2017八年级数学三角形三边关系.doc
三角形的三边关系
一.选择题(共10小题)1.(2017•)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.2.(2017•)若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C.3 D.2【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则8﹣5<x<5+8,即3<x<13,所以符合条件的整数为10,故选B.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.3.(2017•)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【分析】首先求出三角形第三边的取值围,进而求出三角形的周长取值围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(2017•)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4 B.5,7,7 C.5,6,12 D.6,8,10【分析】根据三角形三边关系定理判断即可.【解答】解:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形,故选:C.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边是解题的关键.5.(2017•柳北区校级模拟)三条线段a=5,b=3,c的值为整数,由a、b、c 为边可组成三角形()A.1个B.3个C.5个D.无数个【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:根据三角形的三边关系知c的取值围是:2<c<8,又c的值为整数,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选:C.【点评】此题主要考查了三角形的三边关系,解本题的关键是确定出c的值.6.(2017•)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7.(2017•崇安区一模)如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A、B、C、D任意两点之间的最长距离为()A.24 B.26 C.32 D.36【分析】若两个端点的距离最大,则此时这个框架的形状为三角形,可根据三条线段的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【解答】解:已知AB=12,BC=14,CD=18,DA=24;①选12+14、18、24作为三角形,则三边长26、18、24;26﹣24<18<26+24,能构成三角形,此时两个端点间的最长距离为26;②选12、14+18、24作为三角形,则三边长为12、32、24;32﹣24<12<32+24,能构成三角形,此时两个端点间的最大距离为32;③选12、14、18+24作为三角形,则三边长为12、14、42;12<42﹣14,不能构成三角形.故选:C.【点评】此题主要考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.8.(2017春•薛城区期末)如图,为估计池塘岸边A、B两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B间的距离不可能是()A.4米B.9米C.15米D.18米【分析】根据三角形的三边关系定理得到3<AB<17,根据AB的围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:10﹣7<AB<10+7,即:3<AB<17,∴AB的值在3和17之间.故选D.【点评】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.题型较好.9.(2017春•淮区期末)已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L的取值围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b 【分析】先根据三角形的三边关系求得第三边的取值围,再确定这个三角形的周长l的取值围即可.【解答】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长m的取值围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选B.【点评】考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.10.(2017春•宜兴市期中)a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c【分析】首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.【解答】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|=(a+b+c)﹣(b+c﹣a)﹣(a﹣b+c)﹣(a+b﹣c)=a+b+c﹣b﹣c+a﹣a+b﹣c﹣a﹣b+c=0故选:A.【点评】此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.二.填空题(共8小题)11.(2017春•弥勒市期末)已知三角形的两边长分别为3和6,那么第三边长x的取值围是3<x<9 .【分析】根据三角形三边关系:任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值围.【解答】解:∵此三角形的两边长分别为3和6,∴第三边长的取值围是:6﹣3=3<第三边<6+3=9.即:3<x<9,故答案为:3<x<9.【点评】此题主要考查了三角形三边关系,根据第三边的围是:大于已知的两边的差,而小于两边的和是解决问题的关键.12.(2017春•宜兴市期末)已知三角形的三边长分别为3,8,x,若x的值为偶数,则满足条件的x的值有 3 个.【分析】根据三角形任意两边之和大于第三边,两边之差小于第三边,求出第三边的取值围,然后根据第三边长为偶数求出第三边的长,即可判断能够组成三角形的个数.【解答】解:∵3+8=11,8﹣3=5,∴5<x<11,∵x为偶数,∴x可以是6或8或10,∴满足条件的三角形共有3个.故答案为:3.【点评】此题主要考查的是三角形的三边关系,求出第三边长的取值围是解题的关键.13.(2017春•大丰市期中)若三角形的两边长为3和5,第三边长是偶数,则第三边长可以是4或6 .【分析】根据三角形三边关系,可令第三边为x,则5﹣3<x<5+3,即2<x<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.【解答】解:由题意,令第三边为x,则5﹣3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6.故答案为:4或6.【点评】此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.14.(2017春•常熟市期末)已知一个三角形的两边长分别是2和5,第三边是奇数,则这个三角形的周长是12 .【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:第三边的取值围是大于3而小于7,又第三边是奇数,故第三边只有是5,则周长是12.【点评】注意三角形的三边关系,还要注意奇数这一条件.15.(2017春•诸城市期末)已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【分析】首先确定第三边的取值围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x 的取值围,从而确定绝对值的代数式的符号,难度不大.16.(2016秋•南漳县期末)长为10,7,5,3的四根木条,选其中三根组成三角形,有 2 种选法.【分析】首先得到每三根组合的情况,再根据三角形的三边关系进行判断.【解答】解:每三根组合,有11,7,5;11,7,3;11,5,3;7,5,3四种情况.根据三角形的三边关系,得其中的11,7,3;11,5,3不能组成三角形.能够组成三角形的有2种选法,它们分别是11,7,5;7,5,3.故答案为:2.【点评】本题主要考查了三角形的三边关系,要注意:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.17.(2016秋•龙口市期中)在平坦的草地上有A、B、C三个小球,正好可作为三角形的三个顶点,若已知A球和B球相距3米,A球和C球相距1米,则B球和C球的距离x的取值围为2米<x<4米.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边进行判断.【解答】解:∵1+3=4,3﹣1=2,∴2<x<4.故答案为:2米<x<4米【点评】本题主要考查了三角形的三边关系的运用,已知三角形的两边,则第三边的围是:大于已知的两边的差,而小于已知两边的和.18.(2016春•江阴市校级月考)一个三角形3条边长分别为xcm、(x+1)cm、(x+2)cm,它的周长不超过39cm,则x的取值围是1<x≤12 .【分析】根据三角形的三边关系以及周长列出不等式组,求出x的取值围即可.【解答】解:∵一个三角形的3边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过39cm,∴,解得1<x≤12.故答案为:1<x≤12.【点评】本题考查的是解一元一次不等式组,在解答此题时要注意三角形的三边关系.三.解答题(共8小题)19.(2017春•盐都区月考)如图,在△BCD中,BC=4,BD=5,(1)若设CD的长为奇数,则CD的取值是3或5或7 ;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【分析】(1)利用三角形三边关系得出DC的取值围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;∵CD的长为奇数,∴CD的值为3或5或7;故答案为:3或5或7;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.20.(2016秋•阳新县校级期中)已知三角形三边长分别为a、b、c,其中a、b 满足(a﹣6)2+|b﹣8|=0,求这个三角形最长边c的取值围.【分析】根据算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0,可得a、b的值,根据三角形两边之和大于第三边,两边之差小于第三边,可得答案.【解答】解:∵(a﹣6)2+|b﹣8|=0,∴a﹣6=0,b﹣8=0,∴a=6,b=8,b﹣a<c<a+b,这个三角形的最长边c,c>b=8,8<c<14.【点评】本题考查了算术平方根,算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0是解题关键.21.(2016秋•麻城市月考)如图,点O是△ABC的一点,证明:OA+OB+OC>(AB+BC+CA)【分析】在△ABO和△AOC以及△BOC中,分别利用三角形三边关系定理,两边之和大于第三边,然后把三个式子相加即可证得.【解答】证明:∵△ABO中,OA+OB>AB,同理,OA+OC>CA,OB+OC>BC.∴2(OA+OB+OC)>AB+BC+CA,∴OA+OB+OC>(AB+BC+CA).【点评】本题考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.22.(2016春•乐亭县期末)如图,在△BCD中,BC=4,BD=5,(1)求CD的取值围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【分析】(1)利用三角形三边关系得出DC的取值围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.23.(2016秋•新城区校级期中)如果a、b、c是△ABC的三边,满足(b﹣3)2+|c﹣4|=0,a为奇数,求△ABC的周长.【分析】先根据非负数的性质求出b,c的长,再由三角形的三边关系得出a的值,进而可得出结论.【解答】解:∵(b﹣3)2≥0,|c﹣4|≥0 且(b﹣3)2+|c﹣4|=0,∴(b﹣3)2=0|c﹣4|=0,∴b=3,c=4.∵4﹣3<a<4+3且a为奇数,∴a=3 或5.当a=3时,△ABC的周长是3+4+3=10;当a=5时,△ABC的周长是3+4+5=12.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边差小于第三边是解答此题的关键.24.(2014秋•校级月考)已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a﹣b)2+(b﹣c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.【分析】(1)直接根据非负数的性质即可得出结论;(2)根据三角形的三边关系可得出c的取值围,进而可得出结论.【解答】解:(1)∵(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC是等边三角形;(2)∵a=5,b=2,且c为整数,∴5﹣2<c<5+2,即3<c<7,∴c=4,5,6,∴当c=4时,△ABC周长的最小值=5+2+4=11;当c=6时,△ABC周长的最大值=5+2+6=13.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边差小于第三边是解答此题的关键.25.(2013秋•株洲县校级期末)“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有 3 种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)【分析】(1)根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,确定第三边的取值围,从而确定符合条件的三角形的个数.(2)求出各三角形的周长的和,再乘以售价为8元╱分米,可求其所需钱数.【解答】解:(1)三角形的第三边x满足:7﹣3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5、7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),∴51×8=408(元).答:至少需要408元购买材料.【点评】本题主要考查三角形三边关系的应用,注意熟练运用在三角形中任意两边之和大于第三边,任意两边之差小于第三边.26.小兵在用长度为10cm,45cm和50cm的三根木条钉一个三角形,不小心将50cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25cm,你怎样通过截木条的方法钉成一个小三角形?【分析】(1)根据三角形的三边关系:三角形两边之和大于第三边.三角形的两边差小于第三边求解即可;(2)根据三边关系确定第三边的长,然后确定折去的木条的长度即可.【解答】解:(1)∵两根木条的长为10cm、45cm,∴若第三根木条的长x满足45﹣10<x<45+10,即:35<x<55,∵第三根木条为50cm,50﹣35=15cm,∴最长的木条至少折断了15厘米;(2)如果折去了25cm,则还剩25cm,要想钉成一个三角形架可以将45cm长的木条折去大于10cm小于30cm的一部分.【点评】本题考查了三角形三边关系,解题的关键是确定第三边的取值围,难度不大.。
八年级数学上册 13.1 三角形中的边角关系
13.1 三角形中的边角关系第一课时三角形中的边角关系(一)教学目标1、了解三角形的概念,掌握分类思想2、经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵3、让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值重、难点与关键重点:了解三角形分类思想,弄清三角形三边关系难点:对两边之差小于第三边的领悟关键:从观察、联想入手,应用连结两点之间的线中,线段最短这一原理进行迁移教学过程一、情境合一,探究新知1、投影图片,把事先收集的与三角形有关系的生活图片,运用投影仪播放,让学生对三角形有一个感性认识.如下图:教师活动:通过播放图片,引导学生认识三角形,并提出图中能找出的几个三角形具有什么样的特性.学生讨论教师归纳,由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形.教师活动:给出一个三角形,如图,并标上字母,引导学生体会用符号来表示一个三角形的方法,认识三角形的基本元素:边、角、顶点等.学生活动:学会运用大小写字母来表示三角形的边与角,如图的三角形可记作⊿ABC,三边可记作AB、AC、CA;三个角可记作∠A、∠B、∠C,或可用三个字母表示为∠BAC、∠ABC、∠ACB.注意:表示边时要两个大写字母,或一个小写字母.注意小写字母标注的规律:通常顶点大写字母所对的变就是这个顶点的小写字母.2、教师给出不同类型的三角形,引导学生从边和角两种角度观察、分类.(1)从边的角度来分类有:不等边三角形等腰三角形(包括等边三角形)说明:对于等腰三角形来说,相等的两边称为腰,第三边称为底边。
两腰所夹的角称为顶角,腰与底边的夹角称为底角:而等边三角形的三边都相等,它是等腰三角形的特例.(2)从角的角度来分类有:锐角三角形(三个内角均为小于900的角)直角三角形(有一个角是900)钝角三角形(有一个内角大于900)二、联系实际,合作探究1、问题牵引1.国庆节的晚上,小明从甲地到乙地后再往丙地走,并到达丙地,小红从甲地直接到丙地,如图所示,请你谈谈小明和小红谁走的路程长?依据是什么?学生活动:发现小红走的路程短,小明走的路程长。
八年级上册数学 三角形三边关系-命题与证明
三角形中的边角关系、命题与证明【学习目的】①理解与三角形有关的基本概念②命题与证明考点一:三角形中的边角关系►知识点拨:1.三角形中的有关概念(1)三角形的概念:由不在同一直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.用符号“△”表示.(2)三角形的顶点、边和角:①边的表示;②角的表示;③对边、对角的概念.2.三角形按边的关系分类(1)不等边三角形:三条边互不相等;②等腰三角形:有两条边相等的三角形;(2)等边三角形:三条边都相等的三角形(等腰三角形的特例)3.三角形的三边关系:三角形中任何两条边的和大于第三边,两边的差(绝对值)小于第三边.4.三角形中角的关系(1)按角分类:①直角三角形;②斜三角形:锐角三角形和钝角三角形.(2)三角形的内角和等于180 .注意:①用Rt△ABC表示直角三角形;②任意一个三角形最多有三个锐角;最少有两个锐角;最多有一个钝角;最多有一个直角;③任何三角的最大内角不能小于60 ,最小内角不能大于60 .5.三角形中的几条重要线段(1)角平分线:角平分线把角分成两个相等的角.(三条角平分线的交点就是三角形的外心)(2)中线:三角形一顶点与它对边中点的线段叫中线.(三条中线的交点就是三角形的重心)(3)高线:三角形一顶点与它对边所在直线的垂线段叫三角形的高线.注意:三角形的中线所分得的两个三角形的面积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所示,以点A为顶点的三角形共有()A.6个B.7个C.8个D.9个A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三角形的个数有()A.1 B.2 C.3 D.4A.锐角三角形B.钝角三角形C.直角三角形D.无法确定例5:如图,CD、CE、CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定一条直线B.两直线平行,同位角相等C.三角形的高、角平分线和中线都是线段D.有一个角是直角的三角形叫做直角三角形基础训练1、如图所示,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三角形,有个等边三角形.第1题图第3题图第4题图2、一个等腰三角形中,一边长为9cm,另一边长为5cm,则等腰三角形的周长是.3、如图,AD、BE、CF分别是△ABC的高、中线、角平分线.则△ADC的高、中线、角平分线分别是.4、如图,图中以AB为边的三角形的个数是()A.3B.4C.5D.6A.等腰三角形B.等边三角形C.直角三角形D.不能确定6、三角形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三角形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三角形的三边长分别为2,9,1-2a,则a的取值范围是()A.3<a<5B.-5<a<3C.-5<a<-3D.不能确定9、三角形的内角和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54 ,∠B=36 ,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()A.30°B.50°C.80°D.100°12、三角形的角平分线、中线和高()A.都是射线B.都是直线C.都是线段D.都在三角形内13、如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下面四个命题中属于定义的是()A.两点之间线段最短B.对顶角相等C.有两条边相等的三角形叫等腰三角形D.内错角相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.如图,AE是△ABC的中线,D是BE上一点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()4.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cmB.8cm ,7cm,15cmC.5cm ,5cm,11cmD.13cm ,12cm,20cm5.如图,在△ABC中,点D是边AB上的一点,点E是边AC上一点,且DE∥BC,∠B=40 ,∠AED=60 ,则∠A的度数是()A.100 B.90 C.80 D.70第5题图第7题图第8题图6.一个三角形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的高,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(α<β),则∠DAE=度.(用α、β含的代数式表示)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是_____.10.如图,在△ABC中,∠A=40 ,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15 ,∠BAD=40 ,求∠BED的度数;(2)在△BED 中,作BD 边上的高;(3)若△ABC 的面积为40,BD=5,求△BDE 中BD 边上的高为多少?12.如图,在△ABC 中,AD 是BC 边上的高,AE 、BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠DAC ,∠BOA.能力提升1.各边长度都是正整数且最大边长为8的三角形共有个.2.三角形的三边长分别为a 、b 、c ,且(a -b-c)∙(b-c)=0,则此三角形为________三角形.3.如图所示,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12=∆ABC S ,则图中阴影部分面积是_____.4.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且24cm S ABC =∆,则阴影S 等于 ( )5.如图,用钢筋做支架,要求BA 、DC 相交所成的锐角为32 ,现测得∠BAC=∠DCA=115 ,则这个支架符合设计要求吗?为什么?6.设三角形的三条边为整数a 、b 、c 且c b a ≤≤,当b=4时,符合条件的a 、b 、c 的取值若下表:(1)将表格补充完整;(2)满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形又有多少个? 考点二:命题与证明例1:下列语句不是命题的是()A.直角都等于90 B.对顶角相等 C.互补的两个角不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数一定是有理数;(2)同角的补角相等;(3)两个锐角互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平行,同位角相等;(2)若a=0,则a b=0;(3)对顶角相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出一个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC 中,∠ABC=66 ,∠ACB=54 ,BE 、CF 是两边AC 、AB 上的高,它们交于点H.求∠ABE 和∠BHC 的度数.基础训练1、下列语句中,不是命题的是 ( ) A.两点之间线段最短B.对顶角相等C.不是对顶角的两个角不相等D.过直线AB 外一点P 作直线AB 的垂线2、下列命题中,是真命题的是 ( ) A.三角形的一个外角大于任何一个内角 B.三角形的一个外角等于两个内角之和 C.三角形的两边之和一定不小于第三边D.三角形的三条中线交于一点,这个交点就是三角形的重心3、“两条直线相交只有一个交点”的题设是 ( )A.两条直线B.相交C.只有一个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠B<∠1+∠2C.∠ACD是△ABC的外角D.∠ACD>∠A+∠B第5题图第6题图第7题图6、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三角形是等腰三角形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所示∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()又因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)同角的余角相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐角的和一定是钝角;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的一点,过E作ED⊥AB,垂足为D,若∠1=∠2,,则△ABC 是直角三角形吗?为什么?强化训练1.如图,在锐角三角形ABC中,CD、BE分别是AB、AC边上的高,且CD、BE相交于点P.若∠A =50°,则∠BPC的度数是()A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3第2题图第6题图3.一个三角形的三个外角之比为3:4:5,则这个三角形三个内角之比是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的一个反例可以是 ( )A.a =-2B.31=a C. a =1 D.2=a 5.下列命题:①对顶角相等;②同位角相等,两直线平行;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题一定成立的有 ( )A.①②③④B.①④C.②④D.②6.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= ( )A.35B.95C.85D.757.如图,在△ABC 中,∠B=40 ,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直角三角形中两个锐角的平分线相交所成的锐角的度数是.9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外角平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°, 求∠DAE 的度数.12.如图,D是△ABC内的任意一点.求证:∠BDC=∠1+∠A+∠2.13.用两种方法证明“三角形的外角和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360 .证法1: ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180⨯ 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并用不同的方法完成证法2.能力提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想一想:什么样的两个数之积等于这两个数的和?设n 表示正整数,用关于n 的代数式表示这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC .2224,24;1139393,3;22224164164,4;33335255255,5.4444⨯=+=⨯=+=⨯=+=⨯=+=(1)求证:∠BAC=90°;(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC中AB=AC,∠BAC=900,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F.(1)求证:AE=CF(2)是否还有其他结论,不要求证明(至少2个)。
直角三角形三边的关系导学课件华东师大版八年级数学上册
2 22
2
(a+b)2 c2+2ab
整个图形面积等于不
,
2
2
重叠、无空隙的各组
即a2+b2=c2.
成部分的面积的和.
感悟新知
3-1. 如图, 写出字母所代表的正方形的面积:SA= 625 ______1,44SB= ______.
感悟新知
3-2. (1)观察图① ②并填写下表(图中每个小方格的边长为1).
图① 图②
A的 面积
16 4
B的 面积
9 9
C的 面积
25 13
感悟新知
(2)三个正方形A,B,C的面积之间有什么关系? 解:三个正方形A,B,C的面积之间的关系为SA+SB=SC.
(3)三个正方形围成的一个直角三角形的三边长之间存在什 么关系? 三个正方形围成的一个直角三角形的三边长之间的关 系:直角三角形两直角边的平方和等于斜边的平方.
感悟新知
解题秘方:紧扣“总体面积等于各部分面积之和” 进行验证. 方法点拨:通过拼图,利用求面积来验证,这种方 法以数形转换为指导思想,以图形拼补为手段,以 各部分面积之间的关系为依据而达到目的.
感悟新知
证明:由题知C′D′=a,AD′=b.
∵四边形BCC′D′为直角梯形,
∴ S 梯形BCC′D′=
方法
加菲尔 德总 统拼图
毕达哥 拉斯 拼图
图形
证明
设梯形的面积为S,则S= 1
(a+b)(a+b)= 1 a2+ 1 b2+ab.2又
1
12
S= ∴
2 ab+ 2 ab+ a2+b2=c2
1 2
c22=
1 2
初中数学人教八年级上册第十一章三角形-三角形的边 -
新课讲解
2 三角形的分类
问题1:观察下列三角形,说一说,按照三角形内角 的大小,三角形可以分为哪几类?
锐角三角形、直角三角形、钝角三角形.
新课讲解
问题2:如果以三角形边的元素的不同,三角形该如何分类呢? 观察图形回答下面各小题.
(1)等腰三角形和等边三角形的区别是什么? 等腰三角形两边相等,等边三角形三边相等.
记法:三角形ABC用符号表示_△__A_B__C__.
新课讲解
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表
示为_c_、__a_、__b_.
顶点A
角
边c
边b
角 顶点B
角
边a
顶点C
三角形的对边与对角:
新课讲解
A
B
C
在△ABC中,
AB边所对的角是: ∠C
∠A所对的边是: BC
再说几个对边与对角的关系试试.
锐角三角形 三角形 直角三角形
钝角三角形
新课讲解
判断: (1)一个钝角三角形一定不是等腰三角形.( × ) (2)等边三角形是特殊的等腰三角形.( √ ) (3)等腰三角形的腰和底一定不相等.( × ) (4)等边三角形是锐角三角形.( √ ) (5)直角三角形一定不是等腰三角形.( × )
3 三角形的三边关系
(2)从边上来说,除了等腰三角形和等边三角形还有什么样 的三角形?
三边都不相等的三角形. (3)根据上面的内容思考:怎样对三角形进行分类?
新课讲解
顶角
(
腰 底角 底边
底角
等边三角形
等腰三角形
1.按是否有边相等分
三角形
不等边 三角形
等腰 三角形
底和腰不相等 的等腰三角形
湘教版八年级数学上册第2章 2.1 三角形 第1课时 三角形的概念及三边关系
17. 一个等腰三角形的周长为 28 cm,其中一边长为 8 cm,则这个三角形其余两边的长是多少?
李明是这样解的:底边长为 8 cm,设腰长为 x cm, 则 2x+8=28,解得 x=10. 所以这个三角形其余两边的长均为 10 cm. 你认为李明的解法对吗?如果不对,正确的解法应 是什么?
解:李明的解法不全面,漏掉了当腰长是 8 cm 时的 情况.正确的解法如下:当底边长是 8 cm 时,设腰长为 x cm,则 2x+8=28,解得 x=10,符合三角形的三边关 系.所以此时其余两边的长均为 10 cm.当腰长为 8 cm 时, 设底边长为 y cm,则 8×2+y=28,解得 y=12,符合三 角形的三边关系.所以此时其余两边的长分别为 8 cm, 12 cm.
解:设第三边为 a,则 2<a<12,当 a 为整数时,a =3,4,5,6,7,8,9,10,11 九个整数,所以满足 条件的三角形有 9 个,其中等腰三角形有 2 个.
15. 在△ABC 中,AC=2,BC=5,AB 的长是奇数. (1)求△ABC 的周长; (2)判断△ABC 的形状.
解:(1)AB=5,周长为 12; (2)△ABC 是等腰三角形.
10. (2018·泰州)已知三角形两边的长分别为 1,5,第 三边长为整数,则第三边的长为_____5____.
11. △ABC 的三边长分别为 a,b,c,则|a+b-c| +|a-b+c|-|a-b-c|=__3_a_-__b_-__c___.
12. (1)将一根长为 15 cm 的铁丝围成一个三角形,其 三边长(单位:cm)分别为整数 a,b,c,且 a>b>c,请写 出一组符合上述条件的 a,b,c 的值:__7_,__6_,__2____;
三角形的三边关系
一.选择题(共10小题)1.(2017?舟山)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4B.5C.6D.9【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.2.(2017?淮安)若一个三角形的两边长分别为5和8,则第三边长可能是()A.14B.10C.3D.2【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则8﹣5<x<5+8,即3<x<13,所以符合条件的整数为10,故选B.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.3.(2017?扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6B.7C.11D.12【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(2017?金华)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4B.5,7,7C.5,6,12D.6,8,10【分析】根据三角形三边关系定理判断即可.【解答】解:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形,故选:C.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边是解题的关键.5.(2017?柳北区校级模拟)三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的范围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:根据三角形的三边关系知c的取值范围是:2<c<8,又c的值为整数,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选:C.【点评】此题主要考查了三角形的三边关系,解本题的关键是确定出c的值.6.(2017?白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b| 的结果为()A.2a+2b﹣2cB.2a+2bC.2cD.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7.(2017?崇安区一模)如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A、B、C、D任意两点之间的最长距离为()A.24B.26C.32D.36【分析】若两个端点的距离最大,则此时这个框架的形状为三角形,可根据三条线段的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【解答】解:已知AB=12,BC=14,CD=18,DA=24;①选12+14、18、24作为三角形,则三边长26、18、24;26﹣24<18<26+24,能构成三角形,此时两个端点间的最长距离为26;②选12、14+18、24作为三角形,则三边长为12、32、24;32﹣24<12<32+24,能构成三角形,此时两个端点间的最大距离为32;③选12、14、18+24作为三角形,则三边长为12、14、42;12<42﹣14,不能构成三角形.故选:C.【点评】此题主要考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.8.(2017春?薛城区期末)如图,为估计池塘岸边A、B两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B间的距离不可能是()A.4米B.9米C.15米D.18米【分析】根据三角形的三边关系定理得到3<AB<17,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:10﹣7<AB<10+7,即:3<AB<17,∴AB的值在3和17之间.故选D.【点评】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.题型较好.9.(2017春?秦淮区期末)已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L的取值范围是()A.3b<L<3aB.2a<L<2(a+b)C.a+2b<L<2a+bD.3a﹣b<L<3a+b【分析】先根据三角形的三边关系求得第三边的取值范围,再确定这个三角形的周长l的取值范围即可.【解答】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长m的取值范围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选B.【点评】考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.10.(2017春?宜兴市期中)a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c| ﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0B.2a+2b+2cC.4aD.2b﹣2c【分析】首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.【解答】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|=(a+b+c)﹣(b+c﹣a)﹣(a﹣b+c)﹣(a+b﹣c)=a+b+c﹣b﹣c+a﹣a+b﹣c﹣a﹣b+c=0故选:A.【点评】此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.二.填空题(共8小题)11.(2017春?弥勒市期末)已知三角形的两边长分别为3和6,那么第三边长x 的取值范围是3<x<9.【分析】根据三角形三边关系:任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.【解答】解:∵此三角形的两边长分别为3和6,∴第三边长的取值范围是:6﹣3=3<第三边<6+3=9.即:3<x<9,故答案为:3<x<9.【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.12.(2017春?宜兴市期末)已知三角形的三边长分别为3,8,x,若x的值为偶数,则满足条件的x的值有3个.【分析】根据三角形任意两边之和大于第三边,两边之差小于第三边,求出第三边的取值范围,然后根据第三边长为偶数求出第三边的长,即可判断能够组成三角形的个数.【解答】解:∵3+8=11,8﹣3=5,∴5<x<11,∵x为偶数,∴x可以是6或8或10,∴满足条件的三角形共有3个.故答案为:3.【点评】此题主要考查的是三角形的三边关系,求出第三边长的取值范围是解题的关键.13.(2017春?大丰市期中)若三角形的两边长为3和5,第三边长是偶数,则第三边长可以是4或6.【分析】根据三角形三边关系,可令第三边为x,则5﹣3<x<5+3,即2<x<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.【解答】解:由题意,令第三边为x,则5﹣3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6.故答案为:4或6.【点评】此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.14.(2017春?常熟市期末)已知一个三角形的两边长分别是2和5,第三边是奇数,则这个三角形的周长是12.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于3而小于7,又第三边是奇数,故第三边只有是5,则周长是12.【点评】注意三角形的三边关系,还要注意奇数这一条件.15.(2017春?诸城市期末)已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x ﹣13|=8.【分析】首先确定第三边的取值范围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x 的取值范围,从而确定绝对值内的代数式的符号,难度不大.16.(2016秋?南漳县期末)长为10,7,5,3的四根木条,选其中三根组成三角形,有2种选法.【分析】首先得到每三根组合的情况,再根据三角形的三边关系进行判断.【解答】解:每三根组合,有11,7,5;11,7,3;11,5,3;7,5,3四种情况.根据三角形的三边关系,得其中的11,7,3;11,5,3不能组成三角形.能够组成三角形的有2种选法,它们分别是11,7,5;7,5,3.故答案为:2.【点评】本题主要考查了三角形的三边关系,要注意:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.17.(2016秋?龙口市期中)在平坦的草地上有A、B、C三个小球,正好可作为三角形的三个顶点,若已知A球和B球相距3米,A球和C球相距1米,则B球和C 球的距离x 的取值范围为2米<x <4米.【分析】根据三角形两边之和大于第三边,角形的两边差小于第三边 【解答】解:∵1+3=4,3﹣1=2, ∴2<x <4. 故答案为:2米<x <4米 【点评】本题主要考查了三角形的三边关用,已知三角形的两边,则第三 边的范围是:大于已知的两边的差,而小于已知两边的和. 18.(2016春?江阴市校级月考)一个三角形3条边为xcm 、(x+1)cm 、(x+2)c m ,它的周过39cm ,则x 的取值范围是1<x ≤12. 【分析】根据三角形的三边关系以及周长列出求出x 的取值范.【解答】解:∵一个角形的3边是xcm ,(x+1)cm ,(x+2)cm ,它的 周过39cm , ∴,解得1<x ≤12. 故答案为:1<x ≤12. 【点评】本题考查的是解一元一次在解答此题时要注意三角形的三边 关系. 三.解答8小题) 19.(2017春?盐都区月考)如图,在△B CD 中,BC=4,BD=5, (1CD 的长为奇数,则CD 的取值是3或5或7; (2)若AE ∥BD ,∠A=55°,∠BDE=12°5,求∠C 的度数. 【分析】(1)利用三角形三边关系(2)利用平行线的性质得出∠AEC 的度数,再利用三角形内角和定理得出答案. 第813页)【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;∵CD的长为奇数,∴CD的值为3或5或7;故答案为:3或5或7;(2)∵AE∥BD,∠BDE=12°5,∴∠AEC=5°5,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.20.(2016秋?阳新县校级期中)已知三角形三边长分别为a、b、c,其中a、b 满足(a﹣6)2+|b﹣8|=0,求这个三角形最长边c的取值范围.【分析】根据算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0,可得a、b的值,根据三角形两边之和大于第三边,两边之差小于第三边,可得答案.【解答】解:∵(a﹣6)2+|b﹣8|=0,∴a﹣6=0,b﹣8=0,∴a=6,b=8,b﹣a<c<a+b,这个三角形的最长边c,c>b=8,8<c<14.【点评】本题考查了算术平方根,算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0是解题关键.21.(2016秋?麻城市月考)如图,点O是△ABC内的一点,证明:OA+OB+OC>(AB+BC+CA)【分析】在△ABO和△AOC以及△BOC中,分别利用三角形三边关系定理,两边之和大于第三边,然后把三个式子相加即可证得.【解答】证明:∵△ABO中,OA+OB>AB,同理,OA+OC>CA,OB+OC>BC.∴2(OA+OB+OC)>AB+BC+CA,∴OA+OB+OC>(AB+BC+CA).【点评】本题考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.22.(2016春?乐亭县期末)如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=12°5,求∠C的度数.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形内角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;(2)∵AE∥BD,∠BDE=12°5,∴∠AEC=5°5,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质∠AEC的度数 是解.2+|c23.(2016秋?新城区校级期中)如果a 、b 、c 是△A B C 的三边,满足3)4|=0,a 为奇数,求△ABC 的周长.【分析】先根据非负数的性b ,c 的长,再由三角形的三边关a 的 值,进而. 【解答】解:∵3)2≥0,4|≥0且3)2+4|=0, ∴(b ﹣3)2=0|c ﹣4|=0,∴b=3,c=4.3<a <4+3且a 为奇数, ∴a=3或5.当a=3时,△ABC 的周长是3+4+3=10;当a=5时,△ABC 的周长是3+4+5=12.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边差小于第三边是解答此题.24.(2014秋?邢台校级月考)已知△A B C 的三边为a ,b ,c .(1)若a ,b ,c 满足b ) 2+c )2=0,试判断△ABC 的形状; (2)若a=5,b=2,且c 为整数,求△ABC 的周长的最大值及最小值.【分析】(1)直接根据非负数的性质即;(2)根据三角形的三边关系c 的取值范围,进而. 【解答】解:(1)∵(a ﹣b )2+(b ﹣c )2=0, ∴a ﹣b =0,b ﹣c =0,∴a=b=c ,∴△ABC 是等边三角形;(2)∵a=5,b=2,且c 为整数,第1113页)∴5﹣2<c<5+2,即3<c<7,∴c=4,5,6,∴当c=4时,△ABC周长的最小值=5+2+4=11;当c=6时,△ABC周长的最大值=5+2+6=13.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边差小于第三边是解答此题的关键.25.(2013秋?株洲县校级期末)“佳园工艺店”打算制作一批有两边长分别是7 分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有3种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)【分析】(1)根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,确定第三边的取值范围,从而确定符合条件的三角形的个数.(2)求出各三角形的周长的和,再乘以售价为8元╱分米,可求其所需钱数.【解答】解:(1)三角形的第三边x满足:7﹣3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5、7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),∴51×8=408(元).答:至少需要408元购买材料.【点评】本题主要考查三角形三边关系的应用,注意熟练运用在三角形中任意两边之和大于第三边,任意两边之差小于第三边.26.小兵在用长度为10cm,45cm和50cm的三根木条钉一个三角形,不小心将50cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25cm,你怎样通过截木条的方法钉成一个小三角形?【分析】(1)根据三角形的三边关系:三角形两边之和大于第三边.三角形的两边差小于第三边求解即可;(2)根据三边关系确定第三边的长,然后确定折去的木条的长度即可.【解答】解:(1)∵两根木条的长为10cm、45cm,∴若第三根木条的长x满足45﹣10<x<45+10,即:35<x<55,∵第三根木条为50cm,50﹣35=15cm,∴最长的木条至少折断了15厘米;(2)如果折去了25cm,则还剩25cm,要想钉成一个三角形架可以将45cm长的木条折去大于10cm小于30cm的一部分.【点评】本题考查了三角形三边关系,解题的关键是确定第三边的取值范围,难度不大.。
八年级数学上册-三角形三边关系练习
八年级数学上册三角形三边关系练习班级姓名一.选择题(共10 小题)1.(2017?舟山)长度分别为2,7,x的三条线段能组成一个三角形,x 的值可以是()A.4 B.5 C. 6 D.92.(2017?淮安)若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C. 3 D.23.(2017?扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.124.(2017?金华)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4B.5,7,7C.5,6,12 D.6,8,105.(2017?柳北区校级模拟)三条线段a=5,b=3,c 的值为整数,由a、b、c 为边可组成三角形()A.1 个B.3 个C.5个D.无数个6.(2017?白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b| 的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.07.(2017?崇安区一模)如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A、B、C、D 任意两点之间的最长距离为()A.24 B.26 C.32 D.368.(2017春?薛城区期末)如图,为估计池塘岸边A、B 两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B 间的距离不可能是()A.4 米B.9 米C.15 米D.18 米9.(2017 春?秦淮区期末)已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L 的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b< L<2a+b D.3a﹣b< L<3a+b10.(2017春?宜兴市期中)a,b,c为△ ABC的三边,化简| a+b+c| ﹣| a﹣b﹣c| ﹣| a﹣b+c| ﹣| a+b ﹣c| ,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c.填空题(共8 小题)11.(2017 春?弥勒市期末)已知三角形的两边长分别为是.3 和6,那么第三边长x 的取值范围12.(2017 春?宜兴市期末)已知三角形的三边长分别为3,8,x,若x 的值为偶数,则满足条件的x 的值有个.13.(2017 春?大丰市期中)若三角形的两边长为 3 和5,第三边长是偶数,则第三边长可以是.14.(2017 春?常熟市期末)已知一个三角形的两边长分别是2和5,第三边是奇数,则这个三角形的周长是15.(2017 春?诸城市期末)已知三角形的三边长分别是3、x、9,则化简| x﹣5|+| x﹣13|=16.(2016秋?南漳县期末)长为10,7,5,3的四根木条,选其中三根组成三角形,有种选法.17.(2016 秋?龙口市期中)在平坦的草地上有A、B、C三个小球,正好可作为三角形的三个顶点,若已知A球和B球相距3米,A球和C球相距1米,则B球和C球的距离x的取值范围为.18.(2016春?江阴市校级月考)一个三角形 3 条边长分别为xcm、(x+1)cm、(x+2)cm,它的周长不超过39cm,则x 的取值范围是.三.解答题(共8 小题)19.(2017 春?盐都区月考)如图,在△ BCD中,BC=4,BD=5,(1)若设CD的长为奇数,则CD的取值是;(2)若AE∥BD,∠ A=55°,∠ BDE=12°5,求∠ C的度数.20.(2016秋?阳新县校级期中)已知三角形三边长分别为a、b、c,其中a、b 满足(a﹣6)2+|b﹣8|=0,求这个三角形最长边c的取值范围.21.(2016秋?麻城市月考)如图,点O是△ ABC内的一点,证明:OA+OB+OC>(AB+BC+CA)22.(2016 春?乐亭县期末)如图,在△ BCD 中,BC=4,BD=5,( 1)求 CD 的取值范围;23.(2016 秋?新城区校级期中)如果 a 、b 、c 是△ ABC 的三边,满足(b ﹣3)2+|c ﹣4|=0,a 为奇数,求△ ABC的周长.∠ BDE=12°5,求∠ C 的度数.24.(2014 秋?邢台校级月考)已知△ ABC的三边长分别为a,b,c.(1)若a,b,c满足(a﹣b)2+(b﹣c)2=0,试判断△ ABC的形状;(2)若a=5,b=2,且 c 为整数,求△ ABC的周长的最大值及最小值.25.(2013秋?株洲县校级期末)“佳园工艺店”打算制作一批有两边长分别是7 分米,3 分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有3种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8 元╱分米,问至少需要多少钱购买材料?(忽略接头)26.小兵在用长度为10cm,45cm和50cm 的三根木条钉一个三角形,不小心将50cm 的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25cm,你怎样通过截木条的方法钉成一个小三角形?参考答案与解析:一.选择题(共10 小题)1.(2017?舟山)长度分别为2,7,x的三条线段能组成一个三角形,x 的值可以是()A.4 B.5 C. 6 D.9【分析】已知三角形的两边长分别为 2 和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x< 7+2,即5< x< 9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9 都不符合不等式5<x<9,只有6符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.2.(2017?淮安)若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C. 3 D.2【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则8﹣5<x<5+8,即3< x<13,所以符合条件的整数为10,故选B.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.3.(2017?扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是 2 和4,∴ 4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11 符合题意,故选C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(2017?金华)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4B.5,7,7C.5,6,12 D.6,8,10【分析】根据三角形三边关系定理判断即可.【解答】解:∵ 5+6<12,∴三角形三边长为5,6,12 不可能成为一个三角形,故选:C.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边是解题的关键.5.(2017?柳北区校级模拟)三条线段a=5,b=3,c 的值为整数,由a、b、c 为边可组成三角形()A.1 个B.3 个C.5个D.无数个【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边 c 的范围,根据 c 的值为整数,即可确定 c 的值.从而确定三角形的个数.【解答】解:根据三角形的三边关系知 c 的取值范围是:2<c<8,又 c 的值为整数,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成 5 个三角形.故选:C.【点评】此题主要考查了三角形的三边关系,解本题的关键是确定出 c 的值.6.(2017?白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b| 的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c 与c﹣b+a 的符号,再去绝对值符号,合并同类项即可.【解答】解:∵ a、b、c为△ ABC的三条边长,∴ a+b ﹣c> 0,c﹣a﹣b< 0,∴原式=a+b ﹣c+(c﹣a﹣b)=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7.(2017?崇安区一模)如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A、B、C、D 任意两点之间的最长距离为()A.24 B.26 C.32 D.36【分析】若两个端点的距离最大,则此时这个框架的形状为三角形,可根据三条线段的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【解答】解:已知AB=12,BC=14,CD=18,DA=24;①选12+14、18、24 作为三角形,则三边长26、18、24;26﹣24<18<26+24,能构成三角形,此时两个端点间的最长距离为26;②选12、14+18、24 作为三角形,则三边长为12、32、24;32﹣24<12<32+24,能构成三角形,此时两个端点间的最大距离为32;③选12、14、18+24 作为三角形,则三边长为12、14、42;12<42﹣14,不能构成三角形.故选:C.【点评】此题主要考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.8.(2017春?薛城区期末)如图,为估计池塘岸边A、B 两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B 间的距离不可能是()A.4 米B.9 米C.15 米D.18 米【分析】根据三角形的三边关系定理得到3<AB<17,根据AB 的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:10﹣7<AB<10+7,即:3<AB< 17,∴AB的值在3和17之间.故选D.【点评】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.题型较好.9.(2017 春?秦淮区期末)已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L 的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b< L<2a+b D.3a﹣b< L<3a+b【分析】先根据三角形的三边关系求得第三边的取值范围,再确定这个三角形的周长l 的取值范围即可.【解答】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长m 的取值范围是a﹣b+a+b< L<a+b+a+b,即2a< L<2a+2b.故选B.【点评】考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.10.(2017春?宜兴市期中)a,b,c为△ ABC的三边,化简| a+b+c| ﹣| a﹣b﹣c| ﹣| a﹣b+c| ﹣| a+b ﹣c| ,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c【分析】首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.【解答】解:| a+b+c| ﹣| a﹣b﹣c| ﹣| a﹣b+c| ﹣|a+b﹣c|=(a+b+c)﹣(b+c﹣a)﹣(a﹣b+c)﹣(a+b﹣c)=a+b+c﹣b﹣c+a﹣a+b﹣c﹣a﹣b+c=0故选:A.【点评】此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.二.填空题(共8 小题)11.(2017春?弥勒市期末)已知三角形的两边长分别为3和6,那么第三边长x 的取值范围是3<x<9 .【分析】根据三角形三边关系:任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.【解答】解:∵此三角形的两边长分别为3和6,∴第三边长的取值范围是:6﹣3=3<第三边< 6+3=9.即:3<x<9,故答案为:3<x< 9.【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.12.(2017春?宜兴市期末)已知三角形的三边长分别为3,8,x,若x的值为偶数,则满足条件的x 的值有 3 个.【分析】根据三角形任意两边之和大于第三边,两边之差小于第三边,求出第三边的取值范围,然后根据第三边长为偶数求出第三边的长,即可判断能够组成三角形的个数.【解答】解:∵ 3+8=11,8﹣3=5,∴5<x<11,∵x 为偶数,∴x可以是 6 或8 或10,∴满足条件的三角形共有 3 个.故答案为:3.【点评】此题主要考查的是三角形的三边关系,求出第三边长的取值范围是解题的关键.13.(2017春?大丰市期中)若三角形的两边长为3和5,第三边长是偶数,则第三边长可以是 4 或 6 .【分析】根据三角形三边关系,可令第三边为x,则5﹣3<x<5+3,即2<x<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.【解答】解:由题意,令第三边为x,则5﹣3<x< 5+3,即2< x<8,∵第三边长为偶数,∴第三边长是 4 或6.故答案为:4或6.【点评】此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.14.(2017春?常熟市期末)已知一个三角形的两边长分别是2和5,第三边是奇数,则这个三角形的周长是12 .【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于 3 而小于7,又第三边是奇数,故第三边只有是5,则周长是12.【点评】注意三角形的三边关系,还要注意奇数这一条件.15.(2017春?诸城市期末)已知三角形的三边长分别是3、x、9,则化简| x﹣5|+| x﹣13|= 8 .【分析】首先确定第三边的取值范围,从而确定x﹣5 和x ﹣13 的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴ x﹣5>0,x﹣13<0,∴ | x﹣5|+| x﹣13| =x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x 的取值范围,从而确定绝对值内的代数式的符号,难度不大.16.(2016秋?南漳县期末)长为10,7,5,3的四根木条,选其中三根组成三角形,有 2 种选法.【分析】首先得到每三根组合的情况,再根据三角形的三边关系进行判断.【解答】解:每三根组合,有11,7,5;11,7,3;11,5,3;7,5,3 四种情况.根据三角形的三边关系,得其中的11,7,3;11,5,3 不能组成三角形.能够组成三角形的有 2 种选法,它们分别是11,7,5;7,5,3.故答案为:2.【点评】本题主要考查了三角形的三边关系,要注意:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.17.(2016 秋?龙口市期中)在平坦的草地上有A、B、C三个小球,正好可作为三角形的三个顶点,若已知A球和B球相距3米,A球和C球相距1米,则B球和C球的距离x的取值范围为 2 米< x< 4 米.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边进行判断.【解答】解:∵ 1+3=4,3﹣1=2,∴2<x<4.故答案为:2米<x<4 米【点评】本题主要考查了三角形的三边关系的运用,已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于已知两边的和.18.(2016春?江阴市校级月考)一个三角形 3 条边长分别为xcm、(x+1)cm、(x+2)cm,它的周长不超过39cm,则x 的取值范围是1<x≤12 .【分析】根据三角形的三边关系以及周长列出不等式组,求出x 的取值范围即可.【解答】解:∵一个三角形的 3 边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过39cm,∴,解得1<x≤12.故答案为:1<x≤ 12.【点评】本题考查的是解一元一次不等式组,在解答此题时要注意三角形的三边关系.三.解答题(共8 小题)19.(2017 春?盐都区月考)如图,在△ BCD中,BC=4,BD=5,(1)若设CD的长为奇数,则CD的取值是3或5或7 ;(2)若AE∥BD,∠ A=55°,∠ BDE=12°5,求∠ C的度数.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出∠ AEC的度数,再利用三角形内角和定理得出答案.【解答】解:(1)∵在△ BCD中,BC=4,BD=5,∴1<DC<9;∵CD的长为奇数,∴CD的值为3或5或7;故答案为:3或5或7;(2)∵ AE∥ BD,∠ BDE=12°5,∴∠ AEC=5°5,又∵∠ A=55°,∴∠ C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠A EC的度数是解题关键.20.(2016秋?阳新县校级期中)已知三角形三边长分别为a、b、c,其中a、b 满足(a﹣6)2+|b﹣8|=0,求这个三角形最长边c的取值范围.【分析】根据算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0,可得a、b 的值,根据三角形两边之和大于第三边,两边之差小于第三边,可得答案.【解答】解:∵(a﹣6)2+|b﹣8| =0,∴ a﹣6=0,b﹣8=0,∴ a=6,b=8,b﹣a<c<a+b,这个三角形的最长边c,c>b=8,8<c<14.【点评】本题考查了算术平方根,算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0 是解题关键.21.(2016秋?麻城市月考)如图,点O是△ ABC内的一点,证明:AB+BC+CA) OA+OB+OC【分析】在△ABO和△AOC以及△ BOC中,分别利用三角形三边关系定理,两边之和大于第三边,然后把三个式子相加即可证得.【解答】证明:∵△ ABO中,OA+OB> AB,同理,OA+OC>CA,OB+OC>BC.∴2(OA+OB+OC)>AB+BC+CA,∴ OA+OB+OC> (AB+BC+CA).【点评】本题考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.22.(2016 春?乐亭县期末)如图,在△ BCD中,BC=4,BD=5,(1)求CD的取值范围;∠ BDE=12°5,求∠ C的度数.分析】(1)利用三角形三边关系得出DC的取值范围即可;2)利用平行线的性质得出∠ AEC的度数,再利用三角形内角和定理得出答案.解答】解:(1)∵在△ BCD中,BC=4,BD=5,∴1<DC<9;(2)∵ AE∥ BD,∠ BDE=12°5,∴∠ AEC=5°5,又∵∠ A=55°,∴∠ C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠ AEC的度数是解题关键.23.(2016 秋?新城区校级期中)如果a、b、c 是△ ABC的三边,满足(b﹣3)2+|c﹣4|=0,a 为奇数,求△ ABC的周长.【分析】先根据非负数的性质求出b,c的长,再由三角形的三边关系得出 a 的值,进而可得出结论.【解答】解:∵(b﹣3)2≥0,|c﹣4|≥0 且(b﹣3)2+|c﹣4|=0,∴(b﹣3)2=0| c﹣4| =0,∴ b=3,c=4.∵4﹣3<a<4+3且a为奇数,∴ a=3 或5.当a=3时,△ ABC的周长是3+4+3=10;当a=5时,△ ABC的周长是3+4+5=12.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边差小于第三边是解答此题的关键.24.(2014 秋?邢台校级月考)已知△ ABC的三边长分别为a,b,c.(1)若a,b,c满足(a﹣b)2+(b﹣c)2=0,试判断△ ABC的形状;(2)若a=5,b=2,且 c 为整数,求△ ABC的周长的最大值及最小值.【分析】(1)直接根据非负数的性质即可得出结论;(2)根据三角形的三边关系可得出c 的取值范围,进而可得出结论.【解答】解:(1)∵(a﹣b)2+(b﹣c)2=0,∴ a﹣b=0,b﹣c=0,∴ a=b=c,∴△ ABC是等边三角形;(2)∵ a=5,b=2,且 c 为整数,∴ 5﹣2< c<5+2,即3<c<7,∴c=4,5,6,∴当c=4时,△ ABC周长的最小值=5+2+4=11;当c=6时,△ ABC周长的最大值=5+2+6=13.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,边是解答此题的关键.25.(2013秋?株洲县校级期末)“佳园工艺店”打算制作一批有两边长分别是第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有3种.两边差小于第三7 分米, 3 分米,(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8 元╱分米,问至少需要多少钱购买材料?(忽略接头)【分析】(1)根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,确定第三边的取值范围,从而确定符合条件的三角形的个数.(2)求出各三角形的周长的和,再乘以售价为8 元╱分米,可求其所需钱数.【解答】解:(1)三角形的第三边x满足:7﹣3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5、7 或9.故要制作满足上述条件的三角形木框共有 3 种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),∴51×8=408(元).答:至少需要408 元购买材料.【点评】本题主要考查三角形三边关系的应用,注意熟练运用在三角形中任意两边之和大于第三边,任意两边之差小于第三边.26.小兵在用长度为10cm,45cm和50cm的三根木条钉一个三角形,不小心将50cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25cm,你怎样通过截木条的方法钉成一个小三角形?【分析】(1)根据三角形的三边关系:三角形两边之和大于第三边.三角形的两边差小于第三边求解即可;(2)根据三边关系确定第三边的长,然后确定折去的木条的长度即可.【解答】解:(1)∵两根木条的长为10cm、45cm,∴若第三根木条的长x 满足45﹣10<x<45+10,22 / 23即:35<x<55,∵第三根木条为50cm,50﹣35=15cm,∴最长的木条至少折断了15 厘米;(2)如果折去了25cm,则还剩25cm,要想钉成一个三角形架可以将45cm 长的木条折去大于10cm 小于30cm 的一部分.【点评】本题考查了三角形三边关系,解题的关键是确定第三边的取值范围,难度不大.。
八年级数学(华教版)上册课件-【1.直角三角形三边的关系】
解:如图所示,过点B作AD的垂线,垂足为C, 则△ABC为直角三角形,且AC=8-3+1=6,BC=6+2=8, 所以AB= 62 82 =10(千米).
答:登陆点A到宝藏埋藏点B的直线距离 是10千米.
C
课堂小结
勾股定理
定理 验证 应用
直角三角形两直角边的平方和 等于斜边的平方
用拼图法验证勾股定理
思考:如图所示是正方形瓷砖铺成的地面,观察图中着色的 三个正方形,P、Q、R的面积有什么关系?
AR
P CQ B
那么在一般的直角三 角形中,两直角边的 平方和是否等于斜边 的平方呢?
SP+SQ=SR 直角三角形ABC三边有什么关系?
AC2+BC2=AB2
等腰直角三角形ABC中,两直角边的 平方和等于斜边的平方.
华东师大版·八年级上册
第14章 勾股定理
1.直角三角形 三边的关系
新课导入
你知道2002年在北京召开的国际数学家大会(ICM-2002) 吗?在这次大会上,到处可以看到一个简洁优美、远看像旋 转的纸风车的图案,它就是大会的会标.
会标采用了1700多 年前中国古代数学 家赵爽用来证明勾
股定理的弦图.
边为c,那么一定有
a2+b2=c2,
a
c
这种关系我们称为勾股定理.
b
即 直角三角形两直角边的平方和等于斜边的平方.
勾股定理揭示了直角三角形三边之间的关系.
读一读
我国古代把直角三角形中较短的直角边称为勾,较长的 直角边称为股,斜边称为弦.“弦图”最早是由三国时期的数 学家赵爽在为《周髀算经》作注时给出的,它标志着中国古 代的数学成就.
勾 股
勾 a
三角形的三边关系
一.选择题(共10小题)1.(2017•)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.2.(2017•)若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C.3 D.2【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则8﹣5<x<5+8,即3<x<13,所以符合条件的整数为10,故选B.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.3.(2017•)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(2017•)下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4 B.5,7,7 C.5,6,12 D.6,8,10【分析】根据三角形三边关系定理判断即可.【解答】解:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形,故选:C.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边是解题的关键.5.(2017•柳北区校级模拟)三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个 B.3个 C.5个 D.无数个【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的范围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:根据三角形的三边关系知c的取值范围是:2<c<8,又c的值为整数,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选:C.【点评】此题主要考查了三角形的三边关系,解本题的关键是确定出c的值.6.(2017•)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7.(2017•崇安区一模)如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A、B、C、D任意两点之间的最长距离为()A.24 B.26 C.32 D.36【分析】若两个端点的距离最大,则此时这个框架的形状为三角形,可根据三条线段的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【解答】解:已知AB=12,BC=14,CD=18,DA=24;①选12+14、18、24作为三角形,则三边长26、18、24;26﹣24<18<26+24,能构成三角形,此时两个端点间的最长距离为26;②选12、14+18、24作为三角形,则三边长为12、32、24;32﹣24<12<32+24,能构成三角形,此时两个端点间的最大距离为32;③选12、14、18+24作为三角形,则三边长为12、14、42;12<42﹣14,不能构成三角形.故选:C.【点评】此题主要考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.8.(2017春•薛城区期末)如图,为估计池塘岸边A、B两点的距离,小林在池塘的一侧选取一点O,测得OA=10米,OB=7米,则A、B间的距离不可能是()A.4米 B.9米 C.15米D.18米【分析】根据三角形的三边关系定理得到3<AB<17,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:10﹣7<AB<10+7,即:3<AB<17,∴AB的值在3和17之间.故选D.【点评】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.题型较好.9.(2017春•秦淮区期末)已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b 【分析】先根据三角形的三边关系求得第三边的取值范围,再确定这个三角形的周长l的取值范围即可.【解答】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长m的取值范围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选B.【点评】考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.10.(2017春•宜兴市期中)a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c【分析】首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.【解答】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|=(a+b+c)﹣(b+c﹣a)﹣(a﹣b+c)﹣(a+b﹣c)=a+b+c﹣b﹣c+a﹣a+b﹣c﹣a﹣b+c=0故选:A.【点评】此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.二.填空题(共8小题)11.(2017春•弥勒市期末)已知三角形的两边长分别为3和6,那么第三边长x 的取值范围是3<x<9.【分析】根据三角形三边关系:任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.【解答】解:∵此三角形的两边长分别为3和6,∴第三边长的取值范围是:6﹣3=3<第三边<6+3=9.即:3<x<9,故答案为:3<x<9.【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.12.(2017春•宜兴市期末)已知三角形的三边长分别为3,8,x,若x的值为偶数,则满足条件的x的值有3个.【分析】根据三角形任意两边之和大于第三边,两边之差小于第三边,求出第三边的取值范围,然后根据第三边长为偶数求出第三边的长,即可判断能够组成三角形的个数.【解答】解:∵3+8=11,8﹣3=5,∴5<x<11,∵x为偶数,∴x可以是6或8或10,∴满足条件的三角形共有3个.故答案为:3.【点评】此题主要考查的是三角形的三边关系,求出第三边长的取值范围是解题的关键.13.(2017春•大丰市期中)若三角形的两边长为3和5,第三边长是偶数,则第三边长可以是4或6.【分析】根据三角形三边关系,可令第三边为x,则5﹣3<x<5+3,即2<x<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.【解答】解:由题意,令第三边为x,则5﹣3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6.故答案为:4或6.【点评】此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.14.(2017春•常熟市期末)已知一个三角形的两边长分别是2和5,第三边是奇数,则这个三角形的周长是12.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于3而小于7,又第三边是奇数,故第三边只有是5,则周长是12.【点评】注意三角形的三边关系,还要注意奇数这一条件.15.(2017春•诸城市期末)已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x ﹣13|=8.【分析】首先确定第三边的取值范围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x 的取值范围,从而确定绝对值内的代数式的符号,难度不大.16.(2016秋•南漳县期末)长为10,7,5,3的四根木条,选其中三根组成三角形,有2种选法.【分析】首先得到每三根组合的情况,再根据三角形的三边关系进行判断.【解答】解:每三根组合,有11,7,5;11,7,3;11,5,3;7,5,3四种情况.根据三角形的三边关系,得其中的11,7,3;11,5,3不能组成三角形.能够组成三角形的有2种选法,它们分别是11,7,5;7,5,3.故答案为:2.【点评】本题主要考查了三角形的三边关系,要注意:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.17.(2016秋•龙口市期中)在平坦的草地上有A、B、C三个小球,正好可作为三角形的三个顶点,若已知A球和B球相距3米,A球和C球相距1米,则B 球和C球的距离x的取值范围为2米<x<4米.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边进行判断.【解答】解:∵1+3=4,3﹣1=2,∴2<x<4.故答案为:2米<x<4米【点评】本题主要考查了三角形的三边关系的运用,已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于已知两边的和.18.(2016春•江阴市校级月考)一个三角形3条边长分别为xcm、(x+1)cm、(x+2)cm,它的周长不超过39cm,则x的取值范围是1<x≤12.【分析】根据三角形的三边关系以及周长列出不等式组,求出x的取值范围即可.【解答】解:∵一个三角形的3边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过39cm,∴,解得1<x≤12.故答案为:1<x≤12.【点评】本题考查的是解一元一次不等式组,在解答此题时要注意三角形的三边关系.三.解答题(共8小题)19.(2017春•盐都区月考)如图,在△BCD中,BC=4,BD=5,(1)若设CD的长为奇数,则CD的取值是3或5或7;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形内角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;∵CD的长为奇数,∴CD的值为3或5或7;故答案为:3或5或7;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.20.(2016秋•阳新县校级期中)已知三角形三边长分别为a、b、c,其中a、b 满足(a﹣6)2+|b﹣8|=0,求这个三角形最长边c的取值范围.【分析】根据算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0,可得a、b的值,根据三角形两边之和大于第三边,两边之差小于第三边,可得答案.【解答】解:∵(a﹣6)2+|b﹣8|=0,∴a﹣6=0,b﹣8=0,∴a=6,b=8,b﹣a<c<a+b,这个三角形的最长边c,c>b=8,8<c<14.【点评】本题考查了算术平方根,算术平方根与绝对值的和为0,可得算术平方根与绝对值同时为0是解题关键.21.(2016秋•麻城市月考)如图,点O是△ABC内的一点,证明:OA+OB+OC >(AB+BC+CA)【分析】在△ABO和△AOC以及△BOC中,分别利用三角形三边关系定理,两边之和大于第三边,然后把三个式子相加即可证得.【解答】证明:∵△ABO中,OA+OB>AB,同理,OA+OC>CA,OB+OC>BC.∴2(OA+OB+OC)>AB+BC+CA,∴OA+OB+OC>(AB+BC+CA).【点评】本题考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.22.(2016春•乐亭县期末)如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形内角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.23.(2016秋•新城区校级期中)如果a、b、c是△ABC的三边,满足(b﹣3)2+|c ﹣4|=0,a为奇数,求△ABC的周长.【分析】先根据非负数的性质求出b,c的长,再由三角形的三边关系得出a的值,进而可得出结论.【解答】解:∵(b﹣3)2≥0,|c﹣4|≥0 且(b﹣3)2+|c﹣4|=0,∴(b﹣3)2=0|c﹣4|=0,∴b=3,c=4.∵4﹣3<a<4+3且a为奇数,∴a=3 或5.当a=3时,△ABC的周长是3+4+3=10;当a=5时,△ABC的周长是3+4+5=12.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边差小于第三边是解答此题的关键.24.(2014秋•邢台校级月考)已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a﹣b)2+(b﹣c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.【分析】(1)直接根据非负数的性质即可得出结论;(2)根据三角形的三边关系可得出c的取值范围,进而可得出结论.【解答】解:(1)∵(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC是等边三角形;(2)∵a=5,b=2,且c为整数,∴5﹣2<c<5+2,即3<c<7,∴c=4,5,6,∴当c=4时,△ABC周长的最小值=5+2+4=11;当c=6时,△ABC周长的最大值=5+2+6=13.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边,两边差小于第三边是解答此题的关键.25.(2013秋•株洲县校级期末)“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有3种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)【分析】(1)根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,确定第三边的取值范围,从而确定符合条件的三角形的个数.(2)求出各三角形的周长的和,再乘以售价为8元╱分米,可求其所需钱数.【解答】解:(1)三角形的第三边x满足:7﹣3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5、7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),∴51×8=408(元).答:至少需要408元购买材料.【点评】本题主要考查三角形三边关系的应用,注意熟练运用在三角形中任意两边之和大于第三边,任意两边之差小于第三边.26.小兵在用长度为10cm,45cm和50cm的三根木条钉一个三角形,不小心将50cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25cm,你怎样通过截木条的方法钉成一个小三角形?【分析】(1)根据三角形的三边关系:三角形两边之和大于第三边.三角形的两边差小于第三边求解即可;(2)根据三边关系确定第三边的长,然后确定折去的木条的长度即可.【解答】解:(1)∵两根木条的长为10cm、45cm,∴若第三根木条的长x满足45﹣10<x<45+10,即:35<x<55,∵第三根木条为50cm,50﹣35=15cm,∴最长的木条至少折断了15厘米;(2)如果折去了25cm,则还剩25cm,要想钉成一个三角形架可以将45cm长的木条折去大于10cm小于30cm的一部分.【点评】本题考查了三角形三边关系,解题的关键是确定第三边的取值范围,难度不大.。
八年级数学上第14章勾股定理14.1勾股定理2直角三角形三边的关系__验证勾股定理授课新华东师大1
知1-讲
3.用拼图法证明命题1的思路: (1)图形经过割补拼接后,只要没有重叠,没有空隙,面
积不会改变; (2)根据同一种图形的面积的不同表示方法列出等式; (3)利用等式性质变换证明结论成立,即拼出图形→写出
图形面积的表达式→找出等量关系→恒等变形→推出 命题1的结论.
知1-讲
例1 图14.1-1是用硬纸板做成的四个两直角边长分别 是a,b,斜边长为c的全等的直角三角形和一个 边长为c的正方形,请你将它们拼成一个能证明 命题1的图形. (1)画出拼成的这个图形的示意图; (2)证明命题1.
知2-讲
(2)已知直角三角形的一边确定另两边的关系; (3)证明含有平方关系的几何问题; (4)作长为n(n≥1,且n为整数)的线段; (5)一些非直角三角形的几何问题、日常生活中的
应用问题,对于这些问题,首先要将它们转化, 建立直角三角形模型,然后利用勾股定理构建方 程或方程组解决.
知2-讲
例2 如图,Rt △ABC的斜边AC比直角边 AB长 2cm,另一直角边BC长为6 cm.求AC的长.
知2-讲
本题运用建模思想解题,根据实际问题画出直 角三角形,再运用勾股定理解答.当图形不是直角 三角形时,常常通过作垂线构造直角三角形.
知2-讲
例5 如图,有一张直角三角形纸片,两直角边AC =6 cm,BC=8 cm,现将直角边AC沿AD折 叠,使点C落在斜边AB上的点E处,试求CD 的长.
导引:利用折叠前后重合的线段相等、重合的角相等, 通过勾股定理列方程,在Rt△BDE中求出线段 DE的长,从而得到CD的长.
解: 由已知AB=AC - 2, BC =6cm, 根据勾股定理,可得 AB2 + BC2 = (AC - 2)2 +62 = AC2, 解得AC= 10(cm).
数学人教版八年级上册三角形的三边关系(三角形两边之和大于第三边)
三角形的边教案鄱阳县石门街中学王浩一.教学背景1.教学内容分析(1)实际生活中的地位和作用:生活中随处可见三角形,它是最简单、最基本的几何图形。
也是研究其它图形的基础,在解决实际问题中也有着广泛的应用。
因此,探索和掌握它的基本性质对学生更好地认识现实世界、发展空间观念和提高思维能力都有非常重要的作用。
本节课是认识三角形的开始,介绍了三角形的有关概念,以及三角形三边之间的关系,为后面介绍三角形内角和性质以及全等三角形打下基础。
本节课围绕三角形的概念自学,培养学生的自学能力;围绕三角形三边的关系让学生动手操作开展探究、发现三角形的有关结论,解决一些实际问题。
让学生积累数学活动经验,同时也为学生自己利用数学语言有条理地表达推理过程打下基础。
(2)重点:三角形三边关系的探究和归纳;难点:三角形三边关系的应用;(设计意图:讲解重难点的方法是充分让学生动手操作同时运用多媒体教学手段,引导推理、探究讨论、例题评析、现场作业,逐步让学生理解重难点。
)2.教学目标:(1)知识与技能目标:学会三角形的边,角及三角形的表示法;在具体的情境中认识三角形,并探索出三角形的三边关系,解决一些生活中的实际问题。
(2)过程与操作目标:经历自己摆三角形、测量三角形的三边长度的过程,培养学生自主、合作、探索的学习方式,并锻炼其语言表达能力。
(3)情感与态度目标:创设情景,使学生通过观察,操作、交流、归纳,获得必需的数学知识,让学生体会用数学思想方法解决生活中的实际问题,激发学生的学习兴趣。
二.教学过程1.创设情境,引入新课[活动1]在小学,我们认识了三角形,三角形看起来简单,但在工农业生产、军事和日常生活中有许多用处。
一起来欣赏老师收集的图片(电脑播放:图片)。
图片欣赏完了,请同学们再举例说明在日常生活中你还见到什么物体上有三角形呢?观察图形,自然引入三角形的概念:让学生根据上面所找出的特点,描述什么样的图形是三角形,同时得到三角形实际应用多.(设计思路:提醒同学们平时要注意观察生活,生活中很多地方有数学知识)[活动2] (学生自学三角形的相关概念,鼓励互动交流)可得:由不在同一直线上.......的三条线段首尾顺次相接..........所组成的图形叫做三角形。
八年级数学三角形三边关系
八年级数学三角形三边关系在咱们的数学课堂上,三角形这东西可是个大明星哦!想想看,三角形可是你生活中到处都能碰到的家伙,无论是那块披萨还是你最爱的切片蛋糕,嘿,谁能拒绝呢?今天咱们就来聊聊三角形的三边关系。
这听起来复杂?其实不然,咱们一步一步来,绝对让你轻松搞定。
你得知道三角形的三条边是怎么回事。
简单来说,三条边就像三位好朋友,它们得互相配合,才能组建一个稳固的三角形。
想象一下,如果你有三根木棍,长短各异,你总不能把短的那根放在最前面吧,那样肯定搭不起来!所以,三角形的三边关系其实是有个规则的。
具体来说,任意两边的长度加起来,必须大于第三边的长度。
哎呀,这就叫三角形不等式,听起来有点高深,但实际上就是个简单的道理,懂了吗?咱们看看这个规则的意思。
假设你有三根边,分别是3、4和5。
把它们拿到一起,先试试3和4,加起来是7,这比5大,嘿,OK,没问题!再试试3和5,加起来是8,这比4也大,继续,最后再试4和5,加起来是9,仍然比3大。
这样一来,你就得到了一个漂亮的三角形!看吧,数学其实就像搭积木,得讲究方法,不能乱来。
当然了,三角形的世界可不止于此,咱们还可以深入探讨一下不同类型的三角形。
比如,锐角三角形、直角三角形和钝角三角形。
想象一下,锐角三角形就像个精灵,三条边都是小于90度的,超级灵活!而直角三角形就像个老实人,守规矩,角度正好是90度,稳稳当当。
至于钝角三角形,它就像个“懒汉”,有一个角大于90度,稍微有点叛逆,嘿嘿,这些可都是三角形中的“角色”哦!说到这里,你可能会想,三角形有什么用呢?别着急,咱们一起来想想。
三角形在建筑上可有大用场。
工程师们经常用它们来设计桥梁和房屋,毕竟三角形结构稳固,不容易变形,简直就是“稳如老狗”。
要是没三角形,咱们的房子可就摇摇欲坠了,这可是一笔不小的损失哦!三角形还出现在艺术和设计中。
想象一下,画家在画布上运用三角形的构图,能让整个画面看起来更加和谐,简直是一种美的享受!从古代到现代,三角形一直都是各种艺术作品的灵感来源,谁说数学跟艺术没关系呢?这两者其实是手牵手的好朋友呢!咱们来聊聊三角形的周长和面积。
湘教版数学八年级上册 三角形的有关概念及三边关系
拓展提升 5. 已知 a、b、c 为三角形的三边长,化简:|b + c - a| +
|b - c - a| - |c - a - b| - |a - b + c|. 解:因为 a、b、c 为三角形三边的长,
边关系
三角形 按边分类
三边各不相等的三角形 等腰三角形(包括等边三角形)
三角形的 三边关系
任意两边之和大于第三边
x + 2x + 2x = 18. 解得 x = 3.6. 所以三边长分别为 3.6 cm、7.2 cm、7.2 cm.
(2) 因为长为 4 cm 的边可能是腰,也可能是底边,
所以需要分情况讨论.
①若底边长为 4 cm,设腰长为 x cm,则有
4 + 2x = 18.
解得 x = 7.
②若腰长为 4 cm,设底边长为 x cm,则有
所以 a + b>c,a + c>b,b + c>a.
则原式 = |(b+c)-a| + |b-(c+a)| - |c-(a+b)| - |(a+c)-b| =b+c-a+a+c-b-a-b+c+b-a-c = 2c - 2a.
课堂小结
三角形的定义:不在同一直线上的三条 线段首尾相接所构成的图形
三角形的 概念及三
归纳 判断三条线段是否可以组成三角形,只需判断 两条较短线段长之和是否大于第三条线段长即可.
例2 有两根长度分别为 5 cm 和 8 cm 的木棒,用长度 为 2 cm 的木棒能与它们首尾相接摆成三角形吗?为什 么?长度为 13 cm 的木棒呢? 解:取长度为 2 cm 的木棒时,由于 2 + 5 = 7 < 8,出 现了两边之和小于第三边的情况,所以它们不能摆成 三角形;取长度为 13 cm 的木棒时,由于 5 + 8 = 13, 出现了两边之和等于第三边的情况,所以它们也不能 摆成三角形.
八年级数学直角三角形三边的关系_课件
3米
例题
例1:在Rt∆ABC中,∠B=90°, AB=6, BC=8,求AC.
例2:在Rt∆ABC中,AB=c,BC=a, AC=b, ∠C=90°.
〔1〕a=3,c=5,求b. 〔2〕b=5,c=13,求a.
结论变形
直角三角形中,两直角边的平方和等于斜边的平方;
c2=a2 + b2
c a2 b2
形。
5
(每格代表1平方厘米)
勾股定理〔gou-、 b,斜边为c,那么
c a
a2b2 c2 b 即 直角三角形两直角边的平
方和等于斜边的平方。
问y题=解0 决
受台风麦莎影响,一棵树在离地面 4米处断裂,树的顶部落在离树跟底部 3米处,这棵树折断前有多高?
P的面 Q的面 R的面 积(单位 积(单位 积(单位 长度) 长度) 长度)
AR Q
C
B
P
图2
图2
P、Q、
R面积 关系
直角三 角形三 边关系
9 4 13
SP+SQ=SR
两直边的平方和 等于斜边的平方
在右图(书本
109页做一做)的方
格图中,用三角
尺化出两条直角
边分别为5cm、 12cm的直角三角
12
a2=c2 - b2
a c2 b2
c
b
b2 =c2 -a2
b c2 a2
a
家庭作业:
课时达标检测134页: 必做题:1题、2题、3题 选做题:4题、6题
直角三角形的三边关系
y问=0题 受台风麦莎影响,一棵树在离地面4米 处断裂,树的顶部落在离树跟底部3米处, 这棵树折断前有多高?
4米
3米
活动一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形三边关系
三角形边的性质
(1)三角形三边关系定理及推论
定理:三角形两边的和大于第三边。
推论:三角形两边的差小于第三边。
(2)表达式:△ABC 中,设a >b >c
则b-c <a <b+c a-c <b <a+c
a-b <c <a+b
(3)应用
1、给出三条线段的长度,判断它们能否构成三角形。
方法(设a 、b 、c 为三边的长)
①若a+b >c ,a+c >b ,b+c >a 都成立,则以a 、b 、c 为三边的长可构成三角形; ②若c 为最长边且a+b >c ,则以a 、b 、c 为三边的长可构成三角形; ③若c 为最短边且c >|a-b|,则以a 、b 、c 为三边的长可构成三角形。
2、已知三角形两边长为a 、b ,求第三边x 的范围:|a-b|<x <a+b 。
3、已知三角形两边长为a 、b(a >b),求周长L 的范围:2a <L <2(a+b)。
4、证明线段之间的不等关系。
复习巩固,引入新课
1画出下列三角形是高
2、已知:如图△ABC 中AG 是BC 中线,AB=5cm AC=3cm ,
则△ABG 和△ACG 的周长的差为多少?△ABG 和△ACG
的面积有何关系?
3、三角形的角平分线、中线、高线都是( )
A 、直线
B 、线段
C 、射线
D 、以上都不对
4、三角形三条高的交点一定在( )
A 、三角形的内部
B 、三角形的外部
C 、顶点上
D 、以上三种情况都有可能
5、直角三角形中高线的条数是( )
A 、3
B 、2
C 、1
D 、0
B
D E F
B C
6、判断:
(1) 有理数可分为正数和负数。
(2) 有理数可分为正有理数、正分数、负有理数和负分数。
7、现有10cm 的线段三条,15cm 的线段一条,20cm 的线段一条,将它们任意组合可以得到几种不同形状的三角形?
三角形三边的关系
一、三角形按边分类(见同步辅导二)
练习
1、两种分类方法是否正确:
不等边三角形 不等三角形
三角形 三角形 等腰三角形
等腰三角形 等边三角形
2、如图,从家A 上学时要走近路到学校B ,你会选哪条路线? 3、下列各组里的三条线段组成什么形状的三角形?
(1)3cm 4cm 6cm (2)4cm 4cm 6cm
(3)7cm 7cm 7cm (4)3cm 3cm 7cm
4、求复习巩固,引入新课中的练习4中各三角形的任意两边的和,比较与第三边的关系。
再计算两边的差与第三边进行比较。
二、三角形三边关系定理及其推论(见同步辅导二)
应用举例1
已知△ABC 中,a=6,b=14,则c 边的范围是
练习
1、三角形的两边为3cm 和5cm ,则第三边x 的范围是
2、果三角形的两边长分别为7和2,且它的周长为偶数,那么第三边的长为
3、长度分别为12cm ,10cm ,5cm ,4cm 的四条线段任选三条线段组成三角形的个数为( )
A 、1
B 、2
C 、3
D 、4
4、具备下列长度的各组线段中能够成三角形的是( )
A 、5,9,3
B 、5,7,3
C 、5,2,3
D 、5,8,3
应用举例2
1、已知一个等腰三角形的两边分别是8cm 和6cm ,则它的周长是
______cm 。
分析:若这个等腰三角形的腰长为8cm,则三边分别为8cm,8cm,6cm ,满足两边之和大于第三边,若腰长为7cm,则三边分别为6cm ,6cm,8cm ,也成立。
解:这个等腰三角形的周长为22cm 或20cm 。
B
2、已知△ABC 的周长为21,三边a 、b 、c 满足关系2a-b=3,3c-2b=13,求a 、b 、c 。
分析:因△ABC 的周长为21,故a+b+c=21,再由2a-b=3,3c-2b=13组成三元一次方程组。
解这个方程组可得a 、b 、c ,这种用代数方法解决几何问题的方法今后经常遇到,
答案:a=5,b=7,c=9。
3.已知等腰三角形一腰上的中线把它的周长分成15cm
和6cm 两部分,求这个等腰三角形各边的长。
分析:如图02-12,在△ABC 中,AB=AC ,BD 是中线,已
知BD 将周长分为AB+AD 和BC+CD 两部分,在这两部分中
的四条线段中,都与腰和底的长有关。
解:设腰长为xcm 即AB=xcm ,AD=DC=,
设底为ycm ,即
BC=ycm
由题意:分两种情况,列方程组。
∵边长为10cm,10cm,1cm 符合三角
形的三边关系,但边长为
4cm,4cm,13cm ,不符合三角形的三边关
系,应舍去。
∴这个等腰三角形的三边长分别为
10cm,10cm 和1cm 。
4、已知:△ABC 的周长为11,AB=4,CM 是△ABC 的中线,△BCM 的周
长比△ACM 的周长大3,求BC 和AC 的长。
分析:由已知△ABC 的周长=AB+AC+BC=11,AB=4,可得BC+AC=7。
又△BCM 的周长-△ACM 的周长=(BC+CM+MB)-(AC+CM+MA)=3,而AM=MB ,
故BC-AC=3,解方程组可求BC 与AC 的长。
略解:∵△ABC 的周长=AB+BC+CA=11,AB=4
∴BC+AC=11-4=7
又CM 是△ABC 的中线(已知)
∴AM=MB(三角形中线定义)
又△BCM 的周长-△ACM 的周长=(BC+CM+MB)-(AC+CM+MA)=BC-AC=3
解得:BC=5 AC=2
例5、已知P 为△ABC 内任一点,求证: AB+AC >PB+PC ;
分析;证明线段之间的不等关系,联想到三角形三边关系定理,由于涉及的线段不在同一个三角形中,故添加辅助线构成新的三角形。
证明:延长BP 交AC 于E
△ABE 中,AB+AE >
BE
即AB+AE>BE+PE
同理,PE+EC>PC
∴AB+AE+PE+EC>BP+PE+PC
∴AB+AE+EC>PB+PC
即AB+AC>PB+PC
专题检测
1、1.指出下列每组线段能否组成三角形图形
(1)a=5,b=4,c=3 (2)a=7,b=2,c=4
(3)a=6,b=6,c=12 (4)a=5,b=5,c=6
2.已知等腰三角形的两边长分别为11cm和5cm,求它的周长。
3.已知等腰三角形的底边长为8cm,一腰的中线把三角形的周长分为两
部分,其中一部分比另一部分长2cm,求这个三角形的腰长。
4、三角形三边为3,5,3-4a,则a的范围是。
5、三角形两边长分别为25cm和10cm,第三条边与其中一边的长相等,则第三边长为。
6、等腰三角形的周长为14,其中一边长为3,则腰长为
7、一个三角形周长为27cm,三边长比为2∶3∶4,则最长边比最短边长。
8、等腰三角形两边为5cm和12cm,则周长为。
9、已知:等腰三角形的底边长为6cm,那么其腰长的范围是
10、已知:一个三角形两边分别为4和7,则第三边上的中线的范围是
11、下列条件中能组成三角形的是()
A、5cm, 7cm, 13cm
B、3cm, 5cm, 9cm
C、6cm, 9cm, 14cm
D、5cm, 6cm, 11cm
12、等腰三角形的周长为16,且边长为整数,则腰与底边分别为()
A、5,6
B、6,4
C、7,2
D、以上三种情况都有可能
13、一个三角形两边分别为3和7,第三边为偶数,第三边长为()
A、4,6
B、4,6,8
C、6,8
D、6,8,10
14、△ABC中,a=6x,b=8x,c=28,则x的取值范围是()
A、2<x<14
B、x>2
C、x<14
D、7<
x<14
15、已知等腰三角形一边长为24cm,腰长是底边的2倍。
求这个三角形的周长。
16、如图,求证:AB+BC+CD+DA>AC+BD
B
C
D。