全国中考数学反比例函数的综合中考模拟和真题汇总附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、反比例函数真题与模拟题分类汇编(难题易错题)
1.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.
(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;
(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;
(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.
【答案】(1)解:k=4,S△PAB=15.
提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,
设AP与y轴交于点C,如图1,
把x=4代入y= x,得到点B的坐标为(4,1),
把点B(4,1)代入y= ,得k=4.
解方程组,得到点A的坐标为(﹣4,﹣1),
则点A与点B关于原点对称,
∴OA=OB,
∴S△AOP=S△BOP,
∴S△PAB=2S△AOP.
设直线AP的解析式为y=mx+n,
把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,
求得直线AP的解析式为y=x+3,
则点C的坐标(0,3),OC=3,
∴S△AOP=S△AOC+S△POC
= OC•AR+ OC•PS
= ×3×4+ ×3×1= ,
∴S△PAB=2S△AOP=15;
(2)解:过点P作PH⊥x轴于H,如图2.
B(4,1),则反比例函数解析式为y= ,
设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,
联立,解得直线PB的方程为y=﹣ x+ +1,
∴M(m﹣4,0),N(m+4,0),
∴H(m,0),
∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,
∴MH=NH,
∴PH垂直平分MN,
∴PM=PN,
∴△PMN是等腰三角形;
(3)解:∠PAQ=∠PBQ.
理由如下:
过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有
,
解得:,
∴直线AQ的解析式为y= x+ ﹣1.
当y=0时, x+ ﹣1=0,
解得:x=c﹣4,
∴D(c﹣4,0).
同理可得E(c+4,0),
∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,
∴DT=ET,
∴QT垂直平分DE,
∴QD=QE,
∴∠QDE=∠QED.
∵∠MDA=∠QDE,
∴∠MDA=∠QED.
∵PM=PN,∴∠PMN=∠PNM.
∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,
∴∠PAQ=∠PBQ.
【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ
交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.
2.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.
(1)求k的值;
(2)求经过A、C两点的直线的解析式;
(3)连接OA、OC,求△OAC的面积.
【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,
∴A的坐标是(2,3),
代入y= 得3= ,
解得:k=6
(2)解:OD=2+2=4,
在y= 中令x=4,解得y= .
则C的坐标是(4,).
设AC的解析式是y=mx+n,
根据题意得:,
解得:,
则直线AC的解析式是y=﹣ x+
(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;
直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.
在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .
则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=
【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.
3.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).
(1)求反比例函数和一次函数的解析式;
(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.
【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,
∴k=﹣2×3=﹣6,
∴反比例函数的解析式为y=﹣,
∵点B在反比例函数y=﹣的图形上,
∴﹣2m=﹣6,
∴m=3,
∴B(3,﹣2),
∵点A,B在直线y=ax+b的图象上,
∴,
∴,
∴一次函数的解析式为y=﹣x+1
(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,
∴AB=PQ,AB∥PQ,
设直线PQ的解析式为y=﹣x+c,
设点Q(n,﹣),
∴﹣ =﹣n+c,
∴c=n﹣,
∴直线PQ的解析式为y=﹣x+n﹣,
∴P(1,n﹣﹣1),
∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,
∵A(﹣2,3).B(3,﹣2),
∴AB2=50,
∵AB=PQ,
∴50=2(n﹣1)2,
∴n=﹣4或6,
∴Q(﹣4. )或(6,﹣1)
【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.
4.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).
(1)点C的坐标________;
(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;
(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,
使得S△PEF= S△CEF,求点P的坐标.
【答案】(1)(3,0)
(2)解:∵AB=CD=3,OB=1,
∴A的坐标为(1,3),又C(3,0),
设直线AC的解析式为y=ax+b,
则,解得:,
∴直线AC的解析式为y=﹣ x+ .
∵点E(2,m)在直线AC上,
∴m=﹣ ×2+ = ,
∴点E(2,).
∵反比例函数y= 的图象经过点E,
∴k=2× =3,
∴反比例函数的解析式为y=
(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).
在y= 中,当x=3时,y=1,
∴F(3,1).
过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.
设直线EF的解析式为y=a'x+b',
∴,解得,
∴y=﹣ x+ .
设直线PM的解析式为y=﹣ x+c,
代入M(3,﹣0.5),得:c=1,
∴y=﹣ x+1.
当x=1时,y=0.5,
∴点P(1,0.5).
同理可得点P(1,3.5).
∴点P坐标为(1,0.5)或(1,3.5).
【解析】【解答】解:(1)∵D(3,3),
∴OC=3,
∴C(3,0).
故答案为(3,0);
【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解
析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接
EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.
5.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.
(1)求一次函数和反比例函数的解析式;
(2)求△ABH面积.
【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,
∴CO=2,即C(0,2),
把C(0,2),D(﹣1,0)代入y=ax+b可得,
,解得,
∴一次函数解析式为y=2x+2,
∵点A的横坐标是1,
∴当x=1时,y=4,即A(1,4),
把A(1,4)代入反比例函数y= ,可得k=4,
∴反比例函数解析式为y=
(2)解:解方程组,可得或,
∴B(﹣2,﹣2),
又∵A(1,4),BH⊥y轴,
∴△ABH面积= ×2×(4+2)=6.
【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.
6.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.
(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C (﹣2,3)和射线OA之间的距离为________;
(2)如果直线y=x+1和双曲线y= 之间的距离为,那么k=________;(可在图1中进行研究)
(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.
①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).
②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.
【答案】(1)3;
(2)﹣4
(3)解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF 垂直),
;
②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,
由得,即点M(﹣,),
由得:,即点N(﹣,),
则﹣≤x≤﹣,
图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),
即图形W与图形N之间的距离为d,
d=
=
=
∴当x=﹣时,d的最小值为 = ,
即图形W和图形N之间的距离.
【解析】【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 = ,
故答案分别为:3,;
(2)直线y=x+1和双曲线y= k x 之间的距离为,
∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).
过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,
由得,即点F(﹣,),
则OF= = ,
∴OE=OF+EF=2 ,
在Rt△OEG中,∠EOG=∠OEG=45°,OE=2 ,
则有OG=EG= OE=2,
∴点E的坐标为(﹣2,2),
∴k=﹣2×2=﹣4,
故答案为:﹣4;
【分析】(1)由题意可得出点B(2,3)到射线OA之间的距离为B点纵坐标,根据新定义得点C(﹣2,3)和射线OA之间的距离;
(2)根据题意即可得k<0(否则直线y=x+1和双曲线y= k x 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= k x 交于点E、F,过点E作EG⊥x 轴,如图1,将其联立即可得点F坐标,根据两点间距离公式可得OF长,再由OE=OF+EF 求出OE长,在Rt△OEG中,根据等腰直角三角形的性质可得点E的坐标为(﹣2,2),将E点代入反比例函数解析式即可得出k值.
(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直);
②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,分别联立即可得出点M、N坐标,从而得出x取值范围,根据题意图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),从而求出图形W与图形N之间的距离为d,由二次函数性质知d 最小值.
7.平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.
(1)若AB∥x轴,求△OAB的面积;
(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;
(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点,请说明理由.
【答案】(1)解:由题意知,点A(a,),B(b,﹣),
∵AB∥x轴,
∴,
∴a=﹣b;
∴AB=a﹣b=2a,
∴S△OAB= •2a• =3
(2)解:由(1)知,点A(a,),B(b,﹣),
∴OA2=a2+()2, OB2=b2+(﹣)2,
∵△OAB是以AB为底边的等腰三角形,
∴OA=OB,
∴OA2=OB2,
∴a2+()2=b2+(﹣)2,
∴a2﹣b2=()2﹣()2,
∴(a+b)(a﹣b)=( + )(﹣)= ,
∵a>0,b<0,
∴ab<0,a﹣b≠0,
∵a+b≠0,
∴1= ,
∴ab=3(舍)或ab=﹣3,
即:ab的值为﹣3;
(3)解:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.理由:如图,
∵a≥3,AC=2,
∴直线CD在y轴右侧且平行于y轴,
∴直线CD一定与函数y1= (x>0)的图象有交点,
∵四边形ACDE是边长为2的正方形,且点D在点A(a,)的左上方,
∴C(a﹣2,),
∴D(a﹣2, +2),
设直线CD与函数y1= (x>0)相交于点F,
∴F(a﹣2,),
∴FC= ﹣ = ,
∴2﹣FC=2﹣ = ,
∵a≥3,
∴a﹣2>0,a﹣3≥0,
∴≥0,
∴2﹣FC≥0,
∴FC≤2,
∴点F在线段CD上,
即:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.
【解析】【分析】(1)先判断出a=﹣b,即可得出AB=2a,再利用三角形的面积公式即可得出结论;(2)利用等腰三角形的两腰相等建立方程求解即可得出结论;(3)先判断出
直线CD和函数y1= (x>0)必有交点,根据点A的坐标确定出点C,F的坐标,进而得出FC,再判断FC与2的大小即可.
8.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数
的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=
.
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积;
(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.
【答案】(1)解:作AD⊥x轴于D,如图,
在Rt△OAD中,∵sin∠AOD= = ,
∴AD= OA=4,
∴OD= =3,
∴A(﹣3,4),
把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,
所以反比例函数解析式为y=﹣;
把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,
把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,
所以一次函数解析式为y=﹣x+2
(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6
(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值
【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),
再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.
9.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
对于任意正实数a、b,可作如下变形a+b= = - + = + ,
又∵≥0,∴ + ≥0+ ,即≥ .
(1)根据上述内容,回答下列问题:在≥ (a、b均为正实数)中,若ab为定值p,则a+b≥ ,当且仅当a、b满足________时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a, DB=2b, 试根据图形验证≥ 成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
【答案】(1)a=b
(2)解:有已知得CO=a+b,CD=2 ,CO≥CD,即≥2 .
当D与O重合时或a=b时,等式成立.
(3)解: ,
当DE最小时S四边形ADFE最小.
过A作AH⊥x轴,由(2)知:当DH=EH时,DE最小,
所以DE最小值为8,此时S四边形ADFE= (4+3)=28.
【解析】【分析】(1)根据题中的例子即可直接得出结论。
(2)根据直角三角形的性质得出CO=a+b,CD=,再由(1)中的结论即可得出等号成立时的条件。
(3)过点A作AH⊥x轴于点H,根据S四边形ADFE=S△ADE+S△FDE,可知当DH=EH时DE最小,由此可证得结论。
10.在平面直角坐标系xOy中,对于双曲线y= (m>0)和双曲线y= (n>0),如果m=2n,则称双曲线y= (m>0)和双曲线y= (n>0)为“倍半双曲线”,双曲线y=
(m>0)是双曲线y= (n>0)的“倍双曲线”,双曲线y= (n>0)是双曲线y= (m>0)的“半双曲线”,
(1)请你写出双曲线y= 的“倍双曲线”是________;双曲线y= 的“半双曲线”是________;
(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y= 在第一象限内任意一点,过点A与y轴平行的直线交双曲线y= 的“半双曲线”于点B,求△AOB的面积;
(3)如图2,已知点M是双曲线y= (k>0)在第一象限内任意一点,过点M与y轴
平行的直线交双曲线y= 的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y= 的“半双曲线”于点P,若△MNP的面积记为S△MNP,且1≤S△MNP≤2,求k的取值范围.
【答案】(1)y=
;y=
(2)解:如图1,
∵双曲线y= 的“半双曲线”是y= ,
∴△AOD的面积为2,△BOD的面积为1,
∴△AOB的面积为1
(3)解:解法一:如图2,
依题意可知双曲线的“半双曲线”为,
设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴CM= ,CN= .
∴MN= ﹣ = .
同理PM=m﹣ = .
∴S△PMN= MN•PM=
∵1≤S△PMN≤2,
∴1≤ ≤2.
∴4≤k≤8,
解法二:如图3,
依题意可知双曲线的“半双曲线”为,
设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴点N为MC的中点,同理点P为MD的中点.
连接OM,
∵,
∴△PMN∽△OCM.
∴.
∵S△OCM=k,
∴S△PMN= .
∵1≤S△PMN≤2,
∴1≤ ≤2.
∴4≤k≤8.
【解析】【解答】解:(1)由“倍双曲线”的定义
∴双曲线y= ,的“倍双曲线”是y= ;
双曲线y= 的“半双曲线”是y= .
故答案为y= ,y= ;
【分析】(1)直接利用“倍双曲线”的定义即可;(2)利用双曲线的性质即可;(3)先利用双曲线上的点设出M的横坐标,进而表示出M,N的坐标;方法一、用三角形的面积公式建立不等式即可得出结论;方法二、利用相似三角形的性质得出△PMN的面积,进而建立不等式即可得出结论.
11.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= 相交于点A(m,
3),B(﹣6,n),与x轴交于点C.
(1)求直线y=kx+b(k≠0)的解析式;
(2)若点P在x轴上,且S△ACP= S△BOC,求点P的坐标(直接写出结果).
【答案】(1)解:)∵点A(m,3),B(﹣6,n)在双曲线y= 上,∴m=2,n=﹣1,
∴A(2,3),B(﹣6,﹣1).
将(2,3),B(﹣6,﹣1)带入y=kx+b,
得:,
解得.
∴直线的解析式为y= x+2
(2)解:
当y= x+2=0时,x=﹣4,
∴点C(﹣4,0).
设点P的坐标为(x,0),
∵S△ACP= S△BOC, A(2,3),B(﹣6,﹣1),
∴×3|x﹣(﹣4)|= × ×|0﹣(﹣4)|×|﹣1|,即|x+4|=2,
解得:x1=﹣6,x2=﹣2.
∴点P的坐标为(﹣6,0)或(﹣2,0).
【解析】【分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(2)利用一次函数图象上点的坐标特征可求出
点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP= S△BOC,即可得出|x+4|=2,解之即可得出结论.
12.在平面直角坐标系中,抛物线经过点,、,,其中、是方程的两根,且,过点的直线与抛物线只有一个公共点
(1)求、两点的坐标;
(2)求直线的解析式;
(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点
,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,
∴x1=-2,x2=4,
∴A(-2,2),C(4,8)
(2)解:①设直线l的解析式为y=kx+b(k≠0),
∵A(-2,2)在直线l上,
∴2=-2k+b,
∴b=2k+2,
∴直线l的解析式为y=kx+2k+2①,
∵抛物线y= x2②,
联立①②化简得,x2-2kx-4k-4=0,
∵直线l与抛物线只有一个公共点,
∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,
∴k=-2,
∴b=2k+2=-2,
∴直线l的解析式为y=-2x-2;
②平行于y轴的直线和抛物线y= x2只有一个交点,
∵直线l过点A(-2,2),
∴直线l:x=-2
(3)解:由(1)知,A(-2,2),C(4,8),
∴直线AC的解析式为y=x+4,
设点B(m,m+4),
∵C(4.8),
∴BC= |m-4|= (4-m)
∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,
∴D(m, m2),E(m,-2m-2),
∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,
∵DC∥EF,
∴△BDC∽△BEF,
∴,
∴,
∴BF=6 .
【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.
13.在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(-2,4),B(-2,-2),C(4,-2),D(4,4).
(1)填空:正方形的面积为________;当双曲线(k≠0)与正方形ABCD有四个交点时,k的取值范围是________.
(2)已知抛物线L: (a>0)顶点P在边BC上,与边AB,DC分别相交于
点E,F,过点B的双曲线(k≠0)与边DC交于点N.
①点Q(m,-m2-2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别求运动过程中点Q在最高位置和最低位置时的坐标.
②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求的值.
③求证:抛物线L与直线的交点M始终位于轴下方.
【答案】(1)36;0<k<4或-8<k<0
(2)解:①由题意可知,,
当m=-1,最大=4,在运动过程中点Q在最高位置时的坐标为(-1,4)
当m<-1时,随m的增大而增大,当m=-2时,最小=3,
当m>-1时,随m的增大而减小,当m=4时,最小=-21,
3>-21,∴最小=-21,点Q在最低位置时的坐标(4,-21)
∴在运动过程中点Q在最高位置时的坐标为(-1,4),最低位置时的坐标为(4,-21)②将点B(-2,-2)代入双曲线得,∴k=4,∴反比例函数解析式为
N点横坐标x=4,代入得,∴N(4,1)
由顶点P(m,n)在边BC上,∴,BP= ,CP=
E点横坐标x=-2,F点横坐标x=4,分别代入抛物线可得
E ,
F ,
∴BE= ,CF= ,
∴,
又∵AE=NF,点F在点N下方,
∴
化简得,∴
③由题意得,M ,,
∵二次函数对称轴为m=1,,
∴当m=1时,取得最小值为,
当或4时,最大为,
当m=4时,抛物线L为,
E点横坐标为-2,代入抛物线得,∴E
F点横坐标为x=4,代入抛物线得,∴
∵E点在AB边上,且此时不与B重合,
∴,解得
∴,∴
当时,抛物线L为
同理可得E ,F
∵F在CD边上,且此时不与C重合
∴,解得,
∴,∴
综上,抛物线L与直线x=1的交点始终位于x轴的下方.
【解析】【解答】(1)解:由点A(-2,4),B(-2,-2)可知正方形的边长为6,
∴正方形面积为36;
当反比例函数在一、三象限时,若经过B(-2,-2)则,若经过D(4,4),则,根据图像特征,要有4个交点,则0<k<4;
当反比例函数在二、四象限时,若经过A(-2,4)则,若经过C(4,-
2)则,根据图像特征,要有4个交点,则-8<k<0,
综上,k的取值范围是0<k<4或-8<k<0.
【分析】(1)由坐标求出正方形的边长,即可求出面积,讨论反比例函数在一、三象限和二、四象限时,利用数形结合求出k的范围;(2)①由题意可知,,
分,和分别讨论Q点符合条件的坐标;②将点B(-2,-2)代入双曲线,可求k=4和N(4,1),再表示出点 E 和 F ,可推出BE= ,CF= ,
,再根据AE=NF可推出
,进而可求的值;③由题意得,M ,
,当m=1时,最小为,当或4时,最大为,再分别讨论当m=4时,根据E点不与B点重合,列出不等式可得
,当时, F点不与C点重合列出不等式可得,即可得证.
14.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)
(1)求抛物线的解析式
(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点
①当点N在何处时,△CAN的周长最小?
②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.
【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3
(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.
设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);
②如图2,过点C作CG⊥ED于点G.
设NG=n,则NE=3﹣n.
∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE
,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m
的最小值为:;
如下图所示,当点N与点D重合时,m取得最大值.
过C作CG⊥ED于G.
∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.
∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.
∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.
故:m≤5.
【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.
15.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标
为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
【答案】(1)解:把点A(2,6)代入y= ,得m=12,则y= .
把点B(n,1)代入y= ,得n=12,
则点B的坐标为(12,1).
由直线y=kx+b过点A(2,6),点B(12,1)得
,
解得,
则所求一次函数的表达式为y=﹣x+7
(2)解:如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,
则点P的坐标为(0,7).
∴PE=|m﹣7|.
∵S△AEB=S△BEP﹣S△AEP=10,
∴×|m﹣7|×(12﹣2)=10.
∴|m﹣7|=2.
∴m1=5,m2=9.
∴点E的坐标为(0,5)或(0,9).
【解析】【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E 的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.。