乐平市实验中学2018-2019学年上学期高三数学10月月考试题

合集下载

乐平市高中2018-2019学年高二上学期第二次月考试卷数学

乐平市高中2018-2019学年高二上学期第二次月考试卷数学

乐平市高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( )A .(1,5)B .(1,4)C .(0,4)D .(4,0)2. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .3. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 4. 某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( )A .5B .7C .9D .115f x [14]f (x )的导函数y=f ′(x )的图象如图所示. )A .2B .3C .4D .56. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( )A .B .C .D . 7. 不等式的解集为( ) A .或 B . C .或D . 8. 函数()log 1x a f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞9. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.10.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .11.已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}12.集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个二、填空题13.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题:①对任意的x ,都有1[]x x x -<≤恒成立;②若(1,3)x ∈,则方程{}22sin cos []1x x +=的实数解为6π-; ③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -; ④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13x g x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

乐平市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

乐平市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

乐平市实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. “a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是()A .9B .11C .13D .153. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )A .﹣1B .1C .6D .12 4. 求值: =()A .tan 38°B .C .D .﹣5. 函数y=(x 2﹣5x+6)的单调减区间为()A .(,+∞)B .(3,+∞)C .(﹣∞,)D .(﹣∞,2)6. 设复数(是虚数单位),则复数( )1i z =-i 22z z +=A.B.C.D. 1i -1i +2i +2i-【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.7. 矩形ABCD 中,AD=mAB ,E 为BC 的中点,若,则m=()A .B .C .2D .38. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )A .1B .C .2D .410.设函数是定义在上的可导函数,其导函数为,且有,则不等式)(x f )0,(-∞)('x f 2')()(2x x xf x f >+的解集为0)2(4)2014()2014(2>--++f x f x A 、 B 、 C 、 D 、)2012,(--∞)0,2012(-)2016,(--∞)0,2016(-11.若方程C :x 2+=1(a 是常数)则下列结论正确的是()A .∀a ∈R +,方程C 表示椭圆B .∀a ∈R ﹣,方程C 表示双曲线C .∃a ∈R ﹣,方程C 表示椭圆D .∃a ∈R ,方程C 表示抛物线12.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .二、填空题13.在(2x+)6的二项式中,常数项等于 (结果用数值表示).14.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、、C (1,0),函数y=xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为 . 15.已知含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a.16.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则= .17.若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-1212||z z z +()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.18.已知(x 2﹣)n )的展开式中第三项与第五项的系数之比为,则展开式中常数项是 .三、解答题19.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E .(Ⅰ)求证:AE=EB ;(Ⅱ)若EF •FC=,求正方形ABCD 的面积.20.(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,,点是线段的中PA O A PBC O CPE APE ∠=∠H ED 点.(1)证明:四点共圆;D F E A 、、、(2)证明:.PC PB PF ⋅=221.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈(1)当时,求的单调区间;1m =()f x (2)令,区间,为自然对数的底数。

江西省乐平市第三中学2018-2019学年高三上学期第三次月考试卷数学含答案

江西省乐平市第三中学2018-2019学年高三上学期第三次月考试卷数学含答案

江西省乐平市第三中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.652. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =3. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅4.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( ) A .80+20π B .40+20π C .60+10π D .80+10π5. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .66. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)7. 已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .588. 已知复数z 满足(3+4i )z=25,则=( ) A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i9. 设,,a b c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 10.已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}-- 【命题意图】本题考查集合的交集运算,意在考查计算能力.11.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好;3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥A .①③B .①④C .②③D .②④ 12.直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知f (x )=x (e x +a e -x )为偶函数,则a =________.14.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.15.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________.16.已知函数f (x )=sinx ﹣cosx ,则= .三、解答题(本大共6小题,共70分。

城区高中2018-2019学年上学期高三数学10月月考试题(3)

城区高中2018-2019学年上学期高三数学10月月考试题(3)

城区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在极坐标系中,圆的圆心的极坐标系是( )。

ABC D2. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)3. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .414. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211B .227C . 32259D .324356. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象,则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 8. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1129. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 11.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能12.双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大共6小题,共70分。

乐平市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

乐平市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

乐平市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设函数,则使得的自变量的取值范围为( )()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩()1f x ≥A . B .(][],20,10-∞-U (][],20,1-∞-U C . D .(][],21,10-∞-U [][]2,01,10-U 2. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为()A .B .﹣C .D .﹣3. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为()[]90,100A .20,2 B .24,4 C .25,2 D .25,44. 下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”;②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2;其中正确命题的个数是()A .1个B .2个C .3个D .4个5. 设a=lge ,b=(lge )2,c=lg,则()A .a >b >cB .c >a >bC .a >c >bD .c >b >a6. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .7. 执行如图所示的程序框图,输出的z 值为( )A .3B .4C .5D .68. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不能被5整除D .a ,b 有1个不能被5整除9. sin 3sin1.5cos8.5,,的大小关系为( )A .sin1.5sin 3cos8.5<<B .cos8.5sin 3sin1.5<<C.sin1.5cos8.5sin 3<<D .cos8.5sin1.5sin 3<<10.已知抛物线28y x =与双曲线的一个交点为M ,F 为抛物线的焦点,若,则该双曲2221x y a-=5MF =线的渐近线方程为A 、B 、C 、D 、530x y ±=350x y ±=450x y ±=540x y ±=11.sin570°的值是( )A .B .﹣C .D .﹣12.若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( )A .a >1且b <1B .a >1且b >0C .0<a <1且b >0D .0<a <1且b <0二、填空题13.多面体的三视图如图所示,则该多面体体积为(单位cm ) .14.某工厂的某种型号的机器的使用年限x 和所支出的维修费用y (万元)的统计资料如表:x 681012y 2356根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元. 15.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ;①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值;③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交;④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2. 16.在中,角的对边分别为,若,的面积,ABC ∆A B C 、、a b c 、、1cos 2c B a b ⋅=+ABC ∆S =则边的最小值为_______.c 【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.17.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .18.已知两个单位向量满足:,向量与的夹角为,则.,a b r r 12a b ∙=-r r 2a b -r r cos θ=三、解答题19.已知函数f (x )=,求不等式f (x )<4的解集.20.已知数列{a n }的首项a 1=2,且满足a n+1=2a n +3•2n+1,(n ∈N *).(1)设b n =,证明数列{b n }是等差数列;(2)求数列{a n }的前n 项和S n .21.已知f (x )是定义在[﹣1,1]上的奇函数,f (1)=1,且若∀a 、b ∈[﹣1,1],a+b ≠0,恒有>0,(1)证明:函数f (x )在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x ∈[﹣1,1]及∀a ∈[﹣1,1],不等式f (x )≤m 2﹣2am+1恒成立,求实数m 的取值范围.22.(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且ABCD S -ABCD Q P E 、、AB SC AD 、、⊥SE 平面.ABCD(1)求证:平面;//PQ SAD (2)求证:平面平面.⊥SAC SEQ23.(本小题满分12分)已知向量满足:,,.,a b r r ||1a =r ||6b =r ()2a b a ∙-=r r r(1)求向量与的夹角;(2)求.|2|a b -r r24.设函数f (x )=1+(1+a )x ﹣x 2﹣x 3,其中a >0.(Ⅰ)讨论f (x )在其定义域上的单调性;(Ⅱ)当x ∈时,求f (x )取得最大值和最小值时的x 的值.乐平市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A D C C C D D B BA题号1112答案B B二、填空题13. cm3 .14. 7.5 15. ②③④ 16.117. (1,2) .18..三、解答题19.20.21.22.(1)详见解析;(2)详见解析.π23.(1);(2).324.。

乐平市乐平中学2018-2019学年高三上学期第三次月考试卷数学含答案

乐平市乐平中学2018-2019学年高三上学期第三次月考试卷数学含答案

乐平市乐平中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.2. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A . B.C. D. 3. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 4. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位5. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )6. 已知集合,则A0或 B0或3C1或D1或37. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .28. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .29. 已知复数z 满足(3+4i )z=25,则=( ) A .3﹣4i B .3+4i C .﹣3﹣4i D .﹣3+4i10.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件11.设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x <<12.已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足AB =∅,{}|52A B x x =-<≤,求实数a =__________.14.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .15.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .16.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.三、解答题(本大共6小题,共70分。

乐平市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

乐平市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

乐平市实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. “a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A .9B .11C .13D .153. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( ) A .﹣1 B .1 C .6 D .124.求值: =( )A .tan 38° B.C.D.﹣5. 函数y=(x 2﹣5x+6)的单调减区间为( )A.(,+∞) B .(3,+∞)C .(﹣∞,) D .(﹣∞,2)6. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 7. 矩形ABCD 中,AD=mAB ,E 为BC的中点,若,则m=( )A.B.C .2D .38. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )A.B.C.D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )A .1B .C .2D .410.设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞B 、)0,2012(-C 、)2016,(--∞D 、)0,2016(-11.若方程C :x 2+=1(a 是常数)则下列结论正确的是( )A .∀a ∈R +,方程C 表示椭圆B .∀a ∈R ﹣,方程C 表示双曲线C .∃a ∈R ﹣,方程C 表示椭圆D .∃a ∈R ,方程C 表示抛物线12.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .二、填空题13.在(2x+)6的二项式中,常数项等于 (结果用数值表示).14.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、、C (1,0),函数y=xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为 .15.已知含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则 =+20042003b a .16.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则= .17.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.18.已知(x 2﹣)n)的展开式中第三项与第五项的系数之比为,则展开式中常数项是 .三、解答题19.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E . (Ⅰ)求证:AE=EB ;(Ⅱ)若EF •FC=,求正方形ABCD 的面积.20.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2.21.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。

乐平市高级中学2018-2019学年上学期高三数学10月月考试题

乐平市高级中学2018-2019学年上学期高三数学10月月考试题

乐平市高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .202. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )AB D 3. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 4. 图 1是由哪个平面图形旋转得到的( )A .B .C .D .5. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)6. 已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .7. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .8. 4213532,4,25a b c ===,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b << 9. 函数f (x )=1﹣xlnx 的零点所在区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)10.双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1 11.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种12.已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .14.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .15.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .16.已知tan()3αβ+=,tan()24πα+=,那么tan β= .三、解答题(本大共6小题,共70分。

平乐县实验中学2018-2019学年上学期高三数学10月月考试题

平乐县实验中学2018-2019学年上学期高三数学10月月考试题

平乐县实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是()A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}2. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ()A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]3. 执行如图所示的程序,若输入的,则输出的所有的值的和为( )3x x A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.4.设全集U={1,3,5,7,9},集合A={1,|a﹣5|,9},∁U A={5,7},则实数a的值是()A.2B.8C.﹣2或8D.2或85.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()A .B .18C .D .6. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为()A .B .﹣C .D .﹣7. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 28. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要9. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,]6πB .[,)6ππ C. (0,]3πD .[,)3ππ10.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为()[]90,100A .20,2B .24,4C .25,2D .25,4二、填空题11.若的展开式中含有常数项,则n 的最小值等于 .12.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .13.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)14.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.15.在直角梯形分别为的中点,,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===,AB AC 点在以为圆心,为半径的圆弧上变动(如图所示).若,其中,P A AD DE AP ED AF λμ=+,R λμ∈则的取值范围是___________.2λμ-16.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集为___________.三、解答题17.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y=x 的图象上(n ∈N *),(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若c 1=0,且对任意正整数n 都有,求证:对任意正整数n ≥2,总有.18.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.19.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α20.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.21.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.22.设F是抛物线G:x2=4y的焦点.(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.平乐县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B【解析】解:由Venn 图可知,阴影部分的元素为属于A 当不属于B 的元素构成,所以用集合表示为A ∩(∁U B ).A={x|x 2﹣x ﹣2<0}={x|﹣1<x <2},B={x|y=ln (1﹣x )}={x|1﹣x >0}={x|x <1},则∁U B={x|x ≥1},则A ∩(∁U B )={x|1≤x <2}.故选:B .【点评】本题主要考查Venn 图表达 集合的关系和运算,比较基础. 2. 【答案】B【解析】解:由M 中y=2x ,x ≤1,得到0<y ≤2,即M=(0,2],由N 中不等式变形得:(x ﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x ≤1,即N=(﹣1,1],则M ∩N=(0,1],故选:B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 3. 【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则3x =y 23x =y 3(*)nx n N =∈y 由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D .31000nx =≥7n ≥x 4. 【答案】D【解析】解:由题意可得3∈A ,|a ﹣5|=3,∴a=2,或a=8,故选 D . 5. 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.6.【答案】D【解析】解:∵;∴在方向上的投影为==.故选D.【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.7.【答案】A【解析】解:∵a<b<0,∴﹣a>﹣b>0,∴|a|>|b|,a2>b2,即,可知:B,C,D都正确,因此A不正确.故选:A.【点评】本题考查了不等式的基本性质,属于基础题.8.【答案】B【解析】p p q∨p⌝p q∨p⌝p⌝试题分析:因为假真时,真,此时为真,所以,“真”不能得“为假”,而“为p p q∨假”时为真,必有“真”,故选B.考点:1、充分条件与必要条件;2、真值表的应用.9.【答案】C【解析】考点:三角形中正余弦定理的运用.10.【答案】C【解析】考点:茎叶图,频率分布直方图.二、填空题11.【答案】5【解析】解:由题意的展开式的项为T r+1=C n r(x6)n﹣r()r=C n r=C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n的表达式,推测出它的值.12.【答案】 4 .【解析】解:由题意知,满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A有:{2,3},{2,3,1},{2,3,4},{2,3,1,4},故共有4个,故答案为:4.13.【答案】 , 无.【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350.由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。

乐平中学高一年级10月月考数学试卷_2

乐平中学高一年级10月月考数学试卷_2

乐平中学高一年级10月月考数学试卷一、选择题(本题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合},55|{},52|{<<-=≤<-=x x N x x M 则=N M ( )A. }55|{<<-x xB. }52|{<<-x xC.}55|{≤<-x xD. }52|{≤<-x x2.函数2x x y -=的单调递增区间为( )A.]1,1[-B. ]21,(-∞ C. ]1,21[ D.]21,0[3.已知集合}9,3,2{⊆A 且A 中至少有一个奇数,则这样的集合有( )A. 2个B. 4个C. 5个D.6个4.定义在R 上的函数)(x f 满足)()4(x f x f -=-,当2>x 时,)(x f 单调递增,如果421<+x x 且0)2)(2(21<--x x ,则)()(21x f x f +的值( )A. 恒小于0B. 恒大于0C. 可能为0D.可正可负5.如图,I 为全集,S P M ,,是I 的三个子集,则阴影部分所表示的集合是( )A.S P M )(B. S P M )(C. S C P M I )(D. S C P M I )(6.设函数⎩⎨⎧-=11)(x x f 11<≥x x ,则=)]}2([{f f f ( ) A. 0 B. 1 C.2 D.27.若函数)(x f 的定义域为]2,0[,则函数)1()1()(--+=x f x f x g 的定义域为( )A.]3,1[-B.]2,0[C. }1{D.]1,1[-8.函数432--=x x y 的定义域为],0[m ,值域为]4,425[--,则m 的取值范围是( ) A. ]4,0( B.]4,23[ C. ]3,23[ D. ),23[+∞ 9.下列所给4个图像中,与所给3件事吻合最好的顺序为( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

江西省景德镇市乐平初级实验中学2019年高三数学文模拟试卷含解析

江西省景德镇市乐平初级实验中学2019年高三数学文模拟试卷含解析

江西省景德镇市乐平初级实验中学2019年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数在区间上是增函数,且在区间上恰好取得一次最大值,则的取值范围是()A. B. C. D.参考答案:D【分析】将函数用三角恒等变换化简成正弦型函数,根据整体代换与正弦函数的性质,结合已知建立的不等量关系,即可求解.【详解】,在区间上是增函数,,.当时,取得最大值,而在区间上恰好取得一次最大值,,解得,综上,.故选:D.【点睛】本题考查三角函数恒等变换、正弦函数的性质,整体代换是解题的关键,属于中档题.2. 已知函数,则等于()A.-1 B.0 C.1 D. 2参考答案:【知识点】函数奇偶性的性质;函数奇偶性的判断;函数的值.B4【答案解析】D 解析:函数,则=f(lg2)+f(﹣lg2)=+=+1+=+=2.故选:D.【思路点拨】利用对数函数是奇函数以及对数值,直接化简求解即可.3. 下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,求出关于的线性回归方程为,那么表中的值为A. 3B. 3.15C. 3.5D. 4.5参考答案:A易知:,把点代入回归方程为,得:,解得t=3.4.有下列说法:(1)“”为真是“”为真的充分不必要条件;(2)“”为假是“”为真的充分不必要条件;(3)“”为真是“”为假的必要不充分条件;(4)“”为真是“”为假的必要不充分条件。

其中正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】(1)“”为真是“”为真的充分不必要条件,正确;(2)“”为假是“”为真的充分不必要条件,错误;(3)“”为真是“”为假的必要不充分条件;正确;(4)“”为真是“”为假的必要不充分条件,错误。

因此正确的个数为2。

4. 以平面直角坐标系的原点为极点,以x轴的正半轴为极轴,建立极坐标系,则曲线(为参数,)上的点到曲线的最短距离是()A.0 B.2-C.1 D.2参考答案:B5. 已知函数,则下列判断正确的是()A. 函数f(x)是奇函数,且在R上是增函数B. 函数f(x)是偶函数,且在R上是增函数C. 函数f(x)是奇函数,且在R上是减函数D. 函数f(x)是偶函数,且在R上是减函数参考答案:A【分析】求出的定义域,判断的奇偶性和单调性,进而可得解.【详解】的定义域为R,且;∴是奇函数;又和都是R上的增函数;是R上的增函数.故选:A.【点睛】本题考查奇偶性的判断,考查了指数函数的单调性,属于基础题.6. 已知x>0,y>0,z>0,且,则x+y+z的最小值为()A. 8B. 9C. 12D. 16参考答案:B由,,得,,当且仅当时等号成立。

江西省景德镇市乐平新乐中学高三数学理月考试卷含解析

江西省景德镇市乐平新乐中学高三数学理月考试卷含解析

江西省景德镇市乐平新乐中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设函数,若互不相等,且,则的最大值为()A. B. C. 12 D.参考答案:D【分析】作出函数图像,由,确定所取范围,及,点与点关于直线对称,得,可将表示为的函数,判断此函数的单调性,可确定函数的最大值.【详解】设,作出函数的图像由函数的图象可知,,,,根据,可得,根据,可得,,令,在上恒成立,所以在上是增函数,所以,所以的最大值为,选D.【点睛】本题考查函数的最值问题,函数式的建立,把所求式化为某一变量的函数是解题关键,变量范围要及时确定,考查数形结合,运算求解能力,属于难题.2. 设,,是非零向量,已知:命题p:∥,∥,则∥;命题q:若?=0, ?=0则?=0,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.¬p∨q参考答案:A【考点】命题的真假判断与应用;平面向量数量积的运算.【分析】根据向量共线的性质以及向量数量积的应用,判断pq的真假即可.【解答】解:∵,,是非零向量,∴若∥,∥,则∥;则命题p是真命题,若?=0, ?=0,则?=0,不一定成立,比如设=(1,0),=(0,1),=(2,0),满足?=0, ?=0,但?=2≠0,则?=0不成立,即命题q是假命题,则p∨q为真命题.,p∧q为假命题.,(¬p)∧(¬q),¬p∨q都为假命题,故选:A.3. 下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B.C.D.参考答案:A4. “”是“A=30o”的()A. 充分而不必要条件 B . 必要而不充分条件C . 充分必要条件 D. 既不充分也不必要条件参考答案:B略5. 已知圆与直线及都相切,圆心在直线上,则圆的方程为A. B.C. D.参考答案:B6. 若函数,则函数是(A) 周期为的偶函数 (B) 周期为2的偶函数(C) 周期为2的奇函数 (D) 周期为的奇函数参考答案:D略7. 下列命题中:(1)“”是“”的充分不必要条件(2)定义在上的偶函数最小值为5;(3)命题“,都有”的否定是“,使得”(4)已知函数的定义域为[0,2],则函数的定义域为[0,1].正确命题的个数为()A.1个B.2个C.3个D.4个参考答案:C(1) ,所以“”是“”的充分不必要条件;(2)为偶函数,所以,因为定义区间为,所以,因此最小值为5;(3) 命题“,都有”的否定是“,使得”;(4)由条件得;因此正确命题的个数为(1)(2)(4),选C.8. 为估计椭圆+y2=1的面积,利用随机模拟的方法产生200个点(x,y),其中x∈(0,2),y∈(0,1),经统计有156个点落在椭圆+y2=1内,则由此可估计该椭圆的面积约为()A.0.78 B.1.56 C.3.12 D.6.24参考答案:D9. 已知函数f(x)=(x2+x﹣1)e x,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=3ex﹣2e B.y=3ex﹣4e C.y=4ex﹣5e D.y=4ex﹣3e参考答案:D【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程.【解答】解:函数f(x)=(x2+x﹣1)e x,可得:f′(x)=(x2+3x)e x,则f′(1)=4e,f(1)=e;曲线y=f(x)在点(1,f(1))处的切线方程为:y=4ex﹣3e.故选:D.10. 已知关于的方程有一解,则的取值范围为()(A)(B)(C)(D)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 为了预防流感,某学校对教室用药物消毒法进行消毒。

乐平市实验中学2018-2019学年高二上学期第二次月考试卷数学卷

乐平市实验中学2018-2019学年高二上学期第二次月考试卷数学卷

乐平市实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( ) A .64π B .16π C .12π D .4π2. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20483. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞ 4. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )A .20B .24C .30D .365. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}6. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定7. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x xf e e = C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 8. 复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i9. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8B .10C .6D .410.若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)11.函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是( )A .B .C .D .12.若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )A .(0,10)B .(,10)C .(,+∞)D .(0,)∪(10,+∞)二、填空题13.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .14.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m=.15.如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q 取自△ABE内部的概率是.16.设m是实数,若x∈R时,不等式|x﹣m|﹣|x﹣1|≤1恒成立,则m的取值范围是.17.命题“若a>0,b>0,则ab>0”的逆否命题是(填“真命题”或“假命题”.)18.已知函数y=log(x2﹣ax+a)在区间(2,+∞)上是减函数,则实数a的取值范围是.三、解答题19.已知不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},(1)求a,b;(2)解不等式ax2﹣(ac+b)x+bc<0.20.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.21.已知椭圆E:+=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为,点(,)在椭圆E 上.(1)求椭圆E 的方程;(2)设过点P (2,1)的直线l 与椭圆相交于A 、B 两点,若AB 的中点恰好为点P ,求直线l 的方程.22.本小题满分12分 已知数列{}n a 中,123,5a a ==,其前n 项和n S 满足)3(22112≥+=+---n S S S n n n n . Ⅰ求数列{}n a 的通项公式n a ; Ⅱ 若22256log ()1n n b a =-N *n ∈,设数列{}n b 的前n 的和为n S ,当n 为何值时,n S 有最大值,并求最大值.23.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x 的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.24.(本小题满分12分)椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-12.(1)求椭圆C的方程;(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.乐平市实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:如图,三棱锥S ﹣ABC 的所有顶点都在球O 的球面上, ∵AB=1,AC=2,∠BAC=60°, ∴BC=,∴∠ABC=90°.∴△ABC 截球O 所得的圆O ′的半径r=1, ∵SA ⊥平面ABC ,SA=2∴球O 的半径R=4,∴球O 的表面积S=4πR 2=64π.故选:A .【点评】本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题的关键.2. 【答案】D 【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图. 3. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12a ≤时,12a -≥-,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11,33B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧≤⎪⎨⎪<⎩或12111a a ⎧>⎪⎪⎨⎪+<⎪,∴2a <,选A . 4. 【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r •x 12﹣3r ,令12﹣3r=3,求得r=3,故展开式中含x 3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x 3项的系数之和为20,故选:A .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.5. 【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A 中,但不在集合B 中.由韦恩图可知阴影部分表示的集合为(C U B )∩A ,又A={1,2,3,4,5},B={x ∈R|x ≥3},∵C U B={x|x <3},∴(C U B )∩A={1,2}.则图中阴影部分表示的集合是:{1,2}. 故选B . 【点评】本小题主要考查Venn 图表达集合的关系及运算、Venn 图的应用等基础知识,考查数形结合思想.属于基础题.6. 【答案】 A【解析】解:∵函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),∴,∴存在x1<a<x2,f'(a)=0,∴,∴,解得a=,假设x1,x2在a的邻域内,即x2﹣x1≈0.∵,∴,∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,∴x0>a,又∵x>x0,又∵x>x0时,f''(x)递减,∴.故选:A.【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.7.【答案】D.【解析】8.【答案】A【解析】解:由复数虚部的定义知,i﹣1的虚部是1,故选A.【点评】该题考查复数的基本概念,属基础题.9.【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点∴|AB|=2﹣(x1+x2),又x1+x2=﹣6∴∴|AB|=2﹣(x1+x2)=8故选A10.【答案】A【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.11.【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A,B当|a|<1时且a≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C.故选:D.12.【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.故选:D.【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.二、填空题13.【答案】2016.【解析】解:∵f(x)=f(2﹣x),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.14.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1815.【答案】.【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.16.【答案】[0,2].【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,求得0≤m≤2,故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.17.【答案】真命题【解析】解:若a>0,b>0,则ab>0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.18.【答案】a≤4.【解析】解:令t=x2﹣ax+a,则由函数f(x)=g(t)=log t 在区间[2,+∞)上为减函数,可得函数t在区间[2,+∞)上为增函数且t(2)>0,故有,解得a≤4,故实数a的取值范围是a≤4,故答案为:a≤4【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.三、解答题19.【答案】【解析】解:(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2﹣3x+2=0的两个实数根,且b>1.由根与系的关系得,解得,所以得.(2)由于a=1且b=2,所以不等式ax2﹣(ac+b)x+bc<0,即x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0.①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.综上所述:当c>2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|2<x<c};当c<2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|c<x<2};当c=2时,不等式ax2﹣(ac+b)x+bc<0的解集为∅.【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题.20.【答案】【解析】解:(1)当a=1时,Q={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2}则P∩Q={1}(2)∵a≤a+1,∴Q={x|(x﹣a)(x﹣a﹣1)≤0}={x|a≤x≤a+1}∵x∈P是x∈Q的充分条件,∴P⊆Q∴,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型.21.【答案】【解析】解:(1)由题得=,=1,又a2=b2+c2,解得a2=8,b2=4.∴椭圆方程为:.(2)设直线的斜率为k,A(x1,y1),B(x2,y2),∴,=1,两式相减得=0,∵P是AB中点,∴x1+x2=4,y1+y2=2,=k,代入上式得:4+4k=0,解得k=﹣1,∴直线l:x+y﹣3=0.【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】Ⅰ由题意知()321211≥+-=-----n S S S S n n n n n , 即()3211≥+=--n a a n n n22311)(......)()(a a a a a a a a n n n n n +-++-+-=--()3122122...2252...22221221≥+=++++++=++++=----n n n n n n检验知n =1, 2时,结论也成立,故a n =2n +1.Ⅱ 由882222222562log ()log log 28212n n n n b n a -====-- N *n ∈法一: 当13n ≤≤时,820n b n =->;当4n =时,820n b n =-=;当5n ≥时,820n b n =-< 故43==n n 或时,n S 达最大值,1243==S S .法二:可利用等差数列的求和公式求解23.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x )×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人, ∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.24.【答案】 【解析】解:(1)可设P 的坐标为(c ,m ), 则c 2a 2+m 2b2=1, ∴m =±b 2a ,∵|PF |=1 ,即|m |=1,∴b 2=a ,①又A ,B 的坐标分别为(-a ,0),(a ,0),由k P A ·k PB =-12得b 2ac +a ·b 2a c -a=-12,即b 2=12a 2,②由①②解得a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (2,1),此时S △PMN =12×22×2=2.当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得x 24+k 2x 22=1,即x =±21+2k2,∴y =±2k1+2k 2,即M (21+2k2,2k 1+2k2),N (-21+2k2,-2k 1+2k2),∴|MN |= ⎝ ⎛⎭⎪⎫41+2k 22+⎝ ⎛⎭⎪⎫4k 1+2k 22 =41+k 21+2k 2,点P (2,1)到l :kx -y =0的距离d =|2k -1|k 2+1,∴S △PMN =12|MN |d =12·41+k 21+2k 2·|2k -1|k 2+1=2·|2k -1|1+2k 2=22k 2+1-22k1+2k 2=21-22k 1+2k 2, 当k >0时,22k 1+2k 2≤22k22k =1, 此时S ≥0显然成立, 当k =0时,S =2.当k <0时,-22k 1+2k 2≤1+2k 21+2k 2=1,当且仅当2k 2=1,即k =-22时,取等号. 此时S ≤22,综上所述0≤S ≤2 2.即当k =-22时,△PMN 的面积的最大值为22,此时l 的方程为y =-22x .。

乐平市第一中学2018-2019学年高三上学期11月月考数学试卷含答案

乐平市第一中学2018-2019学年高三上学期11月月考数学试卷含答案

乐平市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出函数,如下表,则的值域为()()f x ()g x (())f gxA .B .C .D .以上情况都有可能{}4,2{}1,3{}1,2,3,42. 已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm )对工期延误天数Y 的影响及相应的概率P 如表所示:降水量X X <100100≤X <200200≤X <300X ≥300工期延误天数Y051530概率P 0.40.20.10.3在降水量X 至少是100的条件下,工期延误不超过15天的概率为()A .0.1B .0.3C .0.42D .0.53. 若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log x x y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.4. 已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )A .B .C .D .5. 已知集合,,则( )2{430}A x x x =++≥{21}xB x =<A B =I A .B .C .D .[3,1]--(,3][1,0)-∞--U (,3)(1,0]-∞--U (,0)-∞6. 已知抛物线:的焦点为,是抛物线的准线上的一点,且的纵坐标为正数,C 28y x =F P C P 是直线与抛物线的一个交点,若,则直线的方程为( )Q PF C PQ =u u u r u u rPF A . B .C .D .20x y --=20x y +-=20x y -+=20x y ++=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .28. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)9. 从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人10.二进制数化为十进制数的结果为()((210101A . B .C .D .1521334111.已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是()A .﹣1B .0C .1D .212.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 14.已知为常数,若,则_________.,a b ()()224+3a 1024f x x x f x b x x =++=++,5a b -=15.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .16.阅读下图所示的程序框图,运行相应的程序,输出的的值等于_________. n 17.在直三棱柱中,∠ACB=90°,A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B ..D .18.已知函数y=log (x 2﹣ax+a a 的取值范围是 . 三、解答题19.(本小题满分10分)选修4-1如图,点在上,、、交于点,.,,,A B D E O e ED BE F AE EB BC ==11=(1)证明:;»»DEBD =(2)若,,求的长.2DE =4AD =DF 20.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分)(3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.21.已知等差数列{a n }中,a 1=1,且a 2+2,a 3,a 4﹣2成等比数列.(1)求数列{a n }的通项公式;(2)若b n =,求数列{b n }的前n 项和S n .22.已知函数f (x )=|x ﹣m|,关于x 的不等式f (x )≤3的解集为[﹣1,5].(1)求实数m 的值;(2)已知a ,b ,c ∈R ,且a ﹣2b+2c=m ,求a 2+b 2+c 2的最小值.23.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲 83 81 93 79 78 84 88 94乙 87 89 89 77 74 78 88 98(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.24.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.乐平市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】试题分析:故值域为()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========.{}4,2考点:复合函数求值.2. 【答案】D【解析】解:降水量X 至少是100的条件下,工期延误不超过15天的概率P ,设:降水量X 至少是100为事件A ,工期延误不超过15天的事件B ,P (A )=0.6,P (AB )=0.3,P=P (B 丨A )==0.5,故答案选:D . 3. 【答案】C【解析】由始终满足可知.由函数是奇函数,排除;当时,||)(x a x f =1)(≥x f 1>a 3||log x x y a =B )1,0(∈x ,此时,排除;当时,,排除,因此选.0||log <x a 0||log 3<=xx y a A +∞→x 0→y D C 4. 【答案】A【解析】解:∵3<2+log 23<4,所以f (2+log 23)=f (3+log 23)且3+log 23>4∴f (2+log 23)=f (3+log 23)=故选A . 5. 【答案】B【解析】,,(,3][1,)A =-∞--+∞U (,0)B =-∞∴.(,3][1,0)A B =-∞--I U 6. 【答案】B 【解析】考点:抛物线的定义及性质.【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.7.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),又P为C上一点,|PF|=4,可得y P=3,代入抛物线方程得:|x P|=2,∴S△POF=|0F|•|x P|=.故选:C.8.【答案】B【解析】解:由f(x)图象单调性可得f′(x)在(﹣∞,﹣1)∪(0,+∞)大于0,在(﹣1,0)上小于0,∴f(x)f′(x)<0的解集为(﹣∞,﹣2)∪(﹣1,0).故选B.9.【答案】A【解析】解:由已知中的频率分布直方图可得时间不超过70分的累计频率的频率为0.4,则这样的样本容量是n==20.故选A .【点评】本题考查的知识点是频率分布直方图,熟练掌握频率的两个公式频率=矩形高×组距=是解答的关键. 10.【答案】B 【解析】试题分析:,故选B.()21212121101010242=⨯+⨯+⨯=考点:进位制11.【答案】D【解析】解:命题p :∃x ∈R ,cosx ≥a ,则a ≤1.下列a 的取值能使“¬p ”是真命题的是a=2.故选;D . 12.【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m 则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解. 二、填空题13.【答案】 (,) .【解析】解:设C (a ,b ).则a 2+b 2=1,①∵点A (2,0),点B (0,3),∴直线AB 的解析式为:3x+2y ﹣6=0.如图,过点C 作CF ⊥AB 于点F ,欲使△ABC 的面积最小,只需线段CF 最短.则CF=≥,当且仅当2a=3b 时,取“=”,∴a=,②联立①②求得:a=,b=,故点C 的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题. 14.【答案】【解析】试题分析:由,得,()()224+3a 1024f x x x f x b x x =++=++,22()4()31024ax b ax b x x ++++=++即,比较系数得,解得或222224431024a x abx b ax b x x +++++=++22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩1,7a b =-=-,则.1,3a b ==5a b -=考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.()f ax b +15.【答案】 x ﹣y ﹣2=0 .【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0,故答案为x ﹣y ﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程. 16.【答案】6【解析】解析:本题考查程序框图中的循环结构.第1次运行后,;第2次运行后,9,2,2,S T n S T ===>;第3次运行后,;第4次运行后,13,4,3,S T n S T ===>17,8,4,S T n S T ===>;第5次运行后,,此时跳出循环,输出结果21,16,5,S T n S T ===>25,32,6,S T n S T ===<6n =程序结束.17.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA1=,M为A1B1的中点,∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.18.【答案】 a≤4 .【解析】解:令t=x2﹣ax+a,则由函数f(x)=g(t)=log t 在区间[2,+∞)上为减函数,可得函数t 在区间[2,+∞)上为增函数且t (2)>0,故有,解得a ≤4,故实数a 的取值范围是a ≤4,故答案为:a ≤4【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题. 三、解答题19.【答案】【解析】(1)证明:∵,∴.EB BC =C BEC ∠=∠∵,∴.BED BAD ∠=∠C BED BAD ∠=∠=∠∵,,2EBA C BEC C ∠=∠+∠=∠AE EB =∴,又.2EAB EBA C ∠=∠=∠C BAD ∠=∠ ∴,∴.EAD C ∠=∠BAD EAD ∠=∠∴.»»DEBD =(2)由(1)知,EAD C FED ∠=∠=∠∵,∴∽,∴.EAD FDE ∠=∠EAD ∆FED ∆DE ADDF ED=∵,,∴.2DE =4AD =1DF =20.【答案】解:(1)当a=1,f (x )=x 2﹣3x+lnx ,定义域(0,+∞),∴…(2分),解得x=1或x=,x ∈,(1,+∞),f ′(x )>0,f (x )是增函数,x ∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a <e 时,∴f (x )min =f (a )=a (lna ﹣a ﹣1)当a ≥e 时,f (x )在[1,a )减函数,(a ,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f (x )≥g (x )在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a的取值范围为…(14分)21.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.22.【答案】【解析】解:(1)|x﹣m|≤3⇔﹣3≤x﹣m≤3⇔m﹣3≤x≤m+3,由题意得,解得m=2;(2)由(1)可得a﹣2b+2c=2,由柯西不等式可得(a2+b2+c2)[12+(﹣2)2+22]≥(a﹣2b+2c)2=4,∴a2+b2+c2≥当且仅当,即a=,b=﹣,c=时等号成立,∴a2+b2+c2的最小值为.【点评】本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题.23.【答案】【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.,.…,.…因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II)记事件C表示为“甲回答问题A成功”,事件D表示为“甲回答问题B成功”,则P(C)=,P(D)=,且事件C与事件D相互独立.…记甲按AB顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P(ξ=0)=P()=,P(ξ=100)=P()=,P(ξ=400)=P(CD)=.即ξ的分布列为:ξ0100400P所以甲按AB顺序获得奖品价值的数学期望.…记甲按BA顺序获得奖品价值为η,则η的可能取值为0,300,400.P(η=0)=P()=,P(η=300)=P()=,P(η=400)=P(DC)=,即η的分布列为:η0300400P所以甲按BA顺序获得奖品价值的数学期望.…因为Eξ>Eη,所以甲应选择AB的答题顺序,获得的奖品价值更高.…【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.24.【答案】【解析】解:(1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,又PD∩DC=D,PD、DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,故PC⊥BC.(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积.因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积.由V A﹣PBC=V P﹣ABC,,得,故点A到平面PBC的距离等于.【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.。

乐平市高级中学2018-2019学年高二上学期第一次月考试卷数学

乐平市高级中学2018-2019学年高二上学期第一次月考试卷数学

乐平市高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为()(A)8(B )4(C)83(D)432.与圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0都相切的直线有()A.1条B.2条C.3条D.4条3.设a,b∈R且a+b=3,b>0,则当+取得最小值时,实数a的值是()A.B. C.或D.34.“方程+=1表示椭圆”是“﹣3<m<5”的()条件.A.必要不充分B.充要C.充分不必要D.不充分不必要5.函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A.2 B.3 C.7 D.96. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A .B .C .D .7. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+18. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 9. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)10.已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直11.设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为( )A .B . C. D .12.已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题13.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .14.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .15.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

乐平市高中2018-2019学年高二上学期第一次月考试卷数学

乐平市高中2018-2019学年高二上学期第一次月考试卷数学

乐平市高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( ) A .3B .6C .7D .82. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣3. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,]6πB .[,)6ππ C. (0,]3π D .[,)3ππ 4. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; 3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④5. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.6. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .2 7. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20489. 已知函数()xe f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的 取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.10.已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .2011.设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92D .4 12.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .二、填空题13.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .14.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .15.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .16.已知正四棱锥O ABCD -的体积为2 则该正四棱锥的外接球的半径为_________17.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .18.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.三、解答题19.(本小题满分10分)如图⊙O 经过△ABC 的点B ,C 与AB 交于E ,与AC 交于F ,且AE =AF . (1)求证EF ∥BC ;(2)过E 作⊙O 的切线交AC 于D ,若∠B =60°,EB =EF =2,求ED 的长.20.如图,已知AB 是圆O 的直径,C 、D 是圆O 上的两个点,CE ⊥AB 于E ,BD 交AC 于G ,交CE 于F ,CF=FG .(Ⅰ)求证:C 是劣弧的中点;(Ⅱ)求证:BF=FG .21.(本小题满分12分)设03πα⎛⎫∈ ⎪⎝⎭,αα=(1)求cos 6πα⎛⎫+ ⎪⎝⎭的值;(2)求cos 212πα⎛⎫+ ⎪⎝⎭的值.22.已知向量,满足||=1,||=2,与的夹角为120°.(1)求及|+|;(2)设向量+与﹣的夹角为θ,求cos θ的值.23.已知关x 的一元二次函数f (x )=ax 2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q 中随机取一个数a 和b 得到数对(a ,b ).(1)列举出所有的数对(a ,b )并求函数y=f (x )有零点的概率;(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.24.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.乐平市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵在等差数列{a n}中a1=2,a3+a5=8,∴2a4=a3+a5=8,解得a4=4,∴公差d==,∴a7=a1+6d=2+4=6故选:B.2.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D3.【答案】C【解析】考点:三角形中正余弦定理的运用.4.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D . 5. 【答案】A 【解析】6. 【答案】A【解析】解:∵正方体中不在同一表面上两顶点A (﹣1,2,﹣1),B (3,﹣2,3),∴AB 是正方体的体对角线,AB=,设正方体的棱长为x ,则,解得x=4.∴正方体的棱长为4,故选:A .【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.7. 【答案】B【解析】解:∵z=cos θ+isin θ对应的点坐标为(cos θ,sin θ), 且点(cos θ,sin θ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B .【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.8. 【答案】D 【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图. 9. 【答案】D第Ⅱ卷(共90分)10.【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 11.【答案】] 【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当 P 与两焦点 F1,F2 能构成三角形时,由余弦定理可得 4c2= + ﹣2× × ×cos∠F1PF2, ﹣ < <1,即 cos∠F1PF2∈( <e2<1,∴ = ; <e<1; , ),
由 cos∠F1PF2∈(﹣1,1)可得 4c2= 即 <4c2< ,∴
当 P 与两焦点 F1,F2 共线时,可得 a+c=2(a﹣c),解得 e= 综上可得此椭圆的离心率的取值范围为[ 故选:D ,1)
2a 1 ;2. 当 g 1 3 a 0 时, g x 与轴无交点,但 h x 中 x 3a 和 x 2a ,两交点横坐标均满足 x 1 .
14.【答案】 【解析】 试题分析:画出可行域如下图所示,由图可知目标函数在点 A ,
7 3 7 1 2 处取得最大值为 . 3 3 3
二、填空题
11.【答案】 70
r 8 r 【 解 析 】 ( x )8 的 展 开 式 通 项 为 Tr 1 C8 x ( ) r (1) r C8r x8 2 r , 所 以 当 r 4 时 , 常 数 项 为
1 x
1 x
(1) 4 C84 70 .
12.【答案】BC 【解析】 【分析】验证发现,直线系 M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆 x2+(y﹣2)2=1 的切线的集合, A.M 中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出, B.存在定点 P 不在 M 中的任一条直线上,观察直线的方程即可得到点的坐标. C.对于任意整数 n(n≥3),存在正 n 边形,其所有边均在 M 中的直线上,由直线系的几何意义可判断, D.M 中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出. 【解答】解:因为点(0,2)到直线系 M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离 d= =1,直线系 M: xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆 x2+(y﹣2)2=1 的切线的集合, A.由于直线系表示圆 x2+(y﹣2)2=1 的所有切线,其中存在两条切线平行,M 中所有直线均经过一个定点 (0,2)不可能,故 A 不正确; B.存在定点 P 不在 M 中的任一条直线上,观察知点 M(0,2)即符合条件,故 B 正确; C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数 n(n≥3) ,存在正 n 边形,其所有边均 在 M 中的直线上,故 C 正确; D.如下图,M 中的直线所能围成的正三角形有两类, 其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC 型,此一类面积 相等,但两类之间面积不等,所以面积大小不一定相等, 故本命题不正确. 故答案为:BC.
,EF=2,BE=3,CF=4.
19.已知 m≥0,函数 f(x)=2|x﹣1|﹣|2x+m|的最大值为 3. (Ⅰ)求实数 m 的值; (Ⅱ)若实数 a,b,c 满足 a﹣2b+c=m,求 a2+b2+c2 的最小值.
20.(本小题满分 12 分)
第 3 页,共 14 页
ABC 的内角 A, B, C 所对的边分别为 a, b, c , m (sin B,5sin A 5sin C ) , n (5sin B 6sin C ,sin C sin A) 垂直.
乐平市实验中学 2018-2019 学年上学期高三数学 10 月月考试题 班级__________ 一、选择题
1. 下列给出的几个关系中:① a, b ;② ④ 0 ,正确的有( A.个 ,则( ) )个 B.个 C.个 D.个 = +x +y
座号_____
姓名__________
8. 【答案】15 【 解 析 】
9. 【答案】D
第 7 页,共 14 页
【解析】【分析】由题设条件,平面 α∩β=l,m 是 α 内不同于 l 的直线,结合四个选项中的条件,对结论进行 证明,找出不能推出结论的即可 【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行; B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面; C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线; D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上 D 选项中的命题是错误的 故选 D 10.【答案】D 【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可. 与命题“若 x∈A,则 y∉A”等价的命题是若 y∈A,则 x∉A. 故选 D.

4. 下列函数在其定义域内既是奇函数又是增函数的是( A. B.

C.

2
D.
5. 已知角 的终边经过点 (sin15 , cos15 ) ,则 cos A.
的值为(
) C.
1 3 2 4
B.
1 3 2 4
3 4
D.0 ,
6. 已知点 F1,F2 为椭圆 则此椭圆的离心率的取值范围是( )
的左右焦点,) B.(0, ] C.( , ] D.[ ,1) 7. 阅读右图所示的程序框图,若 m 8, n 10 ,则输出的 S 的值等于( A.28 B.36
kt

C.45
D.120
8. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量 P (单位:毫克/升)与时间 t (单位: 小时) 间的关系为 P P0 e ( P0 , k 均为正常数). 如果前 5 个小时消除了 10% 的污染物, 为了消除 27.1%
分数__________
a, b a, b ;③ a, b b, a ;
2. 如图所示,在平行六面体 ABCD﹣A1B1C1D1 中,点 E 为上底面对角线 A1C1 的中点,若
A.x=﹣ 3. 若复数满足 A.1
B.x=
C.x=﹣
D.x= ) C. D. i
1 i 7 i (为虚数单位),则复数的虚部为( z B. 1

y 2x 14.设 x, y 满足约束条件 x y 1 ,则 z x 3 y 的最大值是____________. y 1 0
15. B、 C、 D 四点, 在半径为 2 的球面上有 A、 若 AB=CD=2, 则四面体 ABCD 的体积的最大值为 . 16.抛物线 的准线与双曲线 的两条渐近线所围成的三角形面积为__________
第 8 页,共 14 页
1 1 13.【答案】 , [3 , ) 3 2




考 点:1、分段函数;2、函数的零点. 【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论 的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想, 对 g x 3x a 于轴的交点个数进行分情况讨论,特别注意: 1. 在 x 1 时也轴有一个交点式,还需 3a 1 且
但在定义域上不单调,故 C 错; 故答案为:B 5. 【答案】B 【解析】
第 6 页,共 14 页
考 点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义. 6. 【答案】D 【解析】解:由题意设 解得 x= ,故| |= ,| |= , =2x,则 2x+x=2a,
第 9 页,共 14 页
考点:线性规划. 15.【答案】 .
【解析】解:过 CD 作平面 PCD,使 AB⊥平面 PCD,交 AB 与 P, 设点 P 到 CD 的距离为 h, 则有 V= ×2×h× ×2, 当球的直径通过 AB 与 CD 的中点时,h 最大为 2 则四面体 ABCD 的体积的最大值为 故答案为: . . ,
二、填空题 1 8 11. ( x ) 的展开式中,常数项为___________.(用数字作答) x
【命题意图】本题考查用二项式定理求指定项,基础题. 12.设直线系 M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题: A.M 中所有直线均经过一个定点 B.存在定点 P 不在 M 中的任一条直线上 C.对于任意整数 n(n≥3),存在正 n 边形,其所有边均在 M 中的直线上 D.M 中的直线所能围成的正三角形面积都相等 其中真命题的代号是 (写出所有真命题的代号). x 3 a ,x 1 13.设函数 f x ,若 f x 恰有 2 个零点,则实数的取值范围是 x 3a x 2a ,x 1
三、解答题
17.(本题 12 分)在锐角 ABC 中,内角 A , B , C 所对的边分别为,,,且 2a sin B (1)求角 A 的大小; (2)若 a 6 , b c 8 ,求 ABC 的面积.
3b .111]
第 2 页,共 14 页
18.如图,矩形 ABCD 和梯形 BEFC 所在平面互相垂直,BE∥CF,BC⊥CF, (Ⅰ)求证:EF⊥平面 DCE; (Ⅱ)当 AB 的长为何值时,二面角 A﹣EF﹣C 的大小为 60°.
1. 【答案】C 【解析】 试题分析:由题意得,根据集合之间的关系可知: a, b b, a 和 0 是正确的,故选 C. 考点:集合间的关系. 2. 【答案】A 【解析】解:根据题意,得; = = = 又∵ + ﹣ = + ( + + +x , +y , + )
∴x=﹣ ,y= , 故选:A. 【点评】本题考查了空间向量的应用问题,是基础题目. 3. 【答案】A 【解析】 试题分析: i 1, i 1 i i i ,因为复数满足
相关文档
最新文档