现代控制实验指导书
现代控制理论实验指导书
1、实验设备 PC 计算机 1 台,MATLAB 软件 1 套。
2、实验目的 ① 学习系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转
换的方法; ② 通过编程、上机调试,掌握系统状态空间表达式与传递函数相互转换方法。
3、实验原理说明 参考教材 P56~59“2.7 用 MATLAB 分析状态空间模型” 4、实验步骤
,绘制系统的状态响应及输出响应曲线;
0
0 0
,绘制系统的状态响应及输出响应曲线;
,绘制系统的状态响应及输出响应曲线;
若取采样周期T 0.05 秒
(1)试求相应的离散化状态空间模型; (2)分析不同采样周期下,离散化状态空间模型的结果。
x
0
1 1
下的状态响应曲线。
实验 3 系统的能控性、能观测性分析
1、实验设备 PC 计算机 1 台,MATLAB 软件 1 套。
2、实验目的 ① 学习系统状态能控性、能观测性的定义及判别方法; ② 通过用 MATLAB 编程、上机调试,掌握系统能控性、能观测性的判别方法,掌握
将一般形式的状态空间描述变换成能控标准形、能观标准形。 3、实验原理说明
1、实验设备 PC 计算机 1 台,MATLAB 软件 1 套。
2、实验目的 ① 学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应; ② 通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制状态响应曲线; ③ 掌握利用 MATLAB 导出连续状态空间模型的离散化模型的方法。 3、实验原理说明 参考教材 P99~101“3.8 利用 MATLAB 求解系统的状态方程” 4、实验步骤 (1)根据所给系统的状态方程,依据系统状态方程的解的表达式,采用 MATLAB 编程。 (2)在 MATLAB 界面下调试程序,并检查是否运行正确。 题 2.1 已知 SISO 系统的状态方程为
现代控制理论-基于MATLAB的实验指导书课程设计指导书
现代控制理论基于MATLAB的实验指导书第一部分实验要求1.实验前做好预习。
2.严格按照要求操作实验仪器,用毕恢复原状。
3.实验完成后,由指导教师检查实验记录、验收仪器后,方可离开。
4.实验报告应包括以下内容:1)实验目的;2)实验原理图;3)实验内容、步骤;4)仿真实验结果(保留仿真实验波形,读取关键参数);5)仿真实验结果分析。
第二部分MATLAB平台介绍实际生产过程中,大部分的系统是比较复杂的,并且要考虑安全性、经济性以及进行实验研究的可能性等,这在现场实验中往往不易做到,甚至根本不允许这样做。
这时,就需要把实际系统建立成物理模型或数学模型进行研究,然后把对模型实验研究的结果应用到实际系统中去,这种方法就叫做模拟仿真研究,简称仿真。
到目前为止,已形成了许多各具特色的仿真语言。
其中美国Mathworks软件公司的动态仿真集成软件Simulink与该公司著名的MATLAB软件集成在一起,成为当今最具影响力的控制系统应用软件。
国内MA TLAB软件的著名论坛为“MATLAB中文论坛”,网址为:https:///forum.php,建议同学们注册并参与论坛相关内容的讨论。
图1 MA TLAB仿真环境第三部分 实验实验一线性系统的时域分析实验目的熟悉MATLAB 环境,掌握用MATLAB 控制系统工具箱进行线性定常系统的时域分析、能控性与能观性分析、稳定性分析的方法。
实验要求完成指导书规定的实验内容,记录并分析实验结果,写出实验报告。
实验内容1.已知系统的状态模型,求系统在单位阶跃输入下的各状态变量、输出响应曲线。
例:[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡2121214493.69691.1,0107814.07814.05572.0x x y u x x x x 。
键入:a = [-0.5572, -0.7814; 0.7814,0]; b = [1; 0]; c = [1.9691,6.4493]; d = 0;[y, x, t]=step(a, b, c, d); plot(t, y); grid (回车,显示输出响应曲线。
现代控制理论实验指导书
现代控制理论实验指导书实验⼀多变量时域响应⼀、实验⽬的1、掌握多输⼊多输出(MIMO )系统传递函数的建⽴2、分析MIMO 系统时域响应的特点⼆、实验仪器1、 TDN —AC/ACS 型⾃动控制系统实验箱⼀台2、⽰波器3、万⽤表三、实验原理与电路1、传递函数矩阵关于传递函数矩阵的定义是当初始条件为零时,输出向量的拉⽒变换式与输⼊向量的拉⽒变换式之间的传递关系。
设系统动态⽅程为()()x Ax t Bu t ?=+,()()()y t Cx t Du t =+令初始条件为零,进⾏拉⽒变换,有()()()()()()sX s AX s BU s Y s CX s DU s =+=+则11()()()()[()]()()()X s sI A BU s Y s C sI A B D U s G s U s --=-=-+=系统的传递函数矩阵表达式为1()()G s C sI A B D -=-+设多输⼊多输出系统结构图如图1-1。
图1-1多输⼊多输出系统结构图它是由传递函数矩阵为()G s 和()H S 的两个⼦系统构成。
由于()()()()[()()]()[()()()]Y s G s E s G s U s Z s G s U s H s Y s ==-=-1()[()()]()()Y s I G s H s G s U S -=+闭环传递矩阵为:1()[()()]()s I G s H s G s -Φ=+ 2、实验题⽬某⼀控制系统如图1-2,为⼆输⼊⼆输出系统的结构图。
图1-2 ⼆输⼊⼆输出系统的结构图由系统结构图可知,控制器的传递函数阵()c G s 为10()01c G s ??=被控对象的传递函数阵()p G s 为1/(0.11)0()1/(0.11)1/(0.11)p s G s s s +??=??++??反馈传递函数阵()H s 为10()01H s ??=?于是根据闭环传递矩阵公式得1()[()()()]()()c p c p s I G s G s H s G s G s -Φ=+ 将(),(),()c p G s G s H s 代⼊上式可得1101/(0.11)01010()011/(0.11)1/(0.11)0101s s s s -?+Φ=+++1/(0.11)0101/(0.11)1/(0.11)01s s s +++化简得21/(0.12)0()(0.11)/(0.12)1/(0.12)s s s s s +??Φ=??+++??由上式可得系统的输出量()()0.12Y s U s s =+21220.111()()()(0.12)0.12s Y s U s U s s s +=+++ 四、实验内容及步骤1、根据图1-2设计模拟电路图1-3,并按图1-3搭接线路图1-3 系统模拟电路图2、令u1为⼀阶跃信号,观察并记录系统输出的波形。
现控实验指导书
现代控制理论》实验指导书王璐自动化07-1 班山东科技大学机电系实验一系统的传递函数阵和状态空间表达式的转换、实验目的1 •学习多变量系统状态空间表达式的建立方法、了解状态空间表达式与传递函数相互转换的 方法; 2.通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
、实验要求学习和了解系统状态方程的建立与传递函数相互转换的方法;其中A 为n x n 维系数矩阵、B 为n x r 维输入矩阵C 为m x n 维输出矩阵,D 为传递阵,一般情况下为0。
系统的传递函数阵和状态空间表达式之间的关系如式(1 — 2)示。
式(1.2)中,num(s)表示传递函数阵的分子阵,其维数是 m x r ; den(s)表示传递函数阵的按s 降幕排列的分母。
五、实验步骤1 .据所给系统的传递函数或( A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的 关系如式(1— 2),采用MATLA B file.m 编程。
注意:ss2tf 和tf2ss 是互为逆转换的指令; 2. 在MATLA 界面下调试程序,并检查是否运行正确。
3. 已知MIMO 系统的系统的传递函数,求系统的空间状态表达式。
系统的传递函数为:4. 从系统的传递函数(1.4)式求状态空间表达式。
程序:num =[0 0 1 2;0 1 5 3]; %在给num 赋值时,在系数前补0,必须使num 和den 赋值的个 数相同; den =[1 2 3 4];[A,B,C,D]=tf2ss( num,de n)二、实验设备1. 计算机1台2.MATLAB6.X 软件 1 套。
四、实验原理说明设系统的模型如式 x Axy Cx(1 — 1)示。
Bu x DuR n u R r y R m(1— 1)G (S )器 C (SI A )1B D(1 — 2)G(S)s 2 5s 3 s 32s 23s 4(1 — 4)程序运行结果A =-2 -3 -4 1 0 0 0 1B =1 0 0在已知系统的状态空间表达式可以求得系统的传递函数,现在已知系统的状态空间表达式来求 系统的传递函数,对上述结果进行相应的验证。
现代控制理论实验指导书
1.7 MATLAB 在系统数学模型中的应用MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MA TLAB 和Simulink 两大部分。
通过使用MATLAB 可以更方便地对控制系统进行学习探讨和研究。
本节主要介绍MA TLAB 在线性定常系统数学模型的建立和分析中的应用。
1.7.1 线性系统的数学模型1. 传递函数模型设单输入单输出连续系统的传递函数为:111211011()n m n nn n n nb s b s b s b G s a s a s a s a -----++++=++++ 在MA TLAB 中,可用传递函数分子、分母多项式按s 的降幂系数排列的行向量,即:[][]121011,,,,;,,,,;n n n n num b b b b den a a a a --==MTALAB 中,可调用tf()函数建立系统的传递函数模型TF :(),;sys tf num den =[例1-25] 已知系统的传递函数为:23231()246s s G s s s s ++=+++试用MATLAB 描述其系统模型。
解:MATLAB 代码如下:运行结果如下:类似的,对于单输入单输出离散系统的脉冲传递函数为:111211011()n m n nn n n nb z b z b z b G z a z a z a z a -----++++=++++在MA TLAB 中,同样可调用tf()函数建立系统的传递函数模型TF :[][]()121011,,,,;,,,,;,,n n n n num b b b b den a a a a sys tf num den T --=== 式中,T 为系统采样周期。
另外,系统的传递函数还可以表示为零极点的形式:1212()()()()()()()m n s z s z s z G s ks p s p s p ---=---其调用格式为:[][]1212,,,;,,,;;(,,)m n z z z p p p k k sys zpk k ====z p z p2. 状态空间模型m 维输入、r 维输出的线性定常系统的状态空间表达式为()()()()()()t t t t t t =+⎧⎨=+⎩xAx Bu y Cx Du式中,nR ∈x ——系统的n 维状态向量;n R ∈u ——系统的r 维输入向量;R m ∈y ——系统的m 维输出向量;Rn n⨯∈A ——n n ⨯维系统矩阵;n r R ⨯∈B ——n r ⨯维输入矩阵; m n R ⨯∈C ——m n ⨯维输出矩阵;m r R ⨯∈D ——m r ⨯维输入输出关联矩阵;在MA TLAB 中,可调用ss()函数建立系统的状态空间模型:[][][][]111212122212111212122212111212122212111212122212,,,;,,,;;,,,;,,,;,,,;;,,,;,,,;,,,;;,,,;,,,;,,,;;,,,;(,,,)n n n n nn n n n n nn n n n n nn n n n n nn a a a a a a a a a b b b b b b b b b c c c c c c c c c d d d d d d d d d sys ss =====A B C D A B C D对于线性定常离散系统:(1)()()()()()k k k k k k +=+⎧⎨=+⎩x Gx Hu y Cx Du 在建立系数矩阵G 、H 、C 、D 后,同样可以调用ss()函数建立系统的状态空间模型:(,,,,)sys ss T =G H C D式中,T 为系统采样周期。
《现代控制理论》实验指导书 第一部分 使用说明
《现代控制理论》实验指导书第一部分使用说明(1)微纳科技cSPACEcSPACE快速控制原型和硬件在回路开发系统(以下简称cSPACE系统)拥有AD、DA、IO、Encoder和快速控制原型开发、硬件在环仿真功能,通过Matlab/Simulink设计好控制算法,将输入、输出接口替换为cSPACE模块,编译整个模块就能自动生成DSP代码,在控制卡上运行后就能生成相应的控制信号,从而方便地实现对被控对象的控制。
运行过程中通过cSPACE提供的MATLAB接口模块,可实时修改控制参数,并以图形方式实时显示控制结果;而且DSP采集的数据可以保存到磁盘,研究人员可利用MATLAB对这些数据进行离线处理。
cSPACE主要能完成:平台实验、一级倒立摆的经典控制实验;一级倒立摆、二级倒立摆的现代控制实验;一级倒立摆、二级倒立摆的智能控制实验。
图1为利用cSPACE工具的开发流程图。
图1 cSPACE开发流程图1(2)AEDK-LabACT-3A自控原理实验箱AEDK-LabACT-3A自动控制实验箱主要能完成:1、自动控制原理实验;2、微机控制技术实验;3、控制系统实验。
自动控制实验箱根据这三个实验项目设计了四个功能区来实现。
根据功能本实验机划分了各种实验区均在主实验板上。
实验区组成见表1。
表1 实验区组成A 实验区模拟运算单元有六个模拟运算单元,每单元由多组电阻、或电容构成的输入回路、反馈回路和1~2个运算放大器组成。
A1~A6模拟运算扩充库包括校正网络库(A7)、整形模块(A8),可调零放大器(A9),放大器(A10)和2个0~999.9KΩ的直读式可变电阻、2个电位器及多个电容(A11)。
A7~A11B 实验区手控阶跃信号发生器由手控阶跃发生(0/+5v、-5v/+5v),幅度控制(电位器),非线性输出组成。
B1 函数发生器含有十种(可选择)波形输出:矩形波、正弦波、斜坡、方波输出,方波/正弦波、矩形波/正弦波同时输出,继电特性、饱和特性、死区特性及间隙特性等非线性输出。
现代控制理论实验指导书甄选范文.
现代控制理论实验指导书哈尔滨理工大学现代控制理论实验报告姓名:袁一鸣班级:13级自动化— 3 班学号:1330130325日期:2016.7.4实验一控制系统的能控性和能观性一实验目的1.掌握能控性和能观性的概念,学会用MATLAB判断能控性和能观性;2. 掌握系统的结构分解,学会用MATLAB 进行分解;3.掌握系统能控标准型和能观标准型,学会用MATLAB 进行变换。
二 实验设备PC 机一台,装有MATLAB 软件。
三 实验内容1. 系统方程为,x Ax Bu y Cx =+=式中,0061011016A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦;310B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦;[]001C =,试按能控性进行分解。
2. 系统方程为,x Ax Bu y Cx =+=。
式中,121021132A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦;011B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦;[]101C =,求线性变换矩阵,将其变换成能控标准型和能观标准型。
四 实验原理1 线性定常系统能控性和能观性判据系统状态空间描述为x Ax Bu y Cx =+⎧⎨=⎩1) N 阶线性定常系统状态完全能控的充要条件是:能控性矩阵21[]n c Q B AB A B A B -=的秩为n 。
能控性矩阵可用MATLAB 提供的函数ctrb()自动产生,其调用格式为ctrb(A,B)。
能控性矩阵的秩可用MATLAB 提供的函数rank()求出。
2) N 阶线性定常系统状态完全能观的充要条件是:能观性矩阵21o n C CA Q CA CA -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的秩为n 。
能观性矩阵可用MATLAB 提供的函数obsv()自动产生,其调用格式为obsv(A,B)。
2 线性系统的结构分解1) 按能控性分解:如果系统状态不完全能控,可通过非奇异变换分解为能控和不能控两部分,当能控矩阵的秩()c rank Q n <时,可以使用函数命令ctrbf()对线性系统进行能控性分解,其调用格式为,,,,(,,)A B C T K ctrbf A B C ⎡⎤=⎣⎦,其中T 为相似变换矩阵,K 为一个相量,()sum K 可以求出能控的状态分量的个数。
现代控制理论实验指导书【模板】
现代控制理论实验指导书西安文理学院物理与机电工程学院目录前言 (1)实验一系统的传递函数阵和状态空间表达式的转换 (3)实验二多变量系统的能控性和能观测性分析 (7)实验三多变量系统的稳定性分析 (13)实验四系统设计:状态观测器的设计 (17)前言这是一本为工科高年级学生编写的实验指导书,作为控制系统领域各门控制课程的配套实验教材。
一、现代控制理论实验的任务“现代控制理论”是全日制本科自动化专业的重要专业课程,它的实践性教学环节,对学生理解和掌握现代控制理论起着至关重要的直接影响作用。
现代控制理论实验的主要任务是使学生通过实验进一步理解和掌握现代控制理论的基本概念、基本原理和控制系统的分析与设计方法。
它是现代控制理论课程教学的一部分,其主要目标如下:(1)深刻理解现代控制理论的基本理论;(2)初步掌握控制系统的分析与设计方法;(3)学习和掌握现代计算机技术及其辅助工具的运用,提高计算机的应用能力与水平;(4)提高实际应用能力和动手操作能力,培养严肃认真、一丝不苟的科学态度。
二、实验的要求现代控制理论实验是一个专业性较强的实践环节,要求有专门的实验场所和实验设备;并且要求参加实验者必须具备必要的相关理论基础知识,对所做实验的前提条件及制约因素有足够的认识和理解;同时要求参加实验者具有较强的观察思考能力、研究分析能力和创新能力。
三、现代控制理论实验的实现方法现代控制理论课程的实验方法比较灵活,实验方案和思路也比较多。
众多厂家和高校都研制开发出了各种实验箱以及相应的实验平台,但大多数受到实验场所、实验设备等教学条件的制约。
按照加强理论、巩固基础、培养学生的观察思考能力和创新能力的指导思想,本实验指导书主要通过“计算机软件仿真”的实现方法去完成实验,使学生加深对所学理论的理解和认识。
四、对参加实验学生要求(1)认真阅读实验指导书,复习与实验有关的理论知识,明确每次实验的目的,了解实验所涉及的相关软件的操作,熟悉实验的内容和方法。
现代控制理论实验指导书
实验一 系统能控性与能观性分析一、实验目的1.理解系统的能控和可观性。
二、实验设备1.THBCC-1型 信号与系统·控制理论及计算机控制技术实验平台;三、实验内容二阶系统能控性和能观性的分析四、实验原理系统的能控性是指输入信号u 对各状态变量x 的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。
对于图21-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中4321R R R R ≠,则输入电压u r 能控制i L 和u c 状态变量的变化,此时,状态是能控的。
反之,当4321R R =R R 时,电桥中的A 点和B 点的电位始终相等,因而u c 不受输入u r 的控制,u r 只能改变i L 的大小,故系统不能控。
系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间内根据系统的输出能唯一地确定系统的初始状态,则称系统能观。
为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式:u 0L 1u i R4R3R3R4R2R1R1R2C 1R4R3R3R4R2R1R1R2C 1R4R3R3R4R2R1R1R2L 1R4R3R3R4R2R1R1R2L 1u i c L c L ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-+-⎪⎭⎫⎝⎛+++-⎪⎭⎫ ⎝⎛+-+-⎪⎭⎫⎝⎛+++-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ y=u c =[0 1] ⎪⎪⎪⎭⎫ ⎝⎛c L u i (1)u 0L 1u i R4R3R3R4R2R1R1R2C 1- 0 0 R4R3R3R4R2R1R1R2L 1u i c L c L ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+++-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛[0u y c == ]1 ⎪⎪⎪⎭⎫ ⎝⎛c L u i (2)由式(2)可知,状态变量i L 和u c 没有耦合关系,外施信号u 只能控制i L 的变化,不会改变u c 的大小,所以u c 不能控。
实验现代控制理论实验指导书2019314修订版共13页word资料
第11章 现代控制理论11.1 现代控制理论实验预习知识11.1.1 状态反馈1. 状态方程选择状态变量x 1,x 2如图11-1,列写状态方程如下:[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎥⎦⎤⎢⎢⎣⎡∙∙21212110,0101202x x y u x x x x2图11-1 状态变量⎥⎦⎤⎢⎣⎡-=2002010M ,R ankM=2 显然能控;⎥⎦⎤⎢⎣⎡-=1210N ,rankN=2 显然能观。
故可作状态反馈改变被控对象的特性,使其更快的跟踪给定信号(阶跃信号)。
根据[]⎥⎦⎤⎢⎣⎡-=2121x x K K v u 或[]⎥⎦⎤⎢⎣⎡+=2121x x K K v u 可画出全状态反馈的模拟电路图。
如图11-2所示。
y图11-2 全状态模拟反馈电路图2. Matlab 仿真① 当只有输出反馈时,开环传函为()()()21202++=s s k s G o ,画根轨迹可得图11-3。
图11-3 根轨迹图② 输出反馈时,考虑(1)给出的开环传函,要想单位反馈阶跃响应无超调,可从根轨迹图上求得,当ts 最短时,阻尼比为0.707(最佳阻尼比),此时K2=0.125。
所以,有超调时,K2>0.125,无超调时,K2<0.125即可。
③ simulink 输出仿真图图11-4 仿真电路④ 输出反馈的仿真结果图11-5 仿真结果⑤ 状态反馈的仿真图图11-6 状态反馈的仿真电路⑥ 状态反馈的仿真结果第 171 页57.021==k k图11-7 状态反馈的仿真结果11.1.2 状态观测器和状态反馈1. 模拟实现电路模拟电路实现如图11-8所示。
⎪⎭⎫⎝⎛-=2~212x x K 加5V 阶跃图11-8 模拟实现电路2. 状态观测器Matlab 仿真状态观测器Matlab 仿真图如图11-9所示。
1x 2x 1~x 2~x 1~11^x x x -=2~22^x x x -=状态观测器仿真图图11-9 状态观测器Matlab 仿真图其中,反馈系数为:g1=g2=-15。
《现代控制理论》实验指导书110410
《现代控制理论》实验指导书适用专业:电气工程与自动化课程代码: 8416340总学时: 40 总学分: 2.5编写单位:电气信息学院编写人:舒欣梅审核人:审批人:批准时间:年月日目录实验一(实验代码1)系统的传递函数阵和状态空间表达式的转换 (2)实验二(实验代码2)多变量系统的能控、能观和稳定性分析 (3)实验三(实验代码3)状态反馈和状态观测器的设计 (7)主要参考文献 (10)实验一 系统的传递函数阵和状态空间表达式的转换一、实验目的和任务1、 学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法。
2、 通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
二、实验内容在运行示例程序的基础上,应用MATLAB 对所给系统编程并验证。
三、实验仪器、设备及材料PC 计算机1台(要求P4-1.8G 以上),MA TLAB6.X 软件1套。
四、实验原理设系统的模型如式(1.1)示。
p m n R y R u R x D Cx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (1.1)其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。
系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。
1()()()()num s G s C sI A B D den s -==-+ (1.2) 式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m;)(s den 表示传递函数阵的按s 降幂排列的分母。
五、主要技术重点、难点1、 多变量系统状态空间表达式的建立方法2、 系统状态空间表达式与传递函数相互转换的方法。
六、实验步骤1、在MA TLAB 中输入以下例子,并验证输出结果。
[例1.1] 已知 两输入两输出系统状态空间模型16910463126824479112251213141000218022x x u y x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦ 试建立MA TLAB 模型,并进行模型转换。
现代控制理论实验指导书 学生版
实验一 利用MATLAB 分析系统状态空间模型一、实验设备计算机,MATLAB 软件。
二、实验目的1、熟悉MATLAB 编程环境和基本语法,了解控制系统工具箱的常用函数;2、通过编程、上机调试,掌握系统状态空间表达式与传递函数相互转换方法。
三、实验原理说明1、打开Matlab ,选择“File\New\Script ”可建立M 文件;选择“File\New\Model ”可建立模型文件。
在命令行窗口可以直接输入命令,也可以观看运算结果,它是直接反映运算信息的重要窗口。
2、设系统的模型如式(1.1)示。
p m n R y R u R x D Cx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (1.1)其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。
系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。
1()()()()num s G s C sI A B D den s -==-+ (1.2) 式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m;)(s den 表示传递函数阵的按s 降幂排列的分母。
四、实验内容与步骤1、采用MATLAB 编程,求系统的传递函数阵或状态空间表达式。
2、在MA TLAB 下调试程序,并检查是否运行正确。
3、例1:已知SISO 系统的传递函数为43235)(232+++++=s s s s s S G (1)将其输入到MATLAB 工作空间并转换为零极点增益模型;(2)获得系统的状态空间模型。
(3)程序:clearclose allclcnum =[0 1 5 3];den =[1 2 3 4];[z,p,k]=tf2zp(num,den)[A,B,C,D]=tf2ss(num,den)运行结果:z =-4.3028-0.6972p =-1.6506 + 0.0000i-0.1747 + 1.5469i-0.1747 - 1.5469ik =1A =-2 -3 -41 0 00 1 0B =1C =1 5 3D =4、例2:已知SISO 系统的状态空间表达式为,631234100010321321u x x x x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321001x x x y(1)将其输入到MATLAB 工作空间;(2)求系统的传递函数。
现代控制理论基础实验指导书200_.
实验四:极点配置与观测器设计
一、实验目的
1.学会使用计算机仿真软件进行极点配置;
2.学会使用计算机仿真软件设计小型系统,并观测系统输出量和各状态变量。
3.学习并会简单应用MATLAB软件。
grid on
记录实验结果,并绘出图形。
现代控制理论基础实验指导书
实验一:控制系统模型转换
一、实验目的
1.掌握控制系统模型转换,并使用计算机仿真软件验证。
2.学习并会简单应用MATLAB软件。
二、实验器材
[1]微型计算机
[2] MATLAB软件
三、实验要求与任务
1.设系统的零极点增益模型为,求系统的传递函数及状态空间模型。
解:在MATLAB软件中,新建m文件,输入以下程序后保存并运行。
rc=rank(cam)
%Step 2
beta=poly(a)
%Step 3
a1=beta(2);a2=beta(3);a3=beta(4);
w=[a2 a1 1;a1 1 0; 1 0 0];
t=cam*w;
%Step 4
j=[-2+2*sqrt(3)*i00
0-2-2*sqrt(3)*i0
00-10];
二、实验器材
[1]微型计算机
[2] MATLAB软件
三、实验要求与任务
1.线性系统,当α分别取-1,0,+1时,判别系统的能控性和能观测性,并求出相应的状态方程。
解:在MATLAB软件中,新建m文件,输入以下程序后保存并运行。
%Example 3
现代控制理论实验指导书
现代控制理论实验实验一 线性定常系统模型一 实验目的1. 掌握线性定常系统的状态空间表达式。
学会在MATLAB 中建立状态空间模型的方法。
2. 掌握传递函数与状态空间表达式之间相互转换的方法。
学会用MATLAB 实现不同模型之间的相互转换。
3. 熟悉系统的连接。
学会用MA TLAB 确定整个系统的状态空间表达式和传递函数。
4. 掌握状态空间表达式的相似变换。
掌握将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。
学会用MATLAB 进行线性变换。
二 实验内容1. 已知系统的传递函数 (a) )3()1(4)(2++=s s s s G(b) 3486)(22++++=s s s s s G(c) 61161)(232+++++=z z z z z z G (1)建立系统的TF 或ZPK 模型。
(2)将给定传递函数用函数ss( )转换为状态空间表达式。
再将得到的状态空间表达式用函数tf( )转换为传递函数,并与原传递函数进行比较。
(3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。
再将得到的对角标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
(4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。
再将得到的能控标准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
2. 已知系统的状态空间表达式(a) u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=106510 []x y 11=(b) u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=7126712203010 []111=y(c) u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=357213********* []x y 101= (d) u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=011310301100 []x y 210-= (1)建立给定系统的状态空间模型。
现代控制理论实验指导书
现代控制理论基础实验报告姓名:余国宏学号:140741138班级:141142A指导老师:刘家学实验一:状态空间的实现及状态方程求解一、实验内容 已知某系统传递函数90391390)(23+++=Φs s s s 1. 列出可控标准形表达式以及状态图。
2. 选择合适的采样周期,对状态方程离散化。
3. 求T Z ]111[=时的单位阶跃响应。
4. 选取不同的采样周期,分析采样周期变化对暂态性能的影响。
二、实验步骤1、系统可控标准型u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙100133990100010 []x y 0090= 状态图2、采样周期的选择由系统传递函数可得:)93()10(9090391390)(223++++=+++=Φs s s s s s s (1-1) 系统极点101-=λ,35.1*5.13,2j ±-=λ,取主导极点,对系统降阶处理,得到二阶特征方程:0932=++s s (1-2)由此可得振荡角频率3=n ω,阻尼比5.0=ζ,可计算出调节时间:s t n s 67.24==ζω ()02.0=∆ (1-3)为了观测到整个调节过程,取s t s 4=,取40个采样点,采样周期为0.1秒。
3、单位阶跃响应(1) 用Matlab 程序求离散化之后系统的阶跃响应A=[0 1 0;0 0 1;-90 -39 -13];B=[0;0;1];X0=[1;1;1];T=0.1; %采样周期为0.1秒[G,H]=c2d(A,B,T); %求离散化之后系统矩阵 S=zeros(3,100);S(:,1)=X0;for K=2:100;S(:,K)=G*S(:,K-1)+H;end;figure;subplot(2,2,1);plot(S(1,:));grid; %画出三个状态变量得曲线subplot(2,2,2);plot(S(2,:));grid;subplot(2,2,3);plot(S(3,:));grid(2)仿真曲线(3)改变采样周期为0.05秒,波形如下可以看出采样周期变小,状态变量的调节时间越长,而超调量,稳态值不变。
现代电气控制plc试验指导书
现代电气控制技术及可编程控制器实验指导书前言实验是学生将理论变为实践的主要途径,学生的好多知识都是在实验中获得和巩固的,实验教学的安排显得尤为重要。
一方面希望通过做实验端正学生自觉主动的学习态度,达到消化理解知识的目的;另一方面可以锻炼学生的动手能力,也响应了国家提出的素质教育的号召,还增加了学生的学习兴趣。
《(现代)电气控制技术》是将电气工程及其自动化专业原先的《电器控制》和《可编程控制器原理与应用》两门课程合并而成的一门实践性很强的专业课,主要讲授常用低压电器及控制线路、可编程控制器原理及应用两大部分内容,侧重于应用。
可编程控制器(programmable controller)简称PC或PLC,是一种新型的通用自动控制装置,具有功能强、通用灵活、可靠性高、环境适应性好、编程简单、使用方便以及体积小、重量轻、功耗低等一系列优点,因此在工业上的应用越来越广泛,近年来发展更快。
全国许多高等院校都已纷纷将PC技术引入教学,并专门开设了PC技术课。
作为一个电气技术人员必须掌握PC的基本原理与应用技术。
本书从教学需要及实际应用出发,PC部分的实验主要以日本三菱公司的FX2系列小型PC为背景机进行编写,在解决有关PC基础知识的前提下,重点放在PC的编程方法及工程应用上。
本书主要是为自动化专业《电气控制技术》课程编写的配套实验教材,共编写了十一个实验,其中前五个为常规继电接触器控制(两个基础实验,三个综合性实验),后面六个为PC控制实验(一个基本实验,四个综合实验,一个开放实验),目的是通过实验获得必要的感性认识,熟悉常规电器控制线路及PC编程器的使用,提高独立操作、分析和解决实际问题的能力。
授课过程中可根据具体实验条件安排实验内容,但实验学时至少占总学时的三分之一。
做这些实验的大多是高年级的学生,相信经过几年的校园学习和锻炼,各方面都有了很大的提高,特别是对实验的态度及实验的素质方面,更应有长足的进步,因此也提出了更高的要求。
现代控制系统实验设计
现代控制系统实验指导
实验一:典型环节 阶跃响应 实验二:二阶系统 阶跃响应 实验三:控制系统 稳定性分析 实验四:连续系统 串联校正
实验目的 1.学习构成典型环 节的模拟电路,了解 电路参数对环节特 性的影响。 2.学习典型环节阶 跃响应的测量方法 ,并学会由阶跃响 应曲线计算典型环 节的传递函数。
连续系统串联校正串联校正实验目的本实验的目的在于检验系统的稳定性与系统本身结构参数有关由于在控制理论中所讨论的系统稳定性是指在脉冲响应下系统响应是收敛的还是发散的因此本实验的系统输入是脉冲函数
现代控制系统
BUPT Light
进入
现代控制系统实验指导
实验一:典型环节阶跃响应 实验二:二阶系统阶跃响应 实验控制系统实验指导
实验一:典型环节 阶跃响应 实验二:二阶系统 阶跃响应 实验三:控制系统 稳定性分析 实验四:连续系统 串联校正
实验目的 1.研究二阶系统的 两个重要参数:阻 尼比ξ和无阻尼自然 频率ω对系统动态 性能的影响。 2.学会根据系统阶 跃响应曲线,确定 传递函数。
现代控制系统实验指导
实验一:典型环节 阶跃响应 实验二:二阶系统 阶跃响应 实验三:控制系统 稳定性分析 实验四:连续系统 串联校正
实验目的 本实验的目的在于 检验系统的稳定性 与系统本身结构参 数有关,由于在控 制理论中所讨论的 系统稳定性是指在 脉冲响应下系统响 应是收敛的还是发 散的,因此本实验 的系统输入是脉冲 函数。
现代控制系统实验指导
实验一:典型环节 阶跃响应 实验二:二阶系统 阶跃响应 实验三:控制系统 稳定性分析 实验四:连续系统 串联校正
实验目的 1.研究串联校正环 节对系统稳定性及 过渡过程的影响。 2.熟悉和掌握系统 过渡过程的测量方 法。
现代控制工程实验指导书
实验教学任务书课程名称:现代控制工程实验开课实验室:现代信息技术实验室执笔人:于宏亮审定人:孟庆金修(制)订日期: 2014年8月实验1 一阶惯性系统建模 3学时实验任务:学生对工程现场普遍存在的带滞后环节的一阶惯性系统进行建模实验,掌握基本控制理论与建模方法在工程实际的应用:1)基于MATLAB对一阶惯性系统进行频域建模;2)基于组态软件CBF对一阶惯性系统时域建模。
实验具体步骤与要求:1)启动MATLAB程序,绘制所给出的带滞后环节的一阶惯性系统的阶跃响应数据所对应的数据曲线,并分析之,求出该系统的滞后时间、惯性时间、及增益。
2)建立上述一阶惯性系统的频域模型,并给出在同样阶跃激励下的响应曲线;3)给出连续三周期阶跃激励的响应曲线;4)打开组态软件CBF程序,在所建立的PS站内,利用滞后模块及滤波模块搭建前述一阶惯性系统的时域模型,在所建立的OS站内建立该模型输入输出的历史趋势;5)将建立模型程序的PS下载入EMULATOR,将建立有历史趋势的OS下载入DIGIVIS程序;6)分别给予前述时域模型一次阶跃激励,和连续三周期阶跃模型,并查看历史趋势。
实验2 典型DCS系统认识实验1学时实验任务:学生了解工程现场典型计算机控制系统之一:DCS的基本组成,了解工业现场典型控制对象的控制需求。
实验具体步骤与要求:老师实物讲解计算机自动控制系统各主要组成部分(操作员站OS、过程PS、工程师站ES及计算机网络),学生了解各流程自动化系统各部的构造,并加深对计算机自动控制系统功能及工作原理的理解。
了解每组实验屏所代表的具体生产环节(篦冷机、窑等)的工艺要求。
实验3 基于组态软件的DCS典型系统实现3学时实验任务:学生应用CBF软件进行DCS基本控制程序的组态:1)搭建软、硬件架构及配置网络通讯,并与虚拟或实际PS站进行连接调试。
2)实现单电机基本启停控制(包括OS及PS程序)。
实验具体步骤与要求:1)启动DIVIS程序;启动EMULATOR程序,并启动ID为1、2的虚拟PS站各一;启动CBF程序,新建项目文件,并依次建立项目树,并配置硬件系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代控制理论实验
实验文档同时已上传,本人不才,正确性有待验证!欢迎批评
指正!
实验一、线性系统状态空间表达式的建立以及线性变换
一 实验目的
1. 掌握线性定常系统的状态空间表达式。
学会在MATLAB 中建立状态空间模型的方法。
2. 掌握传递函数与状态空间表达式之间相互转换的方法。
学会用MATLAB 实现不同模型之间的相互转换。
3. 熟悉系统的连接。
学会用MATLAB 确定整个系统的状态空间表达式和传递函数。
4. 掌握状态空间表达式的相似变换。
掌握将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。
学会用MATLAB 进行线性变换。
二 实验内容
1. 已知系统的传递函数 (a) )
3()1(4)(2++=s s s s G (b) 3
486)(22++++=s s s s s G
(c) 6
1161)(232+++++=z z z z z z G (1)建立系统的TF 或ZPK 模型。
(2)将给定传递函数用函数ss( )转换为状态空间表达式。
再将得到的状态空间表达式用函数tf( )转换为传递函数,并与原传递函数进行比较。
(3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。
再将得到的对角标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
(4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。
再将得到的能控标准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
2. 已知系统的状态空间表达式
(a) u x x ⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=106510 []x y 11= (b) u x x ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=7126712203010 []111=y (c) u x x ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=357213********* []x y 101= (d) u x x ⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=011310301100 []x y 210-= (1)建立给定系统的状态空间模型。
用函数eig( ) 求出系统特征值。
用函数tf( ) 和zpk( )将这些状态空间表达式转换为传递函数,记录得到的传递函数和它的零极点。
比较系统的特征值和极点是否一致,为什么?
(2)用函数canon( )将给定状态空间表达式转换为对角标准型。
用函数eig( )求出系统特征值。
比较这些特征值和(1)中的特征值是否一致,为什么? 再用函数tf( )和zpk( )将对角标准型或约当标准型转换为传递函数。
比较这些传递函数和(1)中的传递函数是否一致,为什么?
(3)用函数ctrlts( )将给定的状态空间表达式转换为能控标准型和能观测标准型。
用函数eig( )求系统的特征值。
比较这些特征值和(1)中的特征值是否一致,为什么?再用函数tf( )将它们转换为传递函数。
比较这些传递函数和(1)中的传递函数是否一致,为什么?
3. 已知两个子系统
(1)建立两个子系统的传递函数模型。
求它们串联、并联、反馈连接时, 整个系统的传递函数模型。
然后将所得传递函数模型转换为状态空间模型。
(2)将两个子系统的传递函数模型转换为状态空间模型。
求它们串联、并联、反馈连接时, 整个系统的状态空间模型。
然后将所得状态空间模型转换为传递函数模型。
比较(1)和(2)所得的相应的结果。
(3)将(2)中所得的整个系统的状态空间模型的系数矩阵与教材中推导出的整个系统的状态空间表达式的系数矩阵比较,是否符合?
三附录
1.线性定常系统的数学模型
在MATLAB中,线性定常(linear time invariant, 简称为LTI)系统可以用4种数学模型描述,即传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型以及SIMULINK结构图。
前三种数学模型是用数学表达式表示的,且均有连续和离散两种类型,通常把它们统称为LTI模型。
1) 传递函数模型(TF 模型)
令单输入单输出线性定常连续和离散系统的传递函数分别为。