木材力学性能参考共85页文档
木材的物理力学性能研究
木材的物理力学性能研究木材是人类生活中不可或缺的一部分,它在建筑、家具、包装、运动器材等方面都扮演着重要的角色。
随着对木材使用需求的不断增加,研究木材的物理力学性能也变得越来越重要。
本文将重点探讨木材的物理力学性能研究。
首先,让我们了解一下木材的组成结构。
木材主要由纤维素、半纤维素和木质素三种成分构成。
其中,纤维素是木材的主要成分,它占据了木材的50%以上。
由于木材的这种特殊构成,导致了它拥有优异的物理力学性能。
第一种木材的物理力学性能是弹性模量。
弹性模量又称为杨氏模量,是表示材料抵抗形变能力的一个重要指标。
材料的弹性模量越大,表示材料越难形变。
而木材的弹性模量非常高,比较硬的木材可以达到100GPa以上。
这意味着,即使面对强大的力量作用,木材也不容易变形,保持其原有形态。
第二种木材的物理力学性能是抗拉强度。
木材在受到拉力作用时,会出现拉伸变形,且很容易出现拉断现象。
抗拉强度是表示木材轴向上最大承受拉力的指标。
在木材表面纤维的拉伸条件下,抗拉强度可以很大程度上体现木材的物理力学性能。
事实上,由于木材的结构独特,它可能在某些情况下比钢更强。
第三种木材的物理力学性能是硬度。
木材的硬度涉及到木材表面的耐磨性,即当木材表面受到异物磨损时,木材能否抵御损害。
硬度的另一方面体现在木材的耐冲击性上。
除了纵向外,木材的横向物理力学性能同样值得注意。
很多人认为,木材是一种不稳定的构材。
确实,在湿度、温度等自然条件的变化下,木材的物理力学性能可能会发生一些变化。
这是由于木材中的半纤维素和木质素成分具有可塑性和膨胀性。
因此,在设计和使用木材的时候,需要考虑到木材的这种不稳定性,采取相应的可调节措施。
当然,除了上述性能外,木材还有其他的物理力学性能。
如压缩性能、剪切性能、挠曲性能等。
通过研究这些木材的物理力学性能,人们可以更好地利用木材,在建筑、制造等领域发挥更大的作用。
总之,木材是一种优良的构材,其物理力学性能在很多方面都很突出。
工业用木材物理力学性能
53
白桦
甘肃洮河
0.615
0.466
41.7
4.7
3.4
101.4
85.6
9.0
7.820
11.6
38
蚬木
广西龙津县
1.130
0.806
75.1
17.8
12.5
—
158.2
20.7
17.856
20.7
140
高叶鹅耳栎
海南尖峰岭
0.651
0.518
44.1
7.8
5.1
—
71.3
11.2
5.037
127.5
12.3
15.053
15.0
82
2.8
111.5
81.1
11.4
4.1
6.1
34
华山松
贵州威宁
0.476
0.449
35.3
4.3
2.6
85.5
63.3
8.5
3.6
7.5
25
红松
小兴安岭、长白山
0.440
0.459
32.7
3.7
—
96.1
64.0
9.8
3.4
6.8
21
广东松
湖南莽山
0.501
0.409
31.4
—
6.1
96.2
89.9
79.4
103.2
10.0
4.567
4.7
49
紫椴
东北长白山
0.493
0.470
28.4
2.7
—
105.8
59.2
11.0
木材的力学性能参数分析整理
木材的力学性能参数目录1.1木材的力学性质………………………………………………P32.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变2.1.2弹性和塑性2.1.3柔量和模量2.1.4极限荷载和破坏荷载3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性3.1.2木材的正交对称性与正交异向弹性3.1.3木材的粘弹性3.1.4木材的松弛3.1.5木材塑性3.1.6木材的强度、韧性和破坏3.1.7单轴应力下木材的变形与破坏特点4.1木材的各种力学强度及其试验方法………………………P20~ P284.1.1力学性质的种类5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响5.1.2含水率的影响5.1.3温度的影响5.1.4木材的长期荷载5.1.5纹理方向及超微构造的影响5.1.6缺陷的影响6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异6.1.2荷载的持久性6.1.3木材缺陷对强度的影响6.1.4构件干燥缺陷的影响6.1.5荷载偏差的折减6.1.6木材容许应力应考虑的因素7.1常用木材物理力学性能……………………………………P34~ P361.1木材的力学性质主要介绍:木材力学性质的基本概念、木材的应力—应变关系;木材的正交异向弹性、木材的黏弹性、木材的塑性;木材的强度与破坏、单轴应力下木材的变形与破坏特点;基本的木材力学性能指标;影响木材力学性质的主要因素等。
1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。
1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。
1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。
木材力学性能参考
contents
目录
• 木材的基本性质 • 木材的力学性能 • 木材的力学性能测试 • 木材力学性能的影响因素 • 木材力学性能的应用 • 木材力学性能的未来研究和发展
01
木材的基本性质
木材的构造
01
02
03
木纤维
木材的主要组成部分,由 管状细胞构成,具有较高 的强度和弹性。
木射线
压缩测试
总结词
压缩测试是评估木材在压缩载荷下的性 能表现,主要考察木材的抗压强度和压 缩弹性模量等参数。
VS
详细描述
在压缩测试中,试样通常被放置在两个平 行的平板之间,并在两端施加逐渐增大的 压力。通过测量试样的变形和载荷,可以 计算出木材的抗压强度和压缩弹性模量等 参数。这些参数反映了木材在承受压缩载 荷时的力学性能和稳定性。
弯曲测试
总结词
弯曲测试是评估木材在弯曲载荷下的性能表 现,主要考察木材的抗弯强度、弯曲弹性模 量和剪切模量等参数。
详细描述
在弯曲测试中,试样通常被放置在一个曲梁 上,并在两端施加逐渐增大的压力。通过测 量试样的变形和载荷,可以计算出木材的抗 弯强度、弯曲弹性模量和剪切模量等参数。 这些参数反映了木材在承受弯曲载荷时的力 学性能和稳定性。
导热性
木材的热传导系数较低, 具有良好的保温性能。
02
木材的力学性能
弹性模量
总结词
弹性模量是木材抵抗弹性变形的能力,反映了木材刚度的指 标。
详细描述
木材的弹性模量通常用弹性模量E来表示,它反映了木材在受 力时抵抗弹性变形的能力。弹性模量越大,木材的刚度越大 ,不易发生变形。
强度
总结词
强度是指木材在受到外力作用时抵抗破坏的能力。
木材的力学性能
几种木材的弹性常数
密度含水
材料 g/cm3 率 %
EL MPa
ER MPa
ET MPa
GLT
GLR
GTR
MPa MPa MPa
μRT
μLR
μLT
针叶树 材
云杉 0.390 12 11583 896 496 690 758 39 0.43 0.37 0.47
G 为剪切弹性模量,或刚性模量。
(3) 泊松比
物体的弹性应变在产生应力主轴方向收缩(拉伸)的同时还
伴随有垂直于主轴方向的横向应变,将横向应变与轴向应变之比
称为泊松比(
)。
'
分子表示横向应变,分母表示轴向应变。 (4) 弹性常数
弹性模量E、剪切弹性模量G、泊松比通常统称为弹性常数。
8.2.2 木材的正交对称性与正交异向弹性
(5)蠕变变形值等于可恢复蠕变变形值和不可恢复蠕变变 形值之和。
8.2.2.1 正交异向弹性
木材为正交异性体。弹性的正交异性为正交异向弹性。
8.2.2.2 木材的正交对称性
木材具有圆柱对称性,使它成为 近似呈柱面对称的正交对称性物体。 符合正交对称性的材料,可以用虎克 定律来描述它的弹性。
木材正交对称性
方程中有3个弹性模量、3个剪切弹性模量和3个 泊松比。不同树种间的这9个常数值是存在差异。
破坏应力、极限强度:应力在M点达到最大值,物体 产生破坏(σM)。
破坏应变:M点对应的应变(ε M ) 。
a
b
应力-应变曲线(模式图)
8.1.2.4 屈服应力
木材的力学性能
1.化学性质化学组成——纤维素、木质素和半纤维素是构成细胞壁的主要成分,此外还有脂肪、树脂、蛋白质、挥发油以及无机化合物等。
木材对酸碱有―定的抵抗力,对氧化性能强的酸,则抵抗力差;对强碱,会产生变色、膨胀、软化而导致强度下降。
―般液体的浸透对木材的影响较小。
2.物理性质1)含水量木材中的含水量以含水率表示,指所含水的质量占干燥木材质量的百分比。
木材内部所含水分,可分为以下三种。
(1)自由水。
存在于细胞腔和细胞间隙中的水分。
自由水的得失影响木材的表观密度、保存性、燃烧性、抗腐蚀性、干燥性、渗透性。
(2)吸附水。
被吸附在细胞壁内细纤维间的水分。
吸附水的得失影响木材的强度和胀缩。
(3)化合水。
木材化学成分中的结合水。
对木材性能无大影响。
纤维饱和点——指当木材中无自由水,仅细胞壁内充满了吸附水时的木材含水率。
树种不同,纤维饱和点随之不同,―般介于25%~35%,平均值约为30%。
纤维饱和点是木材物理力学性质发生变化的转折点。
平衡含水率——木材长期处于―定温、湿度的空气中,达到相对稳定(即水分的蒸发和吸收趋于平衡)的含水率。
平衡含水率是随大气的温度和相对湿度的变化而变化的。
木材的含水率:新伐木材常在35%以上;风干木材在15%~25%;室内干燥木材在8%~15%。
2)湿胀、干缩的特点当木材从潮湿状态干燥至纤维饱和点时,自由水蒸发,其尺寸不变,继续干燥时吸附水蒸发,则发生体积收缩。
反之,干燥木材吸湿时,发生体积膨胀,直至含水量达纤维饱和点为止。
继续吸湿,则不再膨胀,见图10.7.1。
―般地,表观密度大的,夏材含量多的,胀缩就较大。
因木材构造不均匀,其胀缩具有方向性,同―木材,其胀缩沿弦向最大,径向次之,纤维方向最小,见图10.7.1。
这主要是受髓线的影响,其次是边材的含水量高于心材含水量。
图10.7.1含水量对松木胀缩变形的影响木材长期湿胀干缩交替,会产生翘曲开裂。
因而潮湿的木材在加工或使用前应进行干燥处理,使木材的含水率达到平衡含水率,与将来使用的环境湿度相适应。
木材的力学性能
8.3 木材的粘弹性
流变学:讨论材料荷载后的弹性和黏性的科学。(讨论材料荷载后应 力---应变之间关系随时间变化的规律) 蠕变和松弛是黏弹性的主要内容。木材的黏弹性同样依赖于温度、负 荷时间、加荷速率和应变幅值等条件,其中温度和时间的影响尤为 明显。
8.3.1
木材的蠕变
8.3.1.1 蠕变 蠕变:在恒定应力下,木材应变随时间的延长而逐渐增大的现象。 瞬时弹性变形:与加荷速度相适应的变形,它服从于虎克定律; 黏弹性变形:加荷过程终止,木材立即产生随时间递减的弹性变形; 塑性变形:最后残留的永久变形。 差异: 黏弹性变形是纤维素分子链的卷曲或伸展造成的,变形是可逆的, 但较弹性变形它具有时间滞后性。 塑性变形是纤维素分子链因荷载而彼此滑动,变形是不可逆转的。
8.1.2.5 木材应力与应变的关系
木材的应力与应变的关系属于既有弹性又有塑 性的材料——黏弹性材料。在较小应力和较短时间 的条件下,木材的性能十分接近于弹性材料;反之, 则近似于黏弹性材料。
8.2 弹性与木材的正交异向弹性 8.2.1 弹性与弹性常数
8.2.1.1 弹性 弹性:应力解除后即产生应变完全回复的性质。 8.2.1.2 弹性常数 (1) 弹性模量和柔量 弹性模量( E ):物体产生单位应变所需要的应力,它表征材料 抵抗变形能力的大小,E=应力/应变 物体的弹性模量值愈大,在外力作用下愈不易变形,材料的 强度也愈大。 柔量:弹性模量的倒数,表征材料在荷载状态下产生变形的难易 程度。
(2) 剪切弹性模量 剪切应力τ 与剪切应变γ 之间符合: τ =Gγ 或 γ =τ /G G 为剪切弹性模量,或刚性模量。 (3) 泊松比 物体的弹性应变在产生应力主轴方向收缩(拉伸)的同时还 伴随有垂直于主轴方向的横向应变,将横向应变与轴向应变之比 称为泊松比( )。
木材地力学性能全参数分析报告整理
木材地力学性能全参数分析报告整理木材是一种常见的建筑材料,具有良好的地力学性能。
本文将对木材的地力学性能进行全参数分析,包括材料的力学性能、物理性能和耐久性能等方面。
首先,木材的力学性能是评估其地力学性能的重要指标之一、力学性能包括强度、刚度和韧性等方面。
强度是指材料抵抗外部力破坏的能力,通常用抗弯强度、抗压强度和抗拉强度来表示。
刚度是指材料抵抗变形的能力,常用的指标是弹性模量和剪切模量。
韧性是指材料在破坏前能够吸收的能量,通常用冲击韧性来表示。
通过对木材的力学性能进行全面分析,可以评估其在不同载荷下的承载能力和变形性能。
其次,木材的物理性能也是影响地力学性能的重要因素。
物理性能包括密度、湿度、热传导性和声传导性等方面。
密度是指单位体积的木材质量,与木材的强度和刚度密切相关。
湿度是指木材中水分的含量,对木材的力学性能和稳定性有着重要影响。
热传导性是指木材导热的能力,影响其在高温环境下的稳定性。
声传导性是指木材传递声波的能力,影响其在声学环境中的应用。
最后,木材的耐久性能也是评估其地力学性能的关键指标之一、耐久性能是指木材在长期水分、气候和生物侵蚀等环境下的性能表现。
常见的指标包括抗腐蚀性、抗紫外线性能和抗虫性等。
通过对木材的耐久性能进行分析,可以评估其在户外和潮湿环境中的应用潜力。
综上所述,木材的地力学性能是一个综合性的指标,涵盖了力学性能、物理性能和耐久性能等方面。
通过全参数分析,可以全面评估木材的性能,为其在工程中的应用提供科学依据。
在实际应用中,需要根据具体的使用环境和要求,选择具有合适地力学性能的木材材料,以确保工程的安全可靠性。
木材的力学性能
8.2 弹性与木材的正交异向弹性
8.2.1 弹性与弹性常数
8.2.1.1 弹性 弹性:应力解除后即产生应变完全回复的性质。 8.2.1.2 弹性常数
(1) 弹性模量和柔量 弹性模量( E ):物体产生单位应变所需要的应力,它表征材料抵抗变形能力 的大小,E=应力/应变
8.1 应力与应变 8.2 弹性与木材的正交异向弹性 8.3 木材的粘弹性 8.4 木材的强度、韧性与破坏 8.5 木材主要力学性能指标 8.6 影响木材力学性质的主要因素
8.7 木材的容许应力
注意你现在浏览的是第二页,共四十七页。
8.1.1 应力与应变的概念
应力:指物体在外力作用下单位面 积上的内力。 应变:外力作用下,物体单位长度上
即EL>>ER >ET。
注意你现在浏览的是第十一页,共四十七页。
几种木材的弹性常数
密度 含水
材料 g/cm3 率 %
EL MPa
ER MPa
ET MPa
GLT
GLR
GTR
MPa MPa MPa
μRT
μLR
μLT
针叶树 材
云杉 0.390 12 11583 896 496 690 758 39 0.43 0.37 0.47
瞬时弹性变形:与加荷速度相适应的变形,它服从于虎克定律; 黏弹性变形:加荷过程终止,木材立即产生随时间递减的弹性变形;
塑性变形:最后残留的永久变形。
差异: 黏弹性变形是纤维素分子链的卷曲或伸展造成的,变形是可逆的,但较弹 性变形它具有时间滞后性。 塑性变形是纤维素分子链因荷载而彼此滑动,变形是不可逆转的。
200 310 33 0.66 0.23 0.49 690 896 228 0.72 0.49 0.63 896 1310 269 0.71 0.46 0.51
木材力学性能参考
(4)木材蠕变特性研究简介
➢ 木材的蠕变特性曲线是一 粘弹性曲线。
J (t )
(t ) 0
➢ 木材的蠕变变形由三个部 分组成:
第一部分 是由木材内部高度结晶的微纤丝构架而引起的 弹性变形,这种变形是瞬间完成;
(4)木材蠕变特性研究简介
第二部分是链段的伸展而 引起的延迟弹性 变形,这种变形 是随时间而变化 的;
值约为0.7,针叶树材该比值约为0.78,软阔叶树材为0.70,硬阔 叶树材为0.66。针叶树材具有较高比例极限的原因是,它的构造较 单纯且有规律;硬阔叶树环孔材因构造不均一,使这一比值最低。
(2)顺纹抗压强度试样破坏的形状
根据试样破坏面的状态,顺纹抗压试样的破坏 可分为以下六种形状:压缩、楔形劈裂、剪切、 劈裂、压缩与顺纹剪切和压披,
学习木材力学性质的意义
—— 掌握木材的特性,合理选才、用材。
学习难点
—— 木材力学性质基本概念的理解、木材力学性
质特点及其影响因素。 本章重点
—— 掌握木材主要力学性质的种类、受力方式及 其测定方法。
—— 木材允许应力的确定。
6.1 木材力学基础理论与特点 6.1.1 应力与应变 6.1.1.1 应力
6.1. 3 刚度、脆性、韧性和塑性
(1)刚度——材料抵抗变形的能力 木材具有较高的刚度-密度比,故
可用于建筑材料。
(2)脆性——材料在破坏之前无明显变形的 性质。
➢ 木材的脆性与树种、生长环境、遗传、生长 应力、缺陷和腐朽有关。
➢ 脆性大的木材,一 般质量较轻,纤维 素的含量低。
➢ 生长轮特别宽的针叶树材及生长轮特别窄的 阔叶树材易形成脆性木材。
5.1.5.2 多孔性
木材主要是细胞组成,微观构造上横切面所观 察到细胞断面为孔眼;径切面、弦切面上为中 空管状,及细胞壁上纹孔等;宏观构造上,导 管分子孔状结构等。
不同树种的木材物理力学性能
不同树种的木材物理力学性能不同树种的木材物理力学性能包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。
树木是木材的原体,是由它本身生命生存与繁衍的整个生长过程,积累了成为不同木材的物质,直到生命自然终结,或被认为终结生命,而成为被利用的材料。
树木是木质多年生植物,通常把它分为乔木和灌木两种。
乔木是l.3米以上,只有一个直立主干的树木;灌木是直立的、具有丛生茎的树木。
我国现有木本植物约7000多种,属乔木者约占1/3以上,但是作为工业用材而供应市场的只不过1000种,常见的约300种。
树木是人类繁衍延续到今天的必要条件。
它靠空气、水和阳光存活,通过一系列化学反应,形成树木肢体的物理变化,为人类营造出了天然的乐园。
“碳”是形成木材物理力基础。
树木在生长发育过程中,形成了高度发达的营养体。
水分及营养液等流体的输运现象始终伴随着树木营养生长的生理过程。
树木由树梢沿主轴向上生长(高生长),也在土壤深处向下生长(根生长),中间的树干部分沿着径向生长。
前一年形成的树干部分到了次年不会再进行高生长。
树木从天上接受阳光的沐浴,到地下去寻觅水分,把原料从树根输送到叶片。
由叶子制造养分,将养分向下输送,供给树木生长需要。
这样,树木生长过程中,形成了非常协调完备的水分及养分的输送系统。
一株红杉(美)树高达112米,一株杏仁桉(奥)树竟高达156米,一株银杏(中)树龄达3000年,一株世界爷(美)树龄竟达7800年。
那么对于如此高大、如此年久的树木,体内各种物质(水、矿物质、可溶性碳水化合物和激素等等)是它的最外层是树皮(外皮),树皮里边一层是韧皮部(也叫内皮),经它将营养液由叶部输送到树木的其他部分(包括根在内)。
再向内一层是形成层,它的细胞不断分裂,使树木沿径向生长而不断加粗。
再往里是边材和心材,即木质部,木质部中被叫做导管的细胞组织,它将树液输送到茎和叶部。
木材的力学性能
1.化学性质化学组成——纤维素、木质素和半纤维素是构成细胞壁的主要成分,此外还有脂肪、树脂、蛋白质、挥发油以及无机化合物等。
木材对酸碱有―定的抵抗力,对氧化性能强的酸,则抵抗力差;对强碱,会产生变色、膨胀、软化而导致强度下降。
―般液体的浸透对木材的影响较小。
2.物理性质1)含水量木材中的含水量以含水率表示,指所含水的质量占干燥木材质量的百分比。
木材内部所含水分,可分为以下三种。
(1)自由水。
存在于细胞腔和细胞间隙中的水分。
自由水的得失影响木材的表观密度、保存性、燃烧性、抗腐蚀性、干燥性、渗透性。
(2)吸附水。
被吸附在细胞壁内细纤维间的水分。
吸附水的得失影响木材的强度和胀缩。
(3)化合水。
木材化学成分中的结合水。
对木材性能无大影响。
纤维饱和点——指当木材中无自由水,仅细胞壁内充满了吸附水时的木材含水率。
树种不同,纤维饱和点随之不同,―般介于25%~35%,平均值约为30%。
纤维饱和点是木材物理力学性质发生变化的转折点。
平衡含水率——木材长期处于―定温、湿度的空气中,达到相对稳定(即水分的蒸发和吸收趋于平衡)的含水率。
平衡含水率是随大气的温度和相对湿度的变化而变化的。
木材的含水率:新伐木材常在35%以上;风干木材在15%~25%;室内干燥木材在8%~15%。
2)湿胀、干缩的特点当木材从潮湿状态干燥至纤维饱和点时,自由水蒸发,其尺寸不变,继续干燥时吸附水蒸发,则发生体积收缩。
反之,干燥木材吸湿时,发生体积膨胀,直至含水量达纤维饱和点为止。
继续吸湿,则不再膨胀,见图10.7.1。
―般地,表观密度大的,夏材含量多的,胀缩就较大。
因木材构造不均匀,其胀缩具有方向性,同―木材,其胀缩沿弦向最大,径向次之,纤维方向最小,见图10.7.1。
这主要是受髓线的影响,其次是边材的含水量高于心材含水量。
图10.7.1含水量对松木胀缩变形的影响木材长期湿胀干缩交替,会产生翘曲开裂。
因而潮湿的木材在加工或使用前应进行干燥处理,使木材的含水率达到平衡含水率,与将来使用的环境湿度相适应。
木材的力学性能参数分析精编WORD版
木材的力学性能参数分析精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】木材的力学性能参数目录1.1木材的力学性质………………………………………………P32.1木材力学基础理论……………………………………………P3~ P8 2.1.1应力与应变2.1.2弹性和塑性2.1.3柔量和模量2.1.4极限荷载和破坏荷载3.1木材力学性质的特点…………………………………………P8~ P20 3.1.1木材的各向异性3.1.2木材的正交对称性与正交异向弹性3.1.3木材的粘弹性3.1.4木材的松弛3.1.5木材塑性3.1.6木材的强度、韧性和破坏3.1.7单轴应力下木材的变形与破坏特点4.1木材的各种力学强度及其试验方法………………………P20~ P284.1.1力学性质的种类5.1木材力学性质的影响因素…………………………………P28~ P31 5.1.1木材密度的影响5.1.2含水率的影响5.1.3温度的影响5.1.4木材的长期荷载5.1.5纹理方向及超微构造的影响5.1.6缺陷的影响6.1木材的允许应力…………………………………………P31~ P33 6.1.1木材强度的变异6.1.2荷载的持久性6.1.3木材缺陷对强度的影响6.1.4构件干燥缺陷的影响6.1.5荷载偏差的折减6.1.6木材容许应力应考虑的因素7.1常用木材物理力学性能……………………………………P34~ P361.1木材的力学性质主要介绍:木材力学性质的基本概念、木材的应力—应变关系;木材的正交异向弹性、木材的黏弹性、木材的塑性;木材的强度与破坏、单轴应力下木材的变形与破坏特点;基本的木材力学性能指标;影响木材力学性质的主要因素等。
1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。
1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。
木材的力学性质-
木材的蠕变曲线如图9—2所示:
OA-----加载后的瞬间弹性变形 应
AB-----蠕变过程,
变
B
(
ε
(t0→t1)t↗→ε↗
BC1 ----卸载后的瞬间 弹性回复,BC1==OA
C1D----蠕变回复过程, t↗→ε缓慢回复
)
C1ቤተ መጻሕፍቲ ባይዱ
A
C2
D
O
C3
E
t0
t1
t 时间(t
图9—2 木材的蠕变曲2线)
故蠕变AB包括两个组分:
(二)增加木材的塑性(improving the plasticity of wood)
木材的塑性变形较小,在加工利用方面受到一定 限制。典型的塑性变形在金属等结晶材料上受热承载 后能明显看到,由于晶格的转位和滑移,可产生出数 倍于常温下的塑性变形,可利用于作压延、拉伸、挤 压等塑性加工。
木材是高分子材料,它的塑性是由于在应力作用 下,高分子的变形及相互间能产生相对移动的结果。 在常温下为了提高高分子材料的塑性,要添加可塑剂, 使分子间结合力减弱。此外,通过加热使木材基体物 质软化,也能增加木材塑性,将材料的这类性质称为 热塑性。
2.握钉力 (nail-holding ability) 是木材抵抗钉子拔 出的能力。它的大小取决于木材与钉子间的摩擦 力、木材含水率、密度、硬度、弹性、纹理方向、 钉子种类及与木材接触状况等。
木材的力学性能
注意你现在浏览的是第八页,共四十七页。
(2) 剪切弹性模量
剪切应力τ与剪切应变γ之间符合: τ=Gγ 或 γ=τ/G
G 为剪切弹性模量,或刚性模量。 (3) 泊松比
物体的弹性应变在产生应力主轴方向收缩(拉伸)的同时还伴随有 垂直于主轴方向的横向应变,将横向应变与轴向应变之比称为泊松比
木材蠕变曲线变化表现的正是木材的黏弹性质。
木材的蠕变曲线
注意你现在浏览的是第十四页,共四十七页。
8.3.1.3 蠕变规律
(1)对木材施载产生瞬时变形后,变形有一随时间推移而增大的 蠕变过程;
(2)卸载后有一瞬时弹性恢复变形,在数值上等于施载时的瞬时
变形; (3)卸载后有一随时间推移而变形减小的蠕变恢复,在此过程中的是可
注意你现在浏览的是第二十三页,共四十七页。
8.4.2 木材的韧性
韧性是指材料在不致破坏的情况下所能抵御的瞬 时最大冲击能量值。
韧性材料往往是强度大的材料,但也有不符合这 个关系的。
注意你现在浏览的是第二十四页,共四十七页。
8.4.3 木材的破坏
8.4.3.1 破坏
木材结构破坏是指其组织结构在外力或外部环境作 用下发生断裂、扭曲、错位,而使木材宏观整体完全丧 失或部分丧失原有物理力学性能的现象。
木材的力学性能
注意你现在浏览的是第一页,共四十七页。
目录
8.1 应力与应变 8.2 弹性与木材的正交异向弹性 8.3 木材的粘弹性 8.4 木材的强度、韧性与破坏 8.5 木材主要力学性能指标 8.6 影响木材力学性质的主要因素
8.7 木材的容许应力