食品生化技术在发酵工程中的应用

合集下载

发酵工程知识点总结归纳

发酵工程知识点总结归纳

发酵工程知识点总结归纳一、发酵工程概述1. 发酵工程的定义发酵工程是一门研究微生物、酶等生物催化剂在工业生产中广泛应用的工程学科。

2. 发酵工程的历史发酵工程的历史可以追溯到几千年前,最早的酿酒技术可以追溯到古代民族。

随着人类对微生物的认识和技术的发展,发酵工程逐渐成为一门系统的学科。

3. 发酵工程的应用领域发酵工程广泛应用于食品、饮料、医药、生物制药、环保等领域,对人类的生活和健康有着重要影响。

二、发酵过程及机理1. 发酵过程发酵过程是利用微生物或酶对有机物进行生物催化反应,产生有机产物或能量的过程。

发酵过程通常包括菌种培养、发酵产物的分离提纯等步骤。

2. 发酵机理发酵的基本机理包括微生物的生长和代谢过程,包括物质的代谢途径、酶的作用、生理生化特性等。

三、发酵工程中的微生物1. 发酵微生物的分类发酵微生物包括细菌、真菌、酵母等。

不同的微生物在发酵过程中起到不同的作用。

2. 发酵微生物的培养发酵微生物的培养包括培养基的配制、发酵罐的设计等环节,培养条件对微生物的生长和代谢具有重要影响。

3. 发酵微生物的选育发酵工程中常用的微生物包括大肠杆菌、酵母菌等,针对不同的产品需要选择适合的微生物用于发酵生产。

四、发酵工程中的酶1. 酶的分类酶是生物催化剂,可以促进化学反应的进行。

按照其作用方式可以分为氧化酶、还原酶、水解酶等。

2. 酶的应用酶在发酵工程中有着广泛的应用,可以用于生产食品、医药、生物燃料等产品。

3. 酶的工程化酶的工程化包括酶的产生、提纯、改良等步骤,使其更好地适用于实际生产。

五、发酵工程中的设备1. 发酵罐发酵罐是用于放置和滋生微生物的设备,包括灭菌、通气、控温等功能。

2. 排气系统排气系统可以有效地排除产生的二氧化碳和其他代谢产物,以保证发酵过程的正常进行。

3. 分离设备分离设备包括离心机、膜分离等,用于分离提纯发酵产物。

六、发酵工程中的工艺控制1. 发酵条件的控制发酵过程中需要控制pH、温度、氧气供应等参数,以保证微生物的生长和产物的产生。

生物技术制药试题及答案(二)

生物技术制药试题及答案(二)

生物技术制药试题及答案1.论述生物技术在食品工业中的作用?答:(1)开辟新的食品资源:利用微生物菌体发酵生产单细胞蛋白;应用微生物酶工程生产高果糖浆、饴糖、麦芽糖、高麦芽糖浆、麦芽糊精、偶联糖等淀粉糖产品。

(2)提高食品品质:利用发酵工程、酶工程技术生产酸味剂、甜味剂和鲜味剂等食品添加剂。

在肉类和鱼类加工中应用酶来改善组织,嫩化肉类和转化废弃蛋白质。

在乳品加工中应用酶进行干酪生产、分解乳糖和黄油增香。

在果蔬加工中应用酶进行柑橘脱苦、果汁澄清和果蔬保藏等。

在饮料、酿酒工业中应用酶发酵生产各种饮料。

在焙烤食品生产中应用淀粉酶和蛋白酶来提高焙烤品质和增加香味。

(3)食品卫生检测:酶免疫分析法、放射免疫分析法、单克隆抗体法和DNA 探针法用于检测食品中的沙门氏杆菌等。

(4)食品脱毒:利用发酵法、酶解法等对食品中的有毒糖苷类物质(硫代葡萄糖苷)、寡糖(β-半乳糖苷)和棉酚等进行处理,以脱除有毒物质。

2.试论述生物技术与医药卫生的关系?答:(1)疫苗生产:病原体减毒或弱化疫苗、基因工程疫苗和核酸疫苗。

病原体减毒和弱化疫苗是利用微生物的纯种培养技术以及减毒疫苗的制备技术来生产的,是以减毒或弱化的病原体作为疫苗。

基因工程疫苗是将病原体的抗原基因克隆在细菌或真核细胞内,利用细菌或细胞生产病原体的抗原,利用抗原作为疫苗。

而核酸疫苗则是将含有编码蛋白质基因序列的质粒载体,经肌肉注射或微弹轰击等方法导入体内,通过宿主细胞表达系统表达抗原蛋白质,诱导宿主产生对抗该抗原蛋白的免疫应答,以达到预防和治疗疾病的目的。

(2)疾病诊断:单克隆抗体与ELISA技术用于诊断传染性疾病、检测肿瘤相关基因、确定激素水平、检验血液中的药物含量及鉴定微生物病原体。

DNA诊断技术可用于诊断遗传性疾病、肿瘤和传染性疾病。

(3)生物制药与基因工程药物:利用微生物发酵可生产各种抗生素。

利用植物细胞大规模培养技术可生产天然药物,如紫草宁、紫杉醇、人参皂苷、强心苷、胡萝卜素等。

关于微生物发酵在食品行业相关阐述

关于微生物发酵在食品行业相关阐述

关于微生物发酵在食品行业相关应用的阐述摘要近年来,食品发酵的应用日趋广泛。

不仅仅在食品行业当中得到推广应用,在其他行业也得到了广泛的推广。

如沼气生产、动物饲料加工、发酵床养猪等等。

不过就目前而言,食品发酵在发酵行业仍占相当大的比重。

尤其是微生物发酵在食品中的应用特别突出。

发酵食品是指人们利用有益微生物加工制造的一类食品,具有独特的风味,。

就此而言,食品发酵与食品的品质,食品发酵中微生物的利用,食品发酵时有关因素的控制做以阐述。

关键词:微生物发酵、食品发酵结合多年食品行业的相关调查,针对发酵技术在食品行业的应用做相关如下的阐述。

一~ 发酵技术发酵技术属于生物技术,发酵技术是生物技术中最早发现和应用的食品加工技术之一。

许多传统的发酵食品,如酒~豆鼓~甜酱~豆瓣酱~酸乳~面包~火腿~腌菜~腐乳以及干酪等已有几百年甚至上千年的历史。

1896年丹麦哥本哈根嘉士伯酿酒厂就已经用纯种酵母生产了。

发酵技术是利用发酵来获得产品的技术。

发酵时利用微生物的代谢活动,通过生物催化剂(微生物细胞或酶)将有机物转化成产品的过程。

近几十年来,随着分子生物学和细胞生物学的快速发展,现代发酵技术应用而生。

传统发酵技术与DNA重组技术,细胞(动物细胞和植物细胞)融合技术结合,已成为现代发酵技术及工程的主要特征。

所生产的产品包括传统的发酵食品~酿制食品~食品添加剂以及药物,生长素等。

随着生物技术各个分支的发展和相互渗透,利用发酵技术生产的产品也会越来越多。

现代微生物发酵工程的内容⑴利用现代化的手段对微生物加以筛选和改造,以形成更符合工业生产需要的新菌种的工业微生物育种技术、其中渗透了基因工程、细胞工程的一些内容,经过改造的、满足人们需要的微生物菌种通常被称之为工程菌;⑵微生物菌体的生产,即利用先进的生产工艺高速地对某种微生物进行大量的纯培养,即工程菌的克隆;⑶从微生物中分离有用物质,如利用微生物以一些廉价的废弃物做底物生产单细胞蛋白质等;⑷微生物初级和次级代谢产物的发酵生产,如生产氨基酸,抗生素等生理活性物质;⑸发酵产物的分离纯化和加工后处理;⑹利用微生物控制或参与工业生产,如采矿、冶金等;以及微生物生物反应器的研究开发,新型发酵装置、生物传感器和使用电子计算机控制的自动化连续发酵的技术等等。

发酵工程--食品学院期末复习题

发酵工程--食品学院期末复习题

1.发酵是是指利用生物体(包括微生物、植物细胞、酵母菌等)的代谢功能,使有机物分解的生物化学反应过程。

2.发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术3.发酵工业特点:1、生产条件温和,设备要求低;2、原料来源丰富且价格低廉;3、产物专一,废弃物对环境污染小和容易处理;4、相对其他工业投资较少,见效较快,具有经济和效能的统一性。

4.发酵工艺过程(1).用作种子扩大培养及发酵生产的各种培养基的配制(2).培养基,发酵罐及其附属设备的灭菌(3).扩大培养有活性的适量纯种,以一定的比例将菌种接入发酵罐中(4).控制最适的发酵条件使微生物生长并形成大量的代谢产物(5) 将产物提取并精制,以得到合格的产品(6).回收或处理发酵过程中所产生的三废物质5.工业微生物的特点(一)个体小,种类繁多,分布广泛(二)生长繁殖快,代谢能力强(三)遗传稳定性差,容易发生变异6.发酵工业对微生物菌种的基本要求:①能在廉价原料制成的培养基上生长,且生成目的产物产量高、易于回收;②生长较快,发酵周期短;③培养条件易于控制;④抗噬菌体及杂菌污染的能力强;⑤菌种不易变异退化,以保证发酵生产和产品质量的稳定;⑥对放大设备的适应性强;⑦菌种不是病原菌,不产生任何有害的生物活性物质和毒素。

7.例举常用微生物菌种:1.细菌-枯草杆菌,产物--淀粉酶、蛋白酶大肠杆菌,产物--酰胺酶2 .酵母菌-酵母,产物--甘油啤酒酵母,产物--凝血质3. 霉菌-黑曲霉,产物--柠檬酸、酸性蛋白酶4. 放线菌-灰色放线菌,产物--蛋白酶影响种子质量的因素及其控制8.影响种子质量的因素1)培养基培养基的营养成分/ 培养基的pH要比较稳定,适合菌的生长和发育。

2)培养条件最适温度/ 培养过程中通气搅拌的控制3)种龄对数生长期,菌体量尚未达到最高峰时移种。

4)接种量移入的种子液体积和接种后培养液体积的比例称为接种量。

《发酵与酿造工艺学》教学大纲

《发酵与酿造工艺学》教学大纲

《发酵与酿造工艺学》教学大纲二、课程目的和任务《发酵与酿造工艺学》是以发酵工程、酶工程及基因工程为支撑,利用微生物细胞的特定性状,通过现代化工程技术,生产食品、保健品或添加剂的一门科学技术。

它不但是支撑现代食品工业的重要技术,同时也是生物技术产业化的重要手段。

为此,食品科学与工程专业开设《发酵与酿造工艺学》课程,该课程为食品科学与工程专业的专业必修课之一。

《发酵与酿造工艺学》课程以发酵和酿造食品的工业化生产为主,注重现代生物技术在该领域的应用,介绍食品发酵与酿造生产的一般工艺过程及其菌种选育、保藏与复壮;微生物的代谢调控理论及其在食品发酵与酿造中的应用;发酵与酿造工程学基础;酒精发酵与酿造;氨基酸与核酸发酵;发酵豆制品;微生物性功能食品与食品添加剂;同时,对各类产品的发酵、酿造技术和食品工业废弃物的生物学处理进行了论述,为学生从事该领域的生产和科学研究提供必要的基础知识。

通过本课程的学习,学生们能够熟悉食品发酵与酿造生产的一般过程,掌握发酵与酿造食品,如酒精发酵与酿酒、氨基酸与有机酸发酵、发酵豆制品、酶制剂等生产的基本理论和技术,了解食品发酵与酿造工业的发展状况及新技术、新设备的应用情况。

为学生未来走上工作岗位从事有关发酵与酿造相关工艺的工作打下基础。

三、本课程与其它课程的关系本课程是在生物化学、微生物学、食品微生物学、食品工程原理等课程的基础上,综合应用先修课程基础知识的专业课。

四、教学内容、重点、教学进度、学时分配(一)绪论(2学时)1、基本内容食品发酵与酿造的历史;食品发酵与酿造的特点以及与现代生物技术的关系;食品发酵与酿造的研究对象;食品发酵与酿造的发展趋势。

2、重点食品发酵与酿造的特点及与现代生物技术的关系。

3、教学要求通过对食品发酵与酿造的历史沿革、食品发酵与酿造的研究对象和食品发酵发展趋势的介绍,对本课程的内容和发展动态有一个全面的了解。

掌握食品发酵与酿造的特点以及与现代生物技术的关系。

生物技术概论复习题及答案

生物技术概论复习题及答案

生物技术概论复习题及答案一、名词解释1、生物技术:是指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,利用生物得体或其体系或它们的衍生物来制造人类所需要的各种产品或达到某种目的的一门新兴的、综合性的学科。

2、基因工程:是指在基因水平上的操作并改变生物遗传特性的技术。

即按照人们的需要,用类似工程设计的方法将不同来源的基因(DNA分子)在体外构建成杂种DNA分子,然后导入受体细胞,并在受体细胞内复制、转录和表达的操作,也称DNA重组技术。

3、细胞工程:是指在细胞为基本单位,在体外条件下进行培养、繁殖或人为地使细胞某些生物学特性按人们的意愿发生改变,从而达到改良生物品种和创造新品种的目的,加速繁育动植物个体,或获得某种有用物质的技术。

4、食品添加剂:是指为改善食品的品质(色、香、味)以及有防腐和加工工艺的需要而加入到食品中的化学合成物或天然物质。

5、湖泊的富营养化:由于环境的污染,象农业上的化肥、工业废水等大量排放使水中含有大量的营养元素象氮磷钾等非常丰富,使微生物生长迅速,造成富营养化。

6、生物反应器(bioreactor):主要包括微生物反应器、植物细胞培养反应器,动物细胞培养反应器以及新发展起来的有活体生物反应器之称的转基因植物生物反应器,转基因动物生物反应器等。

7、转基因植物:是指通过体外重组DNA技术将外源基因转入到植物细胞或组织,从而获得新遗传特性的再生植物。

8、细胞融合:是指促融因子的作用下,将两个或多个细胞融合为一个细胞的过程。

9、抗原:凡能刺激机体免疫系统发生免疫应答的物质均称为抗原。

10、组织培养:指在无菌和人为控制外因(营养成分、光、温、湿)的条件下,培养研究植物组织、器官,甚至进而从中分化发育出整个植株的技术。

11、原生质体培养:是关于原生质体分离,原生质体纯化、原生质体培养、原生质体胞壁再生,细胞团形成和器官发生,等技术。

12、有益微生物:指对人类有帮助,能满足人们需求的某些微生物。

列举10个生物生化在畜牧生产中的例子

列举10个生物生化在畜牧生产中的例子

列举10个生物生化在畜牧生产中的例子生物技术(Biotechology)是指用活的生物体(或生物体的物质)来改进产品,改良植物和动物,或为特殊用途而培养微生物的技术。

现代生物技术是在传统生物技术基础上发展起来的,以DNA重组技术的建立为标志,以现代生物学研究成果为基础,以基因或基因组为核心,并辐射到各个生物科技领域;利用生物特定功能,通过现代生物技术的设计方法和手段,改变动物体内生理生化反应和物质代谢过程,运用饲料加工处理新技术和研制新型饲料添加剂产品等,为人类生产出所需的各种物质,包括粮食、医药、食品、化工原料、能源、金属等各种产品。

现代生物技术运用于畜牧业可以用来节省饲料,提高饲料利用率,提高环境质量,预防动物各种疾病,以达到动物生产的优质、高产和高效,同时还可生产出一大批新型的营养品、保健品和添加剂。

1新型饲料添加剂的生产1.1甜味剂目前已商品化应用的二肽甜味剂有阿斯巴甜(aspartame)和阿力甜(alitame)。

阿斯巴甜通过生物技术合成,它是一种二肽,其甜度为蔗糖的180~200倍,阿力甜的甜度是蔗糖的2000倍。

最甜的是在阿斯巴甜基础上合成的一种称为乐甜(neotame)的二肽甜味剂,其甜度可达蔗糖的11000倍。

甜味剂能增进雏鸡和仔猪食欲,初生雏鸡饮用一定浓度的糖水可提高初生雏鸡的成活率,并可提高应激状态下鸡的采食量,改善适口性。

1.2酶制剂酶制剂是从动、植物和微生物中提取制备的具有酶特性的高效生物活性物质,通常与少量载体混合而制成粉剂。

应用生物技术生产的酶有蛋白酶、纤维素酶、脂肪酶、乳糖酶、植酸酶、非淀粉多糖酶、果胶酶等。

饲用酶制剂能够直接分解底物,供给机体营养物质;刺激内源性消化酶的分泌,水解植物细胞壁使细胞内营养物质释放出来;破坏饲料中的可溶性非淀粉性多糖,降低肠道内容物的粘度,增加养分的消化吸收;参与动物内分泌调节,促进合成代谢。

王安等人在饲粮中添加纤维素复合酶,可使瘤胃中玉米秸秆的干物质、中性洗涤纤维、酸性洗涤纤维、木质素、纤维素、半纤维素的消失率分别提高到15.18%、14.27%、7.08%、11.26%、7.04%和28.58%。

发酵工程的原理和实践

发酵工程的原理和实践

发酵工程的原理和实践发酵工程是一门应用学科,主要研究如何利用微生物、酶和其他生物体来生产有用的物质或改善原有物质的品质。

发酵工程的应用范围广泛,包括食品、医药、生物材料等多个领域。

本文将从原理和实践两个方面介绍发酵工程的基本知识。

一、发酵工程的原理发酵工程的主要原理是利用微生物、酶等生物体在特定的条件下进行代谢作用,从而生产出有用的物质。

微生物和酶通常是一种或多种生物催化剂,能够在特定的温度、PH值、氧气含量、营养物质等条件下发挥作用。

微生物的种类非常丰富,主要包括细菌、真菌、酵母等。

其中,酵母是发酵工程中最常用的微生物之一,因为它们的代谢能力强,且具有较高的生长速度和生理适应性。

酵母在发酵过程中能够产生一些有机酸、酯类、醇类等化合物,这些化合物在食品工业、医药工业等多个领域有重要的应用价值。

实际上,发酵是一种复杂的生化反应过程,其中包括氧化还原、聚合、水解、脱羧、酯化等多种化学反应,这些反应都是由微生物和酶催化完成的。

在发酵工程中,合理选择催化剂和控制反应条件,对于提高反应速率和产物质量有着重要的意义。

二、发酵工程的实践发酵工程的实践通常包括3个方面:选材、培养和操作。

选材方面,需要选择适合发酵的微生物或酶,同时考虑生产成本和目标产物的品质等因素。

不同的产物通常需要不同的菌株或酶种,因此选材环节是发酵工程中非常重要的一环。

培养方面,需要确定微生物的合适培养基和培养条件,使其能够有效生长和产生目标产物。

培养基的选择和制备需要考虑到营养成分的供给、pH值的调节、氧气传递量的控制等因素。

培养条件中的温度、湿度、搅拌速度等参数也需要合理控制。

操作方面,需要根据产物性质和工艺流程的要求,进行发酵反应的控制和后续步骤的操作。

反应过程中需要实时监测pH值、溶氧量、温度等参数,并进行合理调节。

后续步骤包括分离、纯化、贮存等环节,其中纯化环节尤其关键,它直接影响到产物的质量和成本。

总体来说,发酵工程是一门综合性强、实践从容的应用学科。

食品行业中发酵工程的应用

食品行业中发酵工程的应用

食品行业中发酵工程的应用食品行业中发酵工程的应用非常广泛,涵盖了许多食品制造的领域。

发酵工程利用微生物的代谢活动,将食品原料转化为具有特殊风味、质地和营养成分的最终产品。

以下是食品行业中发酵工程的一些主要应用。

酒类生产:发酵工程在酒类生产中起着关键作用。

啤酒的生产过程涉及将麦芽与水和酵母一起发酵,以制造出具有特殊口感和香气的啤酒。

葡萄酒和其他果酒的生产也是利用发酵工程,通过将水果汁与酵母一起发酵,实现酒精的产生。

面包和面食制作:发酵工程在面包和面食制作过程中也是不可或缺的。

面包的发酵过程是指将面粉与酵母和水混合并静置,使其发酵产生二氧化碳,从而使面团膨胀发起。

这样可以制造出松软、有弹性的面包。

乳制品生产:发酵工程在乳制品生产中也发挥着重要作用。

酸奶的制作涉及将牛奶与乳酸菌进行发酵,产生酸味和口感特殊的酸奶。

奶酪的制作也需要通过发酵工程来实现。

酱油和豆腐制作:发酵工程在酱油和豆腐等大豆制品的生产中也起着重要作用。

酱油的制作涉及将大豆和麦曲或酵母进行发酵,制造出有着独特风味的酱油。

而豆腐的制作则是利用发酵剂将大豆蛋白质转化为豆腐。

肉制品生产:发酵工程在肉制品生产中也被广泛应用。

腊肠是通过将肉和盐和其他调料混合,并使用发酵剂进行发酵制作的。

这样可以使肉制品具有特殊的风味和质地。

营养补充品:发酵工程还可以用于生产营养补充品。

酵母烘焙制品和发酵饮品如发酵豆浆等,通过使用酵母或其他发酵剂进行发酵,在制作过程中添加营养成分,使其具有更高的营养价值。

发酵工程在食品行业中的应用非常广泛,并且在不同食品制造过程中都发挥着重要作用。

通过发酵工程,能够改善食品的风味、质地和营养成分,提高产品的品质和价值。

发酵工程也能够实现食品的保存和利用原料的最大化利用。

发酵工程在食品行业中有着不可替代的作用。

发酵工程——精选推荐

发酵工程——精选推荐

发酵⼯程第三章发酵⼯程第⼀节绪论远古时代已经有发酵⼯程:酿酒、造醋、制⾯包等。

发酵已经从过去简单的⽣产酒精类饮料、⽣产醋酸和发酵⾯包发展到今天成为⽣物⼯程的⼀个极其重要的分⽀,成为⼀个包括了微⽣物学、化学⼯程、基因⼯程、细胞⼯程、机械⼯程和计算机软硬件⼯程的⼀个多学科⼯程。

现代发酵⼯程不仅⽣产酒精类饮料、醋酸和⾯包,⽽且⽣产胰岛素、⼲扰素、⽣长激素、抗⽣素和疫苗等多种医疗保健药物,⽣产天然杀⾍剂、细菌肥料和微⽣物除草剂等农⽤⽣产资料,在化学⼯业上⽣产氨基酸、⾹料、⽣物⾼分⼦、酶以及维⽣素和单细胞蛋⽩等。

发酵⼯程从⼴义上讲,由三部分组成:上游⼯程、发酵⼯程、下游⼯程。

上游⼯程包括:基因⼯程或细胞⼯程,种⼦培养,培养基配制,灭菌,接种。

下游⼯程包括:产物提取和纯化,废弃物处理,产品的获得。

⼀、发酵⼯程定义:发酵⼯程(fermentation engineering)主要指在最适发酵条件下,在⽣物反应器中⼤量培养细胞和⽣产代谢产物的⼯艺技术。

发酵⼯程是⽣物技术产业化的基础和关键技术,⽆论传统发酵产品,如抗⽣素、氨基酸等,还是现代基因⼯程产品,如疫苗、⼈体蛋⽩质等,都需要发酵技术进⾏⽣产。

1.传统发酵最初发酵是⽤来描述酵母菌作⽤于果汁或麦芽汁产⽣⽓泡的现象,或者是指酒的⽣产过程。

ferver:发泡、沸腾——fermentation发酵现象的本质①显微镜观察:微⽣物(列⽂虎克)②著名的巴斯德实验:微⽣物作⽤(1857年法国化学家、微⽣物家巴斯德(Pasteur)提出了著名的发酵理论:“⼀切发酵过程都是微⽣物作⽤的结果。

”)巴斯德认为,酿酒是发酵,是微⽣物在起作⽤;酒变质也是发酵,是另⼀类微⽣物在作祟;随着科学技术的发展,可以⽤加热处理等⽅法来杀死有害的微⽣物,防⽌酒发⽣质变。

同时,也可以把发酵的微⽣物分离出来,通过⼈⼯培养,根据不同的要求去诱发各种类型的发酵,获得所需的发酵产品。

③著名的毕希纳实验:酵素(酶)的作⽤(1897年德国化学家毕希纳(Buchner)发现磨碎的酵母仍使糖发酵形成酒精———酶)2.⽣化和⽣理学意义的发酵指微⽣物在⽆氧条件下,分解各种有机物质产⽣能量的⼀种⽅式,或者更严格地说,发酵是以有机物作为电⼦受体的氧化还原产能反应。

生物发酵工程中的新技术

生物发酵工程中的新技术

生物发酵工程中的新技术生物发酵工程是利用微生物代谢产生的化学反应来生产有价值的物质或将原有物质转换成其它化合物的科学技术。

随着生物技术的快速发展,原本单一的发酵工艺转变为多技术相结合的综合技术研究,引入了许多新技术,促进了生物发酵工程的发展。

本文将讨论几项新技术在生物发酵工程中的应用,其中包括代谢工程、基因工程、微流控技术、及其他最新的技术。

1. 代谢工程代谢工程是一种用于改变细胞代谢的技术,通过改变代谢通路中的基因表达、代谢物输送以及酶的活性来控制细胞的代谢过程,最终达到产物的效率和产量的提升。

例如,通过改变其代谢通路,使酵母菌生产了更多的乙醇。

代谢工程在食品加工、药物、化妆品等领域中也被广泛应用。

2. 基因工程基因工程是一种技术,它允许有选择地修改细胞的基因组,改变某些重要的表现型(trait)。

在生物发酵工程中,基因工程常用于制备高效产量的重要化学物质。

基因工程可以通过大规模改变细胞代谢通路来实现,同时育种多样性也得到了提高。

3. 微流控技术微流控技术是一种让液体在微型管内流动的技术。

与传统液体流动技术相比,微流控技术可以产生更高的控制和调节流动环境的精度。

在生物发酵工程中,微流控技术可以用于高通量筛选技术,比如在筛选大量的细胞、菌株、蛋白质组、代谢产物上进行。

4. 其他最新技术其他最新技术还包括单细胞测序技术,从单个克隆中获取V(D)J的序列的高通量测序技术;表观遗传学技术,揭示滋味菌株产生多种多样品牌饮料时抑制和激活基因;系统生物学,集合数学、生化、工程学等多种专业知识,探究生物系统内部信号传输、信号整合、信号执行等细胞代谢的整个过程。

总之,新技术的不断涌现,使得生物发酵工程的研究更加多样化,同时也为这个领域带来了更多的机遇和挑战。

这些新技术的应用,对于不同行业及领域的发展,都产生了不可忽视的重要影响。

未来的发酵工程研究,一定会鼓励更多的人关注这些最新技术,推动技术创新和产业升级,迎接未来的发展挑战。

食品发酵原理

食品发酵原理

食品发酵原理
食品发酵是一种利用微生物(如酵母菌、乳酸菌等)在适宜的温度、湿度和酸碱度条件下,对食品中的碳水化合物、蛋白质和脂肪等进行代谢作用,产生有益的化合物和气体的过程。

发酵是食品加工中常见的一种方法,它不仅可以改善食品的口感和香味,还可以增加食品的营养价值和保藏期限。

首先,发酵过程中微生物代谢产生的酶能够分解食品中的复杂有机物质,将其转化为更简单、更易被人体吸收利用的物质。

例如,酵母菌在面团中代谢产生的酶能够将淀粉分解成葡萄糖,使面团中的糖分含量增加,从而增加了面包的甜味和香气。

其次,发酵过程中微生物产生的酸能够抑制有害菌的生长,延长食品的保藏期限。

以酸奶为例,乳酸菌在发酵过程中产生的乳酸能够降低酸奶的PH值,抑制有害菌的生长,延长酸奶的保质期。

另外,发酵过程中微生物产生的气体能够使食品体积膨胀,改善食品的口感和质地。

比如,面包在发酵过程中产生的二氧化碳气泡能够使面团膨胀,增加面包的松软度和口感。

总的来说,食品发酵是一种利用微生物代谢作用改善食品品质的方法,它能够增加食品的营养价值、改善口感和香味、延长保藏期限。

通过合理控制发酵条件和选择适宜的微生物菌种,可以生产出更加符合人们口味和健康需求的食品产品。

因此,食品发酵在食品加工中具有重要的意义,也是食品工业中不可或缺的一环。

发酵工程在食品工业中的发展及应用

发酵工程在食品工业中的发展及应用
我国传统发酵食品历史悠久,发酵技术古老而又现代化。 目前,我国运用微生物发酵技术主要开发豆类、谷类、益生 菌类食品。发酵食品过程中所参与微生物有数十种,甚至数 千种,由于不同微生物所具有的功能不明确,且多来源于天 然野生型菌种,在加上受传统发酵工艺影响,导致我国对发 酵食品技术中的微生物的应用和改善传统发酵工艺流程落 后于其他生物技术的发展 [5]。另外,多数发酵食品企业生产 结构、经营管理不合理,导致了环境污染、资源浪费、经济 效益差等现象,这主要是因为企业忽视了对微生物生化原理 的研究,不了解其进行物化反应的本质,而把焦点主要集中 在描述产品和工艺上。
作者简介:丁琪(1995—),女,江苏赣榆人,硕士在读。研究方向:食品加工与安全。
136 食品安全导刊 2021年8月 Copyright©博看网 . All Rights Reserved.
食品科技
玉米深加工的协调发展。 3 发酵工程在食品工业中的应用 3.1 单细胞蛋白的生产
发酵工程是以天然原生物体和人工改造修饰过的生物体 为对象,利用现代高新技术培养出新菌种,开发新型产品或 者服务于人类社会的前沿工程技术 [1]。一般来说,发酵工程 又被称作微生物发酵工程。发酵工程通常包括菌种选育、发 酵、提纯 3 个环节。
在选育菌种环节,菌种一般来源于应用价值高的工业微 生物,工业微生物具有个体微小、种类繁多、繁殖速度快、 分布区域广泛、代谢速度快、容易突变改造等特点。发酵技 术对菌种的要求较高,主要体现在菌种遗传性状稳定、不易 突变退化,该菌种不能是病原菌,且在整个发酵流程中不能 产生有毒害物质,具备抗噬菌体能力,杂菌能力强且所需的 发酵周期短等 [2]。常见的发酵菌种有酿酒酵母菌、乳酸菌、 枯草芽孢杆菌等。在这个环节中要重点注意原料的预处理。

发酵工程及其在食品工业中的应用

发酵工程及其在食品工业中的应用

固体发酵及其特点
(一)固体发酵 现代的固态发酵不仅用于改善食
品的风味,更主要的是用于酶制剂、单细胞蛋白、
有机酸、酒精、生物杀虫剂等生产。
(二)特点 优点:(1)培养基简单且来源广泛,多为便宜的天然
基质或工业生产的下脚料;
固体发酵及其特点
(二)特点
(2)投资少,能耗低,技术较简单;
(3)产物的产率较高;
连续培养的最大特点:微生物细胞的生长 速度和产物的代谢生成均处于恒定状态,因 而可以达到稳定、高速培养微生物细胞或产 生大量代谢产物的目的。
3、补料分批培养 概念:又称半连续发酵,根据菌株生长和初 始培养基的特点,在分批培养的某些阶段适 当补加培养基,使菌体或其代谢产物的生产 时间延长。 补料分批培养在发酵工业上主要用于发酵 生产单细胞蛋白、氨基酸、抗生素、维生素、 酶制剂、有机酸以及有机溶剂等。

目前菌种选育长采用自然选育、诱变育种等方法,带 有一定的盲目性,尚属于经典育种的范畴。随着微生 物学、生化遗传学的发展,出现了转化、转导、原生 质体融合、代谢调控和基因工程等较为定向的育种方 法。

目前成功的例子还不多。。。。。
1、发酵工业常用菌种 (4)菌种保藏

保藏的目的:防止菌种的死亡和优质性能的退化。 保藏的原理:根据微生物生理生化特点,认为地使菌 种长期处于低温、干燥、无氧、避光、缺乏营养以及 添加保护剂或中和剂等状态中。微生物菌种在这种极
发酵工业上使用的种子必须具备的条件: ①生长旺盛,活力较高,延迟期短,接种 到发酵罐后能迅速生长; ②细胞浓度适宜,以保证在大型发酵罐中 有适当的接种量; ③生理状态稳定; ④无杂菌污染; ⑤生产能力保持稳定
四、发酵过程的工艺与技术

发酵工程期末复习题

发酵工程期末复习题

七. 种子质量的判断
1、细胞或菌体
2、生化指标
通常测定的参数有:
1)pH
2)培养基灭菌后磷、糖、氨基氮的含量变化
3)菌体形态、菌体浓度和培养液外观(色素、颗粒等)
4)其它参数,如某种酶的活力
3、产物生成量
4、酶活力
第四章 发酵工业原料及其处理
..
一. 培养基基本要求: 1)都必须含有作为合成细胞组成的原料。 2)满足一般生化反应的基本条件,如碳源、氮源、无机盐、生长因子; 3)一定的 pH 等条件。 4)工业生产培养基所用的原材料必须来源丰富、价格低廉、质量稳定。
..
优点: 1.产物结构复杂性和特异性: 手性或光学活性 2. 过程安全性:水相、常温、常压、中性、不燃不爆 3.主要原料可再生性:阳光和土地 4.原料可替换性 5.反应自控性 6.设备通用性 7.副产物可综合利用性 8.生产能力可提高性:突变与基因扩增 9.产物类型可塑性:突变与转基因
..
自然选育的一般程序: 制备单孢子(单细胞)悬液 ∨ 适当稀释 ∨ 在固体平板上分离 ∨ 挑取部分单菌落进行生产能力测定 ∨ 经反复筛选以确定生产能力更高的菌株替代原来的菌株 七.诱变育种
表型迟延现象: 遗传物质经诱变处理后发生的突变,必须经复制才能表现出来。
..
第三章 种子扩大培养
一. 种 子 扩 大 培 养: 定义:菌种的扩大培养就是把保藏在砂土管、冷冻干燥管中处于休眠状态的生产 菌种接入试管斜面活化,再经过扁瓶或摇瓶和种子罐,逐级扩大培养后达到一定 的数量和质量的纯种培养过程。这些纯种的培养物称为种子。
二. 尽管工业用微生物菌种多种多样,但作为大规模生产,选择菌种应遵循以 下原则: 1、能在廉价原料制成的培养基上迅速生长,并形成所需的代谢产物,产量高; 2、培养条件易于控制; 3、生长速度和反应速度较快,发酵周期较短; 4、满足代谢控制的要求; 5、选育抗噬菌体和杂菌能力强的菌株; 6、菌种纯粹,不易变异退化,以保证发酵生产和产品质量的稳定性。 7、菌种不是病原菌,不产生有害的生物活性物质和毒素,以保证安全。 8、发酵过程中产生的泡沫少,有利于提高装料系数和单罐产量,降低生产成本; 9、对需要添加的前体物质有耐受能力,且不能将前体物质作为碳源使用。

生化技术在食品行业中的应用

生化技术在食品行业中的应用

生化技术在食品行业中的应用随着科技的不断发展,生化技术在食品行业中的应用越来越广泛。

生化技术是指应用生物学、化学等科学的理论和技术来研究生物体内的结构、功能、代谢、调控等方面的科学。

在食品行业中,生化技术主要用于检测、分析、改良、保护、营养增值等方面。

一、生化技术在食品安全中的应用生化技术在食品安全中的应用主要有两个方面,一方面是快速检测方法的研发,包括基于PCR技术的检测方法、基于光学检测的技术、基于质谱检测的技术等。

这些技术可以快速准确地检测食品中是否含有有害物质,如细菌、病毒、重金属、农药等。

另一方面是通过生化技术研究食品的品质、贮存期、安全性等方面的问题。

比如,可以通过分析食品中的蛋白质、脂肪、糖类等成分,进一步了解食品的成分、性质、变化等情况,从而制定合理的储存条件和贮存期限,延长食品的保鲜期。

此外,生化技术还可以用于研究食品的微观结构和味觉特征等方面,为改良食品品质提供科学依据。

二、生化技术在食品营养中的应用生化技术不仅可以保障食品的安全性,还可以提高食品的营养价值。

比如,通过基因工程技术改良食品中的蛋白质、脂肪、糖类等成分,使之更加适合人体的需要,同时减少对身体的不良影响。

此外,生化技术还可以提高食品中的维生素、矿物质等营养成分的含量,提高食品的营养价值。

三、生化技术在食品生产中的应用生化技术在食品生产中也发挥着重要作用。

比如,可以利用酶和微生物等生化技术制造乳制品、发酵食品等。

此外,生化技术还可以加快食品生产的速度和效率,减少生产成本,同时提高食品的品质和口感。

比如,利用酶促进发酵、熟化等过程,加速生产速度;利用微生物调节食品的酸度、氧化还原状态等,改善食品的口感和保存性能。

综上所述,生化技术在食品行业中的应用已经得到广泛认可,并且正在不断增加。

生化技术不仅可以保障食品的安全性,还可以提高食品的营养价值和品质。

未来,我们可以预见,随着更多新型生化技术的出现,食品行业的质量和安全水平必将得到更大的提升。

食品生化技术在发酵工程中的应用

食品生化技术在发酵工程中的应用

食品生化技术在发酵工程中的应用【摘要】食品安全和食品质量日益成为百姓关心的话题,结合当今食品生产和管理中的若干问题,文章系统的分析了食品生化技术在发酵过程中的实际运用,希望能够给相关的食品工作人员一定的参考和借鉴。

并希望通过文章的介绍,使一些优秀的技术和想法,在未来的食品工业中得到不断的推广。

【关键词】生化技术;发酵工程;食品;应用0.前言民以食为天,中国的饮食文化底蕴深厚,饮食业也随着国民经济的发展和社会的进步,迎来了一个全面发展的春天。

在饮食业的加工制作中,比较常见的应用操作环节就是发酵。

无论是酿酒业还是面点业等,许多食品的加工制作都离不开发酵。

结合现有发酵技术和原理,笔者主要介绍了食品生化技术,由于生化技术具有明显的优势,所以必然在未来的食品工业中占有一席之地。

1.食品生化技术和发酵工程简介食品生化技术是现代生物技术在食品领域中的应用,是指以现代生命科学的研究成果为基础,结合现代工程技术手段和其他学科的研究成果,用全新的方法和手段设计新型的食品和食品原料。

该项技术的定义分为广义和狭义两个方面,从广义的层面进行分析,指一切在食品行业中应用的生物化学技术,涵盖面比较广,涉及的范围也相对较大,例如,生物的基因遗传和细胞形成等等。

随着科学技术朝着精密化发展趋势的增强,各个学科都相互渗透和融合,跨学科的研究已经不再是科学界上的新鲜事,于是,时下的食品生化技术已经成为了一种多学科共同参与的综合性技术。

现代生物技术主要应用生物学的基本原理,通过细胞和胚胎等一系列遗传基因的转变,实现物种等资源的转变。

随着科学技术的快速发展,一些科学实验器材也逐渐完善起来,在这些因素的带动之下,生物技术取得了前所未有的成绩。

同时,生物技术也逐渐的与其他行业相互融合,例如在食品、能源等方面都有渗透。

发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。

发酵工程与食品添加剂

发酵工程与食品添加剂

发酵工程在食品添加剂开发中的应用拜丽娜·亚库夫(3090100006)食品0901班摘要:近年来,随着人民生活水平的不断提高,人们对食品的营养,质量和品种的多样化都提出了更高的要求。

为了改善食品的品质和色,香,味,以及防腐和加工工艺,食品添加剂变成了食品工业的“秘密武器”。

为此,研究和开发各种食品添加剂,对于发展我国现代食品行业是十分必要的。

食品添加剂根据来源可分为化学合成的,天然物提取的和生物合成的。

但是同时由于食品添加剂过量和不当使用导致的食品中毒和危害事件让人们对化学合成添加剂的疑虑日益增加,因此采用微生物发酵法生物合成的食品添加剂是发展方向。

用发酵的方法可生产的食品添加剂主要有:增稠剂,品质改良剂,抗结剂,酸味剂,抗氧化剂,护色剂,着色剂,防腐剂等。

Abstract: for the past few years, with the continuous improvement of people's living standard, people on the food nutrition, quality and varieties of all put forward higher request. In order to improve the quality of the food and color, fragrance, taste, and anti-corrosion and processing technology, food additives into the food industry's "secret weapon". Therefore, the research and development of all kinds of food additives, food industry in China for the development of modern is very necessary. According to the source of food additive can be divided into synthetic, natural things extraction and synthetic biology. But at the same time because food additive overuse and the improper use of Food poisoning and hazard events of the chemical synthesis additives for people of growing doubts, so the microorganism fermentation in biosynthesis of food additive is the development direction. With the method of fermentation to produce food additive mainly has: thickener, Quality improver, anticoagulant, Acid, ant oxygen, color fixatives, colorant, preservative etc.关键词:食品添加剂化学合成食品添加剂微生物发酵法生物合成食品添加剂正文:世界各国对食品添加剂的定义不尽相同,联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品法规委员会对食品添加剂定义为:食品添加剂是有意识地一般以少量添加于食品,以改善食品的外观、风味和组织结构或贮存性质的非营养物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

食品生化技术在发酵工程中的应用
【摘要】食品安全和食品质量日益成为百姓关心的话题,结合当今食品生产和管理中的若干问题,文章系统的分析了食品生化技术在发酵过程中的实际运用,希望能够给相关的食品工作人员一定的参考和借鉴。

并希望通过文章的介绍,使一些优秀的技术和想法,在未来的食品工业中得到不断的推广。

【关键词】生化技术;发酵工程;食品;应用
0.前言
民以食为天,中国的饮食文化底蕴深厚,饮食业也随着国民经济的发展和社会的进步,迎来了一个全面发展的春天。

在饮食业的加工制作中,比较常见的应用操作环节就是发酵。

无论是酿酒业还是面点业等,许多食品的加工制作都离不开发酵。

结合现有发酵技术和原理,笔者主要介绍了食品生化技术,由于生化技术具有明显的优势,所以必然在未来的食品工业中占有一席之地。

1.食品生化技术和发酵工程简介
食品生化技术是现代生物技术在食品领域中的应用,是指以现代生命科学的研究成果为基础,结合现代工程技术手段和其他学科的研究成果,用全新的方法和手段设计新型的食品和食品原料。

该项技术的定义分为广义和狭义两个方面,从广义的层面进行分析,指一切在食品行业中应用的生物化学技术,涵盖面比较广,涉及的范围也相对较大,例如,生物的基因遗传和细胞形成等等。

随着科学技术朝着精密化发展趋势的增强,各个学科都相互渗透和融合,跨学科的研究已经不再是科学界上的新鲜事,于是,时下的食品生化技术已经成为了一种多学科共同参与的综合性技术。

现代生物技术主要应用生物学的基本原理,通过细胞和胚胎等一系列遗传基因的转变,实现物种等资源的转变。

随着科学技术的快速发展,一些科学实验器材也逐渐完善起来,在这些因素的带动之下,生物技术取得了前所未有的成绩。

同时,生物技术也逐渐的与其他行业相互融合,例如在食品、能源等方面都有渗透。

发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。

发酵工程的内容包括菌种的选育、培养基的配制、灭菌、扩大培养和接种、发酵过程和产品的分离提纯等方面。

2.食品生化技术在发酵工业的应用
2.1基因技术在食品发酵工程中的应用
基因技术在现代生化技术中占有重要的地位,主要采用类似工程设计的方法,按照不同的需求将目的基因剪切、组合、拼接,再将人工重组的基因通过载体导入受体细胞,进行无性繁殖,并使目的基因在受体细胞中高速发展,产生出人类所需要的产品或组建成新的生物类型。

基因技术在食品发酵工程中主要有以下应用:
2.1.1改良酿酒酵母菌的性能
利用基因工程技术培育出新的酿酒酵母菌株,用以改进传统的酿酒工艺,并使之多样化。

采用基因工程技术将大麦中的淀粉酶基因转入啤酒酵母中后,即可直接利用淀粉发酵,使生产流程缩短,工序简化,革新啤酒生产工艺。

目前,已成功地选育出分解β-葡聚糖和分解糊精的啤酒酵母菌株、嗜杀啤酒酵母菌株,提高生香物质含量的啤酒酵母菌株。

2.1.2改良面包酵母菌的性能
将优良酶基因转入面包酵母菌中后,其含有的麦芽糖透性酶及麦芽糖的含量比普通面包酵母显著提高,面包加工中产生二氧化碳气体量提高,应用改良后的酵母菌种可生产出膨润松软的面包。

2.1.3改良乳酸菌发酵剂的性能
乳酸菌能代谢产生乳酸,降低发酵产品pH值。

乳酸菌基因表达系统分为组成型表达和受控表达两种类型,其中受控表达系统包括糖诱导系统、Nisin诱导系统、pH 诱导系统和噬菌体衍生系统。

相对于乳酸乳球菌和嗜热链球菌而言,德氏乳杆菌的基因研究比较缺乏,但是已经发现质粒pN42和PJBL2用于构建德氏乳杆菌的克隆载体。

通过基因工程得到的乳酸菌发酵剂具有优良的发酵性能,产双乙酰能力、蛋白水解能力、胞外多糖的稳定形成能力、抗杂菌和病原菌的能力较强。

2.2细胞工程技术在食品发酵生产中的应用
细胞工程是生物学的一个重要组成部分,也是生物学家在不断钻研的一个重点领域,经过细胞工程的改造,可以改变细胞的原有基因,将不利于食品加工的基因进行适当的转变。

细胞工程主要有细胞培养、细胞融合及细胞代谢物的生产等。

细胞融合是在外力(诱导剂或促融剂)作用下,使两个或两个以上的异源(种、属间)细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合并形成杂种细胞的现象。

细胞融合技术是一种改良微生物发酵菌种的有效方法,主要用于改良微生物菌种特性、提高目的产物的产量、使菌种获得新的性状、合成新产物等。

与基因工程技术结合,使对遗传物质进一步修饰提供了多样的可能性。

目前,微生物细胞融合的对象已扩展到酵母、霉菌、细菌、放线菌等多种微生物的种间以至属间,不断培育出用于各种领域的新菌种。

2.3酶在食品发酵生产中的应用
酶是活细胞产生的具有高效催化功能、高度专一性和高度受控性的一类特殊生物催化剂。

酶工程是现代生物技术的一个重要组成部分,酶工程又称酶反应技术,是在一定的生物反应器内,利用生物酶作为催化剂,使某些物质定向转化的工艺技术,包括酶的研制与生产,酶和细胞或细胞器的固定化技术,酶分子的修饰改造,以及生物传感器等。

酶工程技术在发酵生产中主要用于两个方面,一是用酶技术处理发酵原料,有利于发酵过程的进行。

如啤酒酿制过程,主要原料麦芽的质量欠佳或大麦、大米等辅助原料使用量较大时,会造成淀粉酶、俘一葡聚糖酶、纤维素酶的活力不足,使糖化不充分、蛋白质降解不足,从而减慢发酵速度,影响啤酒的风味和收率。

使用微生物淀粉酶、蛋白酶、一葡聚糖酶等制剂,可补充麦芽中酶活力不足的缺陷,缩短糖化时间,减少麦皮中色素等不良杂质在糖化过程中浸出,从而降低麦汁色泽。

二是用酶来处理发酵菌种的代谢产物,缩短发酵过程,促进发酵风味的形成。

啤酒中的双乙酰是影响啤酒风味的主要因素,是判断啤酒成熟的主要指标。

当啤酒中双乙酰的浓度超过阈值时,就会产生一种不愉快的馊酸味。

双乙酰是由酵母繁殖时生成的α-乙酰乳酸和α-乙酰羟基丁酸氧化脱羧而成的,一般在啤酒发酵后期还原双乙酰需要约5~10d的时间。

3.小结
综上所述,运用食品生化技术的发酵,不仅发酵的时间缩短了,同时发酵后的产品种类也相对的丰富了,能够更加适应广大的消费人群。

更重要的是,食品加工的经济效益获得了提升,食品企业的经济利益丰厚了,毫无疑问,这将从整体上带动食品加工工业的全面发展。

[科]
【参考文献】
[1]徐成勇,郭本恒等.酸奶发酵剂和乳酸菌生物技术育种[J].中国生物工程杂志,2004,(7):27.
[2]杨玉琢,刘玉静.基因工程对乳酸菌发酵剂的改良应用[J].中国乳品工业,2005,07:33-35.
[3]邵晨,黄小凤.现代酶工程及其在食品加工中的应用[J].江苏食品与发酵,1995,03:32-33.。

相关文档
最新文档