2017年辽宁省铁岭市中考数学试卷含答案解析版)

合集下载

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

铁岭市中考数学试题及答案 解析和点评

铁岭市中考数学试题及答案 解析和点评

铁岭市20XX年中考数学试题及答案+解析和点评(word版)铁岭市20XX年中考数学试题及答案+解析和点评(word版)铁岭市20XX年中考数学试题及答案+解析和点评(ord版)一. 选择题1. 3的相反数是()考点:相反数.分析:根据相反数的含义,可得求•个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可.解答:解:根据相反数的含义,可得应选:A.一.选择题(每题3分,共30分,每题四个选项只有一个是符合题意的)1. 3的相反数是()A、- 3 B. 3 C. - D.考点:相反数..分析:根据相反数的含义,可得求•个数的相反数的方法就是在这个数的前边添加-,据此解答即可.解答:解:根据相反数的含义,可得3的相反数是:-3.应选:A.点评:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加-.2..以下图案中,既是轴对称图形乂是中心对称图形的是()考点:中心对称图形;轴对称图形..分析:根据中心对称图形与轴对称图形的概念对各选项进行逐一分析即可.解答:解:A、是轴对称图形,但不是中心对称图形,故本选项错误:B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确:D、是轴对称图形,但不是中心对称图形,故本选项错误. 应选C.点评:此题考查的是中心对称图形,熟知中心对称图形与轴对称图形的概念是解答此题的关键.3..如图,由两个相同的小正方体和一个圆锥组成的几何体,其左视图是()考点:简单组合体的三视图..分析:根据左视图的定义即可得出.解答:解:该几何体的左视图是一个正方形与三角形.应选D.点评:此题考查了三视图的知识,左视图是从物体的左面看得到的几何体的视图.4..以下各式运算正确的选项是()考点:同底数幕的除法:合并同类项;昴的乘方与积的乘方..分析:根据幕的乘方,底数不变指数相乘;同底数舔相除,底数不变指数相减,合并同类项的法那么,对各选项计算后利用排除法求解. 解答:解:A、a3与a2不是同类项的不能合并,故本选项错误;应选D.点评:此题考查了同底数慕的除法,幕的乘方的性质,合并同类项, 熟练掌握运算性质是解题的关键.考点:在数轴上表示不等式的解集;解一元一次不等式组. .分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:解不等式①得:x -2,解不等式②得:x<4,故不等式组的解集是:-2xV4.应选B.点评:此题考查不等式的解集问题,关键是根据不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,向右画:V,向左画),在表示解集时,要用实心圆点表示;<,>要用空心圆点表示.6. 20XX年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10 秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:那么苏炳添这五次比赛成绩的众数和平均数分别为()A. 10. 06 秒,10. 06 秒B. 10. 10 秒,10. 06 秒C. 10. 06 秒,10. 08 秒D. 10. 08 秒,10. 06 秒考点:众数:算术平均数..分析:根据众数和平均数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:9. 99,10. 06, 10. 06,10. 10, 10. 19,那么众数为:10. 06,平均数为:=10. 08.应选C.点评:此题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.7..如图,点D、E、F分别为AABC各边中点,以下说法正确的选项是()考点:三角形中位线定理..分析:根据三角形中位线定理逐项分析即可.解答:解:A、I点D、E、F分别为ZXABC各边中点,点评:此题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.8. . •只蚂蚁在如下图的正方形地砖上爬行,蚂蚊停留在阴影部分的概率为()考点:几何概率..分析:根据正方形的性质求出阴影局部占整个面积的,进而得出答案.解答:解:由题意可得出:图中阴影局部占整个面积的,因此一只蚂蚁在如下图的矩形地砖上爬行,蚂蚁停在阴影局部的概率是:.应选:B.点评:此题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.9..某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为X,根据题意可列方程为()A. 200 (1 - x) 2=162B. 200 (1+x) 2=162C. 162 (1+x) 2=200D. 162 (1 - x) 2=200考点:由实际问题抽象出一元二次方程..专题:增怆率问题.分析:此题利用根本数量关系:商品原价(1-平均每次降价的百分率)=现在的价格,列方程即可.解答:解:由题意可列方程是:200 (1 -x) 2=168.应选A.点评:此题考查一元二次方程的应用最根本数量关系:商品原价(1 -平均每次降价的百分率)=现在的价格.10..一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S (km) .与慢车行驶时间t (h)之间的函数图象如下图,以下说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A. 1个B. 2个C. 3个D. 4个考点:一次函数的应用..分析:根据函数图象直接得出甲乙两地之间的距离:根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;设慢车速度为3xkm/h,快车速度为4xkm/h,由(3x+4x)4=560,可得x=20,从而得出快车的速度是80km/h,慢车的速度是60km/h,由题意可得出:快车和慢车相遇地离甲地的距离,当慢车行驶了 7小时后, 快车己到达甲地,可求出此时两车之间的距离即可.解答:解:由题意可得出:甲乙两地之间的距离为560千米,故① 正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大知直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4 小时,因此慢车和快车的速度之比为3: 4,故②错误:设慢车速度为3xkm/h,快车速度为4xkm/h,(3x+4x) 4=560, x=20快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4 60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240 - 3 60=60km,故③正确.应选:B.点评:此题主要考查了待定系数法求•次函数解析式以及…次函数的应用,读懂图,正确信息是解题关键.二.填空题(每题3分,共24分)11..据《20XX年国民经济和社会开展统计公报》显示,20XX年我国教育科技和文化体育事业开展较快,其中全年普通高中招生7966000人,将7966000用科学记数法表示为7. 966 106 .考点:科学记数法表示较大的数..分析:科学记数法的表示形式为a 10n的形式,其中1 |a|V10, n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位, n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数:当原数的绝对值VI时,n是负数.解答:解:将7966000用科学记数法表示为7. 966 106.故答案为:7. 966 106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为 a 10n的形式,其中1 |a|V10, n为整数,表示时关键要正确确定a 的值以及n的值.该试题及答案+解析(Word)完整版。

辽宁省铁岭市中考数学一模试卷

辽宁省铁岭市中考数学一模试卷

辽宁省铁岭市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七下·濮阳期中) 的算术平方根是()A . ±4B . 4C . ±2D . 22. (2分)(2017·齐齐哈尔) 下列算式运算结果正确的是()A . (2x5)2=2x10B . (﹣3)﹣2=C . (a+1)2=a2+1D . a﹣(a﹣b)=﹣b3. (2分) a是一个整数,比较a与3a的大小是()A . a>3aB . a<3aC . a=3aD . 无法确定4. (2分)现有纸片:1张边长为a的正方形,2张边长为b的正方形,3张宽为a、长为b的长方形,用这6张纸片重新拼出一个长方形,那么该长方形的长为()A . a+bB . a+2bC . 2a+bD . 无法确定5. (2分)(2018·岳阳) 在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A . 90,96B . 92,96C . 92,98D . 91,926. (2分)sin60°=()A .B .C .D .7. (2分) (2018九上·建瓯期末) 把抛物线y= x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A . y=(x+1)2-3B . y=(x-1)2-3C . y=(x+1)2+1D . y=(x-1)2+18. (2分)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A . 8cmB . 6cmC . 4cmD . 3cm9. (2分)根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0 时,②△OPQ的面积为定值.③x>0时,y随x的增大而增大.④ MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是()A . ①②④B . ②④⑤C . ③④⑤D . ②③⑤10. (2分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A . 30°B . 35°C . 40°D . 50°二、填空题 (共8题;共8分)11. (1分)保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿m3 ,数据899000用科学记数法表示为________.12. (1分)函数的自变量x的取值范围是________.13. (1分) (2016九上·无锡开学考) 如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于________.14. (1分)(2017·广州模拟) 已知圆锥的底面直径和母线长都是10 cm,则圆锥的面积为________.(结果保留π).15. (1分) (2019七下·镇江月考) 十二边形的内角和度数为________.16. (1分)如图,AB=AC,若要判定△ABD≌△ACD,则需要添加的一个条件是:________17. (1分) (2016九下·宁国开学考) 如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA=________.18. (1分) (2016九上·萧山月考) 如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为________.三、解答题 (共10题;共123分)19. (10分)计算。

辽宁省铁岭市中考数学试卷及答案

辽宁省铁岭市中考数学试卷及答案

辽宁省铁岭市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题 3 分,共 30 分)1、下列根式中,最简二次根式是 ( )2、下列关于 x 的一元二次方程中,有两个不相等的实数根的方程是 ( )3、已知⊙O 1和⊙O 2 的半径分别为 5 和 2,圆心距为 3,则两圆的位置关系是 ( )A、内含B、外切C、相交D、内切4、已知正六边形的边长为 10cm则它的边心距为 ( )5、在函数中,自变量 x 的取值范围是 ( )6、反比例函数 y=k/x 的图象经过点 P(-4,3),则 k 的值等于 ( )A、12B、-3/4C、-4/3D、-127、如图,正方形的边长为 a,以各边为直径在正方形内画半圆,则阴影部分的面积为( )8、在矩形 ABCD 中,AB=3cm,AD=2 cm,则以 AB 所在直线为轴旋转一周所得到的圆柱的表面积为 ( )A、17π cm2B、20π cm2C、21π cm2D、30π cm29、用换元法解方程那么原方程可变形为( )10、已知点 P 是半径为 5 的⊙O 内一定点,且 OP=4,则过点 P 的所有弦中,弦长可能取到的整数值为( )A、54 3B、10987654 3C、10987 6D、121110987 6二、填空题(每小题 3 分共 30 分)11、在平面直角坐标系中,点 P(-2,-4)关于 y 轴的对称点的坐标是__________。

12、一组数据-2,-1,0,1,2 的方差是_________。

13、已知是关于 x 的方程 x2 -4x+c=0 的一个根,则 c 的值是_________ 。

14、如图,AB 是⊙O 的直径,C、D 是⊙O 上两点,∠D=130°,则∠BAC 的度数为_________ 。

15、据某校环保小组调查,某区垃圾量的年增长率为 m,2003 产生的垃圾量为 a 吨,由此预测,该区 2005 年产生的垃圾量为________吨。

2017年辽宁省14市中考数学真题汇编(含参考答案与解析)

2017年辽宁省14市中考数学真题汇编(含参考答案与解析)

2017年辽宁省14市中考数学真汇编(含参考答案)目录1.辽宁省沈阳市中考数学试题及参考答案 (2)2.辽宁省大连市中考数学试题及参考答案 (22)3.辽宁省营口市中考数学试题及参考答案 (38)4.辽宁省葫芦岛市中考数学试题及参考答案 (64)5.辽宁省锦州市中考数学试题及参考答案 (86)6.辽宁省辽阳市中考数学试题及参考答案 (109)7.辽宁省抚顺市中考数学试题及参考答案 (133)8.辽宁省盘锦市中考数学试题及参考答案 (158)9.辽宁省铁岭市中考数学试题及参考答案 (181)10.辽宁省阜新市中考数学试题及参考答案 (202)11.辽宁省鞍山市中考数学试题及参考答案 (220)12.辽宁省本溪市中考数学试题及参考答案 (247)13.辽宁省朝阳市中考数学试题及参考答案 (259)14.辽宁省丹东市中考数学试题及参考答案 (283)2017年辽宁省沈阳市中考数学试题及参考答案一、选择题(本大题共10小题,每小题2分,共20分) 1.7的相反数是( ) A.﹣7B.﹣47C.17D.72.如图所示的几何体的左视图( )A. B. C. D.3.“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为( )万. A.83×10 B.8.3×102 C.8.3×103 D.0.83×1034.如图,AB ∥CD ,∠1=50°,∠2的度数是( )A.50°B.100°C.130°D.140°5.点A (﹣2,5)在反比例函数y=k x(k≠0)的图象上,则k 的值是( )A.10 B .5 C.﹣5 D.﹣10 6.在平面直角坐标系中,点A ,点B 关于y 轴对称,点A 的坐标是(2,﹣8),则点B 的坐标是( ) A.(﹣2,﹣8)B.(2,8)C.(﹣2,8) D .(8,2) 7.下列运算正确的是( )A.x 3+x 5=x 8B.x 3+x 5=x 15C.(x+1)(x ﹣1)=x 2﹣1D.(2x )5=2x 5 8.下列事件中,是必然事件的是( )A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a 2=b 2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上 9.在平面直角坐标系中,一次函数y=x ﹣1的图象是( )A.B. C.D.10.正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( )A. 3B.2C.2 2D.2 3二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解3a 2+a= .12.一组数2,3,5,5,6,7的中位数是 .13.x +1x •xx 2+2x +1= . 14.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S 甲2=0.53,S 乙2=0.51,S 丙2=0.43,则三人中成绩最稳定的是 (填“甲”或“乙”或“丙”)15.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/时,才能在半月内获得最大利润. 16.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .三、解答题(本大题共22分)17.(6分)计算| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.18.(8分)如图,在菱形ABCD 中,过点D 作DE ⊥AB 于点E ,作DF ⊥BC 于点F ,连接EF. 求证:(1)△ADE ≌△CDF ; (2)∠BEF=∠BFE.19.(8分)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率. 四、解答题(每题8分,共16分)20.(8分)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m= ,n= ;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度; (3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.21.(8分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?五、解答题(共10分)22.(10分)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C. (1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.六、解答题(共10分)23.(10分)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2 5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t 秒(t >0),△OMN 的面积为S.(1)填空:AB 的长是 ,BC 的长是 ; (2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式;(4)若S=485,请直接写出此时t 的值.七、解答题(共12分)24.(12分)四边形ABCD 是边长为4的正方形,点E 在边AD 所在直线上,连接CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连接BF. (1)如图1,当点E 与点A 重合时,请直接写出BF 的长; (2)如图2,当点E 在线段AD 上时,AE=1; ①求点F 到AD 的距离; ②求BF 的长;(3)若BF=3 10AE 的长.八、解答题(共12分)25.(12分)如图1,在平面直角坐标系中,O 是坐标原点,抛物线y=﹣312x 2﹣ 33x+8 3与x 轴正半轴交于点A ,与y 轴交于点B ,连接AB ,点M ,N 分别是OA ,AB 的中点,Rt △CDE ≌Rt △ABO ,且△CDE 始终保持边ED 经过点M ,边CD 经过点N ,边DE 与y 轴交于点H ,边CD 与y 轴交于点G.(1)填空:OA 的长是 ,∠ABO 的度数是 度; (2)如图2,当DE ∥AB ,连接HN. ①求证:四边形AMHN 是平行四边形;②判断点D 是否在该抛物线的对称轴上,并说明理由; (3)如图3,当边CD 经过点O 时,(此时点O 与点G 重合),过点D 作DQ ∥OB ,交AB 延长线上于点Q ,延长ED 到点K ,使DK=DN ,过点K 作KI ∥OB ,在KI 上取一点P ,使得∠PDK=45°(点P ,Q 在直线ED 的同侧),连接PQ ,请直接写出PQ 的长.参考答案与解析(沈阳)一、选择题(本大题共10小题,每小题2分,共20分) 1.7的相反数是( ) A.﹣7B.﹣47C.17D.7【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可. 【解答】解:7的相反数是﹣7, 故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆. 2.如图所示的几何体的左视图( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形, 故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.“弘扬雷锋精神,共建幸福沈阳”,幸福沈阳需要830万沈阳人共同缔造,将数据830万用科学记数法可以表示为( )万. A.83×10 B.8.3×102 C.8.3×103 D.0.83×103 【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可.【解答】解:830万=8.3×102万.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a 与n的值是解题的关键.4.如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130°D.140°【考点】平行线的性质.【分析】先根据平行线的性质得∠3=∠1=50°,然后根据邻补角的定义,即可求得∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠1=50°,∴∠2=180°﹣∠3=130°.故选C.【点评】本题考查了平行线性质,解题时注意:两直线平行,同位角相等.5.点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.10B.5C.﹣5D.﹣10【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象上点的坐标性质得出k的值.【解答】解:∵点A(﹣2,5)在反比例函数y=kx(k≠0)的图象上,∴k的值是:k=xy=﹣2×5=﹣10.故选:D.【点评】此题主要考查了反比例函数图象上点的坐标性质,得出xy=k是解题关键.6.在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()A.(﹣2,﹣8)B.(2,8)C.(﹣2,8)D.(8,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:∵点A,点B关于y轴对称,点A的坐标是(2,﹣8),∴点B的坐标是(﹣2,﹣8),故选:A.【点评】此题主要考查了关于y轴的对称点的坐标,关键是掌握点的坐标特点.7.下列运算正确的是()A.x3+x5=x8B.x3+x5=x15C.(x+1)(x﹣1)=x2﹣1D.(2x)5=2x5【考点】平方差公式;合并同类项;幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)x3与x5不是同类项,故不能合并,故A不正确;(B)x3与x5不是同类项,故不能合并,故B不正确;(D)原式=25x5=32x5,故D不正确;故选(C)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型8.下列事件中,是必然事件的是()A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.【考点】一次函数的图象.【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【解答】解:一次函数y=x﹣1,其中k=1,b=﹣1,其图象为,故选B【点评】此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.10.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A. 3B.2C.2 2D.2 3 【考点】正多边形和圆.【分析】连接OA ,OB ,根据等边三角形的性质可得⊙O 的半径,进而可得出结论. 【解答】解:连接OB ,OC , ∵多边形ABCDEF 是正六边形, ∴∠BOC=60°, ∵OB=OC ,∴△OBC 是等边三角形, ∴OB=BC ,∵正六边形的周长是12, ∴BC=2,∴⊙O 的半径是2, 故选B.【点评】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键. 二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解3a 2+a= a (3a+1) . 【考点】因式分解﹣提公因式法. 【分析】直接提公因式a 即可. 【解答】解:3a 2+a=a (3a+1), 故答案为:a (3a+1).【点评】此题主要考查了提公因式法进行因式分解,关键是正确确定公因式.12.一组数2,3,5,5,6,7的中位数是 5 . 【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:2,3,5,5,6,7, 则中位数为:5+52=5.故答案是:5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.x +1x•x x 2+2x +1= 1x +1. 【考点】分式的乘除法.【分析】原式约分即可得到结果. 【解答】解:原式=x +1x•x(x +1)=1x +1,故答案为:1x +1【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S 甲2=0.53,S 乙2=0.51,S 丙2=0.43,则三人中成绩最稳定的是 丙 (填“甲”或“乙”或“丙”) 【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=0.53,S 乙2=0.51,S 丙2=0.43, ∴S 甲2>S 乙2>S 丙2,∴三人中成绩最稳定的是丙; 故答案为:丙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 35 元/时,才能在半月内获得最大利润. 【考点】二次函数的应用.【分析】设销售单价为x 元,销售利润为y 元,求得函数关系式,利用二次函数的性质即可解决问题.【解答】解:设销售单价为x 元,销售利润为y 元. 根据题意,得:y=(x ﹣20)[400﹣20(x ﹣30)] =(x ﹣20)(1000﹣20x ) =﹣20x 2+1400x ﹣20000 =﹣20(x ﹣35)2+4500, ∵﹣20<0,∴x=35时,y 有最大值, 故答案为35.【点评】本题考查了二次函数的应用,解题的关键是学会构建二次函数解决最值问题 16.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是3 105.【考点】旋转的性质;矩形的性质.【分析】连接AG ,根据旋转变换的性质得到,∠ABG=∠CBE ,BA=BG ,根据勾股定理求出CG 、AD ,根据相似三角形的性质列出比例式,计算即可. 【解答】解:连接AG ,由旋转变换的性质可知,∠ABG=∠CBE ,BA=BG=5,BC=BE ,由勾股定理得,CG= BG 2−BC 2=4,∴DG=DC ﹣CG=1,则AG= AD 2+DG 2= 10,∵BA BC =BG BE,∠ABG=∠CBE ,∴△ABG ∽△CBE , ∴CE AG =BC AB =35,解得,CE=3 105,故答案为:3 105.【点评】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键. 三、解答题(本大题共22分)17.(6分)(2017•沈阳)计算| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:| 2﹣1|+3﹣2﹣2sin45°+(3﹣π)0= 2﹣1+19﹣2× 22+1 =19【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 18.(8分)(2017•沈阳)如图,在菱形ABCD 中,过点D 作DE ⊥AB 于点E ,作DF ⊥BC 于点F ,连接EF. 求证:(1)△ADE ≌△CDF ; (2)∠BEF=∠BFE.【考点】菱形的性质;全等三角形的判定与性质. 【分析】(1)利用菱形的性质得到AD=CD ,∠A=∠C ,进而利用AAS 证明两三角形全等; (2)根据△ADE ≌△CDF 得到AE=CF ,结合菱形的四条边相等即可得到结论. 【解答】证明:(1)∵四边形ABCD 是菱形, ∴AD=CD ,∠A=∠C , ∵DE ⊥BA ,DF ⊥CB , ∴∠AED=∠CFD=90°, 在△ADE 和△CDE ,∵ AD =CD∠A =∠C∠AED =∠CFD =90°, ∴△ADE ≌△CDE ;(2)∵四边形ABCD 是菱形, ∴AB=CB ,∵△ADE ≌△CDF , ∴AE=CF , ∴BE=BF ,∴∠BEF=∠BFE.【点评】本题主要考查了菱形的性质以及全等三角形的判定与性质,解题的关键是掌握菱形的性质以及AAS 证明两三角形全等,此题难度一般. 19.(8分)(2017•沈阳)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好都是奇数的情况,再利用概率公式即可求得答案. 【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次抽取的卡片上的数字都是奇数的有4种结果, ∴两次抽取的卡片上的数字都是奇数的概率为49.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率. 四、解答题(每题8分,共16分) 20.(8分)(2017•沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m= 50 ,n= 30 ;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 72 度; (3)请根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书. 【考点】条形统计图;用样本估计总体;扇形统计图. 【分析】(1)根据其他的人数和所占的百分比即可求得m 的值,从而可以求得n 的值; (2)根据扇形统计图中的数据可以求得“艺术”所对应的扇形的圆心角度数; (3)根据题意可以求得喜爱文学的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以估计该校600名学生中有多少学生最喜欢科普类图书. 【解答】解:(1)m=5÷10%=50,n%=15÷50=30%, 故答案为:50,30; (2)由题意可得,“艺术”所对应的扇形的圆心角度数是:360°×1050=72°,故答案为:72;(3)文学有:50﹣10﹣15﹣5=20, 补全的条形统计图如右图所示; (4)由题意可得, 600×1550=180,即该校600名学生中有180名学生最喜欢科普类图书.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 21.(8分)(2017•沈阳)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?【考点】一元一次不等式的应用.【分析】在这次竞赛中,小明获得优秀(90分以上),即小明的得分>90分,设小明答对了x ,就可以列出不等式,求出x 的值即可.【解答】解:设小明答对了x 题,根据题意可得: (25﹣x )×(﹣2)+6x >90, 解得:x >1712,∵x 为非负整数, ∴x 至少为18,答:小明至少答对18道题才能获得奖品.【点评】此题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分. 五、解答题(共10分) 22.(10分)(2017•沈阳)如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作EF ⊥AB 于点F ,延长EF 交CB 的延长线于点G ,且∠ABG=2∠C. (1)求证:EF 是⊙O 的切线;(2)若sin ∠EGC=35,⊙O 的半径是3,求AF 的长.【考点】切线的判定与性质;解直角三角形. 【分析】(1)连接EO ,由∠EOG=2∠C 、∠ABG=2∠C 知∠EOG=∠ABG ,从而得AB ∥EO ,根据EF ⊥AB 得EF ⊥OE ,即可得证;(2)由∠ABG=2∠C 、∠ABG=∠C+∠A 知∠A=∠C ,即BA=BC=6,在Rt △OEG 中求得OG=OEsin ∠EGO=5、BG=OG ﹣OB=2,在Rt △FGB 中求得BF=BGsin ∠EGO ,根据AF=AB ﹣BF 可得答案.【解答】解:(1)如图,连接EO ,则OE=OC ,∴∠EOG=2∠C , ∵∠ABG=2∠C , ∴∠EOG=∠ABG , ∴AB ∥EO , ∵EF ⊥AB , ∴EF ⊥OE ,又∵OE 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)∵∠ABG=2∠C ,∠ABG=∠C+∠A , ∴∠A=∠C , ∴BA=BC=6,在Rt △OEG 中,∵sin ∠EGO=OEOG,∴OG=OEsin ∠EGO=33=5,∴BG=OG ﹣OB=2,在Rt △FGB 中,∵sin ∠EGO=BFBG,∴BF=BGsin ∠EGO=2×35=65, 则AF=AB ﹣BF=6﹣65=245.【点评】本题主要考查切线的判定与性质及解直角三角形的应用,熟练掌握切线的判定与性质及三角函数的定义是解题的关键. 六、解答题(共10分) 23.(10分)(2017•沈阳)如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 的坐标为(6,0),点B 的坐标为(0,8),点C 的坐标为(﹣2 5,4),点M ,N 分别为四边形OABC 边上的动点,动点M 从点O 开始,以每秒1个单位长度的速度沿O→A→B 路线向中点B 匀速运动,动点N 从O 点开始,以每秒两个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t秒(t >0),△OMN 的面积为S.(1)填空:AB 的长是 10 ,BC 的长是 6 ; (2)当t=3时,求S 的值;(3)当3<t <6时,设点N 的纵坐标为y ,求y 与t 的函数关系式; (4)若S=485,请直接写出此时t 的值.【考点】四边形综合题. 【分析】(1)利用勾股定理即可解决问题; (2)如图1中,作CE ⊥x 轴于E.连接CM.当t=3时,点N 与C 重合,OM=3,易求△OMN 的面积; (3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F.则F (0,4).由GN ∥CF ,推出BN BC =BG BF,即12−2t 6=BG 4,可得BG=8﹣43t ,由此即可解决问题;(4)分三种情形①当点N 在边长上,点M 在OA 上时.②如图3中,当M 、N 在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB=245,列出方程即可解决问题.③同法当M 、N 在线段AB 上,相遇之后,列出方程即可; 【解答】解:(1)在Rt △AOB 中,∵∠AOB=90°,OA=6,OB=8,∴AB= OA 2+OB 2= 62+82=10. BC= (2 5)2+42=6,故答案为10,6.(2)如图1中,作CE ⊥x 轴于E.连接CM.∵C (﹣2 5,4), ∴CE=4OE=2 5,在Rt △COE 中,OC= OE 2+CE 2= (2 5)2+42=6,当t=3时,点N 与C 重合,OM=3,∴S △ONM =12•OM•CE=12×3×4=6,即S=6.(3)如图2中,当3<t <6时,点N 在线段BC 上,BN=12﹣2t ,作NG ⊥OB 于G ,CF ⊥OB 于F.则F (0,4).∵OF=4,OB=8, ∴BF=8﹣4=4, ∵GN ∥CF , ∴BN BC =BGBF,即12−2t 6=BG 4,∴BG=8﹣43t ,∴y=OB ﹣BG=8﹣(8﹣43t )=43t.(4)①当点N 在边长上,点M 在OA 上时,12•43t•t=485,解得t=6 105(负根已经舍弃).②如图3中,当M 、N 在线段AB 上,相遇之前.作OE ⊥AB 于E ,则OE=OB⋅OA AB=245, 由题意12[10﹣(2t ﹣12)﹣(t ﹣6)]•245=485,解得t=8,同法当M 、N 在线段AB 上,相遇之后. 由题意12•[(2t ﹣12)+(t ﹣6)﹣10]•245=485,解得t=323,综上所述,若S=485,此时t 的值8s 或323s 或6 105s.【点评】本题考查四边形综合题、平行线分线段吧成比例定理、勾股定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 七、解答题(共12分) 24.(12分)(2017•沈阳)四边形ABCD 是边长为4的正方形,点E 在边AD 所在直线上,连接CE ,以CE 为边,作正方形CEFG (点D ,点F 在直线CE 的同侧),连接BF. (1)如图1,当点E 与点A 重合时,请直接写出BF 的长; (2)如图2,当点E 在线段AD 上时,AE=1; ①求点F 到AD 的距离; ②求BF 的长;(3)若BF=3 10AE 的长.【考点】四边形综合题. 【分析】(1)作FH ⊥AB 于H ,由AAS 证明△EFH ≌△CED ,得出FH=CD=4,AH=AD=4,求出BH=AB+AH=8,由勾股定理即可得出答案;(2)过F 作FH ⊥AD 交AD 的延长线于点H ,作FM ⊥AB 于M ,则FM=AH ,AM=FH ,①同(1)得:△EFH ≌△CED ,得出FH=DE=3,EH=CD=4即可;②求出BM=AB+AM=7,FM=AE+EH=5,由勾股定理即可得出答案;(3)分两种情况:①当点E 在边AD 的左侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同(1)得::△EFH ≌△CED ,得出FH=DE=4+AE ,EH=CD=4,得出FK=8+AE ,在Rt △BFK 中,BK=AH=EH ﹣AE=4﹣AE ,由勾股定理得出方程,解方程即可; ②当点E 在边AD 的右侧时,过F 作FH ⊥AD 交AD 的延长线于点H ,交BC 延长线于K ,同理得:AE=2+ 41. 【解答】解:(1)作FH ⊥AB 于H ,如图1所示: 则∠FHE=90°,∵四边形ABCD 和四边形CEFG 是正方形,∴AD=CD=4,EF=CE ,∠ADC=∠DAH=∠BAD=∠CEF=90°, ∴∠FEH=∠CED ,在△EFH 和△CED 中,{∠FHE =∠EDC =90°∠FEH =∠CEDEF =CE,∴△EFH ≌△CED (AAS ), ∴FH=CD=4,AH=AD=4, ∴BH=AB+AH=8,∴BF=BH2+FH2=82+42=45;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,如图2所示:则FM=AH,AM=FH,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH≌△CED(AAS),∴FH=DE=3,EH=CD=4,即点F到AD的距离为3;②∴BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF=BM2+FM2=72+52=74;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图3所示:同(1)得::△EFH≌△CED,∴FH=DE=4+AE,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=(310)2,解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=2+41;综上所述:AE的长为1或2+41【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.八、解答题(共12分)25.(12分)(2017•沈阳)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣312x2﹣33x+83与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是8,∠ABO的度数是30度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.【考点】二次函数综合题.【分析】(1)先求抛物线与两坐标轴的交点坐标,表示OA和OB的长,利用正切值可得∠ABO=30°;(2)①根据三角形的中位线定理证明HN∥AM,由两组对边分别平行的四边形是平行四边形得结论;②如图1,作垂线段DR,根据直角三角形30度角的性质求DR=2,可知:点D的横坐标为﹣2,由抛物线的解析式可计算对称轴是直线:x=﹣b2a=﹣2,所以点D在该抛物线的对称轴上;(3)想办法求出P、Q的坐标即可解决问题;【解答】解:(1)当x=0时,y=83,∴B(0,83),∴OB=83,当y=0时,y=﹣312x2﹣33x+83=0,x2+4x﹣96=0,(x﹣8)(x+12)=0,x1=8,x2=﹣12,∴A(8,0),∴OA=8,在Rt△AOB中,tan∠ABO=OAOB=83=3 3,∴∠ABO=30°, 故答案为:8,30;(2)①证明:∵DE ∥AB , ∴OM AM=OH BH,∵OM=AM , ∴OH=BH , ∵BN=AN , ∴HN ∥AM ,∴四边形AMHN 是平行四边形; ②点D 在该抛物线的对称轴上,理由是:如图1,过点D 作DR ⊥y 轴于R ,∵HN ∥OA ,∴∠NHB=∠AOB=90°, ∵DE ∥AB ,∴∠DHB=∠OBA=30°, ∵Rt △CDE ≌Rt △ABO , ∴∠HDG=∠OBA=30°, ∴∠HGN=2∠HDG=60°, ∴∠HNG=90°﹣∠HGN=90°﹣60°=30°, ∴∠HDN=∠HND , ∴DH=HN=12OA=4,∴Rt △DHR 中,DR=12DH=12×4=2,∴点D 的横坐标为﹣2,∵抛物线的对称轴是直线:x=﹣b2a =﹣−332×(− 3)=﹣2,∴点D 在该抛物线的对称轴上;(3)如图3中,连接PQ ,作DR ⊥PK 于R ,在DR 上取一点T ,使得PT=DT.设PR=a.。

辽宁省铁岭市中考数学试卷

辽宁省铁岭市中考数学试卷

辽宁省铁岭市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018七上·武昌期中) 如果a+b+c=0,且|c|>|b|>|a|,则下列说法中可能成立的是()A . a、b为正数,c为负数B . a、c为正数,b为负数C . b、c为正数,a为负数D . a为正数,b、c为负数2. (2分)(2017·深圳模拟) 下列运算正确的是A . 2a+3a=5a2B . a6÷a2=a3C . (-3a3)2=9a6D . (a-3)2=a2-93. (2分)下列数学表达式中是不等式的是()A . 5x=4B . 2x+5yC . 6<2xD . 04. (2分) (2018九上·西安期中) 某反比例函数的图象经过点(-2,3),则此函数图象也经过()A . (2,-3)B . (-3,3)C . (2,3)D . (-4,6)5. (2分)弧长等于半径的圆弧所对的圆心角是()A .B .C .D . 60°6. (2分)介于下列哪两个整数之间()A . 0与1B . 1与2C . 2与3D . 3与47. (2分) (2017八上·黄陂期中) 如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A . 50°B . 45°C . 60°D . 55°8. (2分)如图,AB是⊙O的直径,点C、D都在⊙O上,若∠C=20°,则∠ABD的度数等于()A . 80°B . 70°C . 50°D . 40°二、填空题 (共10题;共20分)9. (2分)(2018·弥勒模拟) 如图,若点A的坐标为(1,),则∠1=________,sin∠1=________.10. (1分)分式方程的解是________11. (2分) (2016八上·防城港期中) 点A(﹣2a,a﹣1)在x轴上,则A点的坐标是________,A点关于y 轴的对称点的坐标是________.12. (1分)(2020·盐城模拟) 在一次考试中,某小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是________.13. (1分) (2019九上·武汉月考) 如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE=________°.14. (1分)若∠A=66°20′,则∠A的余角等于________15. (1分)如图,在△ABC中,D、E分别是AB、AC的中点,若BC=10,则DE= ________.16. (9分)二次函数y=3x2-3的图象开口向________,顶点坐标为________,对称轴为________,当x>0时,y随x的增大而________;当x<0时,y随x的增大而________.因为a=3>0,所以y有最________值,当x=________时,y的最________值是________.17. (1分) (2019八下·长宁期末) 如图,菱形的对角线相交于点,若,则菱形的面积=________.18. (1分) (2019七上·徐汇期中) 如果单项式与的和仍是单项式,那么mn=________.三、解答题 (共10题;共93分)19. (5分)(2012·辽阳) 先化简,再求值:,其中x= .20. (5分)(2020·萧山模拟) 解不等式,并把它的解集在数轴上表示出来:21. (13分) (2017八下·江都期中) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称________,________;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA、OB为勾股边且有对角线相等的勾股四边形OAMB的顶点M的坐标.(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD、DC,∠DCB=30°.求证:DC2+BC2=AC2 ,即四边形ABCD是勾股四边形.(4)若将图2中△ABC绕顶点B按顺时针方向旋转a度(0°<a<90°),得到△DBE,连接AD、DC,则∠DCB=________°,四边形ABCD是勾股四边形.22. (5分) (2017八下·龙海期中) 如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,求EC的长.23. (10分) (2017九下·宜宾期中) 减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制成了如图所示的两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从这4人中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.24. (10分) (2019九上·海曙期末) 2018年6月,某市全面推进生活垃圾分类工作.如图是某小区放置的垃圾桶,从左到右依次是红色:有害垃圾;蓝色:可回收垃圾;绿色:厨余垃圾;黑色:其他垃圾.(1)居民A将一袋厨余垃圾随手放入一个垃圾桶,问他能正确投放垃圾的概率是.(2)居民B手拎两袋垃圾,一袋是可回收垃圾,另一袋是有害垃圾。

辽宁省铁岭市中考数学试卷

辽宁省铁岭市中考数学试卷

辽宁省铁岭市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·张湾模拟) 在﹣3,2,﹣1,3这四个数中,比﹣2小的数是()A . ﹣3B . 2C . ﹣1D . 32. (2分)某大型广场要举办一次能容纳10万人的演出,假设每把椅子所占面积相当于一张单人的学生课桌面积,则这个大型广场的面积约为()A . 2.5×106m2B . 2.5×105m2C . 2.5×104m2D . 2.5×103m23. (2分)(2013·扬州) 下列运算中,结果是a4的是()A . a2•a3B . a12÷a3C . (a2)3D . (﹣a)44. (2分) (2016高一下·台州期末) 在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()A . 必然事件B . 不可能事件C . 随机事件D . 以上选项均不正确5. (2分) (2018九下·鄞州月考) 如图,直线,直线与,分别相交于,两点,交于点,,则的度数是().A .B .C .D .6. (2分)一个几何体的三视图如图所示,则此几何体是:A . 圆锥B . 棱柱C . 圆柱D . 圆台7. (2分) (2019九上·海陵期末) 某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况统计如下表:颜色黑色棕色白色红色销售量(双)60501015鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是()A . 平均数B . 众数C . 中位数D . 方差8. (2分) (2019·广州模拟) 已知扇形的弧长为,该弧所对圆心角为,则此扇形的面积为()A .B .C .D .9. (2分)已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A . 40°B . 100°C . 40°或100°D . 70°或50°10. (2分) (2017九上·河口期末) 如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A . 250米B . 250 米C . 米D . 500 米11. (2分)(2018·深圳) 某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是()A .B .C .D .12. (2分) (2018八上·衢州月考) 四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2 EF,则正方形ABCD的面积为()A . 11SB . 12SC . 13SD . 14S二、填空题 (共6题;共6分)13. (1分)(2018·十堰) 函数的自变量x的取值范围是________.14. (1分)(2017·沭阳模拟) 分解因式:a2b﹣b3=________.15. (1分)(2017·哈尔滨) 不等式组的解集是________.16. (1分)(2018·铁西模拟) 一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.17. (1分) (2019八下·洪泽期中) 如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=________.18. (1分) (2017八上·永定期末) 如图所示,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为________(用n表示).三、解答题 (共8题;共77分)19. (5分)计算题。

辽宁省铁岭市中考数学测试卷有答案

辽宁省铁岭市中考数学测试卷有答案

辽宁省铁岭市2013年中考数学试卷一、选择题(共10小题,每小题3分,满分30分。

在每小题给出的四个选项中只有个是符合题目要求的)1.(3分)(2013•铁岭)﹣的绝对值是()A.B.﹣C.D.﹣考点:实数的性质.分析:根据负数的绝对值等于它的相反数解答.解答:解:|﹣|=.故选A.点评:本题考查了实数的性质,主要利用了负数的绝对值是它的相反数.2.(3分)(2013•铁岭)下列各式中,计算正确的是()A.2x+3y=5xy B.x6÷x2=x3C.x2•x3=x5D.(﹣x3)3=x6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、由于2x和3y不是同类项,不能合并,故本选项错误;B、由于x6÷x2=x4≠x3,故本选项错误;C、由于x2•x3=x2+3=x5,故本选项正确;D、由于(﹣x3)3=﹣x9≠x6,故本选项错误.故选C.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.(3分)(2013•铁岭)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选B.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)(2013•铁岭)如图,在数轴上表示不等式组的解集,其中正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:求出不等式的解集,表示在数轴上即可.解答:解:,由①得:x<1,由②得:x≥﹣1,则不等式的解集为﹣1≤x<1,表示在数轴上,如图所示:故选C点评:此题考查了在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(2013•铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个考点:利用频率估计概率.分析:由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.解答:解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故选:D.点评:此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解6.(3分)(2013•铁岭)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.解答:解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图有一层3个,另一层1个,所以主视图是:故选:D.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7.(3分)(2013•铁岭)如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.B C=EC,∠B=∠E B.B C=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(3分)(2013•铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.解答:解:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得:=15,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.9.(3分)(2013•铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5C.4.5 D.4考点:三角形中位线定理;解一元二次方程-因式分解法;三角形三边关系.分析:首先解方程求得三角形的两边长,则第三边的范围可以求得,进而得到三角形的周长l的范围,而连接这个三角形三边的中点,得到的三角形的周长一定是l的一半,从而求得中点三角形的周长的范围,从而确定.解答:解:解方程x2﹣8x+15=0得:x1=3,x2=5,则第三边c的范围是:2<c<8.则三角形的周长l的范围是:10<l<16,∴连接这个三角形三边的中点,得到的三角形的周长m的范围是:5<m<8.故满足条件的只有A.故选A.点评:本题考查了三角形的三边关系以及三角形的中位线的性质,理解原来的三角形与中点三角形周长之间的关系式关键.10.(3分)(2013•铁岭)如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD 重合部分的面积为S,运动时间为t,则S与t的图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:设GE=a,EF=b,AE=m,AB=c,Rt△EFG向右匀速运动的速度为1,分类讨论:当E点在点A左侧时,S=0,其图象为在x轴的线段;当点G在点A左侧,点E在点A 右侧时,AE=t﹣m,GA=a﹣(t﹣m)=a+m﹣t,易证得△GAP∽△GEF,利用相似比可表示PA=(a+m﹣t),S为图形PAEF的面积,则S=[(a+m﹣t)]•(t﹣m),可发现S是t的二次函数,且二次项系数为负数,所以抛物线开口向下;当点G在点A右侧,点E在点B左侧时,S为定值,定义三角形GEF的面积,其图象为平行于x 轴的线段;当点G在点B左侧,点E在点B右侧时,和前面一样运用相似比可表示出PB=(a+m+c﹣t),S为△GPB的面积,则S=(t﹣a﹣m﹣c)2,则S是t的二次函数,且二次项系数为,正数,所以抛物线开口向上.解答:解:设GE=a,EF=b,AE=m,AB=c,Rt△EFG向右匀速运动的速度为1,当E点在点A左侧时,S=0;当点G在点A左侧,点E在点A右侧时,如图,AE=t﹣m,GA=a﹣(t﹣m)=a+m﹣t,∵PA∥EF,∴△GAP∽△GEF,∴=,即=∴PA=(a+m﹣t),∴S=(PA+FE)•AE=[(a+m﹣t)]•(t﹣m)∴S是t的二次函数,且二次项系数为负数,所以抛物线开口向下;当点G在点A右侧,点E在点B左侧时,S=ab;当点G在点B左侧,点E在点B右侧时,如图,GB=a+m+c﹣t,∵PA∥EF,∴△GBP∽△GEF,∴=,∴PB=(a+m+c﹣t),∴S=GB•PB=(a+m+c﹣t)•(a+m+c﹣t)=(t﹣a﹣m﹣c)2,∴S是t的二次函数,且二次项系数为,正数,所以抛物线开口向上,综上所述,S与t的图象分为四段,第一段为x轴上的一条线段,第二段为开口向下的抛物线的一部分,第三段为与x轴平行的线段,第四段为开口先上的抛物线的一部分.故选D.点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二.填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2013•铁岭)地球上陆地的面积约为149 000 000平方千米,把数据149 000 000用科学记数法表示为 1.49×108.考点:科学记数法—表示较大的数.专题:计算题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将149 000 000用科学记数法表示为1.49×108.故答案为:1.49×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2013•铁岭)在综合实践课上.五名同学做的作品的数量(单位:件)分别是:5,7,3,6,4,则这组数据的中位数是5件.考点:中位数.分析:根据中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.解答:解:按从小到大的顺序排列是:3,4,5,6,7.中间的是5,故中位数是5.故答案是:5.点评:本题主要考查了中位数的定义,理解定义是关键.13.(3分)(2013•铁岭)函数y=有意义,则自变量x的取值范围是x≥1且x≠2.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故答案为:x≥1且x≠2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.14.(3分)(2013•铁岭)甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,,则成绩比较稳定的是甲(填“甲”或“乙”)考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵,,∴<,∴成绩比较稳定的是甲;故答案为:甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2013•铁岭)某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为0.945元(结果用含m的代数式表示)考点:列代数式.分析:先算出加价50%以后的价格,再求第一次降价30%的价格,最后求出第二次降价10%的价格,从而得出答案.解答:解:根据题意得:m(1+50%)(1﹣30%)(1﹣10%)=0.945m(元);故答案为:0.945元.点评:此题考查了列代数式,解决问题的关键是读懂题意,列出代数式,是一道基础题.16.(3分)(2013•铁岭)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是2.考点:反比例函数系数k的几何意义;等腰直角三角形.分析:过P作PB⊥OA于B,根据一次函数的性质得到∠POA=45°,则△POA为等腰直角三角形,所以OB=AB,于是S△POB=S△POA=×2=1,然后根据反比例函数y=(k≠0)系数k的几何意义即可得到k的值.解答:解:过P作PB⊥OA于B,如图,∵正比例函数的解析式为y=x,∴∠POA=45°,∵PA⊥OP,∴△POA为等腰直角三角形,∴OB=AB,∴S△POB=S△POA=×2=1,∴k=1,∴k=2.故答案为2.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了等腰直角三角形的性质.17.(3分)(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 1.6.考点:旋转的性质.分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.解答:解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.点评:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.18.(3分)(2013•铁岭)如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是(﹣×4n﹣1,4n).考点:一次函数综合题;平行四边形的性质.专题:规律型.分析:先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n).解答:解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n).故答案为(﹣×4n﹣1,4n).点评:本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三.解答题(第19题10分,第20题12分,共22分)19.(10分)(2013•铁岭)先化简,再求值:(1﹣)÷,其中a=﹣2.考点:分式的化简求值.分析:先把括号中通分后,利用同分母分式的减法法则计算,同时将除式的分子分解因式后,再利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后得到最简结果,再把a=﹣2代入进行计算即可.解答:解:(1﹣)÷=()=×=,把a=﹣2代入上式得:原式==.点评:此题考查了分式的化简求值,关键是通分,找出最简公分母,分式的乘除运算关键是约分,约分的关键是找公因式,化简求值题要将原式化为最简后再代值.20.(12分)(2013•铁岭)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.考点:矩形的判定;正方形的判定.分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而理由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.解答:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.点评:此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.四.解答题(第21题12分,第22题12分,共24分)21.(12分)(2013•铁岭)为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共查了200名学生:(2)请补全两幅统计图:(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.考点:条形统计图;扇形统计图;列表法与树状图法.分析:(1)根据A类的人数和所占的百分比,即可求出总人数;(2)用整体1减去A、C、D类所占的百分比,即可求出B所占的百分比;用总人数乘以所占的百分比,求出C的人数,从而补全图形;(3)根据题意采用列举法,举出所有的可能,注意要做到不重不漏,再根据概率公式即可得出答案.解答:解:调查的总学生是=200(名);故答案为:200.(3)B所占的百分比是1﹣15%﹣20%﹣30%=35%,C的人数是:200×30%=60(名),补图如下:(3)用A1,A2,A3表示3名喜欢毽球运动的学生,B表示1名跳绳运动的学生,则从4人中选出2人的情况有:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B),共计6种,选出的2人都是最喜欢毽球运动的学生有(A1,A2),(A1,A3),(A2,A3)共计3种,则两人均是最喜欢毽球运动的学生的概率=.点评:此题考查了扇形图与概率的知识,综合性比较强,解题时要注意认真审题,理解题意;在用列举法求概率时,一定要注意不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.考点:切线的判定与性质.分析:(1)AF为为圆O的切线,理由为:练级OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.解答:解:(1)AF为圆O的切线,理由为:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,则AF为圆O的切线;(2)∵△AOF≌△COF,∴∠AOF=∠COF,∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=5,∵S△AOF=•OA•AF=•OF•AE,∴AE=,则AC=2AE=.点评:此题考查了切线的判定与性质,涉及的知识有:全等三角形的判定与性质,平行线的性质,等腰三角形的性质,三角形的面积求法,熟练掌握切线的判定与性质是解本题的关键.五.解答题(满分12分)23.(12分)(2013•铁岭)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=320,进而求出PE=60,AE=120,然后在△APE中利用三角函数的定义即可求解.解答:解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD•tan∠BPD=PD•tan26.6°;在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD•tan∠CPD=PD•tan37°;∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=80,∴0.75PD﹣0.50PD=80,解得PD=320,∴BD=PD•tan26.6°≈320×0.50=160,∵OB=220,∴PE=OD=OB﹣BD=60,∵OE=PD=320,∴AE=OE﹣OA=320﹣200=120,∴tanα===0.5,∴α≈26.6°.点评:本题考查了解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.六.解答题(满分12分)24.(12分)(2013•铁岭)某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:销售单价x(元/件)…55 60 70 75 …一周的销售量y(件)…450 400 300 250 …(1)直接写出y与x的函数关系式:y=﹣10x+1000(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?考点:二次函数的应用.分析:(1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;(2)根据利润=(售价﹣进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过10000元,求出进货量,然后求最大销售额即可.解答:解:(1)设y=kx+b,由题意得,,解得:,则函数关系式为:y=﹣10x+1000;(2)由题意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为x=70,∴当40≤x≤70时,销售利润随着销售单价的增大而增大;(3)当购进该商品的贷款为10000元时,y==250(件),此时x=75,由(2)得当x≥70时,S随x的增大而减小,∴当x=70时,销售利润最大,此时S=9000,即该商家最大捐款数额是9000元.点评:本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.。

辽宁省铁岭市中考数学试卷(含答案解析)

辽宁省铁岭市中考数学试卷(含答案解析)

辽宁省铁岭市中考数学试卷一.选择题(每小题3分,共30分,每小题四个选项只有一个是符合题意的)1..3的相反数是()A.﹣3 B.3C.﹣D.2..下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3..如图,由两个相同的小正方体和一个圆锥组成的几何体,其左视图是()A.B.C.D.4..下列各式运算正确的是()A.a3+a2=2a5B.a3﹣a2=a C.(a3)2=a5D.a6÷a3=a35..不等式组的解集在数轴上表示正确的是()A.B.C.D.6..2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:比赛日期2012﹣8﹣4 2013﹣5﹣21 2014﹣9﹣282015﹣5﹣202015﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒) 10.19 10.06 10.10 10.06 9.99则苏炳添这五次比赛成绩的众数和平均数分别为()A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.08秒D.10.08秒,10.06秒7..如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.E F=AB C.S△ABD=S△ACD D.A D平分∠BAC8..一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.9..某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 ‘C.162(1+x)2=200 D.162(1﹣x)2=20010..一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D. 4个二.填空题(每小题3分,共24分)11..据《2014年国民经济和社会发展统计公报》显示,2014年我国教育科技和文化体育事业发展较快,其中全年普通高中招生7966000人,将7966000用科学记数法表示为.12..在平面直角坐标系中,正方形ABCD的顶点A、B、C的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D的坐标为.13..在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有个.14..如图,AB∥CD,AC⊥BC,∠ABC=35°,则∠1的度数为.15..已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是.16..如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.17..如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.18..如图,将一条长度为1的线段三等分,然后取走其中的一份,称为第一次操作;再将余下的每一条线段三等分,然后取走其中一份,称为第二次操作;…如此重复操作,当第n 次操作结束时,被取走的所有线段长度之和为.三.解答题19.先化简÷(a﹣2+),然后从﹣2,﹣1,1,2四个数中选择一个合适的数作为a的值代入求值.20.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.21.某社区为了解居民对足球、篮球、排球、羽毛球和乒乓球这五种球类运动项目的喜爱情况,在社区开展了“我最喜爱的球类运动项目”的随机调查(每位被调查者必须且只能选择最喜爱的一种球类运动项目),并将调查结果进行了统计,绘制成了如图所示的两幅不完整的统计图:(1)求本次被调查的人数;(2)将上面的两幅统计图补充完整;(3)若该社区喜爱这五种球类运动项目的人数大约有4000人,请你估计该社区喜爱羽毛球运动项目的人数.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,以AD为直径作⊙O,连接BO 并延长至E,使得OE=OB,连接AE.(1)求证:AE是⊙O的切线;(2)若BD=AD=4,求阴影部分的面积.23.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.73,≈1.41)24.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:…25 60 75 90 …蔬菜的批发量(千克)所付的金额(元)…125 300 …(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?25.已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD,直接写出∠BAD的度数.26.(14分)(2015•铁岭)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A (﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B 时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ 与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC 相似.请直接写出所有符合条件的点M坐标.2018年辽宁省铁岭市中考数学试卷一.选择题(每小题3分,共30分,每小题四个选项只有一个是符合题意的)1.3的相反数是()A.﹣3 B.3C.﹣D.考点:相反数.分析:根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解答:解:根据相反数的含义,可得3的相反数是:﹣3.故选:A.点评:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2..下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形与轴对称图形的概念对各选项进行逐一分析即可.解答:解:A、是轴对称图形,但不是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,但不是中心对称图形,故本选项错误.故选C.点评:本题考查的是中心对称图形,熟知中心对称图形与轴对称图形的概念是解答此题的关键.3..如图,由两个相同的小正方体和一个圆锥组成的几何体,其左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据左视图的定义即可得出.解答:解:该几何体的左视图是一个正方形与三角形.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的几何体的视图.4..下列各式运算正确的是()A.a3+a2=2a5B.a3﹣a2=a C.(a3)2=a5D.a6÷a3=a3考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,合并同类项的法则,对各选项计算后利用排除法求解.解答:解:A、a3与a2不是同类项的不能合并,故本选项错误;B、a3与a2不是同类项的不能合并,故本选项错误;C、(a3)2=a6,故本选项错误;D、a6÷a3=a3,正确.故选D.点评:本题考查了同底数幂的除法,幂的乘方的性质,合并同类项,熟练掌握运算性质是解题的关键.5..不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:解不等式①得:x≥﹣2,解不等式②得:x<4,故不等式组的解集是:﹣2≤x<4.故选B.点评:此题考查不等式的解集问题,关键是根据不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥,≤”要用实心圆点表示;“<,>”要用空心圆点表示.6.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:比赛日期2012﹣8﹣4 2013﹣5﹣21 2014﹣9﹣282015﹣5﹣202015﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒) 10.19 10.06 10.10 10.06 9.99则苏炳添这五次比赛成绩的众数和平均数分别为()A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.08秒D.10.08秒,10.06秒考点:众数;算术平均数.分析:根据众数和平均数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19,则众数为:10.06,平均数为:=10.08.故选C.点评:本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.7..如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.E F=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.8..一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.考点:几何概率.分析:根据正方形的性质求出阴影部分占整个面积的,进而得出答案.解答:解:由题意可得出:图中阴影部分占整个面积的,因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.故选:B.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.9..某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 ‘C.162(1+x)2=200 D.162(1﹣x)2=200考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.解答:解:由题意可列方程是:200×(1﹣x)2=168.故选A.点评:此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10..一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D. 4个考点:一次函数的应用.分析:根据函数图象直接得出甲乙两地之间的距离;根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;设慢车速度为3xkm/h,快车速度为4xkm/h,由(3x+4x)×4=560,可得x=20,从而得出快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离,当慢车行驶了7小时后,快车已到达甲地,可求出此时两车之间的距离即可.解答:解:由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大知直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,故③正确.故选:B.点评:此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,读懂图,获取正确信息是解题关键.二.填空题(每小题3分,共24分)11..据《2014年国民经济和社会发展统计公报》显示,2014年我国教育科技和文化体育事业发展较快,其中全年普通高中招生7966000人,将7966000用科学记数法表示为7.966×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7966000用科学记数法表示为7.966×106.故答案为:7.966×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12..在平面直角坐标系中,正方形ABCD的顶点A、B、C的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D的坐标为(1,1).考点:坐标与图形性质.分析:根据点的坐标求得正方形的边长,然后根据第三个点的坐标的特点将第四个顶点的坐标求出来即可.解答:解:∵正方形两个顶点的坐标为A(﹣1,1),B(﹣1,﹣1),∴AB=1﹣(﹣1)=2,∵点C的坐标为:(1,﹣1),∴第四个顶点D的坐标为:(1,1).故答案为:(1,1).点评:本题考查了坐标与图形的性质,解决本题的关键是弄清当两个点的横坐标相等时,其两点之间的距离为纵坐标的差.13..在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有3个.考点:利用频率估计概率.分析:根据多次试验发现摸到红球的频率是20%,则可以得出摸到红球的概率为20%,再利用红色小球有4个,黄、白色小球的数目相同进而表示出黑球概率,得出答案即可.解答:解:设黑色的数目为x,则黑、白色小球一共有2x个,∵多次试验发现摸到红球的频率是20%,则得出摸到红球的概率为20%,∴=40%,解得:x=3,∴黑色小球的数目是3个.故答案为:3.点评:本题考查了利用频率估计概率,根据题目中给出频率可知道概率,从而可求出黑色小球的数目是解题关键.14..如图,AB∥CD,AC⊥BC,∠ABC=35°,则∠1的度数为55°.考点:平行线的性质;垂线.分析:首先根据平行线的性质可得∠ABC=∠BCD=35°,再根据垂线的定义可得∠ACB=90°,再利用平角的定义计算出∠1的度数.解答:解:∵AB∥CD,∴∠ABC=∠BCD=35°,∵AC⊥BC,∴∠ACB=90°,∴∠1=180°﹣90°﹣35°=55°,故答案为:55°.点评:此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.15..已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是a≤1.考点:根的判别式.专题:计算题.分析:由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围.解答:解:∵方程x2﹣2x+a=0有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤1点评:此题考查了根的判别式,熟练掌握一元二次方程根的判别式与方程根的关系是解本题的关键.16..如图,点O是正五边形ABCDE的中心,则∠BAO的度数为54°.考点:正多边形和圆.分析:连接OB,则OB=OA,得出∠BAO=∠ABO,再求出正五边形ABCDE的中心角∠AOB的度数,由等腰三角形的性质和内角和定理即可得出结果.解答:解:连接OB,则OB=OA,∴∠BAO=∠ABO,∵点O是正五边形ABCDE的中心,∴∠AOB==72°,∴∠BAO=(180°﹣72°)=54°;故答案为:54°.点评:本题考查了正五边形的性质、等腰三角形的性质、正五边形中心角的求法;熟练掌握正五边形的性质,并能进行推理计算是解决问题的关键.17..如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.考点:反比例函数系数k的几何意义;平移的性质.分析:利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.解答:解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.点评:此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.18..如图,将一条长度为1的线段三等分,然后取走其中的一份,称为第一次操作;再将余下的每一条线段三等分,然后取走其中一份,称为第二次操作;…如此重复操作,当第n次操作结束时,被取走的所有线段长度之和为1﹣.考点:规律型:图形的变化类.分析:易得第一次操作后余下的线段为1﹣,进而得到每次操作后有几个1﹣的积,即可得到第n次操作时,余下的所有线段的长度之和,进而求得被取走的所有线段长度之和.解答:解:第一次操作后余下的线段之和为1﹣,第二次操作后余下的线段之和为(1﹣)2,…第n次操作后余下的线段之和为(1﹣)n=,则被取走的所有线段长度之和为1﹣.故答案是:1﹣.点评:本题考查图形的变化规律;得到第n次操作后有n个是解决本题的关键.三.解答题19.先化简÷(a﹣2+),然后从﹣2,﹣1,1,2四个数中选择一个合适的数作为a的值代入求值.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=,根据分式有意义的条件,把a=2代入计算即可.解答:解:原式=÷=•=,当a=2时,原式==3.点评:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.考点:矩形的性质;平行四边形的判定;菱形的性质.分析:(1)首先根据矩形的性质可得AB平行且等于CD,然后根据DE=BF,可得AF 平行且等于CE,即可证明四边形AFCE是平行四边形;(2)根据四边形AFCE是菱形,可得AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.解答:解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,解得:x=,则菱形的边长为:8﹣=,周长为:4×=25,故菱形AFCE的周长为25.点评:本题考查了矩形的性质和菱形的性质,解答本题的关键是则矩形对边平行且相等的性质以及菱形四条边相等的性质.21.某社区为了解居民对足球、篮球、排球、羽毛球和乒乓球这五种球类运动项目的喜爱情况,在社区开展了“我最喜爱的球类运动项目”的随机调查(每位被调查者必须且只能选择最喜爱的一种球类运动项目),并将调查结果进行了统计,绘制成了如图所示的两幅不完整的统计图:(1)求本次被调查的人数;(2)将上面的两幅统计图补充完整;(3)若该社区喜爱这五种球类运动项目的人数大约有4000人,请你估计该社区喜爱羽毛球运动项目的人数.考点:条形统计图;用样本估计总体;扇形统计图.专题:数形结合.分析:(1)用喜欢乒乓球项目的人数除以它所占的百分比即可得到本次被调查的人数;(2)用总人数分别减去其它项目的人数即可得到喜欢足球项目的人数,然后分别计算项目足球和棒球项目的百分比,再补全统计图;(3)利用样本根据总体,用4000乘以样本中喜欢羽毛球项目的百分比即可估计该社区喜爱羽毛球运动项目的人数.解答:解:(1)本次被调查的人数=24÷12%=200(人);(2)喜欢足球项目的人数=200﹣24﹣46﹣60﹣30=40(人),所以喜欢足球项目的百分比=×100%=20%,喜欢棒球项目的百分比=×100%=15%,如图,(3)4000×30%=1200,所以估计该社区喜爱羽毛球运动项目的人数约为1200人.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.(2)特点:从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体和扇形统计图.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,以AD为直径作⊙O,连接BO 并延长至E,使得OE=OB,连接AE.(1)求证:AE是⊙O的切线;(2)若BD=AD=4,求阴影部分的面积.考点:切线的判定;扇形面积的计算.分析:(1)证明△BOD≌△EOA,得到∠OAE=90°,根据切线的判定定理得到答案;(2)求出∠AOE=45°,根据三角形的面积公式和扇形的面积公式计算得到答案.解答:解:(1)∵AB=AC,AD是BC边上的中线,∴∠ODB=90°,在△BOD和△EOA中,,∴△BOD≌△EOA,∴∠OAE=∠ODB=90°,∴AE是⊙O的切线;(2)∵∠ODB=90°,BD=OD,∴∠BOD=45°,∴∠AOE=45°,则阴影部分的面积=×4×4﹣=8﹣.点评:本题考查的是切线的性质和判定和扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键.23如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.73,≈1.41)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,首先求出DF的长,进而可求出DH的长,在直角三角形ADH中,可求出AH的长,进而可求出AN的长,在直角三角形CNB中可求出BN的长,利用AB=AH﹣BN计算即可.解答:解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=10米,∵DH=DF+EC+CN=(10+30)米,∠ADH=30°,∴AH=×DH=(30+30)米,∴AN=AH+EF=(40+30)米,∵∠BCN=45°,∴CN=BN=20米,∴AB=AN﹣BN=20+30≈71米,答:条幅的长度是71米.点评:此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.24.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:…25 60 75 90 …蔬菜的批发量(千克)所付的金额(元)…125 300300 360…(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?考点:二次函数的应用;一次函数的应用.分析:(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.解答:解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,。

辽宁省铁岭市中考数学试卷及答案

辽宁省铁岭市中考数学试卷及答案

辽宁省铁岭市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。

2012-2019年辽宁省铁岭市中考数学试题汇编(含参考答案与解析)

2012-2019年辽宁省铁岭市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2012—2019年辽宁省铁岭市中考数学试题汇编(含参考答案与解析)1、2012年辽宁省铁岭市中考数学试题及参考答案与解析 (2)2、2013年辽宁省铁岭市中考数学试题及参考答案与解析 (28)3、2014年辽宁省铁岭市中考数学试题及参考答案与解析 (53)4、2015年辽宁省铁岭市中考数学试题及参考答案与解析 (78)5、2017年辽宁省铁岭市中考数学试题及参考答案与解析 (103)6、2018年辽宁省铁岭市中考数学试题及参考答案与解析 (124)7、2019年辽宁省铁岭市中考数学试题及参考答案与解析 (148)2012年辽宁省铁岭市中考数学试题及参考答案与解析一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是()A.3 B.﹣3 C.13D.132.下列图形中,不是中心对称的是()A.B.C.D.3.计算(﹣2a3)2的结果是()A.2a5B.4a5C.﹣2a6D.4a64.如图,桌面上是由长方体的茶叶盒与圆柱体的茶叶盒组成的一个立体图形,其左视图是()A.B.C.D.5.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:A.4小时B.4.5小时C.5小时D.5.5小时6.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()A.14B.13C.12D.357.如图,⊙O中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥底面圆的半径长是()A.1 B.43C.53D.28.矩形纸片ABCD中,AB=4,AD=8,将纸片沿EF折叠使点B与点D重合,折痕EF与BD相交于点O,则DF的长为()A.3 B.4 C.5 D.69.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x 轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.610.如图,▱ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,它们的各边与▱ABCD的各边分别平行,且与▱ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.2011年10月20日,为更好地服务我国367 000 000未成年人,在团中央书记处领导下,团中央网络影视中心开通面向全国未成年人的专属网站﹣﹣未来网.将367 000 000用科学记数法表示为.12.如果+|y﹣2|=0,那么xy=.13.如图,已知∠1=∠2,∠B=40°,则∠3=.14.从﹣2、1、这三个数中任取两个不同的数相乘,积是无理数的概率是.15.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.16.如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行海里.17.如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为.18.如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形A n B n C n D n 的面积为.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,在求值:,其中=3tan30°+1.20.(12分)已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD,垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有人,女生有人;(2)扇形统计图中a=,b=;(3)补全条形统计图(不必写出计算过程);(4)若本校500名毕业生中随机抽取一名学生,这名学生该项测试成绩在8分以下的概率是多少?22.(12分)如图,⊙O的直径AB的长为10,直线EF经过点B且∠CBF=∠CDB.连接AD.(1)求证:直线EF是⊙O的切线;(2)若点C是弧AB的中点,sin∠DAB=,求△CBD的面积.五、解答题(满分12分)23.(12分)为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.(1)求购买每个笔记本和每支钢笔各多少元?(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?六、解答题(满分12分)24.(12分)周末,王爷爷骑自行车随“夕阳红自行车队”到“象牙山”游玩.早上从市区出发,1小时50分钟后,到达“象牙山”,3小时后王爷爷的儿子小王打电话告诉王爷爷去接他,同时,小王驾车从市区同一地点出发沿相同路线去接王爷爷.王爷爷在接到电话10分钟后,随自行车队一起沿原路按原速返回.如图,是“自行车队”离市区的距离y(千米)和所用时间x(时)的函数图象及小王驾车出发到接到王爷爷时离市区的距离y(千米)和所用时间x(时)的函数图象,其解析式为y EC=60x ﹣290.(1)王爷爷骑车的速度是千米∕时,点D的坐标为;(2)求小王接到王爷爷时距“象牙山”有多远?七、解答题(满分26分)25.(12分)已知△ABC是等边三角形.(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.①如图a,当θ=20°时,△ABD与△ACE是否全等?(填“是”或“否”),∠BOE=度;②当△ABC旋转到如图b所在位置时,求∠BOE的度数;(2)如图c,在AB和AC上分别截取点B′和C′,使AB=AB′,AC=AC′,连接B′C′,将△AB′C′绕点A逆时针旋转角(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.26.(14分)如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.参考答案与解析一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是()A.3 B.﹣3 C.13D.13【知识考点】相反数.【思路分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答过程】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列图形中,不是中心对称的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答过程】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选C.【总结归纳】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.计算(﹣2a3)2的结果是()A.2a5B.4a5C.﹣2a6D.4a6【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方与幂的乘方的运算法则求解即可求得答案;注意幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答过程】解:(﹣2a3)2=(﹣2)2•(a3)2=4a6.故选D.【总结归纳】此题考查了积的乘方与幂的乘方的性质.此题比较简单,注意掌握(a m)n=a mn(m,n 是正整数)与(ab)n=a n b n(n是正整数)的应用是解此题的关键.4.如图,桌面上是由长方体的茶叶盒与圆柱体的茶叶盒组成的一个立体图形,其左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】圆柱体形状的茶叶盒的左视图是圆,长方体的茶叶盒的左视图是矩形,且圆位于矩形的上方,由此可以得到结论.【解答过程】解:圆柱体形状的茶叶盒的左视图是圆,长方体的茶叶盒的左视图是矩形,且圆位于矩形的上方,故选D.【总结归纳】本题考查了简单组合体的三视图,解题时不但要具有丰富的数学知识,而且还应有一定的生活经验.5.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:A.4小时B.4.5小时C.5小时D.5.5小时【知识考点】中位数.【思路分析】中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数是的平均数即为中位数.【解答过程】解:由统计表可知:统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C.【总结归纳】本题考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.6.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()A.14B.13C.12D.35【知识考点】几何概率.【思路分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再求出S1=S2即可.【解答过程】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质易证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为;故选A.【总结归纳】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.7.如图,⊙O中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥底面圆的半径长是()A.1 B.43C.53D.2【知识考点】圆锥的计算.【思路分析】利用扇形的半径以及以及在圆中所占比例,得出圆心角的度数,再利用圆锥底面圆周长等于扇形弧长求出即可.【解答过程】解:∵⊙O中,半径OA=4,∠AOB=120°,∴扇形弧长为:l==π,则由圆锥的底面圆的周长为:c=2πr=π.解得:r=.故选B.【总结归纳】此题主要主要考查了扇形组成圆锥后各部分对应情况,根据题意得出圆锥底面圆周长等于扇形弧长是解决问题的关键.8.矩形纸片ABCD中,AB=4,AD=8,将纸片沿EF折叠使点B与点D重合,折痕EF与BD相交于点O,则DF的长为()A.3 B.4 C.5 D.6【知识考点】翻折变换(折叠问题).【思路分析】设DF=x,则BF=x,CF=8﹣x,在RT△DFC中利用勾股定理可得出x的值,继而得出答案.【解答过程】解:设DF=x,则BF=x,CF=8﹣x,在RT△DFC中,DF2=CF2+DC2,即x2=(8﹣x)2+42,解得:x=5,即DF的长为5.故选C.【总结归纳】此题考查了翻折变换的知识,设出DF的长度,得出CF的长,然后在RT△DFC中利用勾股定理是解答本题的关键.9.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x 轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.6【知识考点】反比例函数系数k的几何意义.【思路分析】先根据反比例函数的图象在第一象限判断出k的符号,再延长线段BA,交y轴于点E,由于AB∥x轴,所以AE⊥y轴,故四边形AEOD是矩形,由于点A在双曲线y=上,所以S矩形AEOD=4,同理可得S矩形OCBE=k,由S矩形ABCD=S矩形OCBE﹣S矩形AEOD即可得出k的值.【解答过程】解:∵双曲线y=(k≠0)上在第一象限,∴k>0,延长线段BA,交y轴于点E,∵AB∥x轴,∴AE⊥y轴,∴四边形AEOD是矩形,∵点A在双曲线y=上,∴S矩形AEOD=4,同理S矩形OCBE=k,∵S矩形ABCD=S矩形OCBE﹣S矩形AEOD=k﹣4=8,∴k=12.故选A.【总结归纳】本题考查的是反比例函数系数k的几何意义,即反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.如图,▱ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,它们的各边与▱ABCD的各边分别平行,且与▱ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形的面积,再根据相似多边形面积的比等于相似比的平方列式求出y与x之间的函数关系式,然后根据二次函数图象解答.【解答过程】解:∵四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,∴阴影部分的面积等于一个小平行四边形的面积,∵小平行四边形与▱ABCD相似,∴=()2,整理得y=x2,又0<x≤8,纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图象.故选D.【总结归纳】本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.二、填空题(本题共8小题,每小题3分,共24分)11.2011年10月20日,为更好地服务我国367 000 000未成年人,在团中央书记处领导下,团中央网络影视中心开通面向全国未成年人的专属网站﹣﹣未来网.将367 000 000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于367 000 000有9位,所以可以确定n=9﹣1=8.【解答过程】解:367 000 000=3.67×108.故答案为:3.67×108.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.12.如果+|y﹣2|=0,那么xy=.【知识考点】非负数的性质:算术平方根;非负数的性质:绝对值.【思路分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答过程】解:根据题意得,x+1=0,y﹣2=0,解得x=﹣1,y=2,所以,xy=(﹣1)×2=﹣2.故答案为:﹣2.【总结归纳】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.13.如图,已知∠1=∠2,∠B=40°,则∠3=.【知识考点】平行线的判定与性质.【思路分析】由∠1=∠2,根据“内错角相等,两直线平行”得AB∥CE,再根据两直线平行,同位角相等即可得到∠3=∠B=40°.【解答过程】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,而∠B=40°,∴∠3=40°.故答案为40°.【总结归纳】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等.14.从﹣2、1、这三个数中任取两个不同的数相乘,积是无理数的概率是.【知识考点】列表法与树状图法;实数的运算.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是无理数的情况,再利用概率公式即可求得答案.【解答过程】解:画树状图得:∵共有6种等可能的结果,积是无理数的有4种情况,∴小强和小红同时入选的概率是:==.故答案为:.【总结归纳】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.【知识考点】由实际问题抽象出分式方程.【思路分析】利用“甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成”这一等量关系列出方程即可.【解答过程】解:∵甲、乙两工程队合作施工20天可完成;∴合作的工作效率为:设乙工程队单独完成此工程需要x天,则可列方程+=1,故答案为:+=1。

辽宁省铁岭市中考数学试卷(b卷)

辽宁省铁岭市中考数学试卷(b卷)

辽宁省铁岭市中考数学试卷(b卷)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) 0的相反数是()A . 0B . 1C . -1D . ±12. (2分)(2014·南宁) 下列图形中,是轴对称图形的是()A .B .C .D .3. (2分)下列运算正确的是()A . x3•x3=2x6B . (﹣2x2)2=﹣4x4C . (x3)2=x6D . x5÷x=x54. (2分)下列调查方式,正确的是()A . 了解我市居民每户日平均食品消费支出,采用普查方式B . 了解某一天离开温州市的人口流量,采用抽样调查C . 了解全班同学本周末参加社区活动时间,采用抽样调查D . 了解一批炮弹的杀伤半径,采用普查方式5. (2分) (2019七下·大通期中) 估算的值在()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间6. (2分)(2015·宁波模拟) 若a+b=﹣2,且a≥2b,则().A . 有最小值B . 有最大值1C . 有最大值2D . 有最小值7. (2分) (2016八上·宁城期末) 若分式有意义,则的取值范围是()A .B .C .D .8. (2分)若△ABC与△DEF的相似比是3:2,△DEF的最长边是6cm,那么△ABC的最长边是()A . 4cmB . 9cmC . 4cm或9cmD . 以上答案都不对9. (2分)如图,点O是线段AB上一点,AB=4cm,AO=1cm,若线段AB绕点O顺时针旋转120°到线段A′B′的位置,则线段AB在旋转过程中扫过的图形的面积为()A . 6πcm2B . πcm2C . 9πcm2D . 3πcm210. (2分)(2018·十堰) 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A . 2B .C . 5D .11. (2分)(2014·南通) 如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A . 160°B . 140°C . 60°D . 50°12. (2分)有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A . x=1,y=3B . x=3,y=2C . x=4,y=1D . x=2,y=3二、填空题 (共6题;共6分)13. (1分)(2018·吉林模拟) 中国的领水面积约为370 000 km2 ,将数370 000用科学计数法表示为:________。

辽宁省铁岭市开原市2017届九年级(上)期末数学试卷(解析版)人教版

辽宁省铁岭市开原市2017届九年级(上)期末数学试卷(解析版)人教版

A.(2n﹣ 1, 2n) 2n﹣ 1)
B.( 2n﹣ ,2n) C.(2n﹣1﹣ ,2n﹣1)
D.(2n﹣1﹣ 1,
二、填空题:每小题 3 分,共 24 分. 11.已知在 Rt△ ABC 中,∠ C=90°,sinA= ,则 tanB 的值为 . 12.在方格纸中, 每个小格的顶点称为格点, 以格点的连线为边的三角形称为格 点三角形,如图所示的 5×5 的方格纸中,如果想作格点△ ABC 与△ OAB 相似 (相似比不能为 1),则 C 点坐标为 .
2016-2017 学年辽宁省铁岭市开原市九年级(上)期末数学试卷
一、选择题:每小题 3 分,共 30 分.
1.在 RT△ ABC 中,∠ C=90°,∠ A 、∠ B、∠ C 的对边分别为 a、b、c,则下列
式子一定成立的是(

A. a=c?sinB B. a=c?cosB C.a=b?tanB D.b=
6.如图,在 2× 2 正方形网格中,以格点为顶点的△ ABC 的面积等于 ,则 sin ∠ CAB= ( )
A.
B. C.
D.
7.已知 k1< 0< k2,则函数 y=k1x﹣ 1 和 y= 的图象大致是()A. NhomakorabeaB.
C.
D.
8.如图所示,一般书本的纸张是在原纸张多次对开得到.矩形 ABCD 沿 EF 对 开后,再把矩形 EFCD 沿 MN 对开,依此类推.若各种开本的矩形都相似,那 么 等于( )
B.
C.
D.
10.彼此相似的矩形 A 1B1C1D1,A 2B2C2D2,A 3B3C3D3, …,按如图所示的方式 放置.点 A 1, A 2,A 3,…,和点 C1,C2, C3,… ,分别在直线 y=kx +b(k>0) 和 x 轴上,已知点 B1、B2 的坐标分别为 ( 1,2),( 3,4),则 Bn 的坐标是 ( )

2017年中考数学试卷含答案解析(Word版).docx

2017年中考数学试卷含答案解析(Word版).docx

2017 年中考数学试卷一、选择题:本大题共12 小题,每小题 3 分,共 36 分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得 3 分,选错、不选或多选,均不得分.1.从新华网获悉:商务部5 月 27 日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币, 16553 亿用科学记数法表示为()A. 1.6553×108 B. 1.6553× 1011C.1.6553×1012D. 1.6553× 1013【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤a< 10,n 为整数.确||定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解:将16553 亿用科学记数法表示为: 1.6553× 1012.故选: C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤| a| <10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.2.某校排球队 10 名队员的身高(厘米)如下:195, 186,182,188,188, 182,186,188, 186,188.这组数据的众数和中位数分别是()A. 186, 188 B. 188,187 C.187,188 D.188,186【分析】根据众数和中位数的定义求解可得.【解答】解:将数据重新排列为:182、182、 186、186、186、188、 188、188、188、 195,∴众数为 188,中位数为=187,故选: B.【点评】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.3.下列运算正确的是()A. 3x2+4x2=7x4 B. 2x33x3=6x3C. a÷a﹣2=a3D.(﹣a2b)3=﹣a6b3【分析】原式各项计算得到结果,即可作出判断.【解答】解: A、原式 =7x2,不符合题意;B、原式 =6x6,不符合题意;C、原式 =aa2=a3,符合题意;D、原式 =﹣a6 b3,不符合题意,故选 C【点评】此题考查了整式的混合运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.2π 0+(﹣)﹣2的结果是()4.计算﹣()+(+ )A.1 B.2 C.D.3【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣()2+(+π)0+(﹣)﹣2=﹣2+1+4=3故选: D.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣>1,得:x<﹣2,解不等式 3﹣x≥ 2,得: x≤1,∴不等式组的解集为x<﹣ 2,故选: B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.为了方便行人推车过某天桥,市政府在 10m 高的天桥一侧修建了40m 长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D.【分析】先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠ A .【解答】解: sinA===0.25,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选 A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.若 1﹣22x c=0的一个根,则 c 的值为()是方程 x ﹣+A.﹣ 2 B.4﹣2 C.3﹣D.1+【分析】把 x=1﹣代入已知方程,可以列出关于 c 的新方程,通过解新方程即可求得 c 的值.【解答】解:∵关于x 的方程 x2﹣2x c=0的一个根是 1﹣,+∴( 1﹣)2﹣2(1﹣) +c=0,解得, c=﹣2.故选: A.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.8.一个几何体由n 个大小相同的小正方体搭成,其左视图、俯视图如图所示,则 n 的最小值是()A.5 B.7 C.9 D.10【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层和第三层的个数,从而算出总的个数.【解答】解:由题中所给出的左视图知物体共三层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少1+2+4=7.故选 B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.甲、乙两人用如图所示的两个转盘(每个转盘别分成面积相等的 3 个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是()A.B.C.D.5 种,进而可得【分析】首先画出树状图,然后计算出数字之和为偶数的情况有答案.【解答】解:如图所示:数字之和为偶数的情况有 5 种,因此加获胜的概率为,故选: C.【点评】此题主要考查了画树状图和概率,关键是掌握概率 =所求情况数与总情况数之比.10.如图,在 ? ABCD 中,∠ DAB 的平分线交 CD 于点 E,交 BC 的延长线于点G,∠ABC 的平分线交 CD 于点 F,交 AD 的延长线于点 H,AG 与 BH 交于点 O,连接 BE,下列结论错误的是()A. BO=OH B.DF=CE C.DH=CG D.AB=AE【分析】根据平行四边形的性质、等腰三角形的判定和性质一一判断即可.【解答】解:∵四边形 ABCD 是平行四边形,∴AH∥ BG,AD=BC ,∴∠ H=∠HBG,∵∠ HBG=∠ HBA ,∴∠ H=∠HBA ,∴AH=AB ,同理可证 BG=AB ,∴AH=BG ,∵ AD=BC ,∴DH=CG,故③正确,∵AH=AB ,∠ OAH= ∠ OAB ,∴OH=OB,故①正确,∵DF∥AB,∴∠DFH=∠ABH ,∵∠ H=∠ABH ,∴∠ H=∠DFH,∴DF=DH ,同理可证 EC=CG,∵ DH=CG,∴DF=CE,故②正确,无法证明 AE=AB ,故选 D.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数 y=(b+c)x 与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【分析】先根据二次函数的图象,确定a、 b、c 的符号,再根据 a、b、c 的符号判断反比例函数y=与一次函数y=( b+c) x的图象经过的象限即可.【解答】解:由二次函数图象可知a>0,c>0,由对称轴 x=﹣>0,可知b<0,当 x=1 时, a+b+c<0,即 b+c<0,所以正比例函数 y=(b+c) x 经过二四象限,反比例函数 y=图象经过一三象限,故选 C.【点评】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出 a、b、c 的取值范围.12.如图,正方形上,若反比例函数ABCD 的边长为 5,点y= ( k≠ 0)的图象过点A 的坐标为(﹣4,0),点B C,则该反比例函数的表达式为(在 y 轴)A. y=B.y=C.y=D.y=【分析】过点 C 作 CE⊥ y 轴于 E,根据正方形的性质可得 AB=BC ,∠ABC=90°,再根据同角的余角相等求出∠ OAB= ∠CBE,然后利用“角角边”证明△ ABO 和△ BCE 全等,根据全等三角形对应边相等可得 OA=BE=4 ,CE=OB=3,再求出 OE,然后写出点 C 的坐标,再把点 C 的坐标代入反比例函数解析式计算即可求出 k 的值.【解答】解:如图,过点 C 作 CE⊥ y 轴于 E,在正方形 ABCD 中, AB=BC ,∠ABC=90°,∴∠ ABO +∠ CBE=90°,∵∠ OAB +∠ ABO=90°,∴∠ OAB= ∠ CBE,∵点 A 的坐标为(﹣ 4,0),∴OA=4,∵ AB=5,∴ OB==3,在△ ABO 和△ BCE 中,,∴△ ABO ≌△ BCE(AAS ),∴OA=BE=4 , CE=OB=3,∴OE=BE﹣OB=4﹣ 3=1,∴点 C 的坐标为( 3,1),∵反比例函数 y= (k≠0)的图象过点 C,∴k=xy=3 ×1=3,∴反比例函数的表达式为y=.故选 A.【点评】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点 D 的坐标是解题的关键.二、填空题:本大题共 6 小题,每小题 3 分,共 18 分,只要求填写最后结果.13.如图,直线 l1∥l2,∠ 1=20°,则∠ 2+∠3=200° .【分析】过∠ 2 的顶点作 l2的平行线 l,则 l ∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC +∠3=180°,即可得出∠2+∠3=200°.【解答】解:过∠2 的顶点作l 2的平行线 l,如图所示:则 l∥ l1∥ l2,∴∠ 4=∠ 1=20°,∠ BAC +∠3=180°,∴∠ 2+∠ 3=180°+20°=200°;故答案为: 200°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.方程+=1 的解是x=3.【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:由原方程,得3﹣x﹣1=x﹣ 4,﹣2x=﹣6,x=3,经检验 x=3 是原方程的解.故答案是: x=3.【点评】本题考查了解分式方程,把分式方程转化为整式方程求解.最后注意需验根.15.阅读理解:如图1,⊙ O 与直线 a、b 都相切,不论⊙ O 如何转动,直线a、b 之间的距离始终保持不变(等于⊙ O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2 是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图 3 所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线 c,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线 c,d 之间的距离等于2cm,则莱洛三角形的周长为2π cm.【分析】由等宽曲线的定义知AB=BC=AC=2cm ,即可得∠ BAC= ∠ ABC= ∠ACB=60°,根据弧长公式分别求得三段弧的长即可得其周长.【解答】解:如图 3,由题意知 AB=BC=AC=2cm ,∴∠ BAC= ∠ ABC= ∠ACB=60°,∴在以点 C 为圆心、 2 为半径的圆上,∴的长为=,则莱洛三角形的周长为×3=2π,故答案为: 2π.【点评】本题主要考查新定义下弧长的计算,理解“等宽曲线”得出等边三角形是解题的关键.16.某广场用同一种如图所示的地砖拼图案,第一次拼成形如图 1 所示的图案,第二拼成形如图 2 所示的图案,第三次拼成形如图 3 所示的图案,第四次拼成形如图 4 所示的图案按照这样的规律进行下去,第n 次拼成的图案共有地砖2n2+2n.块.【分析】首先求出第一个、第二个、第三个、第四个图案中的地砖的数量,探究规律后即可解决问题.【解答】解:第一次拼成形如图 1 所示的图案共有 4 块地砖, 4=2×( 1×2),第二拼成形如图 2 所示的图案共有 12 块地砖, 12=2×( 2×3),第三次拼成形如图 3 所示的图案共有 24 块地砖, 24=2×( 3× 4),第四次拼成形如图 4 所示的图案共有 40 块地砖, 40=2×( 4× 5),第 n 次拼成形如图 1 所示的图案共有 2× n( n+1) =2n2+2n 块地砖,故答案为 2n2+2n.【点评】本题考查规律题目、解题的关键是学会从特殊到一般的探究方法,属于中考填空题中的压轴题.17.如图,A 点的坐标为(﹣1,5),B 点的坐标为(3,3),C 点的坐标为(5,3), D 点的坐标为( 3,﹣ 1),小明发现:线段 AB 与线段 CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是(1,1)或( 4,4).【分析】分点 A 的对应点为 C 或 D 两种情况考虑:①当点 A 的对应点为点 C 时,连接 AC 、BD ,分别作线段 AC、 BD 的垂直平分线交于点 E,点 E 即为旋转中心;②当点 A 的对应点为点 D 时,连接 AD 、 BC,分别作线段 AD 、 BC 的垂直平分线交于点 M ,点 M 即为旋转中心.此题得解.【解答】解:①当点 A 的对应点为点 C 时,连接 AC 、BD ,分别作线段AC、BD 的垂直平分线交于点E,如图 1 所示,∵A 点的坐标为(﹣ 1,5), B 点的坐标为( 3,3),∴ E 点的坐标为( 1, 1);②当点 A 的对应点为点 D 时,连接 AD 、BC,分别作线段 AD 、BC 的垂直平分线交于点 M ,如图 2 所示,∵A 点的坐标为(﹣ 1,5), B 点的坐标为( 3,3),∴ M 点的坐标为( 4,4).综上所述:这个旋转中心的坐标为( 1,1)或( 4,4).故答案为:( 1,1)或( 4, 4).【点评】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.18.如图,△ ABC 为等边三角形, AB=2 .若 P 为△ ABC 内一动点,且满足∠PAB= ∠ACP,则线段 PB 长度的最小值为.【分析】由等边三角形的性质得出∠ABC= ∠ BAC=60°, AC=AB=2 ,求出∠APC=120°,当 PB⊥AC 时, PB 长度最小,设垂足为D,此时 PA=PC,由等边三角形的性质得出AD=CD= AC=1 ,∠ PAC=∠ACP=30°,∠ABD=∠ABC=30° ,求出 PD=ADtan30°=AD=,BD=AD=,即可得出答案.【解答】解:∵△ ABC 是等边三角形,∴∠ ABC= ∠ BAC=60°,AC=AB=2 ,∵∠ PAB=∠ ACP,∴∠ PAC+∠ACP=60°,∴∠ APC=120°,当 PB⊥AC 时, PB 长度最小,设垂足为 D,如图所示:此时 PA=PC,则 AD=CD= AC=1 ,∠ PAC=∠ ACP=30°,∠ ABD= ∠ ABC=30°,∴ PD=ADtan30°=AD=,BD=AD=,∴ PB=BD﹣PD=﹣=;故答案为:.【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理、三角函数等知识;熟练掌握等边三角形的性质是解决问题的关键.三、解答题:本大题共7 小题,共 66 分.19.先化简÷(﹣ x+1),然后从﹣<x<的范围内选取一个合适的整数作为x 的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:x 1)÷(﹣+====,∵﹣<x<且 x 1≠ 0,x﹣ 1≠ 0,x≠ 0,x 是整数,+∴ x=﹣2 时,原式 =﹣.【点评】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法,注意取得的 x 的值必须使得原分式有意义.20.某农场去年计划生产玉米和小麦共200 吨,采用新技术后,实际产量为225 吨,其中玉米超产 5%,小麦超产 15%,该农产去年实际生产玉米、小麦各多少吨?【分析】设农场去年计划生产小麦x 吨,玉米 y 吨,利用去年计划生产小麦和玉米 200 吨,则 x+y=200,再利用小麦超产15%,玉米超产 5%,则实际生产了225吨,得出等式( 1+5%)x+(1+15%) y=225,进而组成方程组求出答案.【解答】解:设农场去年计划生产小麦x 吨,玉米 y 吨,根据题意可得:,解得:,则 50×( 1+5%)=52.5(吨),150×( 1+15%)=172.5(吨),答:农场去年实际生产小麦52.5 吨,玉米 172.5 吨.【点评】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.21.央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了 200 名学生;(2)将条形统计图补充完整;( 3)图 2 中“小说类”所在扇形的圆心角为126 度;(4)若该校共有学生2500 人,估计该校喜欢“社科类”书籍的学生人数.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:( 1)∵喜欢文史类的人数为 76 人,占总人数的 38%,∴此次调查的总人数为: 76÷38%=200 人,(2)∵喜欢生活类书籍的人数占总人数的 15%,∴喜欢生活类书籍的人数为: 200× 15%=30 人,∴喜欢小说类书籍的人数为:200﹣ 24﹣76﹣30=70 人,如图所示;( 3)∵喜欢社科类书籍的人数为:24 人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°× 35%=126°,(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的 12%,∴该校共有学生 2500 人,估计该校喜欢“社科类”书籍的学生人数: 2500×12%=300 人故答案为:( 1)200;( 3) 126【点评】本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型.22.图 1 是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图 2,AB ⊥BC,垂足为点 B,EA ⊥AB ,垂足为点 A ,CD∥AB ,CD=10cm,DE=120cm, FG⊥ DE,垂足为点 G.( 1)若∠θ=37°50,′则 AB 的长约为83.2 cm;(参考数据: sin37 °50≈′0.61,cos37°50≈′0.79,tan37 °50≈′0.78)(2)若 FG=30cm,∠θ=60°求, CF 的长.【分析】(1)作 EP⊥BC、DQ⊥EP,知 CD=PQ=10,∠2+∠3=90°,由∠ 1+∠θ=90°且∠1=∠ 2知∠ 3=∠θ=37°50,根′据 EQ=DEsin∠3 和 AB=EP=EQ PQ 可得答案;+( 2)延长 ED、BC 交于点 K ,结合( 1)知∠θ=∠3=∠K=60°,从而由 CK=、KF=可得答案.【解答】解:( 1)如图,作 EP⊥BC 于点 P,作 DQ⊥ EP 于点 Q,则 CD=PQ=10,∠ 2+∠3=90°,∵∠ 1+∠ θ=90,°且∠ 1=∠2,∴∠ 3=∠ θ=37°50,′则 EQ=DEsin∠3=120× sin37 °50,′∴AB=EP=EQ+PQ=120sin37°50+10=83′.2,故答案为: 83.2;(2)如图,延长 ED、 BC 交于点 K ,由( 1)知∠θ=∠3=∠ K=60°,在 Rt△CDK 中, CK==,在 Rt△KGF 中, KF===,则 CF=KF﹣KC=﹣==.【点评】本题主要考查解直角三角形的应用,根据题意构建所需直角三角形和熟练掌握三角函数是解题的关键.23.已知: AB 为⊙ O 的直径, AB=2 ,弦 DE=1,直线 AD 与 BE 相交于点 C,弦 DE 在⊙ O 上运动且保持长度不变,⊙ O 的切线 DF 交 BC 于点F.( 1)如图 1,若 DE∥AB ,求证: CF=EF;( 2)如图 2,当点 E 运动至与点 B 重合时,试判断 CF 与 BF 是否相等,并说明理由.【分析】(1)如图 1,连接 OD、OE,证得△ OAD 、△ ODE、△ OEB、△ CDE 是等边三角形,进一步证得DF⊥CE 即可证得结论;(2)根据切线的性质以及等腰三角形的性质即可证得结论.【解答】证明:如图 1,连接 OD、OE,∵ AB=2,∴OA=OD=OE=OB=1 ,∵ DE=1,∴OD=OE=DE,∴△ ODE 是等边三角形,∴∠ ODE=∠ OED=60°,∵DE∥ AB ,∴∠ AOD=∠ ODE=60°,∠ EOB=∠OED=60°,∴△ AOD 和△△ OE 是等边三角形,∴∠ OAD=∠ OBE=60°,∴∠ CDE=∠ OAD=60°,∠ CED=∠OBE=60°,∴△ CDE 是等边三角形,∵DF 是⊙O 的切线,∴OD⊥DF,∴∠ EDF=90°﹣60°=30°,∴∠ DFE=90°,∴ DF⊥ CE,∴ CF=EF;( 2)相等;如图 2,点 E 运动至与点 B 重合时, BC 是⊙ O 的切线,∵⊙O的切线 DF 交 BC 于点 F,∴BF=DF,∴∠ BDF=∠ DBF,∵ AB 是直径,∴∠ ADB= ∠ BDC=90°,∴∠ FDC=∠ C,∴DF=CF,∴BF=CF.【点评】本题考查了切线的性质、平行线的性质、等边三角形的判定、等腰三角形的判定和性质,作出辅助线构建等边三角形是解题的关键.24.如图,四边形ABCD 为一个矩形纸片, AB=3 ,BC=2,动点 P 自 D 点出发沿 DC 方向运动至 C 点后停止,△ ADP 以直线 AP 为轴翻折,点 D 落在点 D1的位置,设 DP=x ,△ AD 1P 与原纸片重叠部分的面积为y.(1)当 x 为何值时,直线 AD 1过点 C?(2)当 x 为何值时,直线 AD 1过 BC 的中点 E?(3)求出 y 与 x 的函数表达式.【分析】(1)根据折叠得出AD=AD 1=2, PD=PD1=x ,∠ D= ∠AD 1P=90°,在Rt△ABC 中,根据勾股定理求出AC ,在 Rt△ PCD1中,根据勾股定理得出方程,求出即可;( 2)连接 PE,求出 BE=CE=1,在 Rt△ABE 中,根据勾股定理求出AE ,求出AD 1 =AD=2 ,PD=PD1=x,D1E=﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;( 3)分为两种情况:当0<x ≤2 时, y=x;当 2<x≤3 时,点 D1在矩形 ABCD 的外部, PD1交 AB 于 F,求出 AF=PF,作 PG⊥AB 于 G,设 PF=AF=a,在 Rt △PFG 中,由勾股定理得出方程( x﹣a)2+22=a2,求出 a 即可.【解答】解:( 1)如图 1,∵由题意得:△ ADP ≌△ AD 1P,∴AD=AD 1 =2,PD=PD1=x,∠ D=∠ AD1P=90°,∵直线 AD1过 C,∴PD1⊥AC,在Rt△ABC 中, AC==,CD1=﹣2,222在 Rt△PCD1中, PC =PD1+CD1,即( 3﹣x)2=x2+(﹣2)2,解得: x=,∴当x=时,直线AD1过点C;( 2)如图 2,连接 PE,∵E 为BC 的中点,∴ BE=CE=1,在 Rt△ABE 中, AE==,∵AD1 =AD=2 ,PD=PD1=x,∴D1E=﹣2,PC=3﹣x,在 Rt△PD1E 和 Rt△PCE 中,x2+(﹣2)2=(3﹣x)2+12,解得: x=,∴当 x=时,直线 AD 1过BC 的中点;E( 3)如图 3,当 0<x≤2 时, y=x,如图 4,当 2<x≤3 时,点 D1在矩形 ABCD 的外部, PD1交 AB 于 F,∵AB∥CD,∴∠ 1=∠ 2,∵∠1=∠3(根据折叠),∴∠ 2=∠ 3,∴ AF=PF,作 PG⊥AB 于 G,设 PF=AF=a,由题意得: AG=DP=x ,FG=x﹣a,在 Rt△PFG 中,由勾股定理得:( x﹣a)2+22=a2,解得: a=,所以y==,综合上述,当 0<x≤2 时, y=x;当 2<x≤3 时, y=.【点评】本题考查了勾股定理,折叠的性质,矩形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键,用了分类推理思想.25.如图,已知抛物线y=ax2+bx+c 过点 A (﹣ 1,0), B(3,0), C( 0, 3)点 M 、N 为抛物线上的动点,过点 M 作 MD ∥ y 轴,交直线 BC 于点 D,交 x 轴于点 E.( 1)求二次函数 y=ax2+bx+c 的表达式;( 2)过点 N 作 NF⊥x 轴,垂足为点 F,若四边形 MNFE 为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠ DMN=90°,MD=MN ,求点 M 的横坐标.【分析】(1)待定系数法求解可得;(2)设点 M 坐标为( m,﹣m2+2m+3),分别表示出 ME=| ﹣m2+2m+3| 、MN=2m﹣2,由四边形 MNFE 为正方形知 ME=MN ,据此列出方程,分类讨论求解可得;( 3)先求出直线 BC 解析式,设点 M 的坐标为( a,﹣ a2+2a+3),则点 N(2﹣a,﹣ a2+2a+3)、点 D( a,﹣ a+3),由 MD=MN 列出方程,根据点 M 的位置分类讨论求解可得.【解答】解:( 1)∵抛物线 y=ax2+bx+c 过点 A(﹣ 1,0), B( 3,0),∴设抛物线的函数解析式为 y=a( x+1)( x﹣3),将点 C(0,3)代入上式,得: 3=a( 0+1)( 0﹣3),解得: a=﹣1,∴所求抛物线解析式为 y=﹣( x+1)( x﹣3)=﹣x2+2x+3;( 2)由( 1)知,抛物线的对称轴为 x=﹣=1,如图 1,设点 M 坐标为( m,﹣ m2+2m+3),∴ME=| ﹣m2+2m+3| ,∵M 、N 关于 x=1 对称,且点 M 在对称轴右侧,∴点 N 的横坐标为 2﹣m,∴ MN=2m ﹣2,∵四边形 MNFE 为正方形,∴ME=MN ,∴| ﹣ m2+2m+3| =2m﹣2,分两种情况:①当﹣m2 2m 3=2m﹣2 时,解得: m12(不符合题意,舍去),+ +=、m =﹣当 m=时,正方形的面积为( 2﹣2)2=24﹣8;②当﹣ m2+2m+3=2﹣2m 时,解得:m3, 4 ﹣(不符合题意,舍去),=2+m =2当 m=2+时,正方形的面积为 [ 2(2+)﹣ 2] 2=24+8 ;综上所述,正方形的面积为 24+8或 24﹣8 .(3)设 BC 所在直线解析式为 y=kx +b,把点 B(3,0)、 C(0,3)代入表达式,得:,解得:,∴直线 BC 的函数表达式为y=﹣x+3,设点 M 的坐标为( a,﹣ a2 +2a+3),则点 N( 2﹣ a,﹣ a2+2a+3),点 D(a,﹣a+3),①点 M 在对称轴右侧,即a>1,则 | ﹣ a+3﹣(﹣ a2+2a+3)| =a﹣( 2﹣ a),即 | a2﹣3a| =2a﹣2,若 a2﹣3a≥ 0,即 a≤0 或 a≥3,a2﹣3a=2a﹣ 2,解得: a=或a=<1(舍去);若 a2﹣3a< 0,即 0≤ a≤3,a2﹣ 3a=2﹣ 2a,解得: a=﹣1(舍去)或 a=2;②点 M 在对称轴右侧,即a<1,则 | ﹣ a+3﹣(﹣ a2+2a+3)| =2﹣a﹣a,即 | a2﹣3a| =2﹣2a,若 a2﹣3a≥ 0,即 a≤0 或 a≥3,a2﹣3a=2﹣2a,解得: a=﹣1 或 a=2(舍);若 a2﹣3a< 0,即 0≤ a≤3,a2﹣ 3a=2a﹣2,解得: a=(舍去)或a=;综上,点M 的横坐标为、2、﹣ 1、.【点评】本题主要考查二次函数的综合问题,熟练掌握待定系数法求函数解析式及两点间的距离公式、解方程是解题的关键.。

2017年中考数学真题分类解析 直角三角形、勾股定理

2017年中考数学真题分类解析   直角三角形、勾股定理

一、选择题 1. 9.(2017浙江温州,9,4分)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt △ABM 较长直角边,AM =2,则正方形ABCD 的面积为A .12SB .10SC .9SD .8S答案:C ,解析:由题意可知小正方形边长: EF =EH =HG =GF =, 4个白色的矩形全等,且矩形的长均为,宽为(),则直角三角形的短直角边长为:.由勾股定理得AB ==3所以正方形ABCD 的面积为9S .2. (2017·辽宁大连,8,3分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,点E 是AB 的中点,CD =DE =a ,则AB 的长为A . 2aB .22aC .3aD .334a答案:B 解析:由于CD ⊥AB ,CD =DE =a ,所以CE =22DE CD +=22a a +=2a ,又△ABC 中,∠ACB =90°,点E 是AB 的中点,所以AE =BE =CE ,所以AB =2CE =22a ,故选B .3. (2017山东淄博,12,4分)如图,在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,∠BAC ,∠ACB 的平分第8题CABDEM第9题HGFEDCBA线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为 ( )AM A设故4.’C=A .5. (2017黑龙江大庆,8,3分)如图,ABD ∆是以BD 为斜边的等腰直角三角形,BCD ∆中,090=∠DBC ,060=∠BCD ,DC 中点为E ,AD 与BE 的延长线交于点F ,则AFB ∠的度数为( )FE CBA(第12题图)A .030B .015C .045D .025答案:B ,解析:AFB ∠=∠ADE -∠DEB =75°- 60°=15°.6. (2017湖北黄石,7,3分)如图,△ABC 中,E 为BC 边的中点,CD ⊥AB ,AB =2,AC =1,则∠CDE +∠ACD =( )BEDCAA .60︒B .75︒C .90︒D .105︒答案:C ,解析:因为E 为BC 边的中点,CD ⊥AB ,,DE =32,所以BE =CE =DE =23,即∠CDE =∠DCE ,BC =3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,故∠CDE +∠ACD =90°,选C .7.(2017内蒙古包头)如图,在Rt ABC ∆中,090,ACB CD AB ∠=⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,若3,5AC AB ==,则CE 的长为( )(第12题)FE DCB AM ABCEF(第12题)A .32 B . 43 C . 53 D .85答案:A ,解析:考点直角三角形的性质与三角形相似的性质的应用.。

初中数学 中考数学试卷(含答案)

初中数学 中考数学试卷(含答案)

2017年中考数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3的相反数是( )A .-3B .13-C .13D .3 【答案】A【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A. 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .【答案】B【解析】从左边看可以看到两个小正方形摞在一起,故选B. 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 【答案】B【解析】13600=1.36×105,故选B. 4.化简2(2)x 的结果是( )A .4xB .22xC . 24xD .4x 【答案】C【解析】(2x )2=4x 2;故选C.5.下列关于图形对称性的命题,正确的是( )A .圆既是轴对称性图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形 【答案】A点睛:本题主要考查中心对称图形与轴对称图形的知识,能正确地区分是解题的关键.6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <- 【答案】A【解析】由①得x≤2,由②得x>-3,所以解集为:-3<x≤2,故选A.7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15 【答案】D【解析】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.8.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠ 【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,故选D.9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( )A .3B .4C .5D .6 【答案】C10.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区 【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D.O点睛:本题主要考查图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键.第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分. 11.计算023--= . 【答案】1【解析】原式=2-1=1.12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .【答案】红球(或红色的)14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .【答案】7【解析】∵AB=2,BC=2AB ,∴BC=4, 3+4=7,故点C 表示的数是7.15.两个完全相同的正五边形都有一边在直线上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.DC16. 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 . 【答案】7.5yxDBCAO点睛:本题主要考查双曲线、矩形的对称性,双曲线关于原点对称,关于直线y=±x 对称,矩形既是轴对称图形又是中心对称图形,能根据本题的题意确定矩形的对称中心是原点,并能应用图形的对称性解决问题是关键.三、解答题 :本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17. 先化简,再求值:1)11(2-⋅-a aa ,其中12-=a . 【答案】1a+1,22 .【解析】试题分析:先通分计算括号内的,然后再利用分式的乘除法进行计算,最后代入求值即可. 试题解析:原式=()()11111a a a a a a -=+-+ ,当a=2 -1时,原式=1211-+ =22.18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证:A D ∠=∠.【答案】证明见解析. 【解析】19.如图,ABC ∆中,90,BAC AD BC ∠=⊥,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】试题分析:按作图方法作出角平分线BQ ,然后通过利用互为余角以及等角的余角相等得到∠APQ=∠ AQP,从而证得AP=AQ.试题解析:作图如下,BQ 就是所求作的∠ABC 的平分线,P 、Q 就是所求作的点. 证明如下:∵AD ⊥BC ,∴∠ADB=90°,∴∠BPD+∠PBD=90°,∵∠BAC=90°,∴∠AQP+∠ABQ=90°,∵∠ABQ=∠PBD ,∴∠BPD=∠AQP ,∵∠BPD=∠APQ ,∴∠APQ=∠ AQP,∴AP=AQ.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【答案】鸡有23只,兔有12只.【解析】21.如图,四边形ABCD内接于O,AB是O的直径,点P在CA的延长线上,45CAD∠=.(Ⅰ)若4AB=,求弧CD的长;(Ⅱ)若弧BC=弧AD,AD AP=,求证:PD是O的切线.【答案】(Ⅰ)CD的长=π;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)连接OC,OD,由圆周角定理可得∠COD=90°,然后利用弧长公式即可得;(Ⅱ)由BC=AD,可得∠BOC=∠AOD,从而可得∠AOD=45°,再由三角形内角和从而可得∠ODA=67.5°,由AD=AP可得∠ADP=∠APD,由∠CAD=∠ADP+∠APD,∠CAD=45°可得∠ADP=22.5°,继而可得∠ODP=90°,从而得PD是⊙O的切线.试题解析:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=12AB=2,∴CD的长=902180π⨯⨯=π;22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=, 2222sin 22sin 680.370.93 1.0018+≈+=, 2222sin 29sin 610.480.870.9873+≈+=, 2222sin 37sin 530.600.80 1.0000+≈+=,222222sin 45sin 45()(122+≈+=. 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=.(Ⅰ)当30α=时,验证22sinsin (90)1αα+-=是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例. 【答案】(Ⅰ)成立,证明见解析;(Ⅱ)成立,证明见解析. 【解析】试题分析:(Ⅰ)成立,当30α=时,将30°与60°的正弦值代入计算即可得证; (Ⅱ)成立,如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,正确地表示这两个角的正弦并利用勾股定理即可得证.试题解析:(Ⅰ)当30α=时, 22sin sin (90)αα+-=sin 230°+sin 260°=221322⎛⎫+ ⎪⎝⎭=1344+=1,所以22sin sin(90)1αα+-=成立;(Ⅱ)小明的猜想成立.证明如下:如图,△ABC中,∠C=90°,设∠A=α,则∠B=90°-α,sin2α+sin 2(90°-α)=2222222BC AC BC AC ABAB AB AB AB+⎛⎫⎛⎫+==⎪ ⎪⎝⎭⎝⎭=123.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(Ⅰ)写出,a b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.【答案】(Ⅰ)a=1.2,b=1.4;(Ⅱ)不能获利,理由见解析;【解析】试题分析:(Ⅰ)根据调整后的收费歀:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费通过计算即可得a=1.2,b=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费 为:1100×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.1×15)=1.1(元), 所以估计该校5000名师生一天使用A 品牌共享单车的总车费为:5000×1.1=5500(元), 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)324【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由2 ,从而可得324. 试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6, 22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况:(1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC ,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD·DC=12 AC·DQ ,∴DQ=245AD DC AC = ,∴CQ=22185DC DQ -= ,∴PC=2CQ =365 ,∴AP=AC-PC=145 . 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,点睛:本题主要考查矩形的性质、等腰三角形的判定与性质,相似三角形的判定与性质等,能正确地分情况进行讨论是判定△PCD 要等腰三角形的关键.25.已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N . (ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.【答案】(Ⅰ)抛物线顶点Q 的坐标为(-12,-94a );(Ⅱ)理由见解析; (Ⅲ)(i )55≤MN≤75.(ii )△QMN 面积的最小值为279242+. 【解析】 试题分析:(Ⅰ)由抛物线过点M (1,0),可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+ 12)2- 94a ,从而可得抛物线顶点Q 的坐标为(- 12,- 94a ). (Ⅱ)由直线y=2x+m 经过点M (1,0),可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,得 E (-12,-3), 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a -- ,即27a 2+(8S-54)a+24=0,(*) 因为关于a 的方程(*)有实数根, 从而可和S≥279242+,继而得到面积的最小值. 试题解析:(Ⅰ)因为抛物线过点M (1,0),所以a+a+b=0,即b=-2a ,所以y=ax 2+ax+b=ax 2+ax-2a=a(x+12)2-94a ,所以抛物线顶点Q 的坐标为(-12,-94a ). (Ⅱ)因为直线y=2x+m 经过点M (1,0),所以0=2×1+m ,解得m=-2.把y=2x-2代入y=ax 2+ax-2a ,得ax 2+(a-2)x-2a+2=0,(*),所以△=(a-2)2-4a(-2a+2)=9a 2-12a+4由(Ⅰ)知b=-2a ,又a<b ,所以a<0,b>0,所以△>0,所以方程(*)有两个不相等的实数根,故直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E (-12,-3), 又因为M (1,0),N (2a -2,4a -6),且由(Ⅱ)知a<0, 所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭=2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4×27×24≥0,即(8S-54)2≥(2 )2, 又因为a<0,所以S=2732748a a -- >274,所以8S-54>0,所以8S-54>0, 所以8S-2,即S≥279242+, 当S=279242+*)可得223满足题意. 故当223,423时,△QMN 面积的最小值为279242+点睛:本题考查的二次函数的综合问题,能正确地应用待定系数法、一元二次方程根的判别式、二次函数的性质等是解决本题的关键.。

2017届辽宁省铁岭市九年级上学期期末考试数学试卷(带解析)

2017届辽宁省铁岭市九年级上学期期末考试数学试卷(带解析)

绝密★启用前2017届辽宁省铁岭市九年级上学期期末考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:75分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、如图,⊙O 是△ABC 的外接圆,⊙O 的半径为3,∠A=45°,则弧BC 的长是( )A .πB .πC .πD .π【答案】B试卷第2页,共22页【解析】如图,连接OB,OC , ∵∠BAC=45°, ∴∠BOC=90°,,故选D.点睛:此题主要考察队弧长公式,圆周角定理的掌握情况,关键是根据圆周角得出圆周角,连接OB,OC,利用圆周角定理,可得出∠BOC=90°,再利用弧长公式计算弧BC 即可。

2、一元二次方程x 2-2x+1="0" 的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根D .没有实数根【答案】A【解析】∵a =1,b =−2,c =1, ∴△=b 2−4ac =(−2)2−4×1×1=0, ∴方程有两个相等的实数根。

故选:A.3、已知两点(x 1,y 1),(x 2,y 2) 在函数y= -的图象上,当x 1>x 2>0时,下列结论正确的是( ) A .y 1>y 2>0B .y 1<y 2<0C .y 2>y 1>0D .y 2<y 1<0【答案】D【解析】∵反比例函数 中,k =−5<0,∴此函数图象的两个分支在二、四象限, ∵x 1>x 2>0,∴两点都在第四象限,∵在第四象限内y 的值随x 的增大而增大, ∴y 2<y 1<0. 故选D.二、选择题(题型注释)4、在平面直角坐标系中,二次函数y=a (x−h )2(a≠0)的图象可能是( )A .B .C .D .【答案】D . 【解析】试题分析:二次函数图象的对称轴为直线顶点为,只有D 项满足题意,故选D . 考点:二次函数的图象.5、在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任可其他区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球( ) A .16个B .20个C .25个D .30个【答案】A【解析】试题分析:由题意可知,摸到黄球的频率是0.2,可以近似的看成摸到黄球的概率是0.2,设红球有x 个,可得,解得x=16,即盒子中大约有16个红球,故答案选A .考点:利用频率估计概率. 6、cos60°的值为( )A .B .C .D .【答案】A试卷第4页,共22页【解析】试题分析:cos60°=.故选A .考点:特殊角的三角函数值.7、如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 相交于点F ,DE :EC=2:3,则S △DEF :S △ABF 等于( )A .4:25B .4:9C .9:25D .2:3【答案】A【解析】试题分析:因为四边形是平行四边形,所以AB=CD,AB//CD,所以△DEF ∽△BAF,所以△DEF ∶△ABF =,因为∶=2∶3,所以∶DC=2∶5,所以∶BA=2∶5,所以△DEF ∶△ABF ==4∶25,故选:A .考点:1.平行四边形的性质;2.相似三角形的判定与性质.8、如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD =.其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】B【解析】试题解析:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC , ∵BE ⊥AC 于点F ,∴∠EAC =∠ACB ,∠ABC =∠AFE =90°, ∴△AEF ∽△CAB ,故①正确; ∵AD ∥BC , ∴△AEF ∽△CBF ,∴,∵AE =AD =BC ,∴,∴CF =2AF ,故②正确; ∵DE ∥BM ,BE ∥DM , ∴四边形BMDE 是平行四边形,∴BM =DE =BC ,∴BM =CM , ∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE , ∴DN ⊥CF , ∴DM 垂直平分CF , ∴DF =DC ,故③正确; 设AE =a ,AB =b ,则AD =2a ,由△BAE ∽△ADC ,有 ,即b =,∴tan ∠CAD =.故④不正确;故选B .【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及试卷第6页,共22页解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.第II卷(非选择题)三、填空题(题型注释)9、如图,已知△ABC中,AB=5,AC=3,点D在边AB上,且∠ACD=∠B,则线段AD的长为_________.【答案】.【解析】试题分析:∵∠A=∠A,∠ACD=∠B,∴△ABC∽△ACD,∴,∵AB=5,AC=3,∴,∴AD=.故答案为:.考点:相似三角形的判定与性质.10、如图,在A处看建筑物CD的顶端D的仰角为α,则tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为______米.【答案】7.【解析】试题分析:∵∠DBC=45°,∴BC=CD,tanα=,则,解得CD=7.故答案为:7.考点:解直角三角形的应用-仰角俯角问题.试卷第8页,共22页11、如图,六边形ABCDEF 为⊙O 的内接正六边形,若⊙O 的半径为2,则图中阴影部分的面积为_________.【答案】.【解析】试题分析:∵圆的半径为,∴面积为12π,∵空白正六边形为六个边长为的正三角形,∴每个三角形面积为×××sin60°=,∴正六边形面积为,∴阴影面积为=,故答案为:.考点:1.扇形面积的计算;2.正多边形和圆.12、某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件.当每件的定价为________元时,该服装店平均每天的销售利润最大.【答案】22. 【解析】试题分析:设定价为x 元时,利润为w 元,由题意建立w 与x 的二次函数关系:w=(x-15)(×4+8),化简得:w=,∵-2<0,∴当x===22时,w有最大值,∴当每件的定价为22元时,该服装店平均每天的销售利润最大. 考点:利用二次函数解决实际问题..13、如图,分别过反比例函数y =的图象上的点P 1(1,y 1),P 2(2,y 2),…P n (n ,y n )…作x 轴的垂线,垂足分别为A 1,A 2,…,A n …,连接A 1P 2,A 2P 3,…,A n-1P n ,…,再以A 1P 1,A 1P 2为一组邻边画一个平行四边形A 1P 1B 1P 2,以A 2P 2,A 2P 3为一组邻边画一个平行四边形A 2P 2B 2P 3,点B 2的纵坐标是____.依此类推,则点Bn 的纵坐标是_______.(结果用含n 代数式表示)【答案】【解析】∵点P 1(1,y 1),P 2(2,y 2)在反比例函数的图象上,∴y 1=3,y 2=;∴P 1A1=y 1=3;又∵四边形A 1P 1B 1P 2,是平行四边形, ∴P 1A 1=B 1P 2=3,P 1A 1∥B 1P 2,∴点B 1的纵坐标是:y 2+y 1=+3,即点B1的纵坐标是;同理求得,点B 2的纵坐标是:y 3+y 2=1+=;点B 3的纵坐标是:y 4+y 3=+1=;…点B n 的纵坐标是:y n+1+y n =;故答案是。

2017年辽宁省铁岭市中考数学试卷(含解析版)

2017年辽宁省铁岭市中考数学试卷(含解析版)

2017年辽宁省铁岭市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .5B .﹣5C .15D .﹣152.(3分)2016年,铁岭市橡胶行业实现销售收入约601000000元,将数据601000000用科学记数法表示为( )A .6.01×108B .6.1×108C .6.01×109D .6.01×1073.(3分)下列几何体中,主视图为三角形的是( )A .B .C .D .4.(3分)如图,在同一平面内,直线l 1∥l 2,将含有60°角的三角尺ABC 的直角顶点C 放在直线l 1上,另一个顶点A 恰好落在直线l 2上,若∠2=40°,则∠1的度数是( )A .20°B .30°C .40°D .50°5.(3分)在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10.则这组数据的中位数是( )A .5B .6C .7D .106.(3分)下列事件中,不可能事件是( )A .抛掷一枚骰子,出现4点向上B .五边形的内角和为540°C .实数的绝对值小于0D .明天会下雨7.(3分)关于x 的一元二次方程4x 2﹣3x +m=0有两个相等的实数根,那么m 的值是( )A .98B .916C .﹣98D .﹣9168.(3分)某校管乐队购进一批小号和长笛,小号的单价比长笛的单价多100元,用6000元购买小号的数量与用5000元购买长笛的数量恰好相同,设小号的单价为x 元,则下列方程正确的是( )A .6000x =5000x−100B .6000x−100=5000xC .6000x =5000x+100D .6000x+100=5000x9.(3分)如图,在△ABC 中,AB=5,AC=4,BC=3,分别以点A ,点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交AB 于点O ,连接CO,则CO的长是()A.1.5 B.2 C.2.4 D.2.510.(3分)如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)在函数y=√x−4中,自变量x的取值范围是.12.(3分)分解因式:x2y﹣6xy+9y=.13.(3分)从数﹣2,1,2,5,8中任取一个数记作k,则正比例函数y=kx的图象经过第二、四象限的概率是.14.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数x(单位:分)及方差s2如下表所示:甲乙丙丁x94989896s21 1.21 1.8如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是.15.(3分)如图,菱形ABCD的面积为6,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=kx的图象经过顶点B,则k的值为.16.(3分)在▱ABCD 中,∠DAB 的平分线交直线CD 于点E ,且DE=5,CE=3,则▱ABCD 的周长为 .17.(3分)如图,在圆心角为135°的扇形OAB 中,半径OA=2cm ,点C ,D 为AB̂的三等分点,连接OC ,OD ,AC ,CD ,BD ,则图中阴影部分的面积为 cm 2.18.(3分)如图,△ABC 的面积为S .点P 1,P 2,P 3,…,P n ﹣1是边BC 的n 等分点(n ≥3,且n 为整数),点M ,N 分别在边AB ,AC 上,且AM AB =AN AC =1n,连接MP 1,MP 2,MP 3,…,MP n ﹣1,连接NB ,NP 1,NP 2,…,NP n ﹣1,线段MP 1与NB 相交于点D 1,线段MP 2与NP 1相交于点D 2,线段MP 3与NP 2相交于点D 3,…,线段MP n ﹣1与NP n ﹣2相交于点D n ﹣1,则△ND 1P 1,△ND 2P 2,△ND 3P 3,…,△ND n﹣1P n ﹣1的面积和是 .(用含有S 与n 的式子表示)三、解答题(本大题共2小题,共22分)19.(10分)先化简,再求值:(x x−y ﹣1)÷y x 2−y 2,其中x=√3﹣2,y=(12)﹣1. 20.(12分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了多少名学生的征文;(2)将上面的条形统计图和扇形统计图补充完整;(3)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名;(4)本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.四、解答题(本大题共2小题,共24分)21.(12分)某大型快递公司使用机器人进行包裹分拣,若甲机器人工作2h,乙机器人工作4h,一共可以分拣700件包裹;若甲机器人工作3h,乙机器人工作2h,一共可以分拣650件包裹.(1)求甲、乙两机器人每小时各分拣多少件包裹;(2)“双十一”期间,快递公司的业务量猛增,要让甲、乙两机器人每天分拣包裹的总数量不低于2250件,它们每天至少要一起工作多少小时?22.(12分)如图,某市文化节期间,在景观湖中央搭建了一个舞台C,在岸边搭建了三个看台A,B,D,其中A,C,D三点在同一条直线上,看台A,B到舞台C的距离相等,测得∠A=30°,∠D=45°,AB=60m,小明、小丽分别在B,D看台观看演出,请分别求出小明、小丽与舞台C的距离.(结果保留根号)五、解答题(本大题共1小题,共12分)23.(12分)如图,AB是半圆O的直径,点C是半圆上一点,连接OC,BC,以点C为顶点,CB为边作∠BCF=12∠BOC,延长AB交CF于点D.(1)求证:直线CF是半圆O的切线;(2)若BD=5,CD=5√3,求BĈ的长.六、解答题(本大题共1小题,共12分)24.(12分)铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:第x 天1≤x≤66<x≤15每天的销售量y /盒1x+6(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.七、解答题(本大题共1小题,共12分)25.(12分)如图,△ABC中,∠BAC为钝角,∠B=45°,点P是边BC延长线上一点,以点C为顶点,CP为边,在射线BP下方作∠PCF=∠B.(1)在射线CF上取点E,连接AE交线段BC于点D.①如图1,若AD=DE,请直接写出线段AB与CE的数量关系和位置关系;②如图2,若AD=√2DE,判断线段AB与CE的数量关系和位置关系,并说明理由;(2)如图3,反向延长射线CF,交射线BA于点C′,将∠PCF沿CC′方向平移,使顶点C落在点C′处,记平移后的∠PCF为∠P′C′F′,将∠P′C′F′绕点C′顺时针旋转角α(0°<α<45°),C′F′交线段BC于点M,C′P′交射线BP于点N,请直接写出线段BM,MN与CN之间的数量关系.八、解答题(本大题共1小题,共14分)26.(14分)如图,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(3,0),D (﹣1,0),与y轴交于点C,点B在y轴正半轴上,且OB=OD.(1)求抛物线的解析式;(2)如图1,抛物线的顶点为点E,对称轴交x轴于点M,连接BE,AB,请在抛物线的对称轴上找一点Q,使∠QBA=∠BEM,求出点Q的坐标;(3)如图2,过点C作CF∥x轴,交抛物线于点F,连接BF,点G是x轴上一点,在抛物线上是否存在点N,使以点B,F,G,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2017年辽宁省铁岭市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•铁岭)5的相反数是()A.5 B.﹣5 C.15D.﹣15【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:5的相反数是﹣5,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017•铁岭)2016年,铁岭市橡胶行业实现销售收入约601000000元,将数据601000000用科学记数法表示为()A.6.01×108B.6.1×108C.6.01×109D.6.01×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:601000000=6.01×108,故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•铁岭)下列几何体中,主视图为三角形的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】分别找出从图形的正面看所得到的图形即可.【解答】解:A、主视图是矩形,故此选项错误;B、主视图是矩形,故此选项错误;C、主视图是三角形,故此选项正确;D、主视图是正方形,故此选项错误;故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图是从几何体的正面看所得到的图形.4.(3分)(2017•铁岭)如图,在同一平面内,直线l1∥l2,将含有60°角的三角尺ABC的直角顶点C放在直线l1上,另一个顶点A恰好落在直线l2上,若∠2=40°,则∠1的度数是()A.20°B.30°C.40°D.50°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠1+30°+∠2+90°=180°,再把∠2=40°代入可求∠1的度数.【解答】解:∵l1∥l2,∴∠1+30°+∠2+90°=180°,∵∠2=40°,∴∠1+30°+40°+90°=180°,解得∠1=20°.故选:A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补是解答此题的关键.5.(3分)(2017•铁岭)在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10.则这组数据的中位数是()A.5 B.6 C.7 D.10【考点】W4:中位数.【分析】根据中位数的定义先把这组数据从小到大重新排列,找出最中间的数即可.【解答】解:把这数从小到大排列为:4,5,6,10,10,最中间的数是6,则这组数据的中位数是6;故选B.【点评】此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.6.(3分)(2017•铁岭)下列事件中,不可能事件是()A.抛掷一枚骰子,出现4点向上B.五边形的内角和为540°C.实数的绝对值小于0 D.明天会下雨【考点】X1:随机事件.【分析】依据不可能事件的概念求解即可.【解答】解:A、抛掷一枚骰子,出现4点向上是随机事件,故A错误;B、五边形的内角和为540°是必然事件,故B错误;C、实数的绝对值小于0是不可能事件,故C正确;D、明天会下雨是实际事件,故D错误.故选C.【点评】本题主要考查的是不可能事件的定义,熟练掌握相关概念是解题的关键.7.(3分)(2017•铁岭)关于x 的一元二次方程4x 2﹣3x +m=0有两个相等的实数根,那么m 的值是( )A .98B .916C .﹣98D .﹣916【考点】AA :根的判别式.【分析】由方程有两个相等的实数根,即可得出关于m 的一元一次方程,解之即可得出m 的值.【解答】解:∵关于x 的一元二次方程4x 2﹣3x +m=0有两个相等的实数根, ∴△=(﹣3)2﹣4×4m=9﹣16m=0,解得:m=916. 故选B .【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.(3分)(2017•铁岭)某校管乐队购进一批小号和长笛,小号的单价比长笛的单价多100元,用6000元购买小号的数量与用5000元购买长笛的数量恰好相同,设小号的单价为x 元,则下列方程正确的是( )A .6000x =5000x−100B .6000x−100=5000xC .6000x =5000x+100D .6000x+100=5000x【考点】B6:由实际问题抽象出分式方程.【分析】设小号的单价为x 元,则长笛的单价为(x ﹣100)元,根据6000元购买小号的数量与用5000元购买长笛的数量恰好相同,列方程即可.【解答】解:设小号的单价为x 元,则长笛的单价为(x ﹣100)元,由题意得:6000x =5000x−100. 故选:A .【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.(3分)(2017•铁岭)如图,在△ABC 中,AB=5,AC=4,BC=3,分别以点A ,点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交AB 于点O ,连接CO ,则CO 的长是( )A.1.5 B.2 C.2.4 D.2.5【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KP:直角三角形斜边上的中线;KS:勾股定理的逆定理.【分析】先利用勾股定理的逆定理证明△ABC为直角三角形,∠ACB=90°,再由作法得MN垂直平分AB,然后根据直角三角形斜边上的中线性质求解.【解答】解:∵AB=5,AC=4,BC=3,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°,由作法得MN垂直平分AB,∴AO=OB,∴OC=12AB=2.5.故选D.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).10.(3分)(2017•铁岭)如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()A. B. C. D.【考点】E7:动点问题的函数图象.【分析】根据矩形的性质得到CF∥DE,根据相似三角形的性质即可得到结论.【解答】解:∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴CGDH =AC AD,∵AC=CD=1,∴AD=2,∴xDH =1 2,∴DH=2x ,∵DE=2,∴y=2﹣2x ,∵0°<α<45°,∴0<x <1,故选D .【点评】本题考查了动点问题的还是图象,矩形的性质,相似三角形的判定和性质,正确的理解题意是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017•铁岭)在函数y=√x −4中,自变量x 的取值范围是 x ≥4 .【考点】E4:函数自变量的取值范围;72:二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x ﹣4≥0,解得x ≥4,则自变量x 的取值范围是x ≥4.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.(3分)(2017•铁岭)分解因式:x 2y ﹣6xy +9y= y (x ﹣3)2 .【考点】55:提公因式法与公式法的综合运用.【分析】原式提取y ,再利用完全平方公式分解即可.【解答】解:原式=y (x 2﹣6x +9)=y (x ﹣3)2,故答案为:y (x ﹣3)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3分)(2017•铁岭)从数﹣2,1,2,5,8中任取一个数记作k ,则正比例函数y=kx 的图象经过第二、四象限的概率是 15. 【考点】X4:概率公式;F7:一次函数图象与系数的关系.【分析】从数﹣2,1,2,5,8中任取一个数记作k ,有5种情况,其中使正比例函数y=kx 的图象经过第二、四象限的k 值只有1种,根据概率公式求解即可.【解答】解:∵从数﹣2,1,2,5,8中任取一个数记作k ,有5种情况, 其中使正比例函数y=kx 的图象经过第二、四象限的k 值只有1种,即k=﹣2,∴满足条件的概率为15. 故答案为15. 【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.也考查了正比例函数的性质.14.(3分)(2017•铁岭)学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数x (单位:分)及方差s 2如下表所示:甲 乙 丙 丁x94989896s 211.211.8如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是丙.【考点】W7:方差;W1:算术平均数.【分析】先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【解答】解:∵乙、丙同学的平均数比甲、丁同学的平均数大,∴应从乙和丙同学中选,∵丙同学的方差比乙同学的小,∴丙同学的成绩较好且状态稳定,应选的是丙同学;故答案为:丙.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.15.(3分)(2017•铁岭)如图,菱形ABCD的面积为6,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=kx的图象经过顶点B,则k的值为3.【考点】G5:反比例函数系数k的几何意义;L8:菱形的性质.【分析】在Rt△AEB中,由∠AEB=90°,AB=2BE,推出∠EAB=30°,设AE=a,则AB=2a,由题意2a×√3a=6,推出a2=√3,可得k=√3a2=3.【解答】解:在Rt△AEB中,∵∠AEB=90°,AB=2BE,∴∠EAB=30°,设AE=a,则AB=2a,由题意2a×√3a=6,∴a2=√3,∴k=√3a2=3,故答案为3.【点评】本题考查反比例函数系数的几何意义、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(3分)(2017•铁岭)在▱ABCD中,∠DAB的平分线交直线CD于点E,且DE=5,CE=3,则▱ABCD的周长为26.【考点】L5:平行四边形的性质.【分析】易证得△ADE是等腰三角形,所以可得AD=DE,再求出DC的长,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=DE+CE=8,∴∠BAE=∠DEA,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠DEA=∠EAD,∴DE=AD=5,∴▱ABCD的周长=2(AD+AB)=2×13=26,故答案为:26.【点评】本题考查了平行四边形的性质以及等腰三角形的判定.注意证得△ADE 是等腰三角形是关键.17.(3分)(2017•铁岭)如图,在圆心角为135°的扇形OAB中,半径OA=2cm,点C,D为AB̂的三等分点,连接OC,OD,AC,CD,BD,则图中阴影部分的面积为(32π﹣3√2)cm2.【考点】MO:扇形面积的计算.【分析】易知△AOC≌△COD≌△DOB,如图作DH⊥OB于H.求出DH,即可求出△DOB的面积,再根据阴影部分面积=扇形面积﹣三个三角形面积,计算即可.【解答】解:如图作DH⊥OB于H.∵点C,D为AB̂的三等分点,∠AOB=135°,∴∠AOC=∠COD=∠DOB=45°,∴△ODH是等腰直角三角形,△AOC≌△COD≌△DOB,∵OD=2,∴DH=OH=√2,∴S △ODB =12•OB•DH=√2, ∴S △AOC =S △COD =S △DOB =√2,∴S 阴=135⋅π⋅22360﹣3S △DOB =(32π﹣3√2)cm 2, 故答案为(32π﹣3√2)cm 2. 【点评】本题考查扇形的面积、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.(3分)(2017•铁岭)如图,△ABC 的面积为S .点P 1,P 2,P 3,…,P n ﹣1是边BC 的n 等分点(n ≥3,且n 为整数),点M ,N 分别在边AB ,AC 上,且AM AB =AN AC =1n,连接MP 1,MP 2,MP 3,…,MP n ﹣1,连接NB ,NP 1,NP 2,…,NP n ﹣1,线段MP 1与NB 相交于点D 1,线段MP 2与NP 1相交于点D 2,线段MP 3与NP 2相交于点D 3,…,线段MP n ﹣1与NP n ﹣2相交于点D n ﹣1,则△ND 1P 1,△ND 2P 2,△ND 3P 3,…,△ND n﹣1P n ﹣1的面积和是 n−12n•S .(用含有S 与n 的式子表示)【考点】K3:三角形的面积.【分析】连接MN ,设BN 交MP 1于O 1,MP 2交NP 1于O 2,MP 3交NP 2于O 3.由AM AB =AN AC =1n ,推出MN ∥BC ,推出MN BC =AM AB =1n,由点P 1,P 2,P 3,…,P n ﹣1是边BC 的n 等分点,推出MN=BP 1=P 1P 2=P 2P 3,推出四边形MNP 1B ,四边形MNP 2P 1,四边形MNP 3P 2都是平行四边形,易知S △ABN =1n •S ,S △BCN =n−1n •S ,S △MNB =n−1n 2•S ,推出S △BP 1O 1=S △P 1P 2O 2=S △P 3P 2O 3=n−12n 2•S ,根据S 阴=S △NBC ﹣n•S △BP 1O 1计算即可; 【解答】解:连接MN ,设BN 交MP 1于O 1,MP 2交NP 1于O 2,MP 3交NP 2于O 3. ∵AM AB =AN AC =1n, ∴MN ∥BC ,∴MN BC =AM AB =1n, ∵点P 1,P 2,P 3,…,P n ﹣1是边BC 的n 等分点,∴MN=BP 1=P 1P 2=P 2P 3,∴四边形MNP 1B ,四边形MNP 2P 1,四边形MNP 3P 2都是平行四边形,易知S △ABN =1n •S ,S △BCN =n−1n •S ,S △MNB =n−1n 2•S , ∴S △BP 1O 1=S △P 1P 2O 2=S △P 3P 2O 3=n−12n 2•S , ∴S 阴=S △NBC ﹣n•S △BP 1O 1=n−1n •S ﹣n•n−12n 2•S=n−12n•S , 故答案为n−12n•S .【点评】本题考查三角形的面积,平行线的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.三、解答题(本大题共2小题,共22分)19.(10分)(2017•铁岭)先化简,再求值:(x x−y ﹣1)÷y x 2−y 2,其中x=√3﹣2,y=(12)﹣1. 【考点】6D :分式的化简求值;6F :负整数指数幂.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入即可解答本题.【解答】解:(x x−y ﹣1)÷y x 2−y 2 =x−x+y x−y ⋅(x+y)(x−y)y=y x−y ⋅(x+y)(x−y)y=x +y ,当x=√3﹣2,y=(12)﹣1=2时,原式=√3﹣2+2=√3. 【点评】本题考查分式的化简求值、负整数指数幂,解答本题的关键是明确分式化简求值的方法.20.(12分)(2017•铁岭)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了多少名学生的征文;(2)将上面的条形统计图和扇形统计图补充完整;(3)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名;(4)本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)用“诚信”的人数除以所占的百分比求出总人数;(2)用总人数减去“爱国”“敬业”“诚信”“的人数,求出“友善”的人数,从而补全统计图,分别求出百分比即可补全扇形图;(3)用样本估计总体的思想解决问题即可;(4)根据题意画出树状图,再根据概率公式进行计算即可;【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),占1550=30%,“爱国”占2050=40%,“敬业”占1250=24%.条形统计图和扇形统计图如图所示,(3)该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有1200×30%=360名.(4)记小义、小玉和大力分别为A、B、C.树状图如图所示:共有6种情形,小义和小玉同学的征文同时被选中的有2种情形,小义和小玉同学的征文同时被选中的概率=13. 【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力以及求随机事件的概率;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.四、解答题(本大题共2小题,共24分)21.(12分)(2017•铁岭)某大型快递公司使用机器人进行包裹分拣,若甲机器人工作2h ,乙机器人工作4h ,一共可以分拣700件包裹;若甲机器人工作3h ,乙机器人工作2h ,一共可以分拣650件包裹.(1)求甲、乙两机器人每小时各分拣多少件包裹;(2)“双十一”期间,快递公司的业务量猛增,要让甲、乙两机器人每天分拣包裹的总数量不低于2250件,它们每天至少要一起工作多少小时?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用.【分析】(1)设甲、乙两机器人每小时各分拣x 件、y 件包裹,根据“若甲机器人工作2h ,乙机器人工作4h ,一共可以分拣700件包裹;若甲机器人工作3h ,乙机器人工作2h ,一共可以分拣650件包裹”列出方程组,求解即可;(2)设它们每天要一起工作t 小时,根据“甲、乙两机器人每天分拣包裹的总数量不低于2250件”列出不等式,求解即可.【解答】解:(1)设甲、乙两机器人每小时各分拣x 件、y 件包裹,根据题意得 {2x +4y =7003x +2y =650,解得{x =150y =100, 答:甲、乙两机器人每小时各分拣150件、100件包裹;(2)设它们每天要一起工作t 小时,根据题意得(150+100)t ≥2250,解得t ≥9.答:它们每天至少要一起工作9小时.【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的关系.22.(12分)(2017•铁岭)如图,某市文化节期间,在景观湖中央搭建了一个舞台C ,在岸边搭建了三个看台A ,B ,D ,其中A ,C ,D 三点在同一条直线上,看台A ,B 到舞台C 的距离相等,测得∠A=30°,∠D=45°,AB=60m ,小明、小丽分别在B ,D 看台观看演出,请分别求出小明、小丽与舞台C 的距离.(结果保留根号)【考点】T8:解直角三角形的应用.【分析】如图作BH⊥AD于H.,CE⊥AB于E.解直角三角形,分别求出BC、CD 即可解决问题.【解答】解:如图作BH⊥AD于H.,CE⊥AB于E.∵CA=CB,CE⊥AB,∴AE=EB=30,∴tan30°=CEAE,∴CE=10√3,AC=CB=2CE=20√3,在Rt△CBH中,CH=12BC=10√3,BH=√3CH=30,在Rt△BHD中,∵∠D=45°,∴BH=DH=30,∴DC=DH+CH=30+10√3,答:小明、小丽与舞台C的距离分别为20√3m和(30+10√3)m.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五、解答题(本大题共1小题,共12分)23.(12分)(2017•铁岭)如图,AB是半圆O的直径,点C是半圆上一点,连接OC,BC,以点C为顶点,CB为边作∠BCF=12∠BOC,延长AB交CF于点D.(1)求证:直线CF是半圆O的切线;(2)若BD=5,CD=5√3,求BĈ的长.【考点】ME:切线的判定与性质;MN:弧长的计算.【分析】(1)欲证明CF 是切线,只要证明OC ⊥CF 即可.(2)由△DCB ∽△DAC ,可得DC :DA=DB :DC ,设AB=x ,则有75=5(5+x ),推出x=10,再证明∠COB=60°即可解决问题.【解答】解:(1)作OH ⊥BC 于H .∵OC=OB ,OH ⊥BC ,∴∠COH=∠BOH ,∵∠BCF=12∠BOC , ∴∠BCF=∠COH ,∵∠COH +∠OCH=90°,∴∠BCF +∠OCH=90°,∴∠OCF=90°,即OC ⊥CF ,∴CF 是⊙O 的切线.(2)连接AC .∵∠DCB=∠A ,∠CDB=∠ADC ,∴△DCB ∽△DAC ,∴DC :DA=DB :DC ,设AB=x ,则有75=5(5+x ),∴x=10,∴OC=5,OD=10,∴OD=2OC ,∵∠OCD=90°,∴∠CDO=30°,∴∠COB=60°,∴BC ̂的长=60⋅π⋅5180=53π.【点评】本题考查切线的判定、勾股定理、相似三角形的判定和性质、弧长公式等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.六、解答题(本大题共1小题,共12分)24.(12分)(2017•铁岭)铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x 天(1≤x ≤15且x 为整数)时每盒成本为p 元,已知p 与x 之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y 盒,y 与x 之间的关系如下表所示:第x 天 1≤x 6<x≤6 ≤15每天的销售量y/盒10 x+6 (1)求p 与x 的函数关系式;(2)若每天的销售利润为w 元,求w 与x 的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.【考点】HE :二次函数的应用.【分析】(1)设p=kx +b (k ≠0),然后根据第3天和第7天的成本利用待定系数法求一次函数解析式解答即可;(2)根据销售利润=每盒的利润×盒数列出函数关系式,再根据一次函数的增减性和二次函数的最值问题求解;(3)根据(2)的计算以及二次函数与一元二次方程的关系求解.【解答】解:(1)设p=kx +b (k ≠0),∵第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴{3k +b =217k +b =25, 解得{k =1b =18, 所以,p=x +18;(2)1≤x ≤6时,w=10[50﹣(x +18)]=﹣10x +320,6<x ≤15时,w=[50﹣(x +18)](x +6)=﹣x 2+26x +192,所以,w 与x 的函数关系式为w={−10x +320(1≤x ≤6)−x 2+26x +192(6<x ≤15), 1≤x ≤6时,∵﹣10<0,∴w 随x 的增大而减小,∴当x=1时,w 最大为﹣10+320=310,6<x ≤15时,w=﹣x 2+26x +192=﹣(x ﹣13)2+361,∴当x=13时,w 最大为361,综上所述,第几天时当天的销售利润最大,最大销售利润是361元;(3)w=325时,﹣x 2+26x +192=325,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年辽宁省铁岭市中考数学试卷(含答案解析版)
2017年辽宁省铁岭市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是()A.5
B.﹣5 C.
D.﹣
2.(3分)2016年,铁岭市橡胶行业实现销售收入约601000000元,将数据601000000用科学记数法表示为()A.6.01×108
B.6.1×108 C.6.01×109
D.6.01×107
3.(3分)下列几何体中,主视图为三角形的是()
A.B.C.D.
4.(3分)如图,在同一平面内,直线l1∥l2,将含有60°角的三角尺ABC的直角顶点C放在直线l1上,另一个顶点A恰好落在直线l2上,若∠2=40°,则∠1的度数是()
A.20° B.30° C.40° D.50°
5.(3分)在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10.则这组数据的中位数是()A.5
B.6
C.7
D.10
6.(3分)下列事件中,不可能事件是()
A.抛掷一枚骰子,出现4点向上B.五边形的内角和为540° C.实数的绝对值小于0 D.明天会下雨
7.(3分)关于x的一元二次方程4x2﹣3x+m=0有两个相等的实数根,那么m 的值是()
第1页(共32页)
A.
B.
C.﹣D.﹣
8.(3分)某校管乐队购进一批小号和长笛,小号的单价比长笛的单价多100元,用6000元购买小号的数量与用5000元购买长笛的数量恰好相同,设小号的单价为x 元,则下列方程正确的是()
A.= B.=
C.= D.= 9.(3分)如图,在△ABC 中,AB=5,AC=4,BC=3,分别以点A,点B为圆心,
大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交AB于点O,连
接CO,则CO的长是()
A.1.5 B.2 C.2.4 D.2.5
10.(3分)如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()
A.
B.C.D.
二、填空题(本大题共8小题,每小题3分,共24分)
第2页(共32页)
11.(3分)在函数y= 中,自变量x的取值范围是.12.(3分)分解因式:x2y﹣6xy+9y= .
13.(3分)从数﹣2,1,2,5,8中任取一个数记作k,则正比例函数y=kx的
图象经过第二、四象限的概率是.
14.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数(单位:分)及方差s2如下表所示:
甲94 1 乙98 1.2 丙98 1 丁96 1.8 s2 如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是.15.(3分)如图,菱形ABCD的面积为6,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为.
16.(3分)在?ABCD中,∠DAB的平分线交直线CD于点E,且DE=5,CE=3,则?ABCD的周长为.
的三等17.(3分)如图,在圆心角为135°的扇形OAB中,半径OA=2cm,点C,D为
分点,连接OC,OD,AC,CD,BD,则图中阴影部分的面积为cm2.
18.(3分)如图,△ABC的面积为S.点P1,P2,P3,…,Pn﹣1是边BC的n 等分
点(n≥3,且n为整数),点M,N分别在边AB,AC上,且==,连接
MP1,MP2,MP3,…,MPn﹣1,连接NB,NP1,NP2,…,NPn﹣1,线段MP1与NB相交于点D1,线段MP2与NP1相交于点D2,线段MP3与NP2相交于点D3,…,
第3页(共32页)
线段MPn﹣1与NPn﹣2相交于点Dn﹣1,则△ND1P1,△ND2P2,△ND3P3,…,△NDn
﹣1
Pn﹣1的面积和是.(用含有S与n的式子表示)
三、解答题(本大题共2小题,共22分)
﹣1
19.(10分)先化简,再求值:(﹣1)÷ ,其中x= ﹣2,y=().
20.(12分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)求本次调查共抽取了多少名学生的征文;(2)将上面的条形统计图和扇形统计图补充完整;
(3)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名;
(4)本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.
四、解答题(本大题共2小题,共24分)
第4页(共32页)
21.(12分)某大型快递公司使用机器人进行包裹分拣,若甲机器人工作2h,乙机器人工作4h,一共可以分拣700件包裹;若甲机器人工作3h,乙机器人工作2h,一共可以分拣650件包裹.
(1)求甲、乙两机器人每小时各分拣多少件包裹;
(2)“双十一”期间,快递公司的业务量猛增,要让甲、乙两机器人每天分拣包裹的总数量不低于2250件,它们每天至少要一起工作多少小时?
22.(12分)如图,某市文化节期间,在景观湖中央搭建了一个舞台C,在岸边搭建了三个看台A,B,D,其中A,C,D三点在同一条直线上,看台A,B到舞台C 的距离相等,测得∠A=30°,∠D=45°,AB=60m,小明、小丽分别在B,D看台观看演出,请分别求出小明、小丽与舞台C的距离.(结果保留根号)
五、解答题(本大题共1小题,共12分)
23.(12分)如图,AB是半圆O的直径,点C是半圆上一点,连接OC,BC,以
点C为顶点,CB为边作∠BCF=∠BOC,延长AB交CF于点D.
(1)求证:直线CF是半圆O的切线;
的长.(2)若BD=5,CD=5 ,求
六、解答题(本大题共1小题,共12分)
24.(12分)铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足第5页(共32页)。

相关文档
最新文档