数学《分数除法》教案一等奖2篇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学《分数除法》教案15
教学目标
知识与技能:
让学生经历用假设对比方法来解决分数工程问题的过程理解并掌握把工作总量看作单位”1”的分数工程问题的基本特点解题思路和解题方法。
过程与方法:
在解题的过程中,通过理清数量关系、找准工作总量来解决学习中的难点问题,掌握用假设法来解决问题的基本策略。
情感态度与价值观:
培养学生严谨的学习态度、勇于探究创新的精神及合作的意识。
教学重点:
掌握分数工程问题的解题思路与方法。
教学难点:
理解工程问题中的工作总量与单位“1”的关系及工作效率的求法。
教学过程:
一、复习导入
1、以前我们学过做工问题,谁还记得做工问题涉及到哪三种量?(工作总量、工作时间、工作效率)它们之间有什么关系呢?
生口述,教师出示投影:
工作总量=工作效率÷工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
2、外贸公司的蒋经理急需加工3000套服装。
甲厂单独完成需15天。
乙厂单独完成需10天。
(学生根据条件提出问题,教师根据学生提出的问题进行板书)
(1)依据三量关系,这道题已知什么?求什么?怎样列式?
(2)说说工作效率、工作时间、工作总量三个量间的关系的其它的等量关系式
3、引出课题:
像这样的涉及工作效率、工作时间、工作总量的问题,在数学上,我们称之为“工程问题”。
今天我们一起来探究。
(板书课题:工程问题)
二、探究新知
1、出示例题
外贸公司的蒋经理急需加工一批服装。
甲厂单独完成需15天,乙厂单独完成需10天,两厂合作需要几天完成?
(将导入的习题与例题放一起进行对比)
2、阅读理解
请找出已知量和未知量
(已知:甲厂的工作时间,乙厂的.工作时间;未知:两厂的工作效率、工作总量)
根据工作总量、工作时间、工作效率这三者之间的关系,要求两队合修多少天能修完,还需要知道哪些条件?
学生讨论交流后汇报:
3、变换题中的条件再分析解答。
(1)把3000套改为6000套、1500套、5000套、9000套。
请你们以小组为单位,每一组选择一个数据解答出来。
3、分析与解答
(1)学生思考,讨论交流,道路长度未知,我们可以用什么方法解决这类问题
(学生分小组思考、讨论提出解决问题的方案)
(2)出示课堂活动卡(分小组讨论交流尝试解决问题)
设加工套服装
甲厂每天加工多少套:
乙厂每天加工多少套:
两厂合作,每天加工多少套:
两厂合作,需要多少天:
4、展示环节
(1)抽3-4组同学上台进行展示,并说明解题思路。
(2)观察比较几位同学的解决过程,找发现。
(学生畅所欲言:几组同学的工作总量不一样,每厂的工作效率不一样,最后的结果是一样的)
5、归纳总结
三、巩固练习
1、六(2)班教室做值日,由吴丽斌同学单独完成需x小时,由周超同学单独完成需小时,两人一起做,要多少时间完成?
2、导入部分加一个条件,丙厂也来加入,丙厂单独完成需12天,请提出问题并解答!
四、课堂总结
1、用分数解决工程问题的方法
(1)把工作总量看成单位“1”
(2)谁几天完成,谁的工作效率就是几分之一
(3)工作总量÷工作效率=工作时间
2、还有哪些问题可以用工程问题来解答?
数学《分数除法》教案16
课时目标
①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。
②培养学生迁移类推能力。
③知道“事物间在一定的条件下是可以相互转化的观点”。
教学及训练
重点求一个数是另一个数的几分之几的应用题。
教学内容和过程教学札记
一、创设情境
1.口答:30分米=()米180分=()时
练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。
2.说一说:分数与除法的关系?
3.用分数表示下面各算式的商。
(1)7÷9(2)4÷7(3)8÷15(4)5吨÷8吨
二、揭示课题
这节课学习“分数与除法关系的应用”。
(板书课题)
三、探索研究
1.出示例4。
(1)出示例4并审题。
(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?
让全体学生尝试练习。
(3)集体订正。
订正时让学生说说是怎样想的?
(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?
重点说明当两数相除得不到整数商时,其结果可以用分数表示。
2.练习教材第80页下面的“练一练”第1题。
3.教学例5。
(1)出示教材第80页复习题,让学生独立列式解答。
集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?
板书:30÷10=3
答:鸡的只数是鸭的3倍。
(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。
讨论后师生共同评价,主要有两种方法:
①从分数意义入手。
求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。
把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的。
②从倍数关系入手。
求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:7÷10=。
(3)比较复习题与例5异同点。
通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。
所不同的是,前面的题是求一个数是另一个数的几倍,得到的.商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。
4、练习。
教材第80页“练一练”第2题。
四、课堂实践
1.在括号里填上适当的分数。
8厘米=()米146千克=()吨23时=()日
41平方分米=()平方米67平方米=()公顷37立方厘米=()立方分米
2.五(1)班有女生25人,比男生多4人。
(1)男生占全班人数的几分之几?
(2)女生占全班人数的几分之几?
(3)男生人数是女生人数的几分之几?
五、课堂小结
1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?
2、求一个数是另一个数的几分之几应用题的解答方法是什么?
六、课堂作业
练习十四第5-9题。
板书设计
求一个数是另一个数的几分之几
一个数÷另一个数=教学
后记
教学效果良好,学生能熟练应用所学知识解决简单的“求一个数是另一个数的几分之几”的应用题。