人教版七年级数学上册3.3.2去分母

合集下载

初中数学人教版七年级上册3.3.2用去分母解一元一次方程作业课件

初中数学人教版七年级上册3.3.2用去分母解一元一次方程作业课件
自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是已到的客人的
一半走了,他一看十分着急,又说:“嗨,不该走的倒走了!”剩下的人一听,是我们该走啊!又
有剩余客人的三分之一离开了,他着急地一拍大腿:“我说的不是他们.”于是剩下的6个
人也走了,聪明的你知道最开始来了多少客人吗?
答案
7.解:设最开始来了x位客人,
知识点1
解一元一次方程—— 去分母
2−1 −1
- 3 =1去分母,得6x-3-2x-2=6,错在(
2
2. 将方程
)
A.分母的最小公倍数找错
B.去分母时,漏乘某项出错
C.去分母时,分子部分没有加括号
D.去分母时,各项所乘的数不同
答案
2−1 −1
- 3 =1去分母时,两边都乘分母的最小公倍数6,得3(2x-1)-2(x-1)=6,去括号
合并同类项,得7x=19,
19
系数化为1,得x= 7 .
(4)原方程可化为
10
20−8
-1=
,
2
3
去分母,得30x-6=2(20x-8),
去括号,得30x-6=40x-16,
移项,得30x-40x=6-16,
合并同类项,得-10x=-10,
系数化为1,得x=1.
知识点2 利用去分母解一元一次方
羊从后面跟了上来,他问甲:“你赶的这群羊有100只吧?”甲答道:“如果这一群羊加
上1倍,再加上原来羊群的一半,又加上原来这群羊的四分之一,连你牵着的这只肥羊也
算进去,才刚好满100只.”你知道甲放牧的这群羊共有多少只吗?
答案
8.解:设甲放牧的这群羊共有x只.
1
1
依题意,得2x+2x+4x+1=100,

人教版七年级上册数学练习课件-第三章 一元一次方程-3.3 第2课时 去分号

人教版七年级上册数学练习课件-第三章 一元一次方程-3.3 第2课时  去分号

9
能力提升
9.将方程2x- 2 1-x-3 1=1 去分母得到方程 6x-3-2x-2=6,其错误的原因是 ( C)
A.分母的最小公倍数找错 B.去分母时,漏乘了分母为 1 的项 C.去分母时,分子部分的多项式未添括号 D.去分母时,分子未乘相应的数
10
10.解方程02.0x3+0.250-.020.1x=0.1 时,把分母化为整数,得
(2)不可以.理由如下:设挑土的有 x 人.由题意,得 x+43-x=20.解得 x=-3. 2
因为人数不能为负数,所以不符合实际问题,所以扁担数不能为 20 根.
17
思维训练
▪ 19.甲组的4名工人3月份完成的总工作量比此月人均定额的 4倍多20件,乙组的5名工人3月份完成的总工作量比此月人 均定额的6倍少20件.
▪ 注意:①去分母时,方程两边应乘所有分母的最小公倍数, 这样可使计算简便;②去分母时,分母与分数线去掉后,把 分子看作一个整体,若是多项式应用括号括起来;③去分母 时,不含有分母的项也要乘最小公倍数,否则等式不成立. 2
▪ 知识点2 解一元一次方程的一般步骤 ▪ 解一元一次方程的一般步骤包括:去分母、去括号、移项、
第三章 一元一次方程
3.3 解一元一次方程(二)——去括号与去分母
第二课时 去分母
名师点睛
▪ 知识点1 去分母
▪ (1)含分数系数的方程两边都乘同一个数(各个分母的最小公 倍数),使方程中的分母化为1,这样的变形过程叫做去分 母.
▪ (2)去分母的依据是等式的性质2,目的是约去分母,使方程 的系数化成整数.
▪ (1)如果两组工人实际完成的此月人均工作量相等,那么此月 人均定额是多少件?
▪ (2)如果甲组工人实际完成的此月人均工作量比乙组的多2件, 则此月人均定额是多少件?

数学人教版七年级上册解一元一次方程——去分母

数学人教版七年级上册解一元一次方程——去分母

合并同类项得: 97 x 1386
1386 系数化为 1 ,得: x 97
解方程:
3x+1 -2= 3x-2- 2x+3 5 2 10
5(3x+1)-20=3x-2-2(2x+3) 15x+5-20=3x-2-4x-6 15x+4x-3x=-2-6-5+20 16x=7 x=
解:去分母,得 去括号,得 移项,得 合并同类项,得 化系数为1,得
3.3.2 解一元一次方程 ----- 去分母
苏雪霞
温 故 知 新
1、解下列方程: 2(2x+1)=1-5(x-2)
解:去括号,得 4x+2=1-5x+10 移项,得 4x+5x=1+10-2 合并,得 9x=9 系数化1,得 x=1
2、解一元一次方程的一般步骤:
去括号
移 项 合并同类项
系数化为1
依据
比一比,谁做得更快
3 4 x 2 5 x ( 1 ) 1 7 3
.
(1) 解方程:2x
1 x 1 3 6
4 x 1 1 2 5
(2) 解方程: x 3
去分母时应注意:
(1)方程两边每一项都 要乘以各分母的最小 公倍数,不要漏乘 (2)去分母后如分子是 一个多项式,应把它 看作一个整体,添上 括号
英国伦敦博物馆保存着一部极其珍贵的文物 ----纸莎 知道吗 ?
草文书.这是古代埃及人用象形文字写在一种特殊的 草上的著作,至今已有三千七百多年.书中记载了许多 与方程有关的数学问题.其中有如下一道著名的求未 知数的问题:
一个数,它的三分之二,它的一半,它的七分 之一,它的全部,加起来总共是33.试问这个 数是多少?
想一想

人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计

人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计

人教版数学七年级上册3.3《解一元一次方程(二)——去括号与去分母》教学设计一. 教材分析《人教版数学七年级上册3.3解一元一次方程(二)——去括号与去分母》这一节主要是让学生掌握解一元一次方程中的一种方法——去括号与去分母。

在学习了解一元一次方程的基础知识之后,本节内容是对学生解题能力的进一步提升。

通过本节内容的学习,学生能够熟练掌握去括号与去分母的步骤和技巧,为后续的学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于解一元一次方程的基本步骤和方法已经有了一定的了解。

但是,学生在实际操作中可能会遇到去括号和去分母的困惑。

因此,在教学过程中,教师需要引导学生理解去括号和去分母的原理,并通过大量的练习让学生熟练掌握操作步骤。

三. 教学目标1.让学生掌握去括号与去分母的步骤和技巧。

2.培养学生解决实际问题的能力,提高学生的数学素养。

3.通过对本节内容的学习,使学生能够灵活运用所学的知识,解决更复杂的问题。

四. 教学重难点1.去括号与去分母的步骤和技巧。

2.在实际问题中,如何正确运用去括号与去分母的方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题引导学生思考,提供典型案例让学生分析,小组讨论使学生相互学习,共同提高。

六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,让学生思考如何解决这类问题。

2.呈现(10分钟)呈现去括号与去分母的步骤和技巧,引导学生理解并掌握。

3.操练(10分钟)学生分组进行练习,教师巡回指导,及时解答学生的疑问。

4.巩固(10分钟)针对学生练习中出现的问题,进行讲解和总结,使学生加深对去括号与去分母方法的理解。

5.拓展(5分钟)提供一些拓展问题,让学生思考如何在实际问题中运用去括号与去分母的方法。

6.小结(5分钟)对本节内容进行总结,强调重点和难点,提醒学生注意事项。

7.家庭作业(5分钟)布置一些练习题,让学生巩固所学知识。

七年级上册数学教案设计3.3第2课时利用去分母解一元一次方程1(附模拟试卷含答案)

七年级上册数学教案设计3.3第2课时利用去分母解一元一次方程1(附模拟试卷含答案)

第2课时 利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢? 2.求下列几组数的最小公倍数: (1)2,3; (2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16.解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3, 去分母得15x -3(x -2)=5(2x -5)-45,去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76, 把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可. 解:1-2x 6+x +13=1-2x -142(1-2x)+4(x +1)=12-3(2x -1) 2-4x +4x +4=12-6x +3 6x =9, x =32. 把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1?(2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0,去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x 人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x 人,由题意得方程:x 40-x +4050=1,解得x =360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.两点之间,直线最短2.下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点.A.1个 B.2个 C.3个 D.4个3.如图,直线l是一条河,P,Q是两个村庄。

人教版七年级数学上册3.3解一元一次方程-去分母(教案)

人教版七年级数学上册3.3解一元一次方程-去分母(教案)
-实际问题的关联:学生需要学会如何将实际问题的条件转化为方程中的数学关系,这对于一些学生来说是一个挑战。
-举例:如果问题涉及两个物体的速度和距离,学生需要能够将“速度和”与“距离”之间的关系表达为方程。
在教学过程中,需要特别注意这些难点,采取分步骤讲解、示例演示、小组讨论等方法,帮助学生逐步理解和掌握。通过反复练习和实例分析,确保学生能够透彻理解核心知识,克服学习难点。
3.重点难点解析:在讲授过程中,我会特别强调通分和去分母这两个重点。对于难点部分,如处理多个分母的情况,我会通过具体例子和步骤解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与去分母解方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际操作来演示如何去分母解方程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了去分母解一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“去分母解方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

3.3解一元一次方程(二)第2课时去分母(导学案)七年级数学上册(人教版)

3.3解一元一次方程(二)第2课时去分母(导学案)七年级数学上册(人教版)

3.3 解一元一次方程(二)第2课时去分母导学案1. 掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.★知识点1:去分母解一元一次方程通过去分母使方程的系数化为整数,减少分数参与计算,降低计算的难度,另外把握去分母的理论依据是等式的性质2,两边同乘以的数应为所有分母的最小公倍数.注意:①去分母时要注意分数线的括号作用;②去分母时不要漏乘不含分母的项.★知识点2:解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a转化.1. 解一元一次方程的过程中,去分母的具体做法是:,依据是.2. 解一元一次方程的一般步骤是:①,②,③,④,⑤.英国伦敦博物馆保存着一部极其珍贵的文物——纸草书,这是古代埃及人用象形文字写在一种特殊的草上的著作,它于公元前1700年左右写成,至今已有三千七百多年.草片文书中记载了许多有关数学的问题,其中有如下一道著名的求未知数的问题.问题1:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数是多少?追问1:题中涉及哪些相等关系?追问2:应怎样设未知数?如何根据相等关系列出方程?问题2:这个方程与前面学过的一元一次方程有什么不同?怎样解这个方程呢?问题3:不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?追问1:怎样去分母呢?追问2:去分母的依据是什么?问题4:解方程:31322322105x x x+-+-=-.追问1:解含分数系数的一元一次方程的步骤包括哪些?追问2:以x为未知数的方程逐步向着x=a的形式转化的主要依据是什么?例1:解下列方程:(1)121224x x+--=+;(2)1213323x xx--+=-.解下列方程:(1)121163x x-+-=;(2)490.30.250.32x x x++--=.1. 方程5717324x x++-=-去分母正确的是( )A. 3-2(5x+7) = -(x+17)B. 12-2(5x+7) = -x+17C. 12-2(5x+7) = -(x+17)D. 12-10x+14 = -(x+17)2. 若代数式12x-与65的值互为倒数,则x= .3. 解下列方程:(1)334515x x-+=-;(2)5415523412y y y+--+=-.4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路. 上帝给予的童年占六分之一. 又过十二分之一,两颊长胡. 再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”1.(2022•黔西南州)小明解方程12123x x+--=的步骤如下:解:方程两边同乘6,得3(x+1)-1=2(x-2)①去括号,得3x+3-1=2x-2②移项,得3x-2x=-2-3+1③以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④2. (4分)(2020•重庆A卷7/26)解一元一次方程11(1)123x x+=-时,去分母正确的是()A.3(x+1)=1-2x B.2(x+1)=1-3xC.2(x+1)=6-3x D.3(x+1)=6-2x(1)本节课学习了哪些主要内容?(2)去分母的依据是什么?去分母的作用是什么?(3)用去分母解一元一次方程时应该注意什么?(4)去分母时,方程两边所乘的数是怎样确定的?【参考答案】1. 方程各项都乘所有分母的最小公倍数;等式的性质2;2. 去分母;去括号;移项;合并同类项;系数化为1.例1:解:(1)去分母(方程两边乘4),得2(x+1) -4 = 8+ (2 -x). 去括号,得2x+2 -4 = 8+2 -x.移项,得2x+x= 8+2 -2+4.合并同类项,得3x = 12.系数化为1,得x = 4.(2)去分母(方程两边乘6),得18x+3(x-1) =18-2 (2x-1).去括号,得18x+3x-3 =18-4x +2.移项,得18x+3x+4x =18 +2+3.合并同类项,得25x = 23.系数化为1,得2325x=.解:(1)去分母(方程两边乘6),得(x-1) -2(2x+1) = 6. 去括号,得x-1-4x-2 = 6.移项,得x-4x = 6+2+1.系数化为1,得 x = -3.(2)整理方程,得49325532x x x ++--=, 去分母(方程两边乘30),得 6 (4x +9) -10(3+2x ) = 15(x -5). 去括号,得 24x+54-30-20x = 15x -75.移项,得 24x -20x -15x =-75-54+30 .合并同类项,得 -11x = -99.系数化为1,得 x = 9.1. C ;2. 83; 3. (1)56x =;(2)47y =. 4. 解:设该单位参加旅游的职工有x 人,由题意得方程: 4014050x x +-=, 解得x =360.答:该单位参加旅游的职工有360人.5. 解:这个班有x 名学生,依题意得6247x x x x +++=, 解得x =56.答:这个班有56个学生.解:设丢番图活了x 岁,据题意得5461272x x x x x +++++=, 解得x =84.答:丢番图活了84岁.1.【解答】解:方程两边同乘6应为:3(x +1)-6=2(x -2), 所以出错的步骤为:①,故选:A .2. 【解答】解:方程两边都乘以6,得:3(x+1)=6-2x,故选:D.。

初中数学人教版七年级上册《3.3第三章解一元一次方程(二)-去括号与去分母》课件

初中数学人教版七年级上册《3.3第三章解一元一次方程(二)-去括号与去分母》课件

= 32 .
+1.
解方程: 2-3(x+1)=1-2(1+0.5x).
解:去括号,得 2-3x-3=1-2-x.
移项,得 -3x+x=1-2-2+3.
合并同类项,得 -2x=0.
系数化为1,得 x=0.
谢谢大家
17
11
.
解含有括号的一元一次方程的一样步骤:
去括号
移项
合并同类项
系数化为1
解方程:6
1

2
− 4 + 2 = 7 −
1
(
3
解:去括号,得 3 − 24 + 2 = 7
移项,得 3 + 2 +
合并同类项,得
16

3
系数化为1,得 x=6.
1

3
− 1).
1

3
= 7 + 1 + 24 .
(2) 4x+3(2x-3)=12-(x+4).
解:(1)去括号,得 2x+6=5x. (2)去括号,得 4x+6x-9=12-x-4.
移项,得 2x-5x=-6.
移项,得 4x+6x+x=12-4+9.
合并同类项,得 -3x=-6.
合并同类项,得 11x=17.
系数化为1,得 x=2.
系数化为1,得 x=
移项,得
2 x-x-5 x-2 x =-2+10.
3x-7 x +7=3-2 x-6.
移项,得
3x-7 x +2 x =3-6-7.
合并同类项,得
-6 x =8.

人教版数学七年级上册3.3解一元一次方程(去分母)教学设计

人教版数学七年级上册3.3解一元一次方程(去分母)教学设计
(2)反馈教学:及时收集学生的反馈信息,了解学生的学习情况,调整教学进度和方法,确保教学效果。
(3)激励教学:注重鼓励学生,激发学生的学习积极性,让学生在克服困难的过程中体验成功,增强自信心。
3.教学过程:
(1)导入:通过实际问题的引入,激发学生的好奇心,引导学生进入学习状态。
(2)新知讲解:以学生为主体,教师为主导,引导学生发现并总结去分母的方法,注重讲解与示范相结合。
6.反思与总结:要求学生撰写一篇学习心得,内容包括本节课所学知识的理解、解题过程中的困惑与收获、以及对未来学习的期望。
目的:促使学生反思学习过程,培养自我评价和目标设定能力。
作业布置要求:
1.作业量适中,避免过度负担,保证学生有足够的时间进行思考和总结。
2.鼓励学生遇到问题时主动请教同学和老师,形成良好的学习氛围。
(2)运用探究式教学法,引导学生通过小组合作、自主探究等方式,发现并掌握去分母的方法,培养学生的独立思考能力和合作意识。
(3)借助信息技术手段,如多媒体课件、数学软件等,为学生提供直观、动态的演示,帮助学生理解抽象的数学概念。
2.教学策略:
(1)分层教学:针对学生的个体差异,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
在此基础上,学生在学习本章节时可能出现以下情况:1.对去分母的方法掌握不牢固,容易在运算过程中出错;2.面对实际问题,不能熟练地将问题转化为含分数的一元一次方程;3.在小组讨论和自主探究过程中,部分学生可能缺乏主动性和自信心。
因此,在教学过程中,教师需要关注学生的个体差异,提供有针对性的指导,引导学生克服困难,激发学生的学习兴趣,帮助他们建立信心。同时,注重培养学生的合作意识和批判性思维,使学生在掌握知识的同时,提高解决问题的能力。通过以上措施,为学生提供适应其认知水平和发展需求的教学环境。

人教版数学七年级上册解一元一次方程(二)--去分母课件

人教版数学七年级上册解一元一次方程(二)--去分母课件

去括号
15x – 3x + 4x = – 2 – 6 – 5+20
移项
16x = 7
x 7 16
合并同类项 系数化为1
续探去分母法解一元一次方程
3x x 1 3 2x 1;
2
3
解:去分母(两边乘以6),得
18x+3(x-1)=18-2(2x-1)
你漏乘
方程两边各项 都乘以6。
了吗? 去括号,得 18x+3x-3=18-4x+2
再探一元一次方程的应用!
童话数学100雁问题
例1:碧空万里,一群大雁在翱翔,迎面又飞来一
只小灰雁,它对群雁说:“你们好,百只雁!你们百雁 齐飞,好气派!可怜我孤雁独飞.”群雁中一只领头的 老雁说: “不对!小朋友,我们远远不足100只.将我们 这一群加倍,再加上半群,又加上四分之一群,最后还 得请你也凑上,那才一共是100只呢!”
“尊敬的毕达哥拉斯,请你告知我,有多少名学生在 你学校里听你讲课?”
毕达哥拉斯回答说“一共有这么多学生在听课:其中 二分之一在学数学,四分之一学习音乐,七分之一沉默 无言,此外还有三名女生:”
你能算出有多少名学生吗?
解:设有x名学生
由题意,得 去分母,得
1 x+ 1 x+ 1 x+3=x. 24 7 28x+14x+8x+168=56x.
知识回顾
❖上节课我们学习了一元一次方程 的解法,它有哪些基本步骤?
❖你觉得在解一元一次方程中,最 容易在哪里出错?
❖应用一元一次方程解应用题的一 般步骤是什么?
问题:英国伦敦博物馆保存着一部分极其珍贵的
文物——纸莎草文书.现存世界上最古老的方程就 出现在这部英国考古学家兰德1858年找到的纸草书 上.经破译,上面都是一些方程,共85个问题.其 中有如下一道著名的求未知数的问题:一个数,它 的三分之二,它的一半,它的七分之一,它的全部, 加起来总共是33,这个数为几何? 分析:设这个数为x.

3.3.2一元一次方程的解法(二)去分母(导学案)七年级数学上册(人教版)

3.3.2一元一次方程的解法(二)去分母(导学案)七年级数学上册(人教版)

3.3.2 一元一次方程的解法(二)去分母导学案一、学习目标:1.掌握含有分数系数的一元一次方程的解法.2.熟练利用解一元一次方程的步骤解各种类型的方程.重点:含有分数系数的一元一次方程的解法.难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程解决.二、学习过程:自学导航英国伦敦博物馆保存着一部极其珍贵的文物--纸草书.这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,它于公元前1700年左右写成.这部书中记载了许多有关数学的问题,下面的问题就是书中一道著名的求未知数的问题.问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.你能解出这道方程吗?把你的解法与其他同学交流一下,看谁的解法好.尝试解一解:解方程:3132232. 2105+-+-=-x x x思考:1. 若使方程的系数变成整系数方程,方程两边应该同乘以什么数?2. 去分母时要注意什么问题?【归纳】解一元一次方程的一般步骤包括:___________、___________、__________、_____________ ___、_____________等.通过这些步骤可以使以x为未知数的方程逐步向着x=a的形式转化,这个过程主要依据等式的基本性质和运算律等.考点解析考点1:利用去分母解一元一次方程★★★ 例1.解下列方程: (1)2x−13+1=x+22; (2)x−14-2=3x+26; (3)13(1-2x)=27(3x+1); (4)x−12+1=x−13-2x+34.【迁移应用】 1.在解方程3y−14-1=2y+76时,为了去分母,最好将方程两边同乘( )A.4B.6C.12D.16 2.将方程x2-x+14=1去分母,下列变形正确的是( )A.2x -x+1=1B.2x -(x+1)=1C.2x -x+1=4D.2x -(x+1)=4 3.解下列方程: (1)3x−12=4x+25; (2)1-3x−14=3+x 2; (3)2x−13-x=2x+14; (4)3x−22-(2-x)=x.考点2:构造一元一次方程求值★★ 例2.已知式子x+33-1与2x−17,当3x 取何值时,它们的值互为相反数.【迁移应用】 1.如果13a+1与2a−73的值互为相反数,那么a 的值为( )A.43B.10C.-43D.-10 2.若式子x+13与2−x 2的值的和等于2,则x 的值为______. 3.已知a+34比2a−37的值大1,求2-a 的值.考点3:解分母含小数的一元一次方程★★★ 例 3.解方程:0.4x+10.5=0.02x+0.030.03+2.【迁移应用】 依据下列解方程0.3x+0.50.2=2x−13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为3x+52=2x−13.(______________)去分母,得3(3x+5)=2(2x -1)(_____________) 去括号,得9x+15=4x -2(_________).(______),得9x -4x=-2-15(_______________). 合并同类项,得5x=-17(________________). (___________),得x=-175.(_______________)考点4:利用整体思想解一元一次方程★★★★ 例4.阅读下列材料:请参照这种方法解方程3(x+1)-13(x -1)= 2(x -1)-12(x+1).【迁移应用】 解下列方程:(1)3(7x -5)-13(5-7x)+17(7x -5)=7(5-7x); (2)5(2x+3)-34(x -2)=2 (x -2)-12(2x+3).考点5:一元一次方程的错解问题★★★★ 例5.下面是小贝同学解方程x−13-3x−24=1的过程,请认真阅读并完成相应问题. 解:去分母,得4(x -1)-3(3x -2)=12.………第一步去括号,得4x -4-9x+6=12. ………………第二步 移项,得4x -9x=12+6-4.……………………第三步 合并同类项,得-5x=14.……………………第四步 系数化为1,得x=-145…………………………第五步(1)以上解题过程中,第一步是依据____________进行变形的; 第二步是依据________进行变形的;(2)第______步开始出现错误,这一步错误的原因是_______________; (3)请写出该方程的正确解答过程.【迁移应用】王老师给同学们出了一道解方程的题目:x+13-x−16=1.小明同学的解题过程如下:去分母,得2(x+1)-x -1=6. ① 去括号,得2x+1-x -1=6. ① 移项,得2x -x=6-1+1. ① 合并同类项,得x=6. ①请你指出小明的解题过程从哪步开始出现错误?并将正确的解题过程写下来.。

七年级数学上册解一元一次方程3.2,3.3-合并同类项与移项,去括号去分母

七年级数学上册解一元一次方程3.2,3.3-合并同类项与移项,去括号去分母
1 1 x x3 4 2 3 x3 4
合并同类项 ,得 x =4;
系数化为 1 ,得 x =4.
解题后的反思 解 题 后 的 反 思
(1) 移项实际上是对方程两边进行 同加减 使用的是等式的性质 1 ;
,
(2) 系数 化为 1 实际上是对方程两边进行 同乘除 , 使用的是等式的性质 2 .
3 x 690 5 x 540
移项 去括号
方程的方法吗?用 其他方法列出的方 程应怎样解?
3 x 5 x 540 690
合并
2 x 150
x 75
系数化为1 代入
138 x 63
契诃夫的小说 中说用算术方法解 上面的问题很难。 你会用算术方法解 它吗?如果你会做, 那么不妨把算术方 法和方程解法比较 一下。
—— 合并同类项与移项
复习:
什么叫做方程的解?
使方程左右两边的值相 等的未知数的值叫做方 程的解。
回顾与思考
1、解方程的基本思想 是经过对方程一系列的变形,最 终把方程转化为“x=d‖的形式. 即:①等号左、右分别都只有一项,且左边是未知数项, 右边是常数项; ②未知数项的系数为1. 2、目前为止,我们用到的对方程的变形有: 等号两边同加减(同一代数式)、 等号两边同乘除(同一非零数) 等号两边同加减的目的是: 使项的个数减少; 等号两边同乘除的目的是: 使未知项的系数化为1.
解一元一次方程
5x-2=8 5x=8+2
知识点3:移项
解方程 :5x -2=8
方程两边都加上2,得
5x -2+2=8+2
5x =8+2
比较这个方程与原方程,同学们可以发现什么?
5x -2 =8

第三章 3.3.2利用去分母解一元一次方程

第三章 3.3.2利用去分母解一元一次方程
移项
15x 3x 4x 2 6 5 20
合并同类项
16x 7
系数化为1
7
x
16
注意:(1)为什么方程
的两边每一项都要
剩以10,小心不要
漏乘;
(2)为什么去分母后
分子要添括号,是
不是所有的分子都
必须填括号
例题讲解
例.解下列方程:
x 1
2 x
(1)
1 2
2
4
解:去分母(方程两边乘4),得
2(x+1) -4=8+ (2 -x)
去括号,得
2x+2 -4=8+2 -x
移项,得 2x+x =8+2 -2+4
合并同类项,得 3x = 12
系数化为1,得x = 4
观察思考
方程右边的“1”
去分母时漏乘最
下列方程的解法对不对?如果不对,你能找出错在哪里吗?
小公倍数6
加起来总共是33,求这个数.
它的三分之二+它的一半+它的七分之一+它的全部=33
1
1
2
x
x
x
x
2
7
3
根据题意可列方程
解:设这个数为x ,
2
1
1
x x x x 33
3
2
7
探究
2
1
1
x x x x 33
3
2
7
解:合并同类项,得
能不能化去分母,
把系数化为整数,
使计算变得简便呢?
)
解:原方程可变形为
去括号,得9x+15=4x-2.(
(
),得9x-4x=-15-2.(

人教版七年级数学上册第3章一元一次方程解一元一次方程(二)去括号与去分母3.去分母课件(共15张)

人教版七年级数学上册第3章一元一次方程解一元一次方程(二)去括号与去分母3.去分母课件(共15张)

你能列方程解决这个问题吗? 解:设这个数为x,则列方程得
你会解这个 方程吗?
2 x 1 x 1 x x 33 327
提出问题, 自主学习
解下列方程:
(1)3(x 1) 2x 6
(2) x 1 x 1 23
展示成果, 查找问题
1.解下列方程: ⑴3(x+1)-2x=6 解:去括号,得 3x+3-2x=6
A.3 2(5x 7) (x 17)
B.12 2(5x 7) x 17
C.12 2(5x 7) (x 17)
D.12 10x 14 (x 17)
2.方程 2x 3 x 9x 5 1去分母得(D)
2
3
A.3(2x 3) x 2(9x 5) 6
B.3(2x 3) 6x 2(9x 5) 1
3.3.2 解一元一次方程(二) ——去分母
情境导入, 激趣诱思
英国伦敦博物馆保存着一部极其珍贵的文物----纸莎草 文书.这是古代埃及人用象形文字写在一种特殊的草上的 著作,至今已有三千七百多年.书中记载了许多与方程有关 的数学问题.其中有如下一道著名的求未知数的问题:
问题: 一个数,它的三分之二,它的一半,它的七分之一, 它的全部,加起来总共是33.试问这个数是多少?
解:分母化整数,得 10x 1 12 3x
3
2
去分母,得 20x=6+3(12-3x)
去括号,得
20x=6+36-9x
移项,得
20x+9x=6+36
合并同类项,得 29x=42
化系数为1,得 x= 42 29
当堂评价,
反馈深化
1.方程3 5x 7 x 17 去分母正确的是(C)

七年级上册数学3.3.2去分母解一元一次方程含答案

七年级上册数学3.3.2去分母解一元一次方程含答案

3.3.2去分母解一元一次方程一.选择题 1.解方程13−x −12=1,去分母正确的是( ) A .2-(x-1)=1B .2-3(x-1)=6C .2-3(x-1)=1D .3-2(x-1)=6A .4(2x-1)=1-3(x+2)B .4(2x-1)=12-(x+2)C .(2x-1)=6-3(x+2)D .4(2x-1)=12-3(x+2)3.解方程2x +13−10x +16=1时,去分母、去括号后,正确结果是( )A .4x+1-10x+1=1B .4x+2-10x-1=1C .4x+2-10x-1=6D .4x+2-10x+1=6A .1B .32 C .23 D .2A .10x +14−2x −17=1 B .10x +14−2x −17=10C .10x +104−2x −107=1D .10x +104−2x −107=10A .13B .-13 C .1 D .-1二.填空题8.在解方程x +14-2x −36=2时,去分母得 .三.解答题11.解下列方程12.仔细观察下面的解法,请回答为问题.(1)上面的解法错误有______处.答案:1.B 解析:在原方程的两边同时乘以6,得2-3(x-1)=6.2.D .3.C 解析:方程去分母得:2(2x+1)-(10x+1)=6,去括号得:4x+2-10x-1=6.2x −107=1. 6.C 解析:把x=1代入得:a+b+1=2,即a+b=1,方程去分母得:2ax+2+2bx-3=x ,整理得:(2a+2b-1)x=1,即[2(a+b )-1]x=1,把a+b=1代入得:x=1 .号得:10x-15=4x+3,移项、合并得:6x=18,系数化为1得:x=3.8.3(x+1)-2(2x-3)=24解析:方程两边都乘以12,去分母得,3(x+1)-2(2x-3)=24. 9.12解析:根据题意得:x +175=2-2x −74,去分母得:4x+68=40-10x+35,移项合并得:14x=7,解得:x=12.解得:a=5,则2-a=2-5=-3.两边同乘以6得36x-21x=5x-7,解得:x=-0.7;(2)去分母得:40-5(3x-7)=-4(x+7),去括号得:40-15x+35=-4x-28,移项合并得:11x=103,(3)去分母得:2(2x+1)-(5x-1)=6, 去括号得:4x+2-5x+1=6,移项合并同类项得:-x=3,x=-3. (4)去分母得:3(2x-1)=12-4(x+2), 去括号得:6x-3=12-4x-8,移项合并得:10x=5,解得:x=0.5;去分母得:15x+27+5x-25=5+10x , 移项合并得:10x=3,解得:x=0.3;12.解:(1)2;(2)3x −12=4x +25+a 错误解法为:15x-5=8x+4+a , 移项合并得:7x=9+a ,解得:x=79+a ,即x 1=79+a ;正确解法为:去分母得:15x-5=8x+4+10a ,移项合并得:7x=9+10a ,解得:x=9+10a 7,即x 2=9+10a 7,根据题意得:x 2-1x 1=9+10a 7-9+a 7=9a 7,由9a 7为非零整数,得到|a|最小值为7.。

人教版数学七年级上册3.3 解一元一次方程(二)——去括号与去分母课件

人教版数学七年级上册3.3 解一元一次方程(二)——去括号与去分母课件
(2)进一步熟悉如何设未知数列方程解应用题,体 会方程思想在解决实际问题的作用.
推进新课 知识点1 去括号
某工厂加强节能措施,去年下半年与 上半年相比,月平均用电量减少2 000 kW·h (千瓦·时),全年用电15 万 kW·h.这个工厂去 年上半年每月平均用电是多少? 温馨提示: 1 kW·h的电量是指1 kW的电器1 h的用电量. 月平均用电量×n(月数)=n个月用电量
4
解:去分母(方程两边乘4),得
2(x + 1) – 4 = 8 +(2 – x).
去括号,得 2x + 2 – 4 = 8 + 2 – x.
移项,得 2x + x = 8 + 2 – 2 + 4 .
合并同类项,得 3x = 12.
系数化为1,得 x = 4.
(2)3x x- 1=3- 2x-1
2
4
5
解:去分母(方程两边乘20),得
【课本P98 练习】
10(3x + 2)– 20 = 5(2x – 1)– 4(2x + 1)
去括号,得 30x +20 – 20 = 10x –5 – 8x – 4
移项,得 30x – 10x + 8x = – 5 – 4 – 20+20
合并同类项,得 28x = – 9
4
2
3
解:去分母(方程两边乘12),得
【课本P98 练习】
3(5x – 1) = 6(3x + 1)– 4(2 – x)
去括号,得 15x – 3 = 18x + 6– 8 + 4x
移项,得 15x – 18x – 4x = 6 – 8 + 3

人教版七年级数学上册3.3.2《去括号与去分母(第2课时)》说课稿

人教版七年级数学上册3.3.2《去括号与去分母(第2课时)》说课稿

人教版七年级数学上册3.3.2《去括号与去分母(第2课时)》说课稿一. 教材分析《去括号与去分母(第2课时)》是人教版七年级数学上册3.3.2的内容,本节课主要讲述了去括号和去分母的方法和技巧。

这部分内容是整式运算的基础,对于学生掌握整式运算非常重要。

在本节课中,学生将学习如何去掉式子中的括号和分母,从而简化运算过程。

教材通过具体的例子和练习题,帮助学生理解和掌握去括号和去分母的规则和方法。

二. 学情分析在七年级的学生中,大部分学生已经掌握了基本的代数知识,如代数式的加减乘除等运算。

但是,对于去括号和去分母这样的复杂运算,学生可能还不太熟悉,需要通过本节课的学习来进一步掌握。

此外,学生在学习过程中可能存在对规则理解不深、运算技巧不熟练的问题,需要教师在教学中进行引导和辅导。

三. 说教学目标1.知识与技能目标:学生能够掌握去括号和去分母的规则和方法,能够独立完成相关的运算题目。

2.过程与方法目标:学生通过参与课堂讨论和练习,培养观察、分析、解决问题的能力。

3.情感态度与价值观目标:学生通过克服困难、解决问题,培养自信心和坚持不懈的精神。

四. 说教学重难点1.教学重点:学生能够掌握去括号和去分母的规则和方法。

2.教学难点:学生能够灵活运用去括号和去分母的方法,解决实际问题。

五. 说教学方法与手段本节课采用讲授法和练习法进行教学。

教师通过讲解和示范,引导学生理解和掌握去括号和去分母的方法。

同时,教师通过设计不同难度的练习题,让学生在练习中巩固知识和提高技能。

此外,教师还鼓励学生进行小组讨论和合作学习,培养学生的团队协作能力。

六. 说教学过程1.导入:教师通过引入一些实际问题,激发学生的兴趣,引导学生思考如何去掉式子中的括号和分母。

2.讲解:教师讲解去括号和去分母的规则和方法,通过具体的例子进行解释和演示。

3.练习:教师设计不同难度的练习题,让学生进行练习,巩固知识和提高技能。

4.讨论:教师学生进行小组讨论,让学生分享自己的解题方法和经验,互相学习和交流。

7年级数学上册 3.3.2 去分母

7年级数学上册 3.3.2 去分母
主要依据:等式的性质和运算律等.
以上步骤是不是一定要顺序进行,缺一不可?
知识点1:利用去分母解一元一次方程
12
B
3(3y-1)-12=2(5y-7)
3.汛期来临前,滨海新区决定实施海堤加固工程.某工程队承包了该项目,计划每天加固60米,在施工前,得到气象部门的预报,近期有台风袭击滨海新区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,结果提前10天完成加固任务.若设滨海新区要加固的海堤长x米,则下面的方程正确的是( )
知识点2:列一元一次方程解决实际问题
B
4.小明从家里骑自行车到学校,每小时骑15km可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少千米?设他家到学校的路程是xkm,则根据题意列出的方程是( )
A
解析:去分母是根据等式的性质,在等式两边同乘以各分母的最小公倍数,将方程化成不含分母的形式,然后求解,要注意乘以方程的每一项,不要漏乘,去分母后,分子式多项式的要加上括号.A中“1”没有乘以8,B中“3”没有乘以2,“1-2x”没有加上括号,C中“1-2x”没有加上括号.
y=3
解:(1)X=1
解:(3)X=10
本课时学习了去分母解一元一次方程和解一元一次方程的一般步骤,要注意去分母时,方程两边的每一项都要乘,不能漏项;去分母后,分子要加上括号.
·
教学目标: 1.掌握含有分母的一元一次方程的解法. 2.归纳解一元一次方程的步骤,体会转化的思想方法. 教学重难点: 重点:去分母解方程. 难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号.
1.解一元一次方程时,“去分母”这一变形的依据是 ;去分母时,要在方程两边都乘以各分母的 ,注意不要漏乘 的项. 2.解一元一次方程的一般步骤是:① ;②去括号;③ ;④ ;⑤系数化为1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
பைடு நூலகம்
x = 1 386 .

:
97
这个数为
1
386
.
97
例3 解下列方程:
(1)
x 1 1=2 2 x
2
4
(2)
3x x 1 3 2x 1
2
3
(1)去分母,得
(1)去分母,得
(2 x 1)- 4 8 (2 - x) 18x 3(x 1) 18 2(2x 1)
解:设这个数为x,可得方程:
2 x 1 x 1 x x 33 327
为使方程变为整系数方程,方程 两边应该同乘以什么数?
各分母的最小公倍数42.
2 x 1 x 1 x x 33 327
解:去分母,得 28x+21x+6x+42x=1386. 合并同类项,得 97x=1386. 系数化为1,得
移项,得 2y-y=6-2
合并同类项 y=4
去分母时须注意
1.确定分母的最小公倍数; 2.不要漏乘没有分母的项; 3.去掉分母后,若分子是多项式,应该多 项式(分子)添上括号,视多项式为一整体.
解方程
(1) x 1 2x 5 3
4
3
解:去分母(方程两边同乘12),得 3(x-1) -4(2x+5) =-3×12 去括号,得
3x-3-8x-20=-36 移项,得
3x-8x=-36+3+20 合并同类项,得
-5x=-13 系数化为1,得
x 13 5
这节课你学到了什么?有何收获?
• 1.解一元一次方程的步骤: • (1)去分母 (2)去括号 (3)移项
同类项 (5)系数化为1.
(4)合并
• 2.解方程的五个步骤在解题时不一定都需要, 可根据题意灵活的选用.
去括号,得
去括号,得
2x 2 4 8 2 x 移项,得
18x 3x 3 18 4x 2 移项,得
2x x 8 2 2 4 合并同类项,得
18x 3x 4x 18 2 3 合并同类项,得
3x 12 系数化为1,得
25x 23 系数化为1,得
x4
x 23 25
. 1、解方程
2x 3 x
3
3
观察:这个方程有什么特点? 应该怎么解?
2、解方程
2x 3 x 1
3
3
观察:这个方程有什么特 点?又应该怎么解?
观察:这个方程该这样解?
• 解方程
y y2 1 36 解:去分母,得 2y-(y-2)=6
去括号,得 2y-y+2=6
• 3.去分母时不要忘记添括号,不漏乘不含分 母的项.
• 1.去分母时,应在方程的左右两边都乘以分母的 最小公倍数,不能漏乘没有分母的项。
• 2.括号前是负号的去掉括号时,括号内各项都要 变号。
• 3.移项是从方程的一边移到另一边,必须变号; 只在方程一边交换位置的项不变号。
• 4.合并同类项时,系数加、减要细心。 • 5.系数化为1时,要注意负号与分数。 • 6.求出解后养成检验的习惯。
主要依据:等式的性质和运算律等.
这件珍贵的文物是纸莎草文书,是古代埃 及人用象形文字写在一种特殊的草上的著作, 至今已有3700多年的历史了,在文书中记载了 许多有关数学的问题.
问题: 一个数,它的
三分之二,它的一半,它 的七分之一,它的全部, 加起来总共是33.试问这 个数是多少?
你能解决这个问题吗?
人教 七年级 上册
3.3 解一元一次方程(一) 去括号与去分母
第2课时 去分母
1.会用去分母的方法解含分母的一元一次 方程.
2.会检验方程的解及总结解方程的一般步骤
解有分数系数的一元一次方程的步骤:
1.去分母;
2.去括号;
3.移项; 4.合并同类项; 5.系数化为1.
以上步骤是不 是一定要顺序 进行,缺一不 可?
相关文档
最新文档