简单的线性规划(高三复习课)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:简单的线性规划(高三复习课)
点明课题:
本节课是北师大版全日制普通高级中学数学教科书(试验修订本·必修5)第三章第4节“简单的线性规划”.本节课是高三第一轮复习课,内容包括二元一次不等式表示平面区域、线性规则及线性规划的实际应用.
下面我从三方面来说说对这节课的分析和设计.
1. 教材地位分析
一教学背景分析 2. 学生特征分析
3. 教学目标分析
1. 教学重点、难点分析
二教学展开分析 2. 教学策略和方法指导
3. 教学媒体选择
4. 教学实施
三教学结果分析
一、教学背景分析
1、教材地位分析
(1)“简单的线性规划”是在复习了直线方程的基础上而再度学习的. 因线性规划的应用性广泛,“简单线性规划”不仅是“新大纲”中增加的新内容,也是“新课标”的必修内容;说明了教材重视数学知识的应用.
(2)“简单的线性规划”体现了数学应用性的同时,还渗透了化归、数形结合等数学思想和数学建模法.
(3)“简单的线性规划”内容从2003年江苏高考卷选择题开始,已成为近年来高考数学命题的一个亮点. 几乎每年必考。
考查的题型有选择题,填空题、解答题,.
2、学生特征分析
(1)学习任务分析:通过第一轮复习,学生对不等式、直线方程知识有了更系统的理解;这是复习“简单的线性规划”的起点能力.
(2)认知能力分析:学生能应用不等式、直线方程知识来解决问题,加之,体会过“简单的线性规划”应用性;这有益于“简单的线性规划”的“同化”和“顺应”.
(3)认知结构变量分析:“不等式”、“直线方程”与“简单的线性规划”是“类属关系”,故“简单的线性规划”的复习是“下位学习”,说明认知结构的可利用性和可分辩性. 但是,由于“简单的线性规划”在教材上的编排简约、图解方法的动态且有错误之处(例3的答案),影响到认知结构的稳固性;这要求通过创设问题情境、自主探究等来促进认知结构的稳固性,进行意义建构.
3、教学目标分析
(1)知识技能:掌握二元一次不等式表示平面区域,进一步了解线性规划的意义,并能应用其解决一些简单的实际问题.
(2)过程与方法:通过自主探究,师生会话,体验数学发现和创造的历程;经历线性规划的实际应用,提高数学建模能力.
(3)情感态度:通过自主探究,师生会话,养成批判性的思维品质,形成良好的合作交流品质,提高“应用数学”的意识.
以上三个目标确定是基于教材地位分析和学生特征分析.
二、教学展开分析
1、教学重点与难点分析
重点:掌握二元一次不等式表示平面区域并灵活运用,以及线性规划最优解的求解.
难点:实际问题转化为线性规划问题及其整数最优解、最优近似解的求解.
利用例题、变式训练,求线性规划最优解的两种有效的方法——“调整优值法”、“换元取优法”的应用,以及“简单的线性规划解答器”的应用,来突出重点,突破难点.
2、教学策略与方法指导
(1)教学策略:本节课采用基于建构主义理论的“建构式教学方法”,即由“创设问题情境——自主探究——师生会话——意义建构”四个环节组成. 以学生为主体,并根据教学中的实际情况及时调整教学方案.
(2)学法指导:教师平等地参与“师生会话”,间或参与“自主探究”并适时点拨指导;引导学生全员、全过程参与;自主探究的形式可以是小组学习,也可以是“学习共同体”等,引导学生反思评价.
3、教学媒体的选择与运用
使用多媒体辅助教学,运用“简单的线性规划解答器”.
4、教学实施
按照“建构式教学法”的思想,围绕突出重点,解决难点,不断设置问题情境,激发学生自主探究,并由师生会话促进意义建构. 我把本节课的教学实施分成三大部分,即(1)概念“同化”,(2)例题研讨,(3)反思评价.
Ⅱ例题研讨
三、教学结果分析
通过本节课的学习,结合教学目标,从知识、能力、情感三个方面预测可能会出现的结果.
1、学生能掌握并灵活运用二元一次不等式的平面区域,能够求出最优解;但在数学建模方面,估计有少部分学生会有一定的困惑. 另外,对线性规划和其它知识的交汇题的求解以及实际问题的整数最优解、近似最优解的求解仍会有学生感到陌生,故须督促学生课后加强消化.
2、学生基本思想能力得到一定的提高,但良好的数学素养有待进一步提高.
3、由于学生层次不同,已有的数学知识、观念不同,体验和认识也不同,对于学习层次较高的学生,应鼓励其严谨、谦虚、锲而不舍的求学态度;而对学习欠佳的同学,应多鼓励,并辅之以师生的帮助促进其进步.
附:板书设计
【设计说明】
1.高三复习课,不仅仅是以前所学知识的重复,而是要在“问题解决”中对知识进行“同化”、“顺应”,进行意义建构. 故应帮助学生建立明晰的知识结构. 所以本节课的设计采取“建构式教学法”即“设置问题情境”、“自主探究”、“师生会话”、“意义建构”四环节教学;利用题型面广的例、变式题的研讨、探究,形成知识的完整性、系统性.
2.高三复习既要依据教学大纲、也要依据考试大纲,还要根据近几年高考对本节内容的考查方向. 故此,在例、变式题中渗透“二元一次不等式表示平面区域”、“线性规划最优解”的问题,做到“重点”突出;而“难点”也随着二种有效方法即“调整优值法”、“换元取优法”及“线性
规划解答器”的应用而完成了“顺应”.
3.课堂上的例1、例2的解决以学生“自主探究”、“师生会话”为主;例3以师生“共同探究”为主;变式题则由学生理清解题思路完成,教师可在关键的地方点拨. 这其中借助多媒体和“线性规划解答器”予以辅助. 体现了信息技术与教学内容的有机整合.
4.课后作业注重基础性、交汇性及新颖性.。