西师版数学六年级上册期末复习知识点及复习计划
西师版数学六年级上册期末复习知识点及复习计划
西师版六年级数学上册复习计划学情分析学生对于分数的理解、运算及解决问题等方面容易出错,可能由于粗心或计算能力比较差,经常出错。
另外圆的周长和面积计算也不是很熟练,再者有一部分学生浮躁、懒散、不完成作业、学习态度不够端正,这都是复习过程中值得引起注意的地方。
复习目的1、使学生进一步理解和掌握所学知识,使之更加系统和完善。
2、使学生进一步巩固和提高所学知识,并能应用所学知识解决一些实际问题。
3、使学生打好数学基础,提高学习能力,培养学习习惯,做好中小衔接准备。
复习目标1、带领学生按单元整理复习,巩固基础知识。
教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的知识网络。
例如应用题的复习,可由简单的分数应用题链接到稍复杂的复合应用题,将知识整合链接起来,进一步理解数量之间的关系,提高分析解答应用题的能力。
2、加强计算能力的训练平时教学中发现学生的计算能力普遍较低,特别是一些学困生,所以在复习的时候要特别加强计算能力的训练。
学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。
让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。
3、加强与实际的联系适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。
4、讲练结合有讲有练,在练中发现问题。
5、分层指导针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层。
复习重点本册的重点是分数乘除法、分数应用题以及圆。
1.使学生牢固地掌握本学期所学的概念,法则、公式,能用来指导计算和解决一些实际问题。
2.通过复习,使学生能比较熟练地计算分数乘法和分数除法,能正确地计算分数四则混合运算式题。
3.能正确地解答分数应用题,进一步提高分析判断、推理能力。
4.认识圆,掌握圆的特征,掌握圆的周长和面积、计算公式,并能正确的计算。
西师版数学六年级知识点
西师版数学六年级知识点一、整数的概念与运算整数是由正整数、零和负整数组成的数集。
在整数中,有加法、减法、乘法和除法等基本运算。
1. 整数的表示方法整数可以用数轴、加法和减法的相互关系来表示。
在数轴上,正整数、零和负整数位于不同的位置。
2. 整数的加法和减法整数的加法是对应数轴上的数的向右平移,而减法则是向左平移。
3. 整数的乘法和除法整数的乘法是在数轴上作大小的比较;整数的除法是通过乘法的逆运算得到的。
二、小数的概念与运算小数是由整数部分和小数部分组成的数。
小数可以是有限小数或无限循环小数。
1. 小数的表示方法小数可以用数轴和分数的相互关系来表示。
在数轴上,小数位于整数之间。
2. 小数的加法和减法小数的加法和减法与整数类似,首先对齐小数点,然后按照位数进行运算。
3. 小数的乘法和除法小数的乘法和除法也与整数类似,注意保持小数点位置的规律。
三、分数的概念与运算分数是由整数和分母组成的数。
分数可以表示部分的数量或比值关系。
1. 分数的表示方法分数可以用数轴和小数的相互关系来表示。
在数轴上,分数位于整数之间。
2. 分数的加法和减法分数的加法和减法需要先找到公共分母,然后按照通分的原则进行运算。
3. 分数的乘法和除法分数的乘法直接相乘分子与分母,除法则是乘以倒数。
四、图形的认识与计算图形是由几何形状组成的可视化对象,可以用来表示空间关系和数量关系。
1. 平面图形的认识平面图形包括直线、线段、射线、角、三角形、四边形、圆等。
通过观察图形的边和角可以判断其性质。
2. 图形的面积和周长图形的面积是表示图形所占的平面区域,周长是表示图形边界的长度。
通过公式或直接计算可以求得图形的面积和周长。
3. 空间图形的认识空间图形包括立体图形和曲面图形。
立体图形有正方体、长方体、棱柱、棱锥等。
曲面图形有球面、圆柱面、锥面等。
五、数据的收集与分析数据是用来表示事物特征和数量关系的信息。
对数据的收集和分析可以得到有关事物的结论。
西师版六年级数学知识点总结
西师版六年级数学知识点总结
摘要:
1.西师版六年级数学知识点总结的内容
2.西师版六年级数学的知识点分类
3.西师版六年级数学的知识点详解
正文:
西师版六年级数学知识点总结涵盖了多个重要的数学领域,旨在帮助学生全面掌握和巩固小学阶段的数学知识,为初中学习打下坚实基础。
本文将从知识点分类和详解两个方面对西师版六年级数学知识点进行总结。
一、西师版六年级数学的知识点分类
1.数与代数
2.几何与测量
3.统计与概率
4.综合与实践
二、西师版六年级数学的知识点详解
1.数与代数
(1)整数与分数
(2)小数与百分数
(3)正负数与绝对值
(4)四则运算与运算定律
(5)方程与不等式
(6)代数式与代数方程
2.几何与测量
(1)平面图形的性质
(2)空间图形的认识
(3)三角形与四边形
(4)圆与圆周角
(5)面积与体积
(6)角度与测量
3.统计与概率
(1)数据的收集与整理
(2)图表的制作与解读
(3)概率的基本概念
(4)事件的概率
(5)条件概率与独立事件
4.综合与实践
(1)数学问题解决
(2)数学建模
(3)数学实验
(4)数学游戏
(5)数学综合应用
通过以上对西师版六年级数学知识点的总结,我们可以发现这个阶段的数学知识涵盖了多个领域,既有基本的数与代数,也有实际应用的几何与测量。
学生需要掌握这些知识点,才能在以后的学习中取得更好的成绩。
西师大版六年级数学上册总复习全册知识点归纳汇总
西师版小学数学六年级(上)知识点一、分数乘、除法(第1、3单元):(一)分数乘法1、分数乘法的意义:(1)与整数乘法相同,是求几个相同加数的和的简便计算(2)求一个数的几分之几是多少强调:根据意义写算式可以交换因数的位置(可列两个算式),但根据算式说意义不能交换因数的位置来说意义,只能像上面那样说。
2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的要先约分再计算,这样更简便;遇到整数,把整数看作分母是1的分数。
3、两个因数的积与其中一个因数比较大小,关键看另一个因数:另一个因数大于1,积就更大;另一个因数小于1,积就更小。
4、打折:如一折表示现价是原价的十分之一,3.5折表示现价是原价的百分之三十五。
(二)分数除法:1、倒数的认识:(1)倒数的意义:乘积是1的两个数互为倒数。
【强调:倒数表示两个数之间的关系,它们具有相互依存的特点,不能单独说一个数是倒数。
】(2)求一个数的倒数的方法:分子、分母调换位置。
【若遇到小数、带分数时,要先化成假分数,再求它的倒数;遇到整数就把整数看作分母是1的分数。
】(3)1的倒数是1,0没有倒数。
2、分数除法的意义:与整数除法相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】4、两个数的商与被除数比较大小,关键看除数:除数大于1,商就更小;除数小于1,商就更大。
【与乘法恰好相反】二、分数混合运算及解决问题(第6单元):(一)分数混合运算的运算顺序与整数混合运算的运算顺序相同(加减法为第一级运算,乘除法为第二级运算)1、只有加减法或只有乘除法,要从左往右依次计算;2、既有加减法又有乘除法,先算乘除法后算加减法;3、如果有括号,先算小括号里的,再算中括号里的,最后算括号外的。
(二)分数加减乘除法的计算方法:1、分数加减法计算:如果分母不同,要先通分,然后分母不变,把分子相加减。
西师大版六年级数学上册全册知识点汇总
西师大版六年级数学上册全册知识点汇总一分数乘法1.⑴分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
分数乘整数,用分数的分子与整数相乘的积作分子,分母不变。
结果不是最简分数的,要约分,为了简化计算,可以先约分,再计算。
⑵求一个数的几分之几是多少,用乘法计算,即用这个数×几分之几。
一个数乘分数的意义就是求这个数的几分之几是多少。
分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
结果不是最简分数的,要约分,为了简化计算,可以先约分,再计算。
分数乘整数可以看作分数乘分母为1的分数。
⑶两个数相乘,如果一个因数等于0,那么积等于0。
两个大于0的数相乘,如果一个因数大于1,那么积大于另一个因数;如果一个因数等于1,那么积等于另一个因数;如果一个因数小于1,那么积小于另一个因数。
2.⑴“求一个数的几分之几是多少”的应用题的解题方法是:用乘法计算,即用这个数×几分之几。
⑵“连续求一个数的几分之几是多少”的应用题的解题方法是:第一种:用已知数量(原始单位“1”的量)依次乘已知各分率。
第二种:先把已知各分率相乘,求出所求数量占已知数量(原始单位“1”的量)的分率,再用已知数量(原始单位“1”的量)乘这个分率。
⑶“按原价的几分之几出售”的应用题的解题方法是:商品的现价=原价×几分之几;降低的价钱=原价-现价=原价-原价×几分之几=原价×(1-几分之几)。
几折就是零点几或十分之几。
二圆1.⑴①圆是由一条曲线围成的图形。
通常用圆规画圆,用圆规的一只脚固定在一个点上,另一只脚绕着这个点旋转1圈,就能画出一个圆。
②画圆时,固定的点是圆心,圆心一般用字母O表示。
圆心决定圆的位置。
③圆心到圆上任意一点的线段是半径,半径一般用字母r表示。
圆有无数条半径;在同圆或等圆中,所有半径的长度都相等;画圆时,圆规的两只脚之间的距离等于半径的长度;半径决定圆的大小。
西师版数学六年级上册期末复习知识点
西师版数学六年级上册期末复习知识点图形一、认识圆形1、圆的定义:圆是由封闭的曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次;折痕相交于圆中心的一点;这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开;两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置;半径确定圆的大小。
6、在同圆或等圆内;有无数条半径;有无数条直径。
所有的半径都相等;所有的直径都相等。
7.在同圆或等圆内;直径的长度是半径的2倍;半径的长度是直径的。
用字母表示为:d=2r或r= d8、轴对称图形:如果一个图形沿着一条直线对折;两侧的图形能够完全重合;这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形;都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号;与直尺0刻度对齐;在直尺上滚动一周;求出圆的周长。
发现一般规律;就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数;我们把它叫做圆周率。
用字母π(pai) 表示。
(1)、一个圆的周长总是它直径的3倍多一些;这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时;一般取π ≈ 3.14。
(2)、在判断时;圆周长与它直径的比值是π倍;而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C= πd —→ d = C ÷π或C=2πr —→ r = C ÷2π5、在一个正方形里画一个最大的圆;圆的直径等于正方形的边长。
西师版小学数学六年级上册知识点总结
西师版小学数学六年级上册知识点总结六年级数学上册知识点总结一、分数乘法1.分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
分数乘整数的计算方法是将分数的分子与整数相乘的积作分子,分母不变。
结果不是最简分数的,需要约分。
为了简化计算,可以先约分再计算。
分数乘整数可以看作分数乘分母为1的分数。
2.求一个数的几分之几是多少,可以用乘法计算,即用这个数乘以几分之几。
分数乘分数的计算方法是将分子相乘的积作分子,分母相乘的积作分母。
结果不是最简分数的,需要约分。
为了简化计算,可以先约分再计算。
3.两个数相乘,如果一个因数等于1,那么积等于另一个因数;如果一个因数大于1,那么积大于另一个因数;如果一个因数小于1,那么积小于另一个因数。
二、圆1.圆是由一条曲线围成的图形。
通常用圆规画圆,用圆规的一只脚固定在一个点上,另一只脚绕着这个点旋转1圈,就能画出一个圆。
2.画圆时,固定的点是圆心,圆心一般用字母O表示。
圆心决定圆的位置。
圆心到圆上任意一点的线段是半径,半径一般用字母r表示。
圆有无数条半径;在同圆或等圆中,所有半径的长度都相等;画圆时,圆规的两只脚之间的距离等于半径的长度;半径决定圆的大小。
3.通过圆心并且两端都在圆上的线段是直径,直径一般用字母d表示。
圆有无数条直径;在同圆或等圆中,所有直径的长度都相等;圆中最长的线段是直径;直径也决定圆的大小。
在同圆或等圆中,直径的长度等于半径的长度的2倍,半径的长度等于直径的长度的一半,用字母表示为:d=2r或r=d/2.4.圆是轴对称图形,圆有无数条对称轴,每条直径所在的直线都是圆的对称轴。
5.顶点在圆心的角是圆心角。
圆上两点之间的部分叫做弧。
由圆心角的两条边和圆心角所对的弧围成的图形是扇形。
扇形的大小与扇形的半径和圆心角的大小有关。
在同一个圆中,扇形的大小与扇形的圆心角的大小有关。
扇形是轴对称图形,有1条对称轴,圆心角的角平分线是扇形的对称轴。
西师大版六年级数学上册总复习全册知识点归纳汇总
西师版小学数学六年级(上)知识点一、分数乘、除法(第1、3单元):(一)分数乘法1、分数乘法的意义:(1)与整数乘法相同,是求几个相同加数的和的简便计算(2)求一个数的几分之几是多少强调:根据意义写算式可以交换因数的位置(可列两个算式),但根据算式说意义不能交换因数的位置来说意义,只能像上面那样说。
2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的要先约分再计算,这样更简便;遇到整数,把整数看作分母是1的分数。
3、两个因数的积与其中一个因数比较大小,关键看另一个因数:另一个因数大于1,积就更大;另一个因数小于1,积就更小。
4、打折:如一折表示现价是原价的十分之一,3.5折表示现价是原价的百分之三十五。
(二)分数除法:1、倒数的认识:(1)倒数的意义:乘积是1的两个数互为倒数。
【强调:倒数表示两个数之间的关系,它们具有相互依存的特点,不能单独说一个数是倒数。
】(2)求一个数的倒数的方法:分子、分母调换位置。
【若遇到小数、带分数时,要先化成假分数,再求它的倒数;遇到整数就把整数看作分母是1的分数。
】(3)1的倒数是1,0没有倒数。
2、分数除法的意义:与整数除法相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】4、两个数的商与被除数比较大小,关键看除数:除数大于1,商就更小;除数小于1,商就更大。
【与乘法恰好相反】二、分数混合运算及解决问题(第6单元):(一)分数混合运算的运算顺序与整数混合运算的运算顺序相同(加减法为第一级运算,乘除法为第二级运算)1、只有加减法或只有乘除法,要从左往右依次计算;2、既有加减法又有乘除法,先算乘除法后算加减法;3、如果有括号,先算小括号里的,再算中括号里的,最后算括号外的。
(二)分数加减乘除法的计算方法:1、分数加减法计算:如果分母不同,要先通分,然后分母不变,把分子相加减。
六年级上册数学西师大版知识要点(全)
②把一个圆平均分成若干偶数份,剪开后可以拼成一个近似平行四边形,这个近似平行四边形的底相当于圆的周长的一半,高相当于圆的半径,因为平行四边形的面积=底×高,所以圆的面积=C×r=×2πr×r=πr²。
③周长都相等的所有四边形中,正方形的面积最大;周长都相等的所有平面图形中,圆的面积最大。
面积都相等的所有四边形中,正方形的周长最短;面积都相等的所有平面图形中,圆的周长最短。
⑵①扇形的面积的计算公式是:扇形的面积=圆的面积×;半圆的面积的计算公式是:半圆的面积=圆的面积的一半。
②圆环的面积的计算公式是:圆环的面积=外圆的面积-内圆的面积=外圆的半径的平方×圆周率-内圆的半径的平方×圆周率=(外圆的半径的平方-内圆的半径的平方)×圆周率,用字母表示为:,其中外圆的半径=内圆的半径+环宽,外圆的直径=内圆的直径+环宽×2。
③求一个不规则图形的面积,可以将其转化为求一个规则图形的面积,或将其转化为求几个规则图形的面积的和或差。
三分数除法1.⑴①乘积是1的两个数互为倒数。
例如:因为×=1,所以与互为倒数,的倒数是。
因为×=1,所以与互为倒数,的倒数是。
因为1×1=1,所以1与1互为倒数,1的倒数是1。
因为0乘任何数都不等于1,所以0没有倒数。
②求一个非0数的倒数,只要把这个非0数的分子和分母交换位置就可以了。
例如:的倒数是,的倒数是38,27的倒数是,的倒数是,的倒数是,3.65的倒数是,a的倒数是(a≠0)。
③0没有倒数;-1和1的倒数等于它本身;小于-1的数和大于0且小于1的数的倒数大于它本身;大于-1且小于0的数和大于1的数的倒数小于它本身。
⑵①加减法的关系:加数+加数=和,一个加数=和-另一个加数;被减数-减数=差,被减数=差+减数,减数=被减数-差。
乘除法的关系:因数×因数=积,一个因数=积÷另一个因数;在没有余数的除法里,被除数÷除数=商,被除数=商×除数,除数=被除数÷商;在有余数的除法里,余数小于除数,被除数=商×除数(单位“1”的量)是未知的,其常用解题方法是:先设这个数为x再列方程解答。
西师版六年级上册复习资料
西师版六年级上册复习资料作为小学生的家长,我们一定不会忘记给孩子们购买教材。
而在学校教学中,一般都会强调课下的复习,只有经过一定时间的巩固,我们才能真正理解并掌握知识点。
尤其对于小学六年级的学生,更是需要有一定的学习计划和方法,来完成学业。
本文将为大家整理一些西师版六年级上册的复习资料,希望能够帮助到大家。
数学方面,六年级上册主要涉及到了小数、分数、三角形和守恒原理等知识点。
一、小数方面的复习小数是我们在日常生活中常见的数字形式,掌握这一知识点对于我们的日常生活有着极大的帮助。
在小数的学习中,需要掌握小数的大小比较、小数的加减乘除等基本运算方法。
例如:小数的大小比较。
我们可以通过将小数转化为分数,来进行比较。
如果两个小数的分数相同,则可以比较它们的分子。
另外,通过小数点的位置,也能判断两个小数的大小。
例:0.5和0.62,我们可以把它们转化为分数 1/2 和 31/50 进行比较,将它们通分后,比较分子的大小即可得出大小关系。
二、分数方面的复习与小数相同,分数也是我们在日常生活中常见的数字形式。
在分数的学习中,需要掌握分数的四则运算、分数比较大小等基本操作。
三、三角形方面的复习作为初中数学的基础,三角形在六年级上册中也有简单的介绍。
在三角形的学习中,需要掌握三角形的分类、三角形的内角和、三角形的面积等知识点。
在课本中,还有许多形象的图示和例题,供大家参考。
四、守恒原理方面的复习在学习物理时,守恒原理是一个重要而基础的知识点。
在六年级上册中,守恒原理也有简单的介绍。
在这一知识点的学习中,需要掌握质量守恒、能量守恒、动量守恒等基本原理,并能够应用到具体实例中。
以上就是几个六年级上册的主要知识点,相信在大家的共同努力下,孩子们一定能够稳扎稳打地完成学习任务,取得良好的成绩。
西师版六年级数学全册知识点汇总
第一部分分数乘法1、分数乘法的意义:(1)与整数乘法相同,是求几个相同加数的和的简便计算【如:A×5表示5个A 的和是多少或A的5倍是多少】;(2)求一个数的几分之几是多少【8×几分之几表示8的几分之几是多少】。
强调:根据意义写算式可以交换因数的位置(可列两个算式),但根据算式说意义不能交换因数的位置来说意义,只能像上面那样说。
2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的要先约分再计算,这样更简便;遇到整数,把整数看作分母是1的分数。
3、两个因数的积与其中一个因数比较大小,关键看另一个因数:另一个因数大于1,积就更大;另一个因数小于1,积就更小。
4、打折:如一折表示现价是原价的(1/10或10/100 ),3.5折表示现价是原价的 35/100第二部分1、倒数的认识:(1)倒数的意义:乘积是1的两个数互为倒数。
【强调:倒数表示两个数之间的关系,它们具有相互依存的特点,不能单独说一个数是倒数。
】(2)求一个数的倒数的方法:分子、分母调换位置。
【若遇到小数、带分数时,要先化成假分数,再求它的倒数;遇到整数就把整数看作分母是1的分数。
】(3)1的倒数是1,0没有倒数。
2、分数除法的意义:与整数除法相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】4、两个数的商与被除数比较大小,关键看除数:除数大于1,商就更小;除数小于1,商就更大。
【与乘法恰好相反】(跟分数乘法正好相反)第三部分(一)圆的认识1、圆是由曲线围成的一种平面图形。
2、圆各部分的名称:(1)圆心(O):画圆时,固定的点是圆心。
(2)半径(r):圆上任意一点到圆心的线段是半径。
(3)直径(d):通过圆心且两端都在圆上的线段是直径。
3、圆的特征:(1)在同一个圆里,半径有无数条,长度都相等。
(完整版)西师版小学数学六年级毕业总复习知识点
总复习(数与代数概念部分)一、数的意义:1、整数:像—3、—2、—1、0、1、2、3……这样的数统称为整数。
整数的个数是无限的。
没有最小的整数,也没有最大的整数,自然数是整数的一部分。
2、自然数:用来表示物体个数的数。
像1、2、3、4、5……叫做自然数。
一个物体也没有用0表示。
自然数的个数是无限的,最小的自然数是0,没有最大的自然数。
3、小数:把整数“1”平均分成10份、100份、1000份……这样的一份或几份的数是十分之几、百分之几、千分之几……可以用小数表示。
4、小数的分类:(1)纯小数和带小数:整数部分是o 的小数叫做纯小数,整数部分不是o 的小数叫做带小数。
(2)有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。
(3)循环小数:一个小数,从小数部分的某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。
(4)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个小数的循环节。
(5)纯循环小数和混循环小数:循环节从小数部分第一位开始的,叫做纯循环小数;循环节不是从第一位开始的,叫做混循环小数。
5、计数单位:个、十、百、千·····以及十分之一、百分之一、千分之一·····都是计数单位。
6、数位:各个计数单位所占的位置叫做数位。
7、十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。
它的特点是每相邻的两个计数单位之间的进率都是“十”就是10个较低的计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”),这种以“十”为基础进位的计数方法,叫做十进制计数法。
8、整数和小数数位顺序表:9、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
(1)分数单位:把单位“1”平均分成若干份,表示这样的一份的数就是这个分数的分数单位。
西师版小学数学六年级上册知识点总结
六年级数学上册知识点总结一分数乘法1.⑴分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
分数乘整数,用分数的分子与整数相乘的积作分子,分母不变。
结果不是最简分数的,要约分,为了简化计算,可以先约分,再计算。
⑵求一个数的几分之几是多少,用乘法计算,即用这个数×几分之几。
一个数乘分数的意义就是求这个数的几分之几是多少。
分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
结果不是最简分数的,要约分,为了简化计算,可以先约分,再计算。
分数乘整数可以看作分数乘分母为1的分数。
⑶两个数相乘,如果一个因数等于0,那么积等于0。
两个大于0的数相乘,如果一个因数大于1,那么积大于另一个因数;如果一个因数等于1,那么积等于另一个因数;如果一个因数小于1,那么积小于另一个因数。
2.⑴“求一个数的几分之几是多少”的应用题的解题方法是:用乘法计算,即用这个数×几分之几。
⑵“连续求一个数的几分之几是多少”的应用题的解题方法是:第一种:用已知数量(原始单位“1”的量)依次乘已知各分率。
第二种:先把已知各分率相乘,求出所求数量占已知数量(原始单位“1”的量)的分率,再用已知数量(原始单位“1”的量)乘这个分率。
⑶“按原价的几分之几出售”的应用题的解题方法是:商品的现价=原价×几分之几;降低的价钱=原价-现价=原价-原价×几分之几=原价×(1-几分之几)。
几折就是零点几或十分之几。
二圆1.⑴①圆是由一条曲线围成的图形。
通常用圆规画圆,用圆规的一只脚固定在一个点上,另一只脚绕着这个点旋转1圈,就能画出一个圆。
②画圆时,固定的点是圆心,圆心一般用字母O表示。
圆心决定圆的位置。
③圆心到圆上任意一点的线段是半径,半径一般用字母r表示。
圆有无数条半径;在同圆或等圆中,所有半径的长度都相等;画圆时,圆规的两只脚之间的距离等于半径的长度;半径决定圆的大小。
④通过圆心并且两端都在圆上的线段是直径,直径一般用字母d 表示。
西师版六年级数学知识点总结
西师版六年级数学知识点总结
西师版六年级数学知识点主要包括以下几个方面:
1. 算数运算:加减乘除的四则运算,包括小数的加减乘除,分数的加减乘除,整数的加减乘除等。
2. 小数与百分数:小数的认识与表示方法,小数加减乘除的运算,百分数的认识与表示方法,百分数的转化与运算等。
3. 分数的认识与运算:分数的基本概念,分数的化简与比较,分数的加减乘除等运算,分数与小数的相互转化等。
4. 数量关系:数与代数的关系,数字与字母的合并运算,方程与应用,整数的认识与运算等。
5. 几何形状:平面图形的认识与性质,对称与相似,三角形的认识与性质,多边形的认识与性质,坐标系与图形等。
6. 数据统计与概率:统计图与分析,常用单位换算,正方体与长方体的认识与性质,数据的收集与整理,概率的初步认识与计算等。
以上是西师版六年级数学的主要知识点总结,通过学习这些知识,可以帮助学生提高数学运算能力,提升对数学的理解和抽象思维能力,并为学习进阶的数学知识打下基础。
最新西师版六年级数学上册期末复习计划
西师版六年级数学上册期末复习计划学情分析学生对于分数的理解、运算及解决问题等方面容易出错,可能由于粗心或计算能力比较差,经常出错.另外圆的周长和面积计算也不是很熟练,再者有一部分学生浮躁、懒散、不完成作业、学习态度不够端正,这都是复习过程中值得引起注意的地方.复习目的1、使学生进一步理解和掌握所学知识,使之更加系统和完善.2、使学生进一步巩固和提高所学知识,并能应用所学知识解决一些实际问题.3、使学生打好数学基础,提高学习能力,培养学习习惯,做好中小衔接准备.复习目标1、带领学生按单元整理复习,巩固基础知识.教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的知识网络.例如应用题的复习,可由简单的分数应用题链接到稍复杂的复合应用题,将知识整合链接起来,进一步理解数量之间的关系,提高分析解答应用题的能力.2、加强计算能力的训练平时教学中发现学生的计算能力普遍较低,特别是一些学困生,所以在复习的时候要特别加强计算能力的训练.学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略.让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算.3、加强与实际的联系适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力.4、讲练结合有讲有练,在练中发现问题.5、分层指导针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层.复习重点本册的重点是分数乘除法、分数应用题以及圆.1.使学生牢固地掌握本学期所学的概念,法则、公式,能用来指导计算和解决一些实际问题.2.通过复习,使学生能比较熟练地计算分数乘法和分数除法,能正确地计算分数四则混合运算式题.3.能正确地解答分数应用题,进一步提高分析判断、推理能力.4.认识圆,掌握圆的特征,掌握圆的周长和面积、计算公式,并能正确的计算.复习难点本册的复习难点是分数应用题具体安排第一阶段:整体复习各个单元基础知识和能力的复习(书上总复习)1、分数乘、除法及其四则混合运算2、稍复杂的分数应用题3、比和按比例分配4、圆的周长和面积5、负数的初步认识和可能性第二阶段:综合练习,讲练结合(综合试卷)给学生一些综合性的测试卷,通过练习发现问题,并及时进行指导.第三阶段:分层复习,查漏补缺给后进生特别的辅导和指导,查漏补缺.给优等生多做一些实践性较强的习题,提高分析解答能力.2017.12.1。
西师版《小学数学六年级上册》复习知识要点
西师版《小学数学六年级上册》复习知识要点1、分数乘以整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算。
一个数乘以分数的意义是求这个数的几分之几是多少。
2、分数乘分数的计算方法:用分子相乘的积做分子,分母相乘的积做分母。
在计算时,可以先约分在计算,结果注意化为最简分数或带分数,不能出现假分数。
3、求一个数的几分之几是多少,用乘法计算,即用单位“1”的量×分率=部分量4、商品打折:把一件商品打几折,即是按商品的十分之几出售,故该商品现价为:原价×折扣,原价为现价÷折扣,折扣为:现价÷原价,但结果表示为分数。
5、圆是由曲线围成的一种封闭的平面图形。
画圆的工具是圆规。
画圆时固定的点是圆心。
圆心一般用字母O表示。
圆心决定圆的位置。
圆上任意一点到圆心的线段是半径,用字母r表示,半径决定圆的大小。
通过圆心并且两端都在圆上的线段是直径,直径一般用字母d表示。
圆的半径和直径都有无数条。
在同圆和等圆中,所有的半径都相等,所有的直径都相等。
直径是半径的2倍。
半径是直径的二分之一。
用字母表示为d=2r; r=d÷26、圆是轴对称图形,每条直径所在的直线是它的对称轴,圆有无数条对称轴。
正方形有4条对称轴;长方形有2条对称轴;等腰三角形有1条对称轴;等边三角形有3条对称轴;等腰梯形有1条对称轴;7、有两条半径组成,顶点在圆心的角叫圆心角。
由圆心角的两条半径和圆心角所对的弧围成的图形叫扇形。
扇形是轴对称图形,它有一条对称轴。
8、围成圆的曲线的长叫圆的周长。
圆的周长除以直径的商叫圆周率,用字母π表示,它是一个无限不循环小数,在计算时一般取3.14.圆周长计算公式C=2πr C=πd,半圆周长C=5.14r 9、如果圆的半径或直径扩大若干倍,周长也扩大相同的倍数;如果圆的半径或直径缩小若干倍,周长也缩小相同的倍数10、圆所占平面的大小叫做圆的面积。
圆的面积计算公式S=πr2,11、如果圆的半径、直径、周长扩大若干倍,面积也扩大该倍数的平方;如果圆的半径、直径、周长缩小若干倍,面积也缩小该倍数的平方。
【强烈推荐】西师版小学数学六年级上册知识点
西师版小学数学六年级上册知识点一、分数乘、除法(第1、3单元):(一)分数乘法1、分数乘法的意义:(1)与整数乘法相同,是求几个相同加数的和的简便计算【如:×5表示5个的和是多少或的5倍是多少】;(2)求一个数的几分之几是多少【8×表示8的是多少】。
强调:根据意义写算式可以交换因数的位置(可列两个算式),但根据算式说意义不能交换因数的位置来说意义,只能像上面那样说。
2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的要先约分再计算,这样更简便;遇到整数,把整数看作分母是1的分数。
3、两个因数的积与其中一个因数比较大小,关键看另一个因数:另一个因数大于1,积就更大;另一个因数小于1,积就更小。
4、打折:如一折表示现价是原价的(或),3.5折表示现价是原价的。
(二)分数除法:1、倒数的认识:(1)倒数的意义:乘积是1的两个数互为倒数。
【强调:倒数表示两个数之间的关系,它们具有相互依存的特点,不能单独说一个数是倒数。
】(2)求一个数的倒数的方法:分子、分母调换位置。
【若遇到小数、带分数时,要先化成假分数,再求它的倒数;遇到整数就把整数看作分母是1的分数。
】(3)1的倒数是1,0没有倒数。
2、分数除法的意义:与整数除法相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】4、两个数的商与被除数比较大小,关键看除数:除数大于1,商就更小;除数小于1,商就更大。
【与乘法恰好相反】二、分数混合运算及解决问题(第6单元):(一)分数混合运算的运算顺序与整数混合运算的运算顺序相同(加减法为第一级运算,乘除法为第二级运算)1、只有加减法或只有乘除法,要从左往右依次计算;2、既有加减法又有乘除法,先算乘除法后算加减法;3、如果有括号,先算小括号里的,再算中括号里的,最后算括号外的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西师版六年级数学上册复习计划学情分析学生对于分数的理解、运算及解决问题等方面容易出错,可能由于粗心或计算能力比较差,经常出错。
另外圆的周长和面积计算也不是很熟练,再者有一部分学生浮躁、懒散、不完成作业、学习态度不够端正,这都是复习过程中值得引起注意的地方。
复习目的1、使学生进一步理解和掌握所学知识,使之更加系统和完善。
2、使学生进一步巩固和提高所学知识,并能应用所学知识解决一些实际问题。
3、使学生打好数学基础,提高学习能力,培养学习习惯,做好中小衔接准备。
复习目标1、带领学生按单元整理复习,巩固基础知识。
教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的知识网络。
例如应用题的复习,可由简单的分数应用题链接到稍复杂的复合应用题,将知识整合链接起来,进一步理解数量之间的关系,提高分析解答应用题的能力。
2、加强计算能力的训练平时教学中发现学生的计算能力普遍较低,特别是一些学困生,所以在复习的时候要特别加强计算能力的训练。
学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。
让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。
3、加强与实际的联系适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。
4、讲练结合有讲有练,在练中发现问题。
5、分层指导针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层。
复习重点本册的重点是分数乘除法、分数应用题以及圆。
1.使学生牢固地掌握本学期所学的概念,法则、公式,能用来指导计算和解决一些实际问题。
2.通过复习,使学生能比较熟练地计算分数乘法和分数除法,能正确地计算分数四则混合运算式题。
3.能正确地解答分数应用题,进一步提高分析判断、推理能力。
4.认识圆,掌握圆的特征,掌握圆的周长和面积、计算公式,并能正确的计算。
复习难点本册的复习难点是分数应用题具体安排第一阶段:整体复习各个单元基础知识和能力的复习(书上总复习)1、分数乘、除法及其四则混合运算2、稍复杂的分数应用题3、比和按比例分配4、圆的周长和面积5、负数的初步认识和可能性第二阶段:综合练习,讲练结合(综合试卷)给学生一些综合性的测试卷,通过练习发现问题,并及时进行指导。
第三阶段:分层复习,查漏补缺给后进生特别的辅导和指导,查漏补缺。
给优等生多做一些实践性较强的习题,提高分析解答能力。
西师版数学六年级上册复习要点数的认识1、负数:0既不是正数,也不是负数。
“-”号不能省略,正数和负数可以用来表示相反意义的量。
2、以前学的:自然数,整数,小数,分数,奇数、偶数,质数、合数,互质数数的运算和解决问题一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a ×c + b× c a×c-b×c=(a-b)×c ;其它:a―b―c=a-(b+c);a-(b-c)=a-b+c =a+c-b ;a÷b÷c=a÷(b×c);a÷b×c=a×c÷b二、分数乘法的解决问题已知单位“1”的量,求单位“1”的几分之几是多少。
(用乘法计算)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率“的”前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍。
求一个数的几分之几是多少:一个数×。
4、写数量关系式技巧:(1)“的” 相当于“×” “占”、“是”、“比”相当于“ =”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1加或减分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1;0没有倒数。
因为1×1=1;0乘任何数都得0,(分母不能为0)4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
四、分数除法1、分数除法的意义:乘法:因数×因数=积除法:积÷一个因数=另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
3、找规律填空:分析相邻数字之间的关系,用加、减、乘、除去试一试。
五、分数除法解决问题已知单位“1”的几分之几是多少,求单位“1”的量。
(用除法计算)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1加或减分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率= 单位“1”的量3、求一个数是另一个数的几分之几:就是一个数÷另一个数4、求一个数比另一个数多(少)几分之几:两个数的相差量÷单位“1”的量或:①求多几分之几:大数÷小数— 1 或(大数—小数)÷小数②求少几分之几:1 —小数÷大数或(大数—小数)÷大数5、工程问题:工作总量看作单位“1”,甲队独做a天完成,那么工作效率就是,乙队独做b天完成,那么工作效率就是,两队合做的天数= 1÷(+)。
有时先独做再合做;先合做再独做,抓住基本公式:工作时间= 工作总量÷工作效率(和)六、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(比值通常用分数表示,也可以用小数或整数)3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程∶时间=速度。
连比如:3∶4∶5读作:3比4比5(∶不是除号)4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、比和除法、分数的联系:比前项比号“:”后项比值一种关系除法被除数除号“÷”除数商一种运算分数分子分数线“—”分母分数值一个数6、根据比与除法、分数的关系,可以理解比的后项不能为0。
(除数、分母也是)体育比赛中出现两队得分是2∶0等,这只是一种记分形式,不表示两个数相除的关系。
(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:(2)用求比值的方法。
注意:最后结果要写成比的形式。
如:15∶10 = 15÷10 = 3/2 = 3∶25.按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
前项+后项=总共的份数路程一定,速度比和时间比成反比。
(如:路程相同,速度比是4∶5,时间比则为5∶4) 工作总量一定,工作效率比和工作时间比成反比。
(如:工作总量相同,工作时间比是3∶2,工作效率比则是2∶3)图形一、认识圆形1、圆的定义:圆是由封闭的曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r= d8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。