人教版八年级上册第15章-分式的导学案

合集下载

人教版八年级数学第十五章《分式》全章教案

人教版八年级数学第十五章《分式》全章教案

人教版八年级数学第十五章《分式》全章教案第十五章分式15.1.1从分数到分式教学目标1.了解分式的概念,能用分式表示实际问题中的数量关系.2.能确定分式有意义的条件.教学重、难点分式的概念教学过程设计一、创设问题,激发兴趣XXX:一艘轮船在静水中的最大航速为30km/h,它沿江以最大航速顺流航行90km所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?问题1顺流航行的速度、逆流航行的速度与轮船在静水中的速度、水流速度之间有什么关系?顺流航行的速度=轮船在静水中的速度+水流速度;逆流航行的速度=轮船在静水中的速度-水流速度.问题2这个问题的等量关系是什么?顺流航行90 km所用时间=逆流航行60 km所用时间.问题3应怎样设未知数?如何根据等量干系列出方程?解:设江水的流速为XXX.依题意得:追问式子与分数有甚么相同点和分歧点?它们与你学过的整式有甚么分歧?问题4填空:(1)长方形的面积为10 cm2,长为7 cm,宽应为cm;长方形的面积为S,长为a,宽应为cm.问题4填空:(2)把体积为200cm3的水倒入底面积为33cm2的圆柱描述器中,水面高度为cm;把体积为V的水倒入底面积为S 的圆柱描述器中,水面高度为.追问1上面问题中得到的式子,,,哪些不是我们学过的整式?追问2式子的特性?二、常识使用,巩固提高分式的定义:,,与以前学过的整式分歧,这些代数式有甚么配合一般地,如果A,B表示两个整式,并且B中含有字母,那末式子叫做分式(fraction).分式中,A叫做分子,B叫做分母.问题5我们知道,要使分数有意义,分数中的分母不能为.要使分式有意义,分式中的分母应满足什么条件?为什么?例1下列分式中的字母满足甚么条件时分式成心义?三、使用提高、拓展创新讲义128页操演1、2、3四、归纳小结(1)本节课研究了哪些主要内容?(2)你能举例说明什么是分式吗?(3)如何确定分式有意义的条件?五、布置作业:教科书题15.1第1、2、3题.教后反思:15.1.2分式的基本性质(1)教学目标1.了解分式的基本性质,体会类比的思想方法.2.掌握分式的约分,了解最简分式的概念.教学重、难点分式的基本性质和分式的约分教学过程设计一、创设问题,激起兴趣问题1下列分数是否相等?追问这些分数相等的依据是什么?问题2你能叙述分数的基本性质吗?分数的根本性质:一个分数的分子、分母乘(或除以)同一个不为的数,分数的值不变.问题3你能用字母的形式表示分数的基本性质吗?问题4类比分数的根本性质,你能想出分式有甚么性质吗?分式的根本性质:分式的分子与分母乘(或除以)同一个不等于的整式,分式的值不变.追问1如何用式子表示分式的基本性质?二、常识使用,巩固提高追问2应用分式的基本性质时需要注意什么?(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.例2填空:问题5观察上例中(1)中的两个分式在变形前后的分子、分母有甚么变化?类比分数的相应变形,你联想到甚么?像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.经过约分后的分式,其分子与分母没有公因式.像这样分子与分母没有公因式的式子,叫做最简分式.例3约分:追问1由上例你能归纳出在分式中,找分子和分母的公因式的方法是什么吗?追问2如果分式的分子或分母是多项式,那么该如何思考呢?三、应用提高、拓展创新教科书132页操演1四、归结小结(1)本节课研究了哪些主要内容?(2)运用分式的根本性质时应注意甚么?(3)分式约分的关键是甚么?如何找公因式?(4)探究分式的基本性质和分式的约分的过程,你认为体现了哪些数学思想方法?五、布置作业:教科书题15.1第4、6题.教后反思:15.1.2分式的基本性质(2)教学目标1.了解最简公分母的概念,会确定最简公分母.2.经由进程类比分数的通分来探究分式的通分,能进行分式的通分,体会数式通性和类比的思想.教学重、难点正确确定分式的最简公分母教学过程设计一、创设问题,激起兴趣问题1通分:追问1分数通分的依据是什么?追问2如何确定异分母分数的最小公分母?问题2填空:像这样,根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.追问1你认为分式通分的关键是什么?分式通分的关键是找出分式各分母的公分母.追问2上面问题中的两个分式的公分母是甚么?为通分要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.追问3两个分式的最简公分母是如何确定的?最简公分母的确定方法:取各分母系数的最小公倍数与各字母因式的最高次幂的乘积.分母是多项式时,最简公分母的确定方法是:先因式分解,再将每一个因式算作一个团体,最后确定最简公分母.二、知识应用,巩固提高例通分:三、应用提高、拓展创新教科书132页练1四、归结小结(1)本节课研究了哪些首要内容?(2)分式通分的关键是什么?(3)分式通分时,确定最简公分母的办法是甚么?五、布置作业:教科书题15.1第7题教后反思:15.2.1分式的乘除(1)教学目标1.理解分式的乘除法法则,体会类比的思想.2.会根据分式的乘除法法则进行简单的运算,并理解其算理教学重、难点分式的乘除法法则的运用教学过程设计一、创设问题,激发兴趣问题1一个水平放置的长方体,其容积为V,底面的长为a,宽为b,当内的水占容积的m时,水面的高度为多少?n(1)这个长方体的高怎么表示?(2)内水面的高与内的水所占容积间有何关系?内水面的高与高的比和内的水所占容积的比相等.问题2大拖拉机m天耕地ahm2,小拖拉机n天耕地bhm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(1)本题中出现的“工作效率”的含义是什么?(2)大拖沓机和小拖沓机的事情效率怎样表示?观察上述两个问题中所列出的式子中,其中涉及到分式的有哪些运算?你能用学过的运算法则求出结果吗?问题3计较:在计算的过程中,你运用了分数的什么法则?你能叙述这个法则吗?如果将分数换成分式,那末你能类比分数的乘除法法则,说出分式的乘除法法则吗?怎样用字母来表示分式的乘除法法则呢?二、知识应用,巩固提高分式的乘除法法则如何用笔墨语言来描述?乘法法则:分式乘分式,用分子的积作为积的分子,分母的积为积的分母.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.例1计算:三、应用提高、拓展创新教科书138页练2四、归纳小结(1)本节课研究了哪些首要内容?(2)分式的乘除法运算与分数的乘除法运算有甚么区别和联系?五、布置作业:讲义第144页第1题;第145页第10、11题.教后反思:15.2.1分式的乘除(2)教学目标1.能运用分式的乘除法法则进行复杂计算.2.能运用分式的乘除法解决一些简单的实际问题.教学重、难点用分式的乘除法法则进行计较,并解决一些实践问题.教学过程设计一、创设问题,激起兴趣问题1约分:分子与分母分别是多项式的分式如何约分?问题2计较:分子与分母都是单项式的两个分式如何乘除?二、知识应用,巩固提高例1计较:分子或分母是多项式的两个分式如何乘除呢?解题战略:对于分子与分母都是单项式的两个分式乘除,可直接利用分式的乘除法法则,再根据分式的基本性质进行约分,将最后的结果化成最简分式.而对于分子或分母中含有多项式的两个分式相乘,为了使算式简洁,也便于找出分子与分母中的公因式,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.例2“丰收1号”小麦的试验田是边长为am(a>1)的正方形去掉一个边长为1 m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-1)m的正方形,两块试验田的小麦都收获了500 XXX.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?考虑以下问题:①你能说出小麦的“单位产量”的含义吗?②如何表示这两块试验田的单位产量?③怎样确定哪类小麦的单位产量高?④你能列式表示(2)的问题吗?归结解题步调:(1)先根据题意分别列出表示两个量的代数式;(2)再根据题意列出相应的算式;(3)最后经由进程计较解决问题.三、使用提高、拓展创新教科书138页练3四、归纳小结运用分式的乘除法法则计算分子或分母含有多项式的分式主要步骤是什么?五、布置作业:教材第144页第2题.教后反思:15.2.1分式的乘方教学目标1.理解分式乘方的运算法则,能根据法则进行乘方运算,体会数式通性.2.能根据混合运算法则进行分式乘除、乘方混合运算.教学重、难点分式的乘方及分式乘除、乘方夹杂运算教学过程设计一、创设问题,激起兴趣例1计算:2x3x.5x-325x2-95x+3练1计算:2m2n5p2q5mnp()1;223q3pq4mn2m2-n2(n-m)m+n(2);222m(m-n)mn16-a2a-4a-2(3)2.2a+8a+2a+8a+16考虑你能结合有理数乘方的概念和分式乘法的法则写出结果吗?(a2a3a10)=?()=?()=?bbba猜测:n为正整数时?b你能写出推导过程吗?试试看.你能用笔墨语言叙述得到的结论吗?分式的乘方法则:一般地,当n是正整数时,n这就是说,分式乘方要把分子、分母分别乘方.二、常识使用,巩固提高例2计较:例3计算:分式的乘除、乘方混合运算与分数的乘除、乘方混合运算有什么联系和区别吗?练2计算:三、应用提高、拓展创新教科书139页练2四、归纳小结(1)本节课研究了哪些主要内容?(2)运用分式乘办法则计较的步调是甚么?它与整式的乘方运算有甚么区别和联系?(3)分式的乘方与乘除夹杂运算的运算顺序是甚么?五、布置作业:教科书题15.2第3(3)(4)题.教后反思:15.2.2分式的加减教学目标1.理解分式的加减法法则,体会类比思想.2.会运用法则进行分式的加减运算,体会化归思想.教学重、难点分式的加减法法则教学过程设计一、创设问题,激发兴趣问题1甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才干完成这项工程,两队配合事情一天完成这项工程的几分之几?(1)甲工程队一天完成这项工程的几分之几?(2)乙工程队一天完成这项工程的几分之几?(3)甲乙两队共同工作一天完成这项工程的几分之几?问题年、2010年、2011年某地的森林面积(单位:km2)分别是S1,S2,S3,2011年与2010年比拟,丛林面积增长率提高了多少?(1)甚么是增长率?(2)2010年、2011年的丛林面积增长率分别是多少?(3)2011年与2010年相比,森林面积增长率提高了多少?分式的加减法与分数的加减法类似,它们实质相同.观察下列分数加减运算的式子,你能将它们推广,得出分式的加减法法则吗?分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.二、常识使用,巩固提高例计算:11(2)+.2p+3q2p-3q三、应用提高、拓展创新讲义141页操演1、操演2练:你能应用本节课所学知识解决“问题1”和“问题2”吗?四、归结小结(1)本节课研究了哪些主要内容?(2)我们是怎么引出分式加减法法则的?(3)在进行分式的加减运算时要注意哪些问题?五、布置作业:教科书题15.2第4、5题.教后反思:15.2.2分式的夹杂运算教学目标1.理解分式混合运算的顺序.2.会正确进行分式的混合运算.3.体会类比方法在研究分式混合运算过程中的重要价值.教学重、难点分式的混合运算.教学过程设计一、创设问题,激起兴趣问题数的混合运算的顺序是什么?你能将它们推广,得出分式的混合运算顺序吗?分式的混合运算顺序:“从高到低、从左到右、括号从小到大”.例1计算:这道题的运算顺序是怎样的?经由进程对例1的解答,同学们有何播种?对于不带括号的分式混合运算:(1)运算顺序:先乘方,再乘除,然后加减;(2)计算结果要化为最简分式.二、常识使用,巩固提高例2计算:52m-4() 1m+2+3-m;2-mx+2x-1x-4(2)-.x2-2xx2-4x+4x通过对例2的解答,同学们有何收获?对于带括号的分式夹杂运算:(1)将各分式的分子、分母分解因式后,再进行计较;(2)注意处理好每一步运算中遇到的符号;(3)计算结果要化为最简分式.三、应用提高、拓展创新练1计算:四、归结小结(1)本节课研究了哪些主要内容?(2)分式混合运算的顺序是什么?我们是怎么得到它的?(3)在进行分式混合运算时要注意哪些问题?五、布置作业:教科书题15.2第6题.教后反思:15.2.3整数指数幂教学目标1.了解负整数指数幂的意义.2.了解整数指数幂的性质并能运用它进行计算.3.会利用10的负整数次幂,用科学记数法表示一些小于1的正数.教学重、难点幂的性质(指数为全体整数),并会用于计算,以及用科学记数法表示一些小于1的正数.教学过程设计一、创设问题,激发兴趣问题1你们还记得正整数指数幂的意义吗?正整数指数幂有哪些运算性质呢?将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,这些性质还适用吗?问题2am中指数m可以是负整数吗?如果可以,那末负整数指数幂am表示甚么?(1)根据分式的约分,当a≠时,如何计较a(2)如果把正整数指数幂的运算性质中的条件m >n去掉,即假设这本性质对于像a数学中规定:当n是正整数时,a这就是说,XXXXXX33a5?(a≠,m,n是正整数,m >n)a5景遇也能使用,如何计较?1aaa是an的倒数.问题3引入负整数指数和指数后,am an am n(m,n是正整数)这条性质能否推广到m,n是任意整数的情形?问题4类似地,你可以用负整数指数幂或指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是不是还适用?(1)am an am n(m,n是整数);n(am)amn(m,n是整数)(2);(ab)ab(n是整数)(3);mnm n(4)a a a(m,n是整数);XXXa(5)bnann(n是整数).b二、知识应用,巩固提高例1计算:三、应用提高、拓展创新问题5能否将整数指数幂的5条性质进行适当合并?这样,整数指数幂的运算性质可以归结为:(1)am an am n(m,n是整数);n(am)amn(m,n是整数)(2);(ab)ab(n是整数)(3);探索:XXX110 1101.0110 21001.00110 310001.000110 40.1归纳:如何用科学记数法表示0.003 5和0.000 098 2呢?规律:对于一个小于1的正小数,从小数点前的第一个算起至小数点后第一个非数字前有几个,用科学记数法表示这个数时,10的指数就是负几.例2用科学记数法表示下列各数:(1)0.3;(2)-0.000 78;(3)0.000 020 09.例3纳米(nm)是非常小的长度单位,1 nm =10-9m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?四、归结小结(1)本节课研究了哪些首要内容?(2)整数指数幂的运算性质与正整数指数幂的运算性质有什么区别和联系?五、布置作业:教科书题15.2第7、8、9题教后反思:15.3分式方程(1)教学目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.教学重、难点利用去分母的方法解分式方程教学过程设计一、创设问题,激发兴趣问题1为了解决弁言中的问题,我们得到了方程程,未知数的位置有甚么特点?追问1方程9060.仔细观察这个XXX30v30vx2x;2;1与上面的方程有甚么共2xx3x5x25x13x 3同特征?分母中含有未知数.分式方程的概念:分母中含有未知数的方程叫做分式方程.追问2你能再写出几个分式方程吗?注意:我们以前研究的方程都是整式方程,它们的未知数不在分母中.9060吗?30v30v问题3这些解法有什么共同特点?总结:这些解法的共同特点是先去分母,将分式方程转化为整式方程,再解整式方程.思考:(1)如何把分式方程转化为整式方程呢?问题2你能试着解分式方程(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了.(2)利用等式的性质2可以在方程双方都乘同一个式子——各分母的最简公分母.追问你得到的解v=6是分式方程二、常识使用,巩固提高问题4解分式方程:9060的解吗?30v30v110=2.x-5x-25110的解吗?该如何验证呢?x=5是原2x5x25分式方程变形后的整式方程的解,但不是原分式方程的解.追问2上面两个分式方程的求解进程当中,同样是去分母将分式方程化为整式方程,为追问1你得到的解x=5是分式方程(30-v)=60(30+v)甚么整式方程90的解v=6是分式方程整式方程x+5=10的解x=5却不是分式方程9060的解,而30v30v110的解?2x5x25原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右双方是不是相等;(2)将整式方程的解代入最简公分母,看是否为.显然,第2种方法比较简便!问题5你能概括出解分式方程的基本思路和一般步骤吗?解分式方程应该注意什么?根本思绪将分式方程化为整式方程一般步调:(1)去分母;(2)解整式方程;(3)检验.注意:因为去分母后解得的整式方程的解不一定是原分式方程的解,以是需要检修.三、使用提高、拓展创新例解下列方程:四、归纳小结(1)本节课研究了哪些主要内容?(2)解分式方程的基本思路和一般步骤是什么?解分式方程应该注意什么?五、布置作业:教科书题15.3第1(1)~(4)题.教后反思:15.3分式方程(2)教学目标1.会解较复杂的分式方程和较简朴的含有字母系数的分式方程.2.能够列分式方程解决简朴的实践问题.3.经由进程研究分式方程的解法,体会转化的数学思想.教学重、难点分式方程的解法教学过程设计一、创设问题,激发兴趣例1解方程x3-1=.x-1(x-1)(x+2)解分式方程的步骤:(1)去分母,将分式方程转化为整式方程;(2)解这个整式方程;(3)检验.用框图的方式总结为:二、知识应用,巩固提高例2解关于x的方程a+b=1(b1).x-a例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?三、应用提高、拓展创新某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2000个零件所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?四、归结小结(1)本节课研究了哪些主要内容?(2)解分式方程的一般步调有哪些?关键是甚么?解方程的进程当中要注意的问题有哪些?(3)列分式方程解使用题的步调是甚么?与列整式方程解使用题的进程有甚么区别和联系?五、布置作业:教科书题15.3第1(2)(4)(6)(8)、4、5题.教后反思:。

八年级上册数学第十五章分式导学案

八年级上册数学第十五章分式导学案

16.1.2 分式的基本性质(1)【学习目标】1、能叙述分式的基本性质并会用式子表示;2、能利用分式的基本性质对分式进行恒等变形.【学习重点】1、分式的基本性质2、会利用分式的基本性质对分式进行恒等变形 【学习难点】会利用分式的基本性质对分式进行恒等变形一、【自学展示】 1、分数的基本性质:分数的分子与分母都_______________________________,分数的值不变。

2.分解因式:(1)x x 632- (2)4416b a - (3)2244y xy x ++二、【合作学习】:阅读P129页思考 归纳分式的基本性质: 用字母表示 : 3.我的疑惑:三、【质疑导学】:探究一(对照课本例2):填空(1)()y xy x 222= (2)()a b a =--5 (3)()122=++ab b a b a (4)()ab a a 2=+观察分子分母是怎么变化的?探究二、下列等式的右边是怎样从左边得到的?(1)x b 2=xy by 2 (0≠y ); (2)bx ax =ba 解:(1)在例2中,因为0≠y ,利用_____________,在xb2的分子、分母中同____y ,即x b 2=yx yb __2__=(2)探究三、变一变:不改变分式的值,使下列分式中的分子、分母不含负号 (1)b a 32-- (2)yx 2--- (3)m n54--- (4)x 21- 归纳符号法则四、【学习检测】:1.不改变分式的值把分子、分母的系数都化为整数:2填空:3.不改变分式的值,使下列分式的分子与分母都不含“—”号:五、【学后反思】【学习课题】 16.1.2 分式的基本性质(2)【学习目标】1了解约分和最简分式的概念;理解约分的依据是分式的基本性质2了解通分和最简公分母的概念。

b a b a 4.03.05.021-+)(n m n m 41316522+-)(22)(22a ba b ab =-)(b a ab b a 2)(1=+)(2)(2)4(2-=-x xx x)()3(22y x x xy x +=+=--yx 23)(=-yx 232)(=--ab 321)(【学习重点】1.找到分子分母中的公因式,并利用分式的基本性质约分. [学习难点] 2.找到各分母的最简公分母,并利用分式的基本性质通分。

人教版八年级上数学第十五章分式分式方程导学案

人教版八年级上数学第十五章分式分式方程导学案

人教版八年级上数学第十五章分式分式方程导学案一. 学习目标1、掌握分式方程的定义2、会解可化为一元一次方程的分式方程3、会解已知方程有增根时方程中有待定字母的值4、列分式方程解有关应用题二、重难点重点:掌握解分式方程的方法难点:分式方程的增根及其应用三、知识链接前面讲过的一元一次方程的解法,以及怎样在应用题中找等量关系四、学法指导注意分式方程向整式方程的转化五、学习过程(A级)(一)、基础知识梳理(1)分母中含有______的方程叫做分式方程。

(2)在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的____(3)解分式方程的思想:把分式方程转化为_______.(4)解分式方程的一般步骤①把方程两边都乘以_________,化成整式方程。

②解这个______方程。

③检验:把整式方程的根代入________,若使最简公分母的值为_____,则这个根是原方程的______,必须舍去,若_________不等于零,则它是________. (5)整式方程和__________叫做有理方程。

(二)注意事项2、由增根求参数值的解答思路:(1)将原方程化为整式方程(两边同时乘以最简公分母)(2)确定增根(题目已知或使分母为零的未知数的值)(3)将增根代入变形后的整式方程,求出参数的值。

(理由:增根是由分式方程化成的整式方程的根)3、列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂些,解题时应抓住“找等量关系,恰当设未知数,确定主要等量关系,用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解。

另外,还要注意从多角度思考,分析,解决问题,注意检验。

(三)典例解答(B 级)1、解方程:22321011x x x x x --+=--(B 级)2、解分式方程x x +27—23x x -=1+1722--x x点拨:找好最简公分母,注意对几个分母进行分解后,来找.(C 级)3、若关于x 的分式方程0111=----x x x m 有增根,则m 的取值是? 点拨:把分式方程进行转化,然后找到有可能的增根,代入。

2024年人教版八年级数学上册教案及教学反思全册第15章 分式 整数指数幂(第2课时)教案.

2024年人教版八年级数学上册教案及教学反思全册第15章 分式 整数指数幂(第2课时)教案.

第十五章分式15.2分式的运算15.2.3整数指数幂第2课时一、教学目标【知识与技能】1.会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数.2.经历探索用10的负整数次幂来表示绝对值较小的数的过程,完善科学记数法,培养正向、逆向思维能力.【过程与方法】经历探索用科学记数法表示数的过程,理解科学记数法.【情感、态度与价值观】用科学记数法的形式渗透数学的简洁之美,通过完善科学记数法,培养对数学完美形式的追求.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】用科学记数法表示绝对值较小的数.【教学难点】含负指数的整数指数幂的运算,尤其是混合运算以及科学记数法中10的指数与小数点的关系.五、课前准备教师:课件、直尺、科学记数结构图等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课通过上节课的学习,大家明确了整数指数幂具有正整数指数幂的运算性质,这节课我们来学习运用其性质进行有关计算及负整数指数幂在科学记数法中的运用.(出示课件2)(二)探索新知1.创设情境,探究用科学记数法表示绝对值较小的数教师问1:口答:(1)(3-2)2;(2)[(-4)-3]0;(3)5-3×52;(4)(-0.5)-2;(5)222332--⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭;(6)4.7×10-4.注:前三个小题计算比较直接,可快速抢答,并陈述所用法则;后三个小题允许学生笔算后再口答,并陈述计算时的注意点,尤其是第(5)小题,有正向、逆向两个思路,注意方法的选择.而(6)为学习科学记数法表示绝对值较小的数作了铺垫.学生回答:(1)3-4=181;(2)1;(3)5-1=15;(4)(-12)-2=(-2)2=4;(5)(23×32)-2=1-2=1;(6)0.00047教师问2:由前面的练习可知4.7×10-4=0.00047,反过来就是,0.00047=4.7×10-4,由这个形式同学们能想到什么?学生回答:科学记数法.教师问3:那现在我们就一起研究怎样把绝对值较小的数用科学记数法表示出来.请同学们首先完成以下练习:填空:(用科学记数法表示一些绝对值较大的数)(1)4000000000=________;(2)-369000=________;学生回答:(1)4×109(2)-3.69×105教师问4:对于一个小于1的正小数,如果小数点后至第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是多少?如果有m个0呢?(出示课件4)先完成下面的题目:(出示课件5)填空:(1)0.1=______=______;(2)0.01=______=_______;(3)0.001=______=______;(4)0.0001=_______=______;(5)0.00001=_______=________.学生讨论后回答:(1)110=10-1;(2)1100=10-2;(3)11000=10-3;(4)110000=10-4;(5)1100000=10-5.教师问5:你发现用10的负整数指数幂表示0.0000…001这样较小的数有什么规律吗?请你把总结的规律和你的同伴交流.学生交流后,师生达成共识:表达成10的负整数指数幂的形式时,其指数恰好是第一个非零数前面所有“0”的个数的相反数.教师问6:你能归纳出数学式子吗?学生讨论后回答:教师问7:你能利用10的负整数指数幂,将绝对值较小的数表示成类似形式吗?0.00001=________;0.0000000257=2.57×0.00000001=2.57×________.学生回答:10-5;10-8教师问8:如何用科学记数法表示0.0035和0.0000982呢?(出示课件6)学生回答:0.0035=3.5×0.001=3.5×10-3;0.0000982=9.82×0.00001=9.82×10-5教师问9:观察这两个等式,你能发现10的指数与什么有关呢?师生共同讨论后解答如下:对于一个小于1的正小数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.教师问10:归纳:请说一说你对科学记数法的认识.师生共同讨论后解答如下:绝对值较大的数用科学记数法能表示为a×10n的形式,其中,n等于数的整数位数减1,a的取值为1≤|a|<10;绝对值较小的数用科学记数法能表示为a×10-n的形式,其中,a的取值一样为1≤|a|<10,但n的取值为小数中第一个不为零的数字前面所有的零的个数.教师讲解:这样,任何一个数根据需要都可以记成科学记数法的形式. a×10n的形式,其中,n为整数,a的取值为1≤|a|<10;例1:用科学记数法表示下列各数:(出示课件7-9)(1)0.005师生共同解答如下:(2)0.0204师生共同解答如下:(3)0.00036师生共同解答如下:例2:计算下列各题:(出示课件11)(1)(-4×10-6)÷(2×103)(2)(1.6×10-4)×(5×10-2)师生共同解答如下:解:(1)(-4×10-6)÷(2×103)=(-4÷2)(10-6÷103)=-2×10-9(2)(1.6×10-4)×(5×10-2)=(1.6×5)×(10-4×10-2)=8×10-6总结点拨:科学记数法的有关计算,分别把前边的数进行运算,10的幂进行运算,再把所得结果相乘.例3:纳米(nm)是非常小的长度单位,1nm=10–9m,把1nm3的物体放到乒乓球上,就如同把乒乓球放到地球上,1mm3的空间可以放多少个1nm3的物体?(物体之间间隙忽略不计)师生共同解答如下:(出示课件13)解:1mm=10-3m,1nm=10-9m.(10-3)3÷(10-9)3=10-9÷10-27=1018,1mm3的空间可以放1018个1nm3的物体.(三)课堂练习(出示课件16-20)1.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克将0.0000005用科学记数法表示为()A.5×107B.5×10-7C.0.5×10-6D.5×10-62.用科学记数法表示下列各数:(1)0.001=________________;(2)-0.000001=_______________;(3)0.001357=____________________;(4)-0.000504=________________________.3.下列是用科学记数法表示的数,试写出它的原数.(1)4.5×10-8=________________;(2)-3.14×10-6=________________;(3)3.05×10-3=___________________.4.计算(结果用科学记数法表示).(1)(6×10-3)×(1.8×10-4);(2)(1.8×103)÷(3×10-4).5.一根约为1米长、直径为80毫米的光纤预制棒,可拉成至少400公里长的光纤.试问:1平方厘米是这种光纤的横截面积的多少倍?(用科学记数法表示且保留一位小数)参考答案:1.B2.(1)10-3;(2)-10-6;(3)1.357×10-3;(4)-5.04×10-43.(1)0.000000045;(2)-0.00000314;(3)-0.00305.4.(1)解:原式=1.08×10-6;(2)解:原式=0.6×107=6×1065.解:这种光纤的横截面积为1÷(1.256×10-4)≈8.0×103答:1平方厘米是这种光纤的横截面的8.0×103倍.(四)课堂小结今天我们学了哪些内容:用科学记数法表示绝对值小于1的数绝对值小于1的数用科学记数法表示为a×10-n的形式,1≤│a│<10,n为原数第1个不为0的数字前面所有0的个数(包括小数点前面那个0).(五)课前预习预习下节课(15.3)149页到151页的相关内容。

初中数学八年级上册第十五章分式教案、导学案 人教版

初中数学八年级上册第十五章分式教案、导学案 人教版

第十五章 分 式 15.1 分 式 15.1.1 从分数到分式1.了解分式的概念,理解分式有意义的条件,分式的值为零的条件. 2.能熟练地求出分式有意义的条件,分式的值为零的条件.重点:理解分式有意义的条件,分式的值为零的条件.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.一、自学指导自学1:自学课本P127-128页,掌握分式的概念,完成填空.(5分钟)总结归纳:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,分式AB中,A 叫做分子,B 叫做分母.点拨精讲:分式是不同于整式的另一类式子,它的分母中含有字母可以表示不同的数,所以分式比分数更具有一般性.自学2:自学课本P128页“思考与例1”,理解分式有意义的条件,分式的值为零的条件.(5分钟)总结归纳:分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式A B 才有意义;当B ≠0,A =0时,分式AB=0.点拨精讲:分式的分数线相当于除号,也起到括号的作用.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟) 课本P128-129页练习题1,2,3.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 当x 取何值时:(1)分式12x 2x -3有意义?(2)分式12x 2x 2+3有意义?(3)分式3x2x -1无意义?(4)分式12x |x|-3无意义?(5)分式|x|-22x +4的值为0?(6)分式x 2-9x -3的值为0?解:(1)要使分式12x 2x -3有意义,则分母2x -3≠0,即x≠32;(2)要使分式12x2x 2+3有意义,则分母2x 2+3≠0,即x 取任意实数;(3)要使分式3x 2x -1无意义,则分母2x -1=0,即x =12;(4)要使分式12x |x|-3无意义,则分母|x|-3=0,即x =±3;(5)要使分式|x|-22x +4的值为0,则有⎩⎪⎨⎪⎧|x|-2=02x +4≠0,即x =2;(6)要使分式x 2-9x -3的值为0,则有⎩⎪⎨⎪⎧x 2-9=0x -3≠0,即x =-3.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.当a =-1时,分式a 2+aa 2-a=0.2.当x 为任何实数时,下列分式一定有意义的是(C )A .x 2+1x 2 B .x -1x 2-1 C .x +1x 2+1 D .x -1x +13.若分式x -2x 2-1的值为0,则x 的值为(D )A .1B .-1C .±1D .24.下列各式中,哪些是整式?哪些是分式?1a ,x -1,3m ,b 3,c a -b ,a +62b ,34(x +y),x 2+2x +15,m +n m -n. 解:整式有x -1,b 3,34(x +y),x 2+2x +15;分式有1a ,3m ,c a -b ,a +62b ,m +n m -n.(3分钟)1.分式的值为0的前提条件是此分式有意义.2.分式的分数线相当于除号,也具有括号的作用.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)第十五章 分式 15.1 分 式 15.1.1 从分数到分式1.以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念.2.能够通过分式的定义理解和掌握分式有意义的条件.重点理解分式有意义的条件及分式的值为零的条件. 难点能熟练地求出分式有意义的条件及分式的值为零的条件.一、复习引入1.什么是整式?什么是单项式?什么是多项式? 2.判断下列各式中,哪些是整式?哪些不是整式?①8m +n 3;②1+x +y 2;③a 2b +ab 23;④a +b 2;⑤2x 2+2x +1;⑥3a 2+b 2;⑦3x 2-42x .二、探究新知 1.分式的定义(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时.轮船顺流航行90千米所用的时间为9030+v 小时,逆流航行60千米所用时间为6030-v 小时,所以9030+v =6030-v.(2)学生完成教材第127页“思考”中的题.观察:以上的式子9030+v ,6030-v ,S a ,Vs ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是AB (即A÷B)的形式.分数的分子A 与分母B 都是整数,而这些式子中的A ,B 都是整式,并且B 中都含有字母.归纳:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.巩固练习:教材第129页练习第2题.2.自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义. 学生自学例1.例1 下列分式中的字母满足什么条件时分式有意义? (1)23x ;(2)x x -1;(3)15-3b ;(4)x +y x -y. 解:(1)要使分式23x 有意义,则分母3x≠0,即x≠0;(2)要使分式xx -1有意义,则分母x -1≠0,即x≠1;(3)要使分式15-3b 有意义,则分母5-3b≠0,即b≠53;(4)要使分式x +yx -y有意义,则分母x -y≠0,即x≠y.思考:如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗? 巩固练习:教材第129页练习第3题.3.补充例题:当m 为何值时,分式的值为0? (1)m m -1;(2)m -2m +3;(3)m 2-1m +1.思考:当分式为0时,分式的分子、分母各满足什么条件?分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零. 答案:(1)m =0;(2)m =2;(3)m =1. 三、归纳总结 1.分式的概念.2.分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义. 3.分式的值为零的条件:(1)分母不能为零;(2)分子为零. 四、布置作业教材第133页习题15.1第2,3题.在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力.15.1.2 分式的基本性质1.掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义; 2.使学生理解分式通分的意义,掌握分式通分的方法及步骤.重点:知道约分、通分的依据和作用,掌握分式约分、通分的方法; 难点:掌握分式约分、通分的方法,理解分式的变号法则.一、自学指导自学1:自学课本P129-130页“思考与例2”,掌握分式的基本性质,完成填空.(3分钟)总结归纳:分式的分子与分母乘(或除以)同一个不等于0)的整式,分式的值不变.用式子表示为:A B =A·C B·C ,A B =A÷CB÷C(C≠0).自学2:自学课本P130-131页“思考与例3”,掌握分式约分的方法,能准确找出分子、分母的公因式,理解最简分式的概念.(3分钟)总结归纳:根据分式的基本性质,把一个分式的分子、分母的公因式约去,叫做约分.分子与分母没有公因式的分式,叫做最简分式.分式的约分,一般要约去分子与分母所有的公因式,使所得结果成为最简分式或者整式.自学3:自学课本P131-132页“思考与例4”,掌握分式通分的方法,学会找最简公分母.(3分钟)总结归纳:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.找最简公分母的方法:①若分母是多项式的先分解因式;②取各分式的分母中系数的最小公倍数;③各分式的分母中所有字母或因式都要取到;④相同字母(或因式)的幂取指数最大的.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.下列等式的右边是怎样从左边得到的?(1)x2+xyx2=x+yx;(2)y+1y-1=y2+2xy+1y2-1(y≠-1).点拨精讲:对于(1),由已知分式可以知道x≠0,因此可以用x去除分式的分子、分母,因而并不特别需要强调x≠0这个条件,而(2)是在已知分式的分子、分母都乘以y +1得到的,是在条件y+1≠0下才能进行,这个条件必须强调.解:(1)根据分式的基本性质,分子、分母同时除以x;(2)∵y≠-1,∴y+1≠0,∴根据分式的基本性质,分子、分母同时乘以y+1.2.课本P132页练习题1,2.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1 不改变分式的值,把下列各式的分子与分母各项系数都化为整数.(1)12x+23y12x-23y;(2)0.3a+0.5b0.2a-b.解:(1)12x+23y12x-23y=(12x+23y)×6(12x-23y)×6=3x+4y3x-4y;(2)0.3a+0.5b0.2a-b=(0.3a+0.5b)×10(0.2a-b)×10=3a+5b2a-10b.探究2 不改变分式的值,使下面分式的分子、分母都不含“-”号.(1)-5y-x2;(2)-a2b;(3)4m-3n;(4)--x2y.解:(1)-5y-x2=5yx2;(2)-a2b=-a2b;(3)4m-3n=-4m3n;(4)--x2y=x2y.点拨精讲:分式的分子、分母以及分式本身三个符号,改变其中任何两个符号,分式的值不变.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.课本P133页习题4,6,7.2.课本P134页习题12.(3分钟)1.分式的约分:分子、分母都是多项式的先分解因式,便于找公因式,分式化简的结果一定要是最简分式.且一般分子、分母中不含“-”.2.分式的通分关键是找准最简公分母,若分母是多项式的先分解因式,便于找最简公分母.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)15.1.2 分式的基本性质 第1课时 分式的基本性质1.了解分式的基本性质,灵活运用分式的基本性质进行分式的变形. 2.会用分式的基本性质求分式变形中的符号法则.重点理解并掌握分式的基本性质. 难点灵活运用分式的基本性质进行分式变形.一、类比引新 1.计算:(1)56×215;(2)45÷815. 思考:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基本性质. 2.你能说出分数的基本性质吗?分数的分子与分母都乘(或除以)同一个不为零的数,分数的值不变. 3.尝试用字母表示分数的基本性质:小组讨论交流如何用字母表示分数的基本性质,然后写出分数的基本性质的字母表达式.a b =a·c b·c ,a b =a÷c b÷c.(其中a ,b ,c 是实数,且c≠0) 二、探究新知1.分式与分数也有类似的性质,你能说出分式的基本性质吗?分式的基本性质:分式的分子与分母乘(或除以)同一个不为零的整式,分式的值不变. 你能用式子表示这个性质吗?A B =A·C B·C ,A B =A÷C B÷C.(其中A ,B ,C 是整式,且C≠0) 如x 2x =12,b a =aba2,你还能举几个例子吗? 回顾分数的基本性质,让学生类比写出分式的基本性质,这是从具体到抽象的过程. 学生尝试着用式子表示分式的性质,加强对学生的抽象表达能力的培养. 2.想一想下列等式成立吗?为什么? -a -b =a b ;-a b =a -b =-a b.教师出示问题.学生小组讨论、交流、总结.例1 不改变分式的值,使下列分式的分子与分母都不含“-”号: (1)-2a -3a ;(2)-3x 2y ;(3)--x 2y. 例2 不改变分式的值,使下列分式的分子与分母的最高次项的系数都化为正数: (1)x +1-2x -1;(2)2-x -x 2+3;(3)-x -1x +1. 引导学生在完成习题的基础上进行归纳,使学生掌握分式的变号法则. 例3 填空:(1)x 3xy =( )y ,3x 2+3xy 6x 2=x +y ( ); (2)1ab =( )a 2b ,2a -b a 2=( )a 2b.(b≠0) 解:(1)因为x3xy 的分母xy 除以x 才能化为y ,为保证分式的值不变,根据分式的基本性质,分子也需除以x ,即x 3xy =x 3÷x xy ÷x =x 2y. 同样地,因为3x 2+3xy 6x 2的分子3x 2+3xy 除以3x 才能化为x +y ,所以分母也需除以3x ,即3x 2+3xy 6x 2=(3x 2+3xy )÷(3x )6x 2÷(3x )=x +y2x . 所以,括号中应分别填入x 2和2x.(2)因为1ab 的分母ab 乘a 才能化为a 2b ,为保证分式的值不变,根据分式的基本性质,分子也需乘a ,即1ab =1·a ab·a =a a 2b. 同样地,因为2a -b a 2的分母a 2乘b 才能化为a 2b ,所以分子也需乘b ,即2a -b a 2=(2a -b )·b a 2·b =2ab -b2a 2b. 所以,括号中应分别填a 和2ab -b 2.在解决例题1,2的第(2)小题时,教师可以引导学生观察等式两边的分母发生的变化,再思考分式的分子如何变化;在解决例2的第(1)小题时,教师引导学生观察等式两边的分子发生的变化,再思考分式的分母随之应该如何变化.三、课堂小结1.分式的基本性质是什么? 2.分式的变号法则是什么?3.如何利用分式的基本性质进行分式的变形? 学生在教师的引导下整理知识、理顺思维. 四、布置作业教材第133页习题15.1第4,5题.通过算数中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但要重点强调分子分母同乘(或除)的整式不能为零,让学生养成严谨的态度和习惯.第2课时 分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念. 2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.重点运用分式的基本性质正确地进行分式的约分与通分. 难点通分时最简分分母的确定;运用通分法则将分式进行变形.一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +bab相等吗?为什么? 利用分式的基本性质,分式a 2+aba 2b 约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab.教师点拨:分式a 2+ab a 2b 可以化为a +bab ,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分?类似的,你能把分式a b ,cd变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分__.二、探究新知1.约分:(1)-25a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9; (3)6x 2-12xy +6y23x -3y.分析:为约分,要先找出分子和分母的公因式. 解:(1)-25a 2bc 315ab 2c =-5abc ·5ac 25abc ·3b =-5ac23b; (2)x 2-9x 2+6x +9=(x +3)(x -3)(x +3)2=x -3x +3;(3)6x 2-12xy +6y 23x -3y =6(x -y )23(x -y )=2(x -y ).若分子和分母都是多项式,则往往需要把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母没有公因式,我们把这样的分式称为__最简分式__.(不能再化简的分式)2.练习:约分:2ax 2y 3axy 2;-2a (a +b )3b (a +b );(a -x )2(x -a )3;x 2-4xy +2y ;m 2-3m 9-m 2;992-198. 学生先独立完成,再小组交流,集体订正.3.讨论:分式12x 3y 2z ,14x 2y 3,16xy4的最简公分母是什么?提出最简公分母概念.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母. 学生讨论、小组交流、总结得出求最简公分母的步骤: (1)系数取各分式的分母中系数最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.4.通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3xx +5 .分析:为通分,要先确定各分式的公分母.解:(1)最简公分母是2a 2b 2c . 32a 2b=3·bc 2a 2b ·bc =3bc2a 2b 2c, a -b ab 2c =(a -b )·2a ab 2c ·2a =2a 2-2ab2a 2b 2c. (2)最简公分母是(x -5)(x +5). 2x x -5=2x (x +5)(x -5)(x +5)=2x 2+10xx 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 5.练习:通分:(1)13x 2与512xy ;(2)1x 2+x 与1x 2-x ;(3)1(2-x )2与xx 2-4. 教师引导:通分的关键是先确定最简公分母;如果分式的分母是多项式则应先将分母分解因式,再按上述的方法确定分式的最简公分母.学生板演并互批及时纠错.6.思考:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么? 教师让学生讨论、交流,师生共同作以小结. 三、课堂小结1.什么是分式的约分? 怎样进行分式的约分?什么是最简分式?2.什么是分式的通分? 怎样进行分式的通分? 什么是最简公分母?3.本节课你还有哪些疑惑? 四、布置作业教材第133页习题15.1第6,7题.本节课是在学习了分式的基本性质后学的,重点是运用分式的基本性质正确的约分和通分,约分时要注意一定要约成最简分式,熟练运用因式分解;通分时要将分式变形后再确定最简公分母.15.2 分式的运算 15.2.1 分式的乘除(1)1.通过实践总结分式的乘除法,并能较熟练地进行分式的乘除法运算. 2.引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力.重点:分式的乘除法运算.难点:分式的乘除法、混合运算中符号的确定.一、自学指导自学1:自学课本P135-137页“问题1,思考,例1,例2及例3”,掌握分式乘除法法则.(7分钟)类比分数的乘除法法则,计算下面各题:(1)4ac 3b ·9b 22ac 3;(2)4ac 3b ÷9b 22ac 3. 解:(1)原式=4ac·9b 23b ·2ac 3=36ab 2c 6abc 3=6b c 2;(2)原式=4ac 3b ·2ac 39b 2=8a 2c427b3.点拨精讲:计算的结果能约分的要约分,结果应为最简分式.总结归纳:分式的乘法法则——分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母.即:a b ·c d =a·cb·d.分式的除法法则——分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:a b ÷c d =a b ·d c =ad bc. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 课本P137-138练习题1,2,3.点拨精讲:分子、分母是多项式时,通常先分解因式,再约分.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 计算:(1)x +12x ·4x2x 2-1;(2)8x 2x 2+2x +1÷6x x +1. 解:(1)x +12x ·4x 2x 2-1=x +12x ·4x 2(x +1)(x -1)=2xx -1;(2)8x 2x 2+2x +1÷6x x +1=8x 2(x +1)2·x +16x =4x3x +3. 点拨精讲:如果分子、分母含有多项式,应先分解因式,再按法则进行计算. 探究2 当x =5时,求x 2-9x 2+6x +9÷1x +3的值.解:∵x 2-9x 2+6x +9÷1x +3=(x +3)(x -3)(x +3)2·x +31=x -3,∴当x =5时,原式=x -3=5-3=2.点拨精讲:先对分式的结果化简,可以使计算变得简便.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.计算:(1)3xy 24z 2·(-8z 2y );(2)-3xy÷2y 23x ;(3)m -2m -3÷m 2-6m +9m 2-4;(4)a 2-6a +91+4a +4a 2÷12-4a2a +1. 2.有这样一道题“计算:x 2-2x +1x 2-1÷x -1x 2+x -x 的值,其中x =998”,甲同学错把x =998抄成了x =999,但他的计算结果却是正确的,请问这是怎么回事?解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴无论x取何值,此式的值恒等于0.(3分钟)1.分式乘除法的法则可类比分数的乘除法则进行.2.当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.3.分式乘除法运算的最后结果能约分的要约分,一定要是一个最简分式.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)15.2.1 分式的乘除(2)1.使学生在理解和掌握分式的乘除法法则的基础上,运用法则进行分式的乘除法混合运算.2.使学生理解并掌握分式乘方的运算性质,能运用分式的这一性质进行运算.重点:分式的乘除混合运算和分式的乘方. 难点:对乘方运算性质的理解和运用.一、自学指导自学1:自学课本P138-139页“例4、思考与例5”,掌握分式乘方法则及乘除、乘方混和运算的方法,完成填空.(7分钟)1.a n表示的意思是n 个a 相乘的积;a 表示底数,n 表示指数.2.计算:(23)3=23×23×23=2×2×23×3×3=2333=827.3.由乘方的定义,类比分数乘方的方法可得到: (a b )2=a b ·a b =a·a b·b =a2b 2; ……(a b )n =a b ·a b ·…·a b =a·a·…·a b·b·…·b ,\s\up6(n 个))_,\s\do4(n 个))_=a nb n . 点拨精讲:其中a 表示分式的分子,b 表示分式的分母,且b≠0.总结归纳:分式的乘方法则——分式乘方是把分子、分母各自乘方.即:(a b )n =anb n (n 为正整数);乘除混合运算可以统一为乘法运算;式与数有相同的混合运算顺序:先乘方,再乘除.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 1.课本P139练习题1,2. 2.判断下列各式正确与否:(1)(3-a 2)2=9a 4;(2)(-b 2a )3=b 6a 3;(3)(3b 2a )3=3b 32a 3;(4)(2x x +y )2=4x 2x 2+y2.3.计算:(1)(-x 2y )2·(-y 2x )3÷(-y x )4;(2)(x +1)2(1-x )2(x 2-1)2÷(x -1)2x 2-1. 解:(1)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5;(2)原式=(x +1)2(x -1)2(x +1)2(x -1)2·(x +1)(x -1)(x -1)2=x +1x -1. 点拨精讲:注意符号及约分.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1 先化简代数式(a +1a -1+1-a a 2-2a +1)÷1a -1,然后选取一个使原式有意义的a 值代入求值.解:∵(a +1a -1+1-a a 2-2a +1)÷1a -1=[(a +1a -1+1-a (a -1)2)]·a -11=a +1a -1·a -11+1-a (a -1)2·a -11=a +1-1=a ,当a =3时,原式=3. 点拨精讲:这里a 的取值要让分式有意义,保证各分母及除式不能为0.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.x =1,y =1,求4x 2-4xy +y 22x +y ÷(4x 2-y 2)的值.2.使代数式x +3x -3÷x +2x -4有意义的x 的值是(D )A .x ≠3且x≠-2B .x ≠3且x≠4C .x ≠3且x≠-4D .x ≠3且x≠-2且x≠43.计算:(1)5a -109a 3b ·6aba 2-4; (2)(-12x 4y)2÷(-3x 2y)3;(3)x -y x 2+xy ·x 2y 2-x 4xy -x2; (4)2x -6x 2-4x +4·(x +3)(x -2)12-4x ÷x +32. (3分钟)1.分式的分子或分母带“-”的n 次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式的分子分母可直接乘方.2.注意熟练、准确运用乘方运算法则及分式乘除法 法则.3.注意混合运算中应先算括号,再算乘方,然后乘除.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除法1.理解并掌握分式的乘除法则.2.运用法则进行运算,能解决一些与分式有关的实际问题.重点掌握分式的乘除运算. 难点分子、分母为多项式的分式乘除法运算.一、复习导入1.分数的乘除法的法则是什么? 2.计算:35×1512;35÷152.由分数的运算法则知35×1512=3×155×12;35÷152=35×215=3×25×15.3.什么是倒数?我们在小学学习了分数的乘除法,对于分式如何进行计算呢?这就是我们这节要学习的内容.二、探究新知问题1:一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b 时,当容器的水占容积的mn时,水面的高度是多少?问题2:大拖拉机m 天耕地a hm 2,小拖拉机n 天耕地b hm 2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?问题1求容积的高V ab ·m n ,问题2求大拖拉机的工作效率是小拖拉机的工作效率的a m ÷bn 倍.根据上面的计算,请同学们总结一下对分式的乘除法的法则是什么?分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.a b ·c d =a·c b·d ;a b ÷c d =a b ·d c =a·d b·c . 三、举例分析 例1 计算:(1)4x 3y ·y 2x 3;(2)ab 32c 2÷-5a 2b 24cd. 分析:这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,再计算结果.解:(1)4x 3y ·y 2x 3=4xy 6x 3y =23x2;(2)ab 32c 2÷-5a 2b 24cd =ab 32c 2·4cd -5a 2b 2=-4ab 3cd 10a 2b 2c 2=-2bd 5ac . 例2 计算:(1)a 2-4a +4a 2-2a +1·a -1a 2-4;(2)149-m 2÷1m 2-7m. 分析:这两题是分子与分母是多项式的情况,首先要因式分解,然后运用法则. 解:(1)原式(a -2)2(a -1)2·a -1(a +2)(a -2)=a -2(a -1)(a +2); (2)原式1(7-m )(7+m )÷1m (m -7)=1(7-m )(7+m )·m (m -7)1=-mm +7.例3 “丰收1号”小麦试验田边长为a 米(a >1)的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)米的正方形,两块试验田的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍? 分析:本题的实质是分式的乘除法的运用. 解:(1)略.(2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=a +1a -1. “丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a +1a -1倍.四、随堂练习1.计算:(1)c 2ab ·a 2b 2c ;(2)-n 22m ·4m 25n 3;(3)y 7x ÷(-2x );(4)-8xy÷2y 5x ;(5)-a 2-4a 2-2a +1·a 2-1a 2+4a +4;(6)y 2-6y +9y +2÷(3-y).答案:(1)abc ;(2)-2m 5n ;(3)-y 14;(4)-20x 2;(5)-(a +1)(a -2)(a -1)(a +2);(6)3-y y +2.2.教材第137页练习1,2,3题.五、课堂小结(1)分式的乘除法法则;(2)运用法则时注意符号的变化; (3)因式分解在分式乘除法中的应用;(4)步骤要完整,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也可以写成一个多项式,如(a -1)2a 或a 2-2a +1a.六、布置作业教材第146页习题15.2第1,2题.本节课从两个具有实际背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实际需要产生的,进而激发他们学习的兴趣,接着,从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘法法则.有利于学生接受新知识,而且能体现由数到式的发展过程.第2课时 分式的乘方及乘方与乘除的混合运算1.进一步熟练分式的乘除法法则,会进行分式的乘、除法的混合运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.重点分式的乘方运算,分式的乘除法、乘方混合运算. 难点分式的乘除法、乘方混合运算,以及分式乘法、除法、乘方运算中符号的确定.一、复习引入1.分式的乘除法法则.分式的乘法法则:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.乘方的意义: a n=a·a·a·…·a(n 为正整数). 二、探究新知例1(教材例4) 计算2x 5x -3÷325x 2-9·x5x +3. 解:2x 5x -3÷325x 2-9·x 5x +3=2x 5x -3·25x 2-93·x 5x +3 (先把除法统一成乘法运算) =2x23.(约分到最简公式) 分式乘除运算的一般步骤: (1)先把除法统一成乘法运算;(2)分子、分母中能分解因式的多项式分解因式; (3)确定分式的符号,然后约分; (4)结果应是最简分式.1.由整式的乘方引出分式的乘方,并由特殊到一般地引导学生进行归纳. (1)(a b )2=a b ·a b =a 2b2;↑ ↑由乘方的意义 由分式的乘法法则 (2)同理:(a b )3=a b ·a b ·a b =a 3b3; (a b )n =a b ·a b ·…·a b n 个=a ·a ·…·an 个b ·b ·…·bn 个 =a nb n . 2.分式乘方法则:分式:(a b )n =anbn .(n 为正整数)文字叙述:分式乘方是把分子、分母分别乘方.3.目前为止,正整数指数幂的运算法则都有什么?(1)a n ·a n =a m +n ;(2)a m ÷a n =a m -n;(3)(a m )n =a mn ;(4)(ab)n =a n b n; (5)(a b )n =a nb n .三、举例分析 例2 计算: (1)(-2a 2b 3c)2;(2)(a 2b -cd 3)3÷2a d 3·(c 2a )2. (3)(-x 2y )2·(-y 2x )3÷(-y x )4;(4)a 2-b 2a 2+b 2÷(a -b a +b)2. 解:(1)原式=(-2a 2b )2(3c )2=4a 4b 29c 2; (2)原式=a 6b 3-c 3d 9·d 32a ·c 24a 2=-a 3b38cd 6;(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5;(4)原式=(a +b )(a -b )a 2+b 2·(a +b )2(a -b )2=(a +b )3(a -b )(a 2+b 2). 学生板演、纠错并及时总结做题方法及应注意的地方:①对于乘、除和乘方的混合运算,应注意运算顺序,但在做乘方运算的同时,可将除变乘;②做乘方运算要先确定符号.例3 计算:(1)b 3n -1c 2a 2n +1·a2n -1b3n -2;(2)(xy -x 2)÷x 2-2xy +y 2xy ·x -y x2;(3)(a 2-b 2ab )2÷(a -b a )2.解:(1)原式=b 3n -2·b ·c 2a 2n -1·a 2·a 2n -1b 3n -2=bc 2a2; (2)原式=-x (x -y )1·xy (x -y )2·x -yx 2=-y ;(3)原式=(a +b )2(a -b )2a 2b 2·a 2(a -b )2=a 2+2ab +b2b2. 本例题是本节课运算题目的拓展,对于(1)指数为字母,不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进一步让学生熟悉运算顺序,注意做题步骤.四、巩固练习教材第139页练习第1,2题. 五、课堂小结1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业教材第146页习题15.2第3题.分式的乘方运算这一课的教学先让学生回忆以前学过的分数的乘方的运算方法,然后采用类比的方法让学生得出分式的乘方法则.在讲解例题和练习时充分调动学生的积极性,使大家都参与进来,提高学习效率.15.2.2 分式的加减(1)1.使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算.2.通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式的通分,培养学生分式运算的能力.重点:让学生熟练地掌握同分母、异分母分式的加减法.难点:分式的分子是多项式的做减法时注意符号,去括号法则的应用.一、自学指导自学1:自学课本P139-140页“问题3、问题4、思考、例6”,掌握同分母、异分母分式加减的方法,完成填空.(7分钟)①计算:15+25,15-25,12+13,12-13.总结归纳:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减.a c +bc =a +b c ;a b +cd =ad bd +bc bd =ad +bc bd. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 1.课本P141页练习题1,2. 2.计算:(1)2x -5x 2;(2)x 2+xy xy -x 2-xy xy ;(3)a -2a +1-2a -3a +1; (4)a +1a -1-a -1a +1; (5)x 2x -2-4x x -2+4x -2;。

八年级上第十五章分式导学案

八年级上第十五章分式导学案

中学“学议练思”自学指导教学学案编制:审核:学生姓名:课题:15.2.1 分式的乘除(二)主讲:学习目标:1.能应用分式的乘除法法则进行乘除混合运算。

2.能灵活应用分式的乘除法法则进行分式的乘除混合运算。

3.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣学习重点::掌握分式乘除法法则及其应用学习难点:掌握分子分母是多项式的分式的乘除法混合运算教学流程学习过程备注(一)依案自学,自主构建;(10分钟)(1)创设情境,导入新课。

(2)下发学案,学生自学(3)教师巡视,适时指导。

预习新知1.分式的约分:__________________________________________ 最简分式:__________________________________________下列各分式中,最简分式是()A.()()yxyx+-8534B.yxxy+-22C.2222xyyxyx++D.()222yxyx+-2.分解因式:2232x y xy y-+=3a a-=2312x-= 220.01a b-=21222x x++=2242x y x y-++= 3. 计算(1)=÷⨯4156523(2)=⨯÷251225354.分数乘除法混合运算顺序是什么?分式的乘除法混合运算与分数的乘除法混合运算类似你能猜想出分式的乘除法混合运算顺序吗?(二)热点追议,互动交流;(15分钟)(1)组内交流,初步解决问题。

(2)班内交流,解决热点问题。

(3)教师示范,展示知识脉络。

例1.计算(先把除法变乘法,把分子、分母分解因式约分,然后从左往右依次计算)注意:过程中,分子、分母一般保持分解因式的形式。

随堂练习1.完成课后练习2.计算(1)2224369a aa a a--÷+++(2)(ab-b2)÷baba+-22(3)xyxxyxyyxyx++÷++-222222243.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖机的工作效率是小拖机的工作效率( )倍.中学“学议练思”自学指导教学学案编制:审核:学生姓名:课题: 15.2.1 分式的乘除(三)主讲:学习目标: 1.能应用分式的乘除法,乘方进行混合运算。

八年级数学上册 第15章 分式学案 (新版)新人教版

八年级数学上册 第15章 分式学案 (新版)新人教版

八年级数学上册第15章分式学案(新版)新人教版15、1、1从分数到分式【学习目标】1、理解分式的概念,分式有意义,或无意义的条件,分式的值为零的条件、2、能熟练地求出分式有意义、无意义、分式的值为零时字母的取值范围、【重难点】分式的值为零的条件;分式的值为正数或为负数时应满足的条件、【自学案】一、自学指导(8分钟)1、熟读课本第127128页,完成思考内容:式子有什么共同点?与分数有什么相同点和不同点?(小组合作后归纳小结,一人发言)2、填空:形如的形式,A,B表示两个整式,并且B中,那么式子叫做分式。

A叫,B叫做。

3、默读例题后思考得出:当分式有意义时,分母B 0;当分式无意义时,分母B 0;当分式的值为0时,分子A 0且分母B 0。

4、有理式的分类:请类比有理数的分类为有理式分类:二、自学检测(7分钟)1、判断下列各式哪些是整式,哪些是分式?(1)(2)(3)(4)(5)(6)2、下列分式中的字母满足什么条件时分式有意义?(1)(2)(3)(4)(5)三、合作探究(8分钟)1、当x为何值时,下列分式值为0?(1)(2)2、当x为何值时分式的值为正?3、当x为何值时下列分式无意义?(1)(2)【课堂检测】A组(基础限时练)(7分钟)1、当a为任何实数,下列式子一定有意义的是()A、B、C、 D 、2、当x为何值时,下列分式值为0?(1)(2)3、当x为何值时,下列分式无意义?(1) (2)(3) B组(能力拓展练)(8分钟)1、当x 时分式的值为负?当x 时分式的值为正?当x= 时分式的值为1。

2、当x为何值时下列分式有意义?(1)(2)(3)3、探究:分式的值可能为0吗?为什么?【学后反思】通过本节课的学习,你有什么收获?课题:15、1、2分式的基本性质(1)-----约分【学习目标】1、理解并掌握分式的基本性质;2、灵活运用分式基本性质将分式变形。

【重难点】学习重点:灵活运用分式基本性质将分式变形。

人教版八年级数学上册第十五章《分式》教案

人教版八年级数学上册第十五章《分式》教案

第十五章分式15.1 分式15.1.1 从分数到分式1.理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.2.在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.3.进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为.思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与10060 2020v v+-,有什么共同点?谈谈你的看法.【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB 叫做分式.问题2(1)使分式11x-有意义,则x的取值有什么要求?(2)使分式A/B有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B有意义时,必有B≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.例2填空:(1)当x时,分式23x有意义?(2)当b时,分式153b-有意义?(3)当x ,y 满足关系 时,分式x y x y +-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b -有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y+-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n-+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.15.1.2分式的基本性质1.掌握分式的基本性质,能依据分式的性质进行约分和通分运算.2.通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.3.进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)试一试【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试4.约分:【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除1.掌握分式的乘除法运算法则,能进行分式的乘除法运算.2.在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.3.在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.第2课时分式的乘除混合运算与分式的乘方1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.2.理解分式乘方的意义,能进行有关分式乘方的运算.3.通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.4.进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.【教学重点】分式乘除、乘方混合运算能力.【教学难点】分式乘方法则的理解和运用.一、情境导入,初步认识问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?试一试参见教材P138例4.想一想小明同学在计算xy÷yx·xy时,其过程如下:原式=xy÷1=xy,你认为他的计算正确吗?说说你的理由,与同伴交流.【教学说明】教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P138“思考”.【归纳结论】参见教材P138最后一段.【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.试一试计算:【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.三、典例精析,掌握新知例计算:(1)参见教材P139例5第(2)小题;(2)参见教材P139练习第2题第(2)小题.【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.四、运用新知,深化理解1.参见教材P139“练习”第1题.2.计算:(1)参见教材P139“练习”第2题第(1)小题;(2)参见教材P146第3题第(4)小题.【教学说明】学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.五、师生互动,课堂小结本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.15.2.2 分式的加减第1课时 分式的加减1.理解并掌握分式的加减法法则,能用它进行简单的分式加减.2.经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.3.进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.第2课时分式的混合运算1.进一步掌握分式的加减法运算方法,能用它解决实际问题.2.能进行分式的乘除、加减、乘方混合运算.3.在具体问题情境的探索思考过程中,进一步增强学生的数学应用意识,锻炼分析问题、解决问题的能力.4.进一步培养学生严密的科学态度和良好的学习习惯.【教学重点】掌握分式乘除、加减、乘方混合运算.【教学难点】运用分式乘除、加减、乘方等解决实际问题.一、情境导入,初步认识问题1异分母分式的加减法的一般步骤有哪些?在运算过程中有哪些需要注意的问题?问题2在进行分式的乘除、加减,乘方混合运算时,你认为应该怎样做?谈谈你的想法.【教学说明】问题1的设置在于巩固上节课学过知识,并能用它解决本节问题,起承上启下作用;问题2则是让学生联想到分式乘除、分式加减法则是类比分数而得到的,因而可类比得到分式混合运算法则.在教学时,可让学生自主探究,相互交流,在探讨中形成认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】上述两个例题都应先让学生独立完成试试,然后教师再予以评讲,例1的(1)题侧重于展示分式的混合运算方法;先算乘方,再算乘除,最后算加减;而第(2)题进一步强调混合运算中的运算顺序:“先算乘方,再算乘除,最后算加减.有括号应先做括号内的运算,再算括号外的运算”.三、典例精析,掌握新知【教学说明】教学时,可让学生自主探索,获得结论,教师再行讲解.例1中计算(x2+xy+y2)(x-y)时,若已掌握公式(a2+ab+b2)(a-b)=a3-b3,可直接写出结果x3-y3,如果不知道此公式,可利用多项式乘多项式的法则计算.例2中含有一个开放性问题,这里教师应该强调:选择一个值代入时,一定要使原代数式有意义,即不能选x为0,1这两个值.四、运用新知,深化理解2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,需比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的多少倍?【教学说明】学生独立探究,教师巡视时,对有困难同学给予指导,最后予以评讲,让学生在自查中反思,积累解题经验和方法.五、师生互动,课堂小结1.通过这节课的学习,你有哪些收获?2.你还有哪些疑问?与同伴交流.【教学说明】让学生对照上述两个问题自我反思,既系统回顾本节所学知识,又查找问题所在,在与同伴交流中加深认识.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间让学生去演算并暴露问题,再指出问题所在,为后面的教学提供较好的对比分析材料.此外,教师还应引导学生发现并总结多。

数学人教版八年级上册第15章第一节分式(教案)

数学人教版八年级上册第15章第一节分式(教案)
五、教学反思
在今天的教学中,我发现学生们对分式的概念和性质掌握得还算不错,但在具体的运算和应用上,部分学生还是显得有些吃力。我意识到,分式的运算规则和实际应用是本节课的难点,需要在今后的教学中进一步强化。
在导入新课环节,通过提问的方式激发学生的兴趣,这个方法效果不错,大家都能积极参与进来。但在新课讲授过程中,我发现理论介绍部分可能过于枯燥,有些学生的注意力开始分散。下次我可以尝试结合更多的实际案例,让理论知识更加生动有趣。
举例:通过实际例题,引导学生掌握求解分式方程的步骤和技巧。
2.教学难点
(1)分式的概念理解:学生可能难以理解分式中字母的含义和作用。
解决方法:通过具体实例和图形说明,帮助学生建立起分式的直观认识。
(2)分式的通分:在具体运算中,学生可能会在寻找最简公分母时遇到困难。
解决方法:提供寻找最简公分母的策略,如分解质因数、使用公共因子等,并进行大量练习。
此外,我还发现部分学生对分式方程的求解感到困惑,特别是对分母为零的情况处理不当。在今后的教学中,我要着重强调这一点,并通过更多的练习题来巩固学生的掌握情况。
最后,我也要肯定学生们的努力和进步。虽然分式的学习对大家来说是一个挑战,但我相信只要我们共同努力,一定能够克服困难,掌握好这一章的知识。教学相长,我也将在反思中不断成长,为学生们提供更好的教学。
3.重点难点解析:在讲授过程中,我会特别强调分式的定义和分式运算这两个重点解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式相关的实际问题,如如何分配物品、计算速度等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用分式来计算不同物体的平均速度。
(3)分式的运算:熟练进行分式的加减乘除运算,掌握运算规则。

15章分式复习与小结 导学案

15章分式复习与小结 导学案

第十四课时 第15章分式复习与小结【学习目标】1.复习整理本章的知识结构,形成知识体系.解决生活中的实际问题. 2.掌握列分式方程解决实际问题的基本方法,深化数学思想的认识. 【学习重点】建立本章知识结构,准确、熟练、灵活地进行分式的四则运算. 一、知识结构:二、熟记知识点1、若A 、B 均为_____式, 且B 中含有_________. 则式子 分式 有意义的条件是 ,值为零的条件是 ,2、分式的基本性质: 分式的分子与分母都乘以(或除以)___________ .分式的值________. 用式子表示:3、通分关键是找____________________,约分与通分的依据都是:______________________4、分式乘分式, , 用式子表示: 分式除以分式, , 用式子表示:5、同分母的分式相加减, 用式子表示:异分母的分式相加减:先 ,化为 分式,再加减。

用式子表示:6、当n 是正整数时,=-na,7、科学计数也可表示一些绝对值较小的数,将他们表示成 的形式,其中n 是 , ≤a< 。

8、解分式方程的步骤:(1)___________________;(2)___________________(3)____________________.(4)三、知识应用1、当x = 时,分式31-x 有意义. 2、一种病菌的直径为0.0000036m ,用科学记数法表示为 .3、某班a 名同学参加植树活动,其中男生b 名(b<a ).若只由男生完成,每人需植树15棵;若只由女生完成,每人需植树 棵.4、已知a 2-6a +9与|b -1|互为相反数,则(a b b a -)÷(a +b )=______。

5、若非零实数a ,b 满足4a 2+b 2=4ab ,则ab =_____。

6、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。

八年级第十五章分式复习导学案

八年级第十五章分式复习导学案

《第十五章 分式》复习学案一.知识网络:二.知识点及相关练习(一) 分式定义及有关题型题型一 区分整式与分式:在判断一个式子是否是分式时,只看未化简的式子......的分母中是否含有字母,即分母中含有字母的为分式.【例1】下列代数式中a 1、πxy 2、4332c b a 、x +65、y x 87+,是分式的有________题型二 分式有意义的条件:分式的分母不能为0,即A B中,0B ≠时,分式有意义。

【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx +1题型三:分式的值为0的条件 分子为0,且分母不为0,对于A B ,即00A B =≠⎫⎬⎭时,0AB =. 【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)22||+-x x(3)9392+-x x (4)2x 2+5.题型四:分式的值为正、负的条件:【例4】(1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式32+-x 为负数.(3)当x 为何值时,分式152+-x x为负;(二)分式的基本性质及有关题型 1.分式的基本性质:M B MA MB M A B A÷÷=⨯⨯= 2.分式的变号法则:ba b a b a b a =--=+--=--题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)b a b a +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx yx --+- (2)b a a --- (3)b a ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x yxy x +++-2232的值.(提示:整体代入)【例4】已知:21=-x x ,求221xx +的值. (二) 分式的运算析规律 确定最简公分母(1)当分母都是单项式...时,①取所有分母的系数的最小公倍数作为最简公分母的系数;②取分母中所有字母因式的最高次幂的积作为最简公分母的字母部分.(2)当分母是多项式...时,先因式分解,再确定最简公分母. 题型一:通分【例1】将下列各式分别通分.(1)13x 2和512xy ; (2)b 3a 和-ab2c (3)ab b b a a 22--和;(4)22211x x xx x +--和; (5)a a -+212和题型二:约分【例2】约分: (1)322016xy y x -; (2)nm m n --22; (3)a 2-4a +4a 2-4.题型三:分式的混合运算 【例3】计算:(1)42232)()()(a bc ab c c b a ÷-⋅-; (2)112---a a a ;(3))12()21444(222+-⋅--+--x x x x x x x(4)(1-11-x )÷12-x x题型四:化简求值题 【例4】先化简后求值(1)144)111(22-+-÷--a a a a ,其中a=-2(2)4442+-x x ÷2x 4x 2x x --+-,再在0,1,2中选一个你认为合适的数作x 的值带入求值.题型五:求待定字母的值 【例5】若111312-++=--x Nx M x x ,试求M ,N 的值.(四)、整数指数幂与科学记数法 题型一:运用整数指数幂计算一般地,当n 是正整数时,a -n =1a n (a ≠0).【例1】计算: (1)(-1)0+(31)-1(2)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅ (4)(21)-1+(1-2)0题型二:化简求值题 【例2】已知51=+-xx ,求22-+x x 的值题型三:科学记数法的计算【例3】把下列各数用科学记数法表示出来:(1)0.000 002 1;(2)-0.000 006 57.(3)一本200页的书厚约为0.9cm ,用科学记数法表示每一张纸的厚度为【例4】计算:(1)223)102.8()103(--⨯⨯⨯; (2)3223)102()104(--⨯÷⨯.分式方程题型一:用常规方法解分式方程(提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.) 【例1】解下列分式方程 (1)0132=--x x (2)2-14x 12x x +=-(3)114112=---+x x x ; (4)31-x =2+xx -3题型二:求待定字母的值【例2】若分式方程xmx x -=--221无解,求m 的值。

2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.

2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.

第十五章分式15.2分式的运算15.2.3整数指数幂第1课时一、教学目标【知识与技能】1.经历探索负整数指数幂和0指数幂的运算性质的过程,进一步体会幂的意义,发展代数推理能力和有条理的表达能力.2.理解负整数指数幂的意义,熟练运用整数指数幂运算性质进行运算.【过程与方法】1.知道负整数指数幂a-n=1a n(a≠0,n是正整数),了解幂运算的法则可以推广到整数指数幂,掌握整数指数幂的运算性质,会进行简单的整数范围内的幂运算.2.通过观察、推理、总结得出负整数指数幂的意义,体验利用负整数指数幂进行乘除法的转化.【情感、态度与价值观】1.通过独立思考、同伴交流、自主发现问题解决问题,提高学生的学习兴趣和学习主动性.2.在数学公式中渗透公式的简洁美、和谐美,随着学习的知识范围的扩展,产生对新知识的渴望与追求的积极情感,形成辩证统一的哲学观和世界观.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】掌握整数指数幂的运算性质,尤其是负整数指数幂的概念.【教学难点】认识负整数指数幂的产生过程及幂运算法则的扩展过程.五、课前准备教师:课件、直尺、幂结构图等。

学生:直尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课正整数指数幂有以下运算性质:(1)(m,n是正整数)(2)(m,n是正整数)(3)(n是正整数)(4)(a≠0,m,n是正整数,m>n)(5)(n是正整数)此外,还学过0指数幂,即a0=1(a≠0)如果指数是负整数该如何计算呢?(出示课件2)(二)探索新知1.创设情境,探究整数指数幂教师问1:你会计算它们吗?53÷55=________;103÷107=________.师生共同解答如下:思路一:53÷55=5355=152,103÷107=103107=1104.思路二:53÷55=53-5=5-2,103÷107=103-7=10-4.教师问2:由以上计算,你能发现什么?学生回答:发现:5-2=152,10-4=1104.教师问3:将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,正整数指数幂的那些运算性质还适用吗?(出示课件4)学生讨论后猜想:这些性质还适用.教师问4:a m中指数m可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么?学生讨论后回答:m个a相乘的积.教师问5:那么我们看下面的问题:根据分式的约分,当a≠0时,如何计算a3÷a5=?(出示课件5)学生回答:a3÷a5=33∙2=12(1)教师问6:如果把正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的条件m>n去掉,即假设这个性质对于像a3÷a5的情形也能使用,如何计算?学生回答:a3÷a5=a3-5=a-2(2)教师问7:有上边的问题的计算结果,我们可以得到什么?学生回答:a-2=12教师问8:在a-2=12中,有什么限制条件吗?为什么呢?学生讨论后回答:a≠0,因为分母不能为0.总结点拨:(出示课件6)由(1)(2)想到,若规定a-2=12(a≠0),就能使a m÷a n=a m-n这条性质也适用于像a3÷a5的情形,因此:数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.教师问9:想一想:在引入负整数指数和0指数后,a m·a n=a m+n(m,n是正整数)这条性质能否扩大到m,n是整数的情形?(出示课件8)学生猜想回答:应该可以.教师问10:请完成下面的题目:填一填:(1)a3×a-5=a3·1()=1()=a()=a()+(),即a3×a-5=a()+();(2)a-3×a-5=1()·1()=1()=()=a()+(),即a-3×a-5=a()+();(3)a0×a-5=()·1()=1()=()=a()+(),即a0×a-5=a()+().学生回答:(1)a5;a2;-2;3+(-5);3+(-5)(2)a3;a5;a8;a-8;(-3)+(-5);(-3)+(-5)(3)1;a5;a5;a-5;0+(-5);0+(-5)完成填空后,思考下列问题:教师问11:从以上填空中你想到了什么?学生回答:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.教师问12:再换其他整数指数验证这个规律.类似地,你可以用负整数指数幂或0指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?(出示课件9)学生回答:a-3·a-7=a-3+(-7)=a-10,a-2÷a-5=a-2-(-5)=a3,a0÷a-4=a0-(-4)=a4.教师讲解:形成定论:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.总结点拨:(出示课件10)(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数);(4)(m,n是整数);(5)(n是整数).教师问11:试说说当m分别是正整数、0、负整数时,a m各表示什么意义?(出示课件11)师生共同解答如下:当m是正整数时,a m表示m个a相乘.当m是0时,a0表示一个数的n次方除以这个数的n次方,所以特别规定,任何除0以外的实数的0次方都是1.当m是负整数时,a m表示|m|个相乘.例:计算:(出示课件12-13)师生共同解答如下:解:2.创设情境,探究整数指数幂的性质教师问19:继续举例探究:(a m)n=a mn,(ab)n=a n b n,nab⎛⎫⎪⎝⎭=a nb n在整数指数幂范围内是否适用?(出示课件15)师生共同解答如下:根据整数指数幂的运算性质,当m,n为整数时,,,因此,,即同底数幂的除法可以转化为同底数幂的乘法特别地,所以,即商的乘方可以转化为积的乘方总结点拨:(出示课件16)这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).例:下列等式是否正确?为什么?(出示课件17)(1)a m÷a n=a m·a-n;(2)师生共同解答如下:解:(1)∵a m÷a n=a m-n=a m+(-n)=a m·a-n,∴a m÷a n=a m·a-n.故等式正确.(2)故等式正确.(三)课堂练习(出示课件20-23)1.下列计算正确的是()A.30=0B.-|-3|=-3C.3-1=-3D.9=±32.下列计算不正确的是()A. B.C. D.3.若0<x<1,则x-1,x,x2的大小关系是()A.x-1<x<x2B.x<x2<x-1C.x2<x<x-1D.x2<x-1<x4.计算:5.若,试求的值.参考答案:1.B2.B3.C4.5.解:∵a+a-1=3(四)课堂小结今天我们学了哪些内容:1.幂的两个规定:a0=1(a≠0);数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.2.幂的三类运算性质:这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).(五)课前预习预习下节课(15.2.3)145页的相关内容。

人教版八年级数学上册第15章《分式》教学设计(共12课时)

人教版八年级数学上册第15章《分式》教学设计(共12课时)

人教版八年级数学上册第15章《分式》教学设计(共12课时)一. 教材分析人教版八年级数学上册第15章《分式》是学生在学习了实数、代数式、方程等知识后,进一步拓展数学知识的一个章节。

分式作为数学中的一个重要概念,不仅在初中数学中占有重要地位,而且在高中乃至大学的数学学习中也会经常用到。

本章主要内容有分式的概念、分式的运算、分式的性质等。

通过本章的学习,使学生能理解分式的概念,掌握分式的运算方法,了解分式的性质,为后续学习函数、不等式等知识打下基础。

二. 学情分析八年级的学生已经具备了一定的代数基础,对实数、代数式、方程等知识有了初步的认识。

但是,学生对分式的理解还比较模糊,分式的运算和性质对于他们来说是一个新的挑战。

因此,在教学过程中,需要引导学生从实际问题中抽象出分式的概念,通过对比、归纳等方法,让学生自己发现并总结分式的性质,从而提高他们的学习兴趣和自主学习能力。

三. 教学目标1.知识与技能:使学生理解分式的概念,掌握分式的基本运算方法,了解分式的性质。

2.过程与方法:通过自主学习、合作交流等方法,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习分式的兴趣,培养他们积极思考、勇于探索的精神。

四. 教学重难点1.重点:分式的概念、分式的运算、分式的性质。

2.难点:分式的运算规律、分式的性质的推导和应用。

五. 教学方法1.启发式教学:通过提问、引导、讨论等方式,激发学生的思维,培养他们的抽象思维能力。

2.自主学习:鼓励学生自主探究,发现问题、解决问题,提高他们的自主学习能力。

3.合作交流:引导学生进行小组讨论,分享学习心得,互相帮助,共同提高。

六. 教学准备1.教学PPT:制作清晰、简洁的教学PPT,便于学生理解和记忆。

2.教学素材:准备一些与分式相关的实际问题,用于引导学生从实际问题中抽象出分式的概念。

3.练习题:准备一些分式的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生从实际问题中抽象出分式的概念。

人教版八年级上数学第十五章分式方程导学案

人教版八年级上数学第十五章分式方程导学案

人教版八年级上数学第十五章分式分式方程 导学案班级__________姓名_________1.【课标考纲解读】应用分式方程解决生活中的实际问题。

2.【状元培养方案】思维的敏捷、多角度、立体化。

3.【学习目标】1.理解分式方程的概念,会解可化为一元一次方程的分式方程.2. 了解分式方程产生增根的原因,掌握解分式方程验根的方法. 4.【重难点】教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.教学难点:检验分式方程解的原因 5.【教学方法】自主合作,交流展示 6.】 一、 26~28页二、 独立完成下列预习作业:1.前面我们已经学习了哪些方程?是怎样的方程?如何求解?(1)前面我们已经学过了 方程。

(2)一元一次方程是 方程。

(3)一元一次方程解法 步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。

如解方程:2.概念:分式方程:分母中含有 的方程叫分式方程。

3.练习:判断下列各式哪个是分式方程. (1)x +y =5 (2)x+25=2y −z 3π(3)1x 4 y x+5=0 5 x −1+y =5 (6)1x+1≥x+434. 一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,填空163242=--+x x轮船顺流航行的速度为千米/时,逆流航行的速度为千米/时,顺流航行100千米所用的时间为小时,逆流航行60千米所用的时间为小时。

由两次航行所用时间相等,可列方程10060=20v20v-+解:两边同乘以最简公分母()()20v v+20-,得()()100v=6020v20-+2000v=1200+60v-100160v=800v=5检验:将v=5代入原方程中,左边= 4,右边=4,左边=右边,因此v=5是原方程的解。

人教版数学八年级上全章导学案 第15章分式全章导学案

人教版数学八年级上全章导学案 第15章分式全章导学案

人教版数学八年级上全章导学案 第15章分式全章导学案人教版数学八年级上导学案 15.1 分式15.1.1 从分数到分式【学习目标】1.了解分式的概念,会判断一个代数式是否是分式;2.了解分式产生的背景和分式的概念,掌握分式与整式概念的区别与联系; 3.理解并能熟练地求出分式有意义的条件,分式的值为零的条件;【学习重点】理解分式的概念,分式有意义的条件.【学习难点】能熟练地求出分式有意义的条件,分式的值为零的条件. 【知识准备】1.在①3x 2,②11x +,③15x+y ,④a b a b +-, ⑤0,⑥a π•这几个式子中,单项式有: ____________多项式有: ______整式的有: _____________________ (只填序号)2.由上题我们发现,由数与字母的 ___ 组成的式子叫单项式;几个单项式的和叫 ;单项式和多项式统称 。

【自习自疑】一.阅读教材,完成下列问题: 1.通过思考发现,a s 、s V 、v +20100、v-2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 _ ,那么式子 __ 叫做分式。

2.我们小学里学过的分数有意义的条件是 ;那么当__________时,分式BA才有意义。

二.预习评估 1.在代数式-3x ,31y +,5y x -,y x ,πx ,x 81-, 22732xy y x -, 中,是整式的有_________________ . 是分式的有_________________ . 2.当x ___________时,分式21xx -有意义3.使分式2xx +有意义的条件是 ( )A .x ≠2B .x ≠-2C .x ≠2且x ≠-2D .x ≠0 4.已知分式4523-+x x ,要使分式的值等于零,则x 等于( )A .54 B .45- C .32D .23-我想问:请你将预习中未能解决的问题和有疑问的问题写下来,等待课堂上与老师和同学探究解决.等级______________ 组长签字_______________【自主探究】【探究一】分式的产生 1. 用代数式填空:(1)已知某长方形的面积是102cm ,长为5cm ,则这个长方形的宽为 cm ; (2)已知某长方形的长为a 2cm ,宽为b cm ,则这个长方形的面积为 cm ; (3)已知某长方形的面积是s 2cm ,长为5cm ,则这个长方形的宽为 cm ; (4)已知某长方形的面积是102cm ,长为a cm ,则这个长方形的宽为 cm ; (5)一辆汽车行驶s 千米用了t 小时,那么它的平均车速为 千米/小时;一列火车行驶s 千米比这辆汽车少用了1小时,那么它的平均车速为 km/h ; 2.思考:(1)以上式子中,是整式的有哪些?(2)不是整式的有哪些?它们的共同特征是:①从形式上看,像 ,即都由 、分数线、 三部分组成;②从内容上看,它们的分母都含有 。

最新人教版八年级数学上册导学案:第十五章 分式

最新人教版八年级数学上册导学案:第十五章 分式

第十五章分式15.1分式15.1.1 从分数到分式一、新课导入1.导入课题:,那么x÷y可以写成这样的形式吗?如果你5÷3可以写成分数53认为行,那么这个式子是我们以前学习的整式吗?那它是什么式子呢?通过今天的学习,我们会进一步认识它.2.学习目标:(1)知道分式的意义.(2)能判别分式有意义时和分式的值为0时,分母中的字母满足的条件.3.学习重、难点:重点:认识分式特点,知道分式有、无意义的条件.难点:分式的值为零时,确定分子、分母所含字母的取值.二、分层学习1.自学指导:(1)自学内容:教材第127页到第128页“思考”前面的内容.(2)自学时间:8分钟.(3)自学方法:认真阅读课本,重要的词句和不明白的地方作上记号.(4)自学参考提纲:①回忆长方形面积公式及圆柱体积公式,并完成“思考1”中的填空.②式子Sa ,VS以及10020v,6020v与小学学过的分数有什么不同点和相同点?③上述式子与分数一样都是AB(即A÷B)的形式,因为分数的分子与分母都是整数,所以②中的式子的分子与分母都是整式,并且②中各式的分母都含有字母.④一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.⑤y2x 是分式吗?1π呢?是;不是2.自学:请同学们结合自学提纲进行自学.3.助学:(1)师助生:①明了学情:了解学生的自学进度和自学中存在的问题.②差异指导:帮助学困生理解公式的概念,满足三个条件:a.AB 的形式;b.A、B为整式;c.B中含有字母.(2)生助生:学生之间相互交流帮助.4.强化:(1)概念:什么叫分式?(2)分式和分数的区别和联系.(3)练习:下列各式中,哪些是分式?哪些是整式?x 2;11x-;x-y5;1x y-;3π;1x-1整式:x2,x-y5,3π;分式:11x-,1x y-,1x-11.自学指导:(1)自学内容:教材第128页“思考”到例1.(2)自学时间:8分钟.(3)自学方法:结合自学提纲阅读课文内容.(4)自学参考提纲:①在除法式子A÷B中,除数B应满足的条件是B≠0.想一想,A÷B 可以写成AB的形式,那么分式AB中的分母B应满足的条件是B≠0.②当B≠0时,公式AB才有意义.③自学例1后,完成下列各题.下列分式中的字母满足什么条件时分式有意义?2 a ;11xx-+;2m32m+;1||4x+;2a+b3a b-;221x-.a≠0;x≠1;m≠-23;x为全体实数;b≠3a;x≠±1.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生的自学进度、方法和自学中存在的疑难问题.②差异指导:对学生学习中存在的问题进行分类指导.(2)生助生:对自学过程中存在的问题互相讨论交流.4.强化:在分式A中,分母B≠0时,分式才有意义;反之当B=0时,分B式无意义.三、评价1.学生的自我评价(围绕三维目标):学生代表当众交流自己的学习收获和学后体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、学习成果和存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义时,分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.一、基础巩固(每题20分,共60分)1.列式表示下列各量.公顷.(1)某村有n个人,耕地40公顷,人均耕地面积为40n (2)△ABC的面积为S,BC边长为a,高AD长为2S.a千米/小(3)一辆汽车行驶a千米用b小时,它的平均车速为ab时;一列火车行驶a 千米比这辆汽车少用1小时,它的平均车速为a b-1千米/小时.2.下列式子中,哪些是分式,哪些是整式?两类式子的区别是什么?1x , 3x ,2435b +,253a -,m n m n +-,34 (x+y),2x y-π. 解:分式:1x ,2435b +,m nm n+- 整式:3x ,253a -,34 (x+y), 2x y-π两类式子的区别在于整式的分母中不含字母,而分式的分母中含有字母.3.当x 取什么值时,下列分式有意义? (1)13x ;(2)13x -; (3)x-535x +; (4)2116x +; (5)3||3x -. 解:(1)x≠0;(2)x≠3;(3)x≠-53;(4)x 为全体实数;(5)x≠±3二、综合应用(每题10分,共20分) 4.在什么条件下,下列分式的值为0?(1)1x x -;(2)251x x ++;(3)||55x x --;(4)22456x x x -++解:(1)x=1;(2)x=-5;(3)x=-5;(4)x=2.5.当x 取何值时,分式2224x x x --有意义?x 取何值时,分式的值为0?解:x≠±2,分式有意义.x=0时,分式的值为0.三、拓展延伸(20分)6.c为何值时,分式21 4x c-+总有意义?解:∵x2-4x+c≠0,x2-4x+4+c-4≠0(x-2)2+c-4≠0当c>4时,(x-2)-2+c-4恒大于0,当c>4时,分式21 4x c-+总有意义.15.1.2 分式的基本性质一、新课导入1.导入课题:你知道分数的基本性质吗?由此你是否能联想出分式的基本性质呢?2.学习目标:(1)能说出分式的基本性质.(2)能利用分式的基本性质将分式变形.(3)会用分式的基本性质进行分式的约分和通分.3.学习重、难点:重点:分式的基本性质及运用,分式的符号法则.难点:分式基本性质的运用——约分和通分.二、分层学习1.自学指导:(1)自学内容:教材第129页到第130页第15行.(2)自学时间:8分钟.(3)自学方法:回顾分数的基本性质,联想并归纳分式的基本性质.(4)自学参考提纲:①回忆分数的基本性质:一个分数的分子、分母同时乘以(或除以)同一个不为零的数,分数的值不变.2 3=2(6)36⨯⨯4545(9)54549÷=÷=56②判断(正确的打“√”,错误的打“×”)4433c c = (×) 515=55155÷÷ (√) 363644040+4+=(×) 22x -x 11x x x x -=++ (√) ③类比分数的基本性质,得出分式的基本性质.一个分式的分子,分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为:A B=A CBC ••,A B =A CB C÷÷ (C≠0). ④在运用分式的基本性质时应特别注意什么? 要注意分子和分母同时乘(或除以)的这个整式是否为0. 2.自学:同学们根据自学指导进行自学. 3.助学: (1)师助生:①明了学情:让学生说一说,辨一辨,了解学生对分式基本性质的运用情况,特别是乘(或除以)的数(或整式)一定要满足的条件.②差异指导:对部分认识存在困难的学生进行点拨、启发和引导. (2)生助生:相互启发,互助解决疑难问题. 4.强化:(1)分式的基本性质:文字叙述、字母表达. (2)判断正误:1.自学指导:(1)自学内容:教材第130页倒数第7行到例3前的内容.(2)自学时间:5分钟.(3)自学方法:阅读课本内容,结合自学提纲进行自学.不懂的问题做上记号.(4)自学参考提纲:①什么是约分?把一个分式的分子与分母的公因式约去,叫做分式的约分.②约分的依据是什么?约分的依据是分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的数(或式子),分式的值不变.③约分后的分式,其分子与分母没有公因式,这样的分式叫做最简分式.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否弄清楚自学提纲中的问题.②差异指导:对学有困难的学生予以分类指导.(2)生助生:学生之间相互展示交流和帮助.4.强化:(1)分式约分的定义以及最简分式的概念.(2)约分的依据:分式的基本性质.(3)下列各分式,不是最简分式的有D.1.自学指导:(1)自学内容:教材第131页例3.(2)自学时间:5分钟.(3)自学方法:认真阅读课本例3的解答过程,仔细观察每步分子分母变化的目的及依据.(4)自学参考提纲:①约分约去的是公因式,因此,约分要先找出公因式;②如果分子或分母是多项式,就要先对多项式进行因式分解,以便找出分母、分子的公因式,最后约分.③约分结果都要成为最简分式或整式.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否弄清例题中化简分式的思路、方法和过程.②差异指导:对部分学生在学习例题时存在的疑点进行点拨引导.(2)生助生:学生之间相互交流帮助.4.强化:(1)约分要领:约分都是先找分子和分母的公因式(是多项式的还要分解因式),再约去公因式.(2)约分的理论依据是分式的基本性质.(3)约分要求约到最简分式为止.(4)练习:约分1.自学指导:(1)自学内容:教材第131页“思考”到第132页例4 的内容. (2)自学时间:5分钟.(3)自学方法:认真阅读课本,比照分数通分的方法,类比归纳分式通分的方法.(4)自学参考提纲: ①什么叫通分?把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.②通分的依据是什么?分式的基本性质:分式的分子与分母乘(或除以)同一个不等于O 的整式,分式的值不变.③通分的关键是什么? 确定各分式的最简公分母. ④如何确定n 个分式的公分母?一般取各分母的所有因式的最高次幂的积作公分母. ⑤分式2214a b 与36xa b c的最简公分母是12a 2b 3c ,通分后的结果分别是23312bc a b c 23212acx a b c. ⑥分数的约分与通分和分式的约分通分有什么异同点?大家相互交流一下.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否知道找最简公分母的方法及明白通分的依据.②差异指导:帮助部分学困生,如何找最简公分母,如何进行通分,比照分数的通分进行指导.(2)生助生:生生互助交流.4.强化:(1)通分的依据和定义,最简公分母的定义及确定通分的方法.(2)练习:①分式x+y2xy ,2y3x,2x-y6x y的最简公分母为6x2y2,通分后x+y 2xy =22223x y+3xy6x y,2y3x=3222y6x y,2x-y6x y=222x-xy6x y.②分式x2()x y+,2y3()x y-的最简公分母是6(x+y)(x-y).三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果、不足之处进行简要点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):分式的基本性质在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生学习的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.一、基础巩固(第1、2、3、4题每题10分、第5题20分,共60分)1.填空:2.下列等式正确的是(B )3.分式21x x +,221x -,21x x-的最简公分母是x(x+1)(x-1). 4.化简下列分式.5.把下列各式通分.二、综合应用(每题10分,共20分)7.不改变分式的值,把下列分式中分子、分母的各项系数化为整数.三、拓展延伸(每题10分,共20分)15.2分式的运算15.2.1分式的乘除第1课时分式的乘除一、新课导入1.导入课题:通过前面分式的学习,知道分式和分数有很多的相似性,如性质、约分和通分.事实上,在运算上它们也有许多的相似性.今天我们一起类比分数的运算来研究分式的运算,首先学习分式的乘除.2.学习目标:(1)知道并熟记分式乘除法法则.(2)能准确地进行分式的乘除法的计算.(3)通过分式乘除法法则得出体会类比的数学思想方法.3.学习重、难点:重点:分式乘除运算法则.难点:分式乘除运算法则的运用.二、分层学习1.自学指导:(1)自学内容:教材第135页到第136页例1上面的内容.(2)自学时间:8分钟.(3)自学方法:回顾分数乘除运算法则,类比分数的乘除运算法则探讨分式乘除运算法则.(4)自学参考题纲:②类比以上方法,填写:③分式乘法法则:分式乘分式,分子相乘,作为积的分子,分母相乘,作为积的分母,分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.④写出下列各式结果:⑤计算:2.自学:学生结合自学指导自主学习.3.助学:(1)师助生:①明了学情:了解学生能否从分数乘法法则中类比出分式乘法法则.②差异指导:对认知不清的学生进行点拨引导.(2)生助生:同桌间相互交流自学参考提纲的问题,各小组间相互交流帮助.4.强化:(1)分式乘除法法则. (2)对照法则练一练:1.自学指导:(1)自学内容:教材第136页例1到例3. (2)自学时间:10分钟.(3)自学方法:结合例2体会分子、分母是多项式的分式乘除的计算方法,例3中弄清a 2-1与(a -1)2的大小关系.(4)自学参考提纲:①例1中参与乘除运算的两个分式的分子和分母都是单项式,这种分式的乘除运算有何特点?先做乘除法,再进行约分②由例2知,分子、分母是多项式时,通常先因式分解,再约分. ③运算结果应化为最简分式或整式. ④例3是分式的应用问题,其中25001a -<2500(1)a -是怎样来的?除教材上的方法外,还可作差比较大小,即判断25001a --2500(1)a -与0的大小,有兴趣者不妨试一试.解:∵a>1,∴a 2-1>0,(a-1)2>0而(a-1)2-(a 2-1)=-2a+2<0, ∴(a-1)2<a 2-1, ∴25001a -<2500(1)a -. 2.自学:请同学们结合自学指导进行自学. 3.助学: (1)师助生:①明了学情:了解学生是否弄清分式乘除的运算方法和运算步骤.②差异指导:对有困难的学生予以分类指导. (2)生助生:学生之间相互交流和帮助. 4.强化:(1)分式乘除,当分子、分母是多项式时,通常先分解因式再约分.(2)运算结果应为最简分式. (3)对照法则练一练:三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获及学习体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行总结点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种,并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,应将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出式子并计算.一、基础巩固(第1题30分,第2、3、4题每题10分,共60分)2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机工作效率是小拖拉机的工作效率的(C)倍.3.一艘船顺流航行n千米用了m小时,如果逆流速度是顺流速度的pq ,那么这艘船逆流航行t小时走了nptmq千米.4.计算:二、综合应用(每题10分,共20分)三、拓展延伸(20分)7.已知|a-2|+b-3=0,计算a2+abb2·a2-aba2-b2的值.15.2.1分式的乘除第2课时分式的乘除混合运算与分式的乘方一、新课导入1.导入课题:我们学习了分式的乘除法,那么分式的乘除混合运算是怎样进行的?分式的乘方又是怎样进行运算的呢?这就是本节课我们所要学的内容.2.学习目标:(1)掌握分式的乘除混合运算顺序及方法.(2)能说出分式乘方的运算法则,并能运用法则进行分式乘方的运算.3.学习重、难点:重点:分式的乘除混合运算的方法及分式的乘方法则.难点:乘方法则的应用.二、分层学习1.自学指导:(1)自学内容:教材第138页例4.(2)自学时间:5分钟.(3)自学方法:通过类比分数的混合运算得出分式乘除混合运算的方法.(4)自学参考提纲:①分式乘除混合运算,先依据分式的乘除法法则,把分式乘除法统一成乘法.②当分式的分子分母为多项式的应先进行因式分解,然后约去分子分母的公因式,计算结果应为最简分式或整式.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:部分学困生对例4的计算过程中略去了25x2-9=(5x+3)(5x-3)一步会存在理解障碍.②差异指导:对学生学习中存在的问题予以启发指导.(2)生助生:生生间相互交流帮助.4.强化:(1)分式乘除混合运算的顺序及注意的问题.(2)练习:计算:1.自学指导:(1)自学内容:探究分式的乘方法则.(2)自学时间:5分钟.(3)自学方法:回顾分式乘法法则和乘方的意义;注意采用从简单到复杂,从具体到一般的探究方法.(4)自学参考提纲:①思考并填空:(ab )2=22ab,(ab)3=33ab,(ab)8=88ab.②一般地,当n是正整数时,(ab )n=nnab,并证明上述情况.③对②中的等式用文字表述是分式的乘方要把分子、分母分别乘方.④计算:2.自学:同学们结合自学指导进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否知道(ab)n的意义及乘方运算法则.②差异指导:对推导乘方运算法则存在困难的学生予以启发指导.(2)生助生:小组内相互交流、纠错、互助解疑难.4.强化:分式乘方的法则:分式的乘方,把分子和分母分别乘方,用字母表述是:(ab )n=nnab.1.自学指导:(1)自学内容:教材第139页例5.(2)自学时间:3分钟.(3)自学方法:认真观察例题的解答过程,重点关注分式乘方及乘除混合运算顺序.(4)自学参考提纲:①分式的乘方及乘除混合运算的顺序是怎样的?②练习:2.自学:同学们结合自学指导自学.3.助学:(1)师助生:①明了学情:了解学生是否掌握了例题中的运算方法和运算顺序.②差异指导:了解学生学习中存在的困惑,进行分类指导.(2)生肋生:小组间相互交流和解疑.4.强化:分式的混合运算的顺序:先乘方,再乘除.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果、不足之处进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.一、基础巩固(第4题20分,其余每题10分,共50分)1.下列计算中,正确的是(D)4.计算下列各题.二、综合应用(每题15分,共30分)三、拓展延伸(20分)7.当x=1949,求代数式的值时,小聪认为x只要取任一个使原式有意义的值代入都有相同的结果.你认为他说的有道理吗?请说明理由.解:有道理.15.2.2分式的加减第1课时分式的加减一、新课导入1.导入课题:同分母分数加减法法则你能说出来吗?异分母分数加减法法则又是怎样的呢?分式的加减法又该怎样去运算呢?2.学习目标:(1)类比分数的加减法,归纳分式的加减法法则.(2)利用分式加减法法则进行分式加减法运算.3.学习重、难点:重点:分式的加减法法则.难点:分式加减法法则的应用.二、分层学习1.自学指导:(1)自学内容:教材第139页问题3到第140页例6前.(2)自学时间:5分钟.(3)自学方法:回顾异分母分数加减法法则,类比分式的加减法,得出分式的加减法法则,并能用字母表示出来.(4)自学参考提纲:①分式的加减法与分数的加减法类似,它们的实质相同,由此可得分式加减法法法则是同分母分式相加减,分母不变,把分子相加减,异分母分式相加减,先通分,变为同分母分式,再加减.②你能用字母表示分式加减法法则吗?③试一试:2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否能从分数加减法的计算方法类比出分式的加减法法则.②差异指导:着重指导异分母分数(分式)加减法法则的归纳与字母表述,引导学生从异分母分数加减法去思考异分母分式加减法的步骤.(2)生助生:学生之间相互交流和帮助.4.强化:(1)分式加减法法则(文字、符号).(2)计算:1.自学指导:(1)自学内容:教材第140页例6.(2)自学时间:5分钟.(3)自学方法:利用分式加减法进行运算时,先看它们是同分母还是异分母,在计算异分母分式加减时应先做什么?(4)自学参考提纲:①例6中第(1)题是同分母分式加减,把分母不变,分子相加减,得到223x+3yx y -,而分子分母有公因式,必须约分. ②第(2)题是异分母分式加减,先通分变为同分母,最后相加. ③x 222x x+--如何计算?能变为同分母吗?把22-x 的分子分母同乘-1,将负号移到分子上去.2.自学:学生结合自学指导进行自学.3.助学: (1)师助生:①明了学情:了解学生是否掌握或弄清例题中所讲的运算过程,对每步运算的思路、依据是否清楚.②差异指导:对部分阅读理解不够清楚的学生进行点拨、引导. (2)生助生:学生之间相互交流和帮助. 4.强化:(1)分式加减法法则. (2)计算结果应写成最简形式. (3)课本第139页问题3、4的计算方法.(4)计算:三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课教师可采用探究与自主学习相结合的模式来完成,探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.一、基础巩固(每题20分,共60分)1.指出下列各式的最简公分母.解:(1)x(x+1);(2)9a2b;(3)(x+y)2;(4)x(x+1)(x-1).2.计算3.计算二、综合应用(20分)4.计算:三、拓展延伸(10分)15.2.2分式的加减第2课时分式的混合运算一、新课导入1.导入课题:你还记得分数的四则混合运算顺序吗?分式的混合运算是否类似呢?2.学习目标:(1)会进行简单分式的加减乘除运算,能从数的四则运算类比分式的四则混合运算.(2)明确分式混合运算的顺序,熟练地进行分式的混合运算.3.学习重、难点:重点:混合运算运算顺序的确定.难点:通分和约分在计算中的运用.二、分层学习1.自学指导:(1)自学内容:教材第141页例7.(2)自学时间:5分钟.(3)自学方法:回忆有理数的四则混合运算,然后思考分式四则混合运算的顺序.(4)自学参考提纲:①有乘方运算的混合运算的顺序先算乘方,再算乘除,最后算加减,有括号,先算括号里面的.②例7中计算顺序是先乘方,再乘除,后减法③计算结果中如果分子与分母中有公因式,应约去公因式,化成最简分式.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否能从例题计算的每一步中总结出分式混合运算的顺序.②差异指导:对部分运算顺序不清的学生引导阅读和总结.(2)生助生:学生之间相互交流互相帮助.4.强化:(1)分式的混合运算顺序:先乘方,再乘除,然后加减.(2)计算:1.自学指导:(1)自学内容:教材第141页例8.(2)自学时间:5分钟.(3)自学方法:认真阅读计算的每一步变形方法及依据,总结分式混合运算的思路和方法步骤要点.(4)自学参考提纲:的最简公①计算(1)题中有括号,应先算括号里面的,m+2+52m分母是2-m.②计算(2)题中,括号内的分母是多项式,应先因式分解,这样便于确定最简公分母,然后进行通分,再相减,最后将除法统一成乘法,约分后得出结果.2.自学:学生边看例题边围绕自学提纲进行学习.3.助学:(1)师助生:①明了学情:了解学生是否看懂例题中每步计算的依据及方法.②差异指导:指导学生如何将括号内分式进行通分.(2)生助生:学生之间相互交流帮助.三、评价1.学生的自我评价:学生代表交流自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行总结点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思)本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15、1、1 从分数到分式导学案学习目标:1、了解分式产生的背景和分式的概念以及分式与整式概念的区别与联系。

2、掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。

3、以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。

重点: 分式的概念和分式有意义的条件。

难点: 分式的特点和分式有意义的条件。

一、课前热身:1、 什么是整式?2、 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x - ;a 1 ;xy x 2- ;3a ;5 . 3、 自主探究:完成p 2的“思考”,通过探究发现,a s 、sV 、v +20100、v -2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。

4、 归纳:分式的意义: 。

上面所看到的a 1 、x y x 2-、a s 、sV 、v +20100、v -2060都是 。

我们小学里学过的分数有意义的条件是 。

那么分式有意义的条件是 。

二、课堂展示:例1、在下列各式中,哪些是整式?哪些是分式?(1)、5x-7 ;(2)、3x 2-1 ;(3)123+-a b ;(4)、7)(p n m +;(5)、—5 ;(6)、1222-+-x y xy x 。

(7)、72;(8)、cb +54。

例2、p 3的“例1”例3、x 为何值时,下列分式有意义?(1)、1-x x ; (2)、15622++-x x x (3)、242+-a a ;例4、x 为何值时,下列分式的值为0?(1)、11+-x x ;(2)、392+-x x ;(3)、112+-a a (4)11--x x三、随堂练习:p 4的“练习”四、课堂检测:1、下列各式中,(1)yx y x -+(2)132+x (3)x x 13-(4)π22y xy x ++(5)14.3--πb a (6)0.整式是 ,分式是 。

(只填序号)2、当x= 时,分式2+x x 没有意义。

3、当x= 时,分式112+-x x 的值为0 。

4、当x= 时,分式22x x +的值为正,当x= 时,分式1132+-a a 的值非负。

5、甲,乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同而行则b 小时甲追上乙,那么甲的速度是乙的速度的( )倍.A.b b a + B.b a b + C.a b a b -+ D.a b a b +-6、“循环赛”是指参赛选手间都要互相比赛一次的比赛方式.如果一次乒乓球比赛有x 名选手报名参加,比赛方式采用“循环赛”,那么这次乒乓球比赛共有 场7、使分式63||2---x x x 没有意义的x 的取值是( )A.―3、B.―2、C. 3或―2、D. ±3五、小结与反思:15.1、2分式的基本性质(1)学习目标:1、能类比分数的基本性质,推出分式的基本性质。

2、理解并掌握分式的基本性质,能进行分式的等值变形。

3、通过类比分数的基本性质,推出分式的基本性质,在学生已有数学经验的基础上,提高学生学数学的乐趣。

重点:分式的基本性质及其应用。

难点:利用分式的基本性质,判断分式是否有意义。

一、预习新知:1、 小学里学过的分数的基本性质的内容是什么?2、 分解因式(1)x 2-2x (2)3x 2+3xy3、 计算:(1) b (a+b ) (2)(3x 2+3xy )÷3x4、 你能通过小学里学过的分数的基本性质猜想分式的基本性质吗?试一试。

5、 自主探究:p 5的“思考”。

归纳:分式的基本性质: 用式子表示为 。

二、课堂展示:1、 例1、p 5的“例2”2、 例2、下列分式的变形是否正确?为什么?(1)2x xy x y = 、 (2)222)(ba b a b a b a --=+-。

3、 例3、不改变分式的值,使下列分式的分子与分母都不含“—”号:(1)b a 2-、(2)yx 32-、(3)n m 43-、(4)—n m 54-。

4、 例4、不改变分式的值,使分式b a b a +-32232的分子与分母各项的系数化为整数。

三、随堂练习:1、 不改变分式的值,使下列分式的分子与分母都不含“—”号:(1)b a 32--、(2)yx 23-、(3)—a x 22-。

2、填空:(1)aby a xy =、(2)z y z y z y x +=++2)(3)(6。

四、课堂检测:1、不改变分式的值,使下列分式的分子与分母都不含“—”号:(1)n m 2-= 、(2)—2b a -= 。

2、填空:(1))1(1m ab m --=ab (2)2)2(422-=+-a a a 、(3)ab b ab ab =++332 3、若把分式yx xy -中的x 、y 都扩大3倍,那么分式的值是 。

4、不改变分式的值,使下列分式的分子与分母的最高次项的系数化为正数。

(1)121--+x x 、(2)322+--x x 、(3)11+--x x 。

5、 下列各式的变形中,正确的是 A. 2a a ab a a b -=- B.c b ac ab =--11 C. 1313-=--b a b a D.y x y x 255.0= 6、 下面两位同学做的两种变形,请你判断正误,并说明理由. 甲生:2222)()())((y x y x y x y x y x y x y x +-=++-=+-; 乙生:2222)())(()(y x y x y x y x y x y x y x --=-+-=+-五、小结与反思:15、1、2分式的基本性质(2)——(约分)学习目标:1、进一步理解分式的基本性质,并能用其进行分式的约分。

2、了解最简分式的意义,并能把分式化成最简分式。

3、通过思考、探讨等活动,发展学生实践能力和合作意识。

重点:分式的约分。

难点:利用分式的基本性质把分式化成最简分式。

一、预习新知:1、分式的基本性质的内容是什么?并用式子表示出来。

2、计算:15265⨯ ,运算中应用了什么方法?这个方法的依据是什么? 3、分解因式:(1)x 2—y 2 、(2)x 2+xy 、(3)9a 2+6ab+b 2 、(4)x 2+x-6 。

猜想利用分式的基本性质能对分式进行上面“2”的运算吗?自主探究:p 6的“思考”。

归纳:分式的约分:最简分式:二、课堂展示:1、例1、p 6的“例3”通过上面的约分,你能说出分式进行约分的关键是什么?2、例2、约分:(1)66522-++-m m m m 、 (2)21415222-+--m m m m 、(3)99622-++x x x 。

三、随堂练习:1、 p 8的“练习”中的1 。

2、约分:(1)66522-++-m m m m 、(2)21415222-+--m m m m 、(3)22222yxy x y x ++-、(4)b a ab 3124 。

四、课堂检测:1、约分:(1)d b a bc a 10235621-、(2)224202525yxy x y x +--、 (3)1681622++-a a a 、 (4)7017501522+++-m m m m 、(5)mm m m -+-2223 。

五、小结与反思:15、1、2分式的基本性质(3)——(通分)学习目标:1、了解分式通分的步骤和依据。

2、掌握分式通分的方法。

3、通过思考、探讨等活动,发展学生实践能力和合作意识。

重点:分式的通分。

难点:准确找出不同分母的分式的最简公分母。

一、预习新知:1、分式的基本性质的内容是什么?并用式子表示出来。

2、计算:3121+ ,运算中应用了什么方法?这个方法的依据是什么? 3、计算:(1)n (m+p ) (2)2x (x+5) (3)2xy (x —y )4、猜想:利用分式的基本性质能对不同分母的分式进行通分吗?自主探究:p 7的“思考”。

归纳:分式的通分:二、课堂展示:例1、p 7的“例4”。

最简公分母: 通分的关键是准确找出各分式的例2、分式22(1)x x --,323(1)x x --,51x -的最简公分母( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )3 例3、求分式b a -1、22b a a -、ba b +的最简公分母 ,并通分。

三、随堂练习:p 8的“练习”的2.四、课堂检测:1、通分:(1)bc a y ab x 229,6、 (2)16,12122-++-a a a a 、(3)x x x x 32,1,1+ 。

2、 通分:(1)a a a --11,1 、(2)2,422+-x x x 、(3)bc a b ab a 215,32- 。

3、 分式121,11,121222++-+-a a a a a 的最简公分母是( ) A.22)1(-a B.)1)(1(22+-a a C.)1(2+a D.4)1(-a五、小结与反思;。

相关文档
最新文档