程度分为以下几种情况:当|r|≥0.8时,可视{x i}与{y i}为高度线性相关;xy0.5≤|r|<0.8时,可视{x i}与{y i}为中度线性相关;xy0.3≤|r|<0.5时,视{x i}与{y i}为低度线性相关;xy当|r|<0.3时,说明{x i}与{y i}的线性相关程度极弱.xy●9.1.2相关系数说明:(1)有时个别极端数据可能影响样本相关系数,应用中要多加注意.(2)r xy=0,只能说明{x i}与{y i}之间不存在线性关系,并不能说明{xi}与{y i}之间无其他关系.(3)一般情况下,总体相关系数ρXY是未知的,通常是将样本相关系数rxy 作为ρXY的估计值,于是常用样本相关系数推断两变量间的相关关系.这一点要和相关系数的显著性检验结合起来应用.9.1.2相关系数【例9-1】用来评价商业中心经营好坏的一个综合指标是单位面积的营业额,它是单位时间内(通常为一年)的营业额与经营面积的比值.对单位面积营业额的影响因素的指标有单位小时车流量、日人流量、居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分.这几个指标中车流量和人流量是通过同时对几个商业中心进行实地观测而得到的.而居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分是通过随机采访顾客而得到的平均值数据.9.1.2相关系数【例9-1】某市随机抽取20个商业中心有关数据图9-2 商业中心经营状况指标与数据9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:设各指标(变量)的变量名分别为:单位面积营业额:y,每小时机动车流量:x1,日人流量:x2,居民年消费额:x3,对商场环境的满意度:x4,对商场设施的满意度:x5,为商场商品丰富程度满意度:x6.(1)利用Excel分别作出y与x1,x2,…,x6的散点图.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图可以看到,各散点图的散点分布和一条直线相比均有一定差别.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图其中单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)的线性关系相对较明显一些.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图y与商场商品丰富程度满意度(x6)有一定的线性关系,而y与其余几个变量的线性关系较弱.●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(1)利用Excel分别作出y与x1,x2,…,x6的散点图.实验操作:编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.1671099.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.,x2,…,x6的相关系数解:(2)利用Excel分别计算y与x1A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6230.41270.790480.794330.341240.450200.69749=CORREL($B2:$B21,C2:C21)计算准备9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x,x2,…,x6的相关系数1编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x60.410.790.790.340.450.7计算结果●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数从相关系数的取值来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)接近高度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与商场商品丰富程度满意度(x6)则属于中度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与每小时机动车流量(x1)、对商场环境的满意度(x4)、对商场设施的满意度(x5)为低度相关;A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.3相关性检验设(xi ,yi),i=1,2,…,n,为(X,Y)的样本,相关性检验也就是检验总体X,Y的相关系数是否为0,通常采用费歇尔(Fisher)提出的t分布检验,该检验可以用于小样本,也可以用于大样本.检验的具体步骤如下:1)提出假设:假设样本是从不相关的两个总体中抽出的,即H0:ρXY= 0,H1:ρXY≠ 0如果否定了H就认为X,Y是相关的.●9.1.3相关性检验2)可以证明,当H 0成立时,统计量 因为H 0立时,|r xy |应该很小,从而T 的观测值应该取值较小,于是,在显著水平α下H 0的拒绝域是若T 的观测值记为t 0,衡量观测结果极端性的P 值:P = P {| T | ≥ | t 0|} = 2P {T ≥ | t 0 |})2(~122---=n t r n r T xyxy212xyxyr n r t --=)},2(|{|2/-≥n t t α●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x623r=0.41270.790480.794330.341240.450200.69749 =B23*SQRT(20-2)/SQRT(1-B23^2)24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P=0.0705 3.36E-05 2.86E-050.14090.46390.0006 =TDIST(B24,20-2,2)计算准备●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:编号y与x1x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x6r=0.412710.790480.794330.341240.45020.69749t= 1.92235 5.47556 5.54751 1.54023 2.13905 4.12956P=0.07053 3.4E-05 2.9E-050.14090.046390.00063计算结果●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:检验结果来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)、商场商品的丰富程度满意度(x6)、A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 23r=0.41270.790480.794330.341240.450200.69749 24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.1296 25P=0.0705 3.36E-05 2.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平α=0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:对商场设施的满意度(x 5)的相关系数显著不为0(P <α=0.05),即其相关性显著;A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:而不能拒绝y 与每小时机动车流量(x 1)、对商场环境的满意度(x 4)相关系数为0的假设(P >0.05),即其相关性不显著.A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006回归分析是针对两个或两个以上具有相关关系的变量,研究它们的数量伴随关系,并通过一定的数学表达式将这种关系描述出来,建立回归模型.回归分析中总假设因变量是随机变量,自变量可以是随机变量也可以是一般变量(可以控制或精确测量的变量),我们只讨论自变量为一般变量的情况.为简单起见,以后的所有随机变量及其观测值均用小写字母表示.如果设随机变量y是因变量,x1,x2,…,xn是影响y的自变量,回归模型的一般形式为:y= f (x1,x2,…,x n) + ε其中ε为均值为0的正态随机变量,它表示除x1,x2,…,x n之外的随机因素对y的影响.在回归分析中,当只有一个自变量时,称为一元回归分析;当自变量有两个或两个以上时,称为多元回归分析;f是线性函数时,称线性回归分析,所建回归模型称为线性回归模型;f是非线性函数时,称非线性回归分析,所建回归模型称为非线性回归模型.线性回归模型的一般形式为:其中,β0和βi (i =1,2,…,k )是未知常数,称为回归系数,实际中常假定ε~N (0,σ2).一元线性回归模型的一般形式为:由ε~N (0,σ2)的假定,容易推出y ~N (β0+β1x ,σ2). 本章主要讨论一元线性回归分析和可化为线性回归的一元非线性回归分析.它们是反映两个变量之间关系的简单模型,但从中可了解到回归分析的基本思想、方法和应用,22110εββββ+++++=k k x x x y ,110εββ++=x y ),0(~2σεN●9.2.1一元线性回归分析让我们用一个例子来说明如何进行一元线性回归分析. 为了研究合金钢的强度和合金中含碳量的关系,专业人员收集了12组数据如表9-1所示.表9-1 合金钢的强度与合金中含碳量的关系序号123456789101112含碳量x(%)0.100.110.120.130.140.150.160.170.180.200.210.23合金钢的强度y(107Pa)42.043.045.045.045.047.549.053.050.055.055.060.0 试根据这些数据进行合金钢的强度y(单位:107Pa)与合金中含碳量x(%)之间的回归分析.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图看到,数据点大致落在一条直线附近,这告诉我们变量x和y之间大致可看作线性关系.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图中还看到,这些点又不完全在一条直线上,这表明x和y的关系并没有确切到给定x就可以唯一确定y的程度.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图事实上,还有许多其它随机因素对y产生影响.●9.2.1一元线性回归分析如果只研究x 和y 的关系,可考虑建立一元线性回归模型:(9.1)其中ε是除含碳量x 外其它诸多随机因素对合金钢强度y 的综合影响,假定它是零均值的正态随机变量. 由(9.1)式,不难算得y 的数学期望:(9.2)该式表示当x 已知时,可以精确地算出E (y ).称方程(9.2)为y 关于x 的回归方程.,110εββ++=x y ),0(~2σεN x y E 10)(ββ+=●9.2.1一元线性回归分析现对变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).据(9.1)式,此样本可由方程(9.3)来描述.这里εi 是第i 次观测时ε的值,是不能观测到的 由于各次观测独立,εi 看作是相互独立与ε同分布的随机变量.即有y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,ni i i x y εββ++=10●9.2.1一元线性回归分析y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,n(9.4)给出了样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )的概率性质.它是对理论模型进行统计推断的依据,也常称(9.4)式为一元线性回归模型.要建立一元线性回归模型,首先利用n 组独立观测数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )来估计β0和β1,以估计值和分别代替(9.2)式中的β0和β1,得到(9.5)x y 10ˆˆˆββ+=●9.2.1一元线性回归分析(9.5) 由于此方程的建立有赖于通过观察或试验积累的数据,所以称其为经验回归方程(或经验公式),经验回归方程也简称为回归方程,其图形称为回归直线.当给定x= x0时,称为拟合值(预测值或回归值).那么,如何利用n组独立观察数据来估计β0和β1呢?一般常用最小二乘估计法和最大似然估计法,下面只介绍β和β1的最小二乘估计法.xy1ˆˆˆββ+=●9.2.1一元线性回归分析1.参数β0和β1的最小二乘估计设对模型(9.1)中的变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).由(9.3)式知随机误差εi =y i –(β0+β1x i ).最小二乘法的思想是:由x i ,y i 估计β0,β1时,使误差平方和达到最小的,分别作为β0,β1的估计,并称和为β0和β1的最小二乘估计.∑=+-=n i i i x y Q 121010)]([),(ββββ。

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

2019版数学(理)高分计划一轮高分讲义:第9章 统计与统计案例 9.3 变量间的相关关系与统计案例

2019版数学(理)高分计划一轮高分讲义:第9章 统计与统计案例 9.3 变量间的相关关系与统计案例

9.3变量间的相关关系与统计案例[知识梳理]1.相关关系与回归方程(1)相关关系的分类①正相关:从散点图上看,点散布在从左下角到右上角的区域内,如图1;②负相关:从散点图上看,点散布在从左上角到右下角的区域内,如图2。

(2)线性相关关系:从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(3)回归方程①最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.②回归方程:两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归方程为错误!=错误!x+错误!,则错误!=错误!=错误!,错误!=错误!-错误!错误!.其中,错误!是回归方程的斜率,错误!是在y轴上的截距,错误!=错误!错误!x i,错误!=错误!错误!y i,(错误!,错误!)称为样本点的中心.说明:回归直线错误!=错误!x+错误!必过样本点的中心(错误!,错误!),这个结论既是检验所求回归直线方程是否准确的依据,也是求参数的一个依据.(4)样本相关系数r=错误!,用它来衡量两个变量间的线性相关关系.①当r>0时,表明两个变量正相关;②当r<0时,表明两个变量负相关;③r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|〉0.75时,认为两个变量有很强的线性相关关系.2.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量.(2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为2×2列联表构造一个随机变量K=错误!,其中n=a+b+c+d为样本容量.(3)独立性检验利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.[诊断自测]1.概念思辨(1)利用散点图可以直观判断两个变量的关系是否可以用线性关系表示.()(2)通过回归方程错误!=错误!x+错误!可以估计和观测变量的取值和变化趋势.()(3)事件X,Y关系越密切,则由观测数据计算得到的K2的观测值越大.()(4)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.()答案(1)√(2)√(3)√(4)×2.教材衍化(1)(必修A3P94A组T3)某种产品的广告费用支出x(单位:万元)与销售额y(单位:万元)之间有如下的对应数据:错误!错误!错误!,则此直线一定经过点( )A .(5,60)B .(5,50)C .(6,50)D .(8,70) 答案 B解析 回归直线样本点的中心为(x -,错误!),而错误!=错误!×(2+4+5+6+8)=5,错误!=错误!×(30+40+60+50+70)=50,所以回归直线一定经过点(5,50).故选B.(2)(选修A1-2P 96T 2)通过随机询问72名不同性别的大学生在购买食物时是否看生产日期,得到如下列联表:则有________的把握认为性别与是否读生产日期有关. 答案 99.5%解析 由表中数据得k =错误!≈8。

第九章 直线回归与相关分析

第九章 直线回归与相关分析

ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 2.1603 = 13.7782 ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 24.3508
第三节 直线相关
一、相关系数和决定系数 如果两个变量间呈线性关系,又不需要由x来估计 如果两个变量间呈线性关系,又不需要由 来估计 y,只需了 和y相关以及相关的性质,可通过计算 相关以及相关的性质, ,只需了x和 相关以及相关的性质 x和y相关程度和性质的统计数-相关系数来进行 相关程度和性质的统计数- 和 相关程度和性质的统计数 研究。 研究。 相关系数r为 相关系数 为: SP
ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 0.8559 = 16.9701 ˆ ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 21.1589 ˆ
(四)单个y值的置信区间
单个y观测值的标准误为: 单个 观测值的标准误为: 观测值的标准误为
2
ˆ L1 = y − t a s y ˆ ˆ L2 = y + t a s y ˆ
根据例1,估计出黏虫孵化历期平均温度为 ℃ 根据例 ,估计出黏虫孵化历期平均温度为15℃时, 历期天数为多少( 置信区间)。 历期天数为多少(取95%置信区间)。 置信区间
x = 15 df = n − 2 = 8 − 2 = 6 ˆ y = a + bx = 57.04 + (−2.5317) × 15 = 19.0645 sy = sy / x ˆ 1 ( x − x )2 1 (15 − 16.8375) 2 + = 1.9835 × + = 0.8559 n SS x 8 55.1788

第9章 回归分析

第9章 回归分析
9.1.2 多元线性回归
1. 多元线性回归模型 设随机变量 y 与 m (m ≥ 2) 个自变量 x1 , x2 , ⋅⋅⋅, xm 之间存在相关关系,且有
y= a + b1 x1 + b2 x2 + ⋅⋅⋅ + bm xm + ε 2 ε ~ N (0, σ )
其中 a, b1 , b2 , ⋅⋅⋅, bm , σ 是与 x1 , x2 , ⋅⋅⋅, xm 无关的未知参数, ε 是不可观测的随机变量.称上式
= F
SR ~ F (1, n − 2) , Se /(n − 2)
168
对于给定的显著性水平 α ,拒绝域为 = F
SR ≥ Fα (1, n − 2) . Se /(n − 2)
Se
2
t 检验法: ˆ ~ N (b, 由b
此得到
σ2
lxx
) 知,
ˆ−b b
σ
lxx ~ N (0,1) .又由
σ
=
= i 1
n
ˆ ( x − x )x ∑ xi yi − y ∑ xi − b ∑ i i
= i 1= i 1
n n
n
= i 1
ˆ ( x − x )( x − x + x ) ∑ xi yi − y ∑ xi − b ∑ i i
= i 1= i 1 n n n
=
= i 1
ˆˆ ( x − x ) 2 − b ∑ xi yi − y ∑ xi − b ∑ i
当原假设 H 0 为真时, (3) F 检验法
σ
SR
2
~ χ 2 (m) ,且 S R 与 Se 相互独立.
SR / m , 当 H 0 为真时, F ~ F ( m, n − m − 1) . 因此 ,对于给定 Se / (n − m − 1) 的显著性水平 α ,拒绝域为 F ≥ Fα (m, n − m − 1) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
此外:
表 6- 2
能耗量 序号

总产量
x
35 38 40 42 ...
y
24 25 24 28 ... ...
1 2 3 4 ...
x2 1225 1444 1600 1764 ... ...
y2 576 625 576 784 ...
xy 840 950 960 1176 ...
15 16 合计
4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 7 9 11 13 15 17 19
6
睡眠不足者所占比重(%)
9.1 相关关系的概念

变量间的相互依存关
系按其数量上是否确
定可以有两种类型:
——函数关系
——相关关系
7
函数关系
1.
2.
指变量之间一一对应的确定 性的数量依存关系; 设有两个变量 x 和 y ,当变 量 x 取某个数值时, y 有确 定的值与之对应,则称 y 是 x 的函数y = f (x),
sx
2 ( x x ) i
n 1
20 1.4907 9
566 sy 7.9303 9 s xy 11 r 0.93 s x s y 1.4907 7.9303 r n xi2 ( xi ) 2 10 110 30
2
n xi yi xi yi
4
绘制发生安全事故的次数和工人中睡眠不足者 所占比重的散点图(也称为相关图),从图上 可以直观地看出二者之间具有明显的关系:随 着工人中睡眠不足者所占比重的增加,发生安 全事故的次数也在增加。 二者之间究竟存在一种怎样的数量联系?为此, 需要利用相关分析和回归分析的有关知识加以 说明。

5
每1000个工人中发生安全事故次数(次)
54
54 38 63 48 59 46
162
216 38 315 144 236 92
9
16 1 25 9 16 4
2916
2916 1444 3969 2304 3481 2116
合计
30
510
1629
110
26576
28
s xy
(x
i
x )( yi y ) n 1
99 10 1 11
是度量两个定量变量之间线性相关密切程 度的指标 也称直线相关系数, 常简称相关系数 总体相关系数ρ——根据总体数据计算的

如果X和Y总体的全部数据都是已知的,X和Y的
方差和协方差也已知,两变量总体线性相关系 数: Cov( X , Y )

Var( X )Var(Y )
21
样本(简单)相关关系的计算 公式
一个应变量对若干解释变量依存关系的统计方法,其 目的是需找一个恰当的数量关系式(回归方程)来近似代 表变量间依存关系并据此进行估计或预测。
回归的目的(实质):
单位成本(y)与产量(x) 的关系……
父亲身高(y)与子女身高(x)之间的关系 社会商品零售额 (y) 与居民会支配收入 (x) 之 间的关系 收入 (y)与文化程度(x)之间的关系 商品销售量 (y) 与广告费支出 (x1) 、价格 (x2) 之间的关系
11
(其它有关概念)

即一个变量增加时,另一个变量也大体随之增加。 负相关
13
相关关系的类型(续)

4. 按相关关系的程度分为:
完全相关(函数关系) 完全不相关(零相关)
相关关系的
两种极端情况
不完全相关(狭义的相关关系)
14
广告投入和销售之间的关系
70 60
50
40
30
20
10
SALE
0 0 2 4 6 8 10 12 14
~ t (n 2)
计算检验统计量的值 或 P值,确定显著性水平 若t >t 或 P值<,拒绝H0 (即总体线性相关显著) 反之,不能拒绝H0 (即总体线性相关不显著 30 )
对于“发生安全事故与睡眠不足有关吗?”的案例,在α =0.05的 显著性水平下,我们可计算得:
t
一对数据对应坐标图上一个点,将成对的观察
数据表现为坐标图的散点而形成的图。

编制相关图的意义
有助于分析者判断 相关的有无、方向、形态、
密切程度。
18
相关关系的图示


完全线性正相关
完全线性负相关





线性正相关
线性负相关
19
相关关系的图示(续)
12
9.1.2 相关关系的类型

1. 按涉及变量多少分为:
单相关(一元相关)指仅涉及两个变量的相关关系
复相关(多元相关)

2. 按相关关系的表现形式分为:
直线相关(线性相关)变量间的数量关系大体上接
近于一条直线。 曲线相关(非线性相关)

3. 按相关方向分为:
正相关指两个变量大致呈同方向变化的相关关系,
r n2 1 r
2

0.8388 42 2 1 0.83882
5.30504 9.7442 0.54443
由于
t (n 2) t 0.025 (40) 2.0211
>
t 9.7442
2
t (n 2) 2.0211
2
,拒绝
H0
,认为总体的这两个变量之间线性相关显著,二者之间确实 具有高度的线性相关关系。
31
9.2.3 等级相关系数
适用于定性变量(定量也使用)。 具体方法:将样本单位按照变量X和Y进行排序,Xi,Y i 分别是第i个单位的位次,计算位次差di=Xi-Yi Spearman 等级相关系数 rs 可由公式计算
rs 1
式中,n
6 d 2 n(n 2 1)
d
表示样本含量; 表示 X、Y 的位次之差。
第9章 相关与回归分析
1
主要内容
相关分析 一元线性回归模型与估计 一元线性回归的检验与预测 多元线性回归模型(自学)

2
案例研究:
发生安全事故与睡眠不足有关吗?
作为企业安全生产研究的一部分,某部 门采集了每1000个工人中发生安全事故 的次数和睡眠不足的工人所占比例的数 据,样本囊括的企业范围非常广泛,一 年间采集的数据的相关表如下:
0.9757

能耗与工业总产值之间的(样本)相关系 数为 0.9757,为高度线性正相关关系。
27
一个音像设备商店数据
周次 电视广 告数 销售额/百 美元 xy x2 y2
1
2 3
2
5 1
50
57 41
100
285 41
4
25 1
2500
3249 1681
4
5 6 7 8 9 10
3
4 1 5 3 4 2
10 10 10 10 11 11 11 12 12 12 12
每千个工 人中发生 安全事故 次数
0.039 1.014 0.493 1.926 2.091 1.849 1.294 0.708 1.652 1.405 2.246
工人中睡 眠不足者 所占比例 (%)
12 13 13 13 14 14 14 14 14 15 15
假相关
是指没有本质联系的现象而去进行相关分析。只是
表面数字的偶然的巧合; 如上证股票价格综合指数与气温的关系。

因果关系
是指原因与结果之间、影响因素与被影响因素之间的
关系。 相关关系比因果关系包括的范围更广泛。即,因果关
系属于相关关系,但相关关系不一定是因果关系。 统计只能说明现象间有无数量上的关系,不能说明 谁因谁果
r S xy Sx S y
r

( x x )( y y ) ( x x ) ( y y)
2
2
或化简为:
2
n xy x y n x
x
2
n y
2
y
2
22
相关系数取值及其含义

r 的取值范围是 [-1,1] |r|=1,为完全(线性)相关;

Y
通常将 x 称为自变量,y 称 为因变量;







3.
所有观察点全都落在一条线 上。
X
8
函数关系(例)
圆的面积(S)与半径之间的函数关系
S = R2 里程 (D)与速度(V)、时间(t)之间的关系 D=V t
企业的原材料消耗额(y)与产量(x1) 、单位产 量消耗(x2) 、原材料价格(x3)之间的关系

72 76
48 58
5184 5776 55086
2304 3364 26175
3456 4408 37887
26
916
625
计算结果
r n xy x y n x
2
x
2
n y
2
y
2
16 37887 916 625 16 55086 9162 16 26175 6252
y = x1 x2 x3
9
相关关系
1.
2.
3.
是指变量间存在不确定的 数量依存关系; 一个变量的取值不能唯一 地由另一个变量来确定。 即当变量 x 取某个值时, 与之相关的变量 y 的取值 可能有若干个; 各观察点分布在直线(或 曲线)周围。
Y
相关文档
最新文档