2020武汉8小升初数学综合测试卷及参考答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷
一、填空题:
2.有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11359,那么其中最小的四位数是______.
人数增加了______%.
4.20个鸭梨和16个苹果分放两堆,共重11千克,如果从两堆中分别取4个鸭梨和4个苹果相交换,两堆重量就相同了.每个苹果比鸭梨重______千克.
5.图中长方形内画了一些直线,已知边上有三块面积分别是15,34,47,那么图中阴影部分的面积是_______.
6.某一年中有53个星期二,并且当年的元旦不是星期二,那么下一年的最后一天是星期______.
7.有四个不同的自然数,其中任意两个数的和是2的倍数,任意三个数的和是3的倍数.为使这四个数的和尽可能地小,这四个数分别是_______.
8.一个正方形被4条平行于一组对边和5条平行于另一组对边的直线分割成30个小长方形(大小不一定相同),已知这些小长方形的周长和是33,那么原来正方形的面积是
_______.
9.孙悟空有仙桃,机器猫有甜饼,米老鼠有泡泡糖.他们按下面比例互换:仙桃与甜饼为3∶5,仙桃与泡泡糖为3∶8,甜饼与泡泡糖为7∶10.现在孙悟空先后各拿出90个仙
桃与其他两位互换,机器猫共拿出甜饼269个与其他两位互换,那么米老鼠拿出互换的泡泡糖共______个.
10.某种表,在7月29日零点比标准时间慢4分半,它一直走到8月5日上午7时,比标准时间快3分,那么这只表时间正确的时刻是_______月______日______时.
二、解答题:
1.计算:
3.A、B、C、D、E是从小到大排列的五个不同的整数,把其中每两个数求和,分别得出下面8个和数(10个和数中有相同的和数):17,22,25,28,31,33,36,39,求这五个整数的平均数.
4.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车.小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分遇到迎面开来的一辆电车;小张每隔5分遇到迎面开来的一辆电车;小王每隔6分遇到迎面开来的一辆电车.已知电车行驶全程是56分,那么小张与小王在途中相遇时他们已行走了多少分?
答案
一、填空题:
2.2039
根据题设可知,在四个不同的数字中,必有数字0,否则两个四位数之和不为11359.可以看出,0在最大四位数的个位上,且9在最大四位数的千位上.于是可推出最小四位数的个位是9,百位是0,千位是2,最后推出十位是3.所以最小四位数是2039.3.60%
4.0.125千克
根据题设可知,16个梨、4个苹果和4个梨、12个苹果重量相同.由此可推出12个梨与8个苹果重量相同.即24个梨与16个苹果重量相同.所以1个鸭梨重(11÷(20+24)=)0.25千克,1个苹果重(0.25×12÷8=)0.375千克.1个苹果比1个鸭梨重(0.375-0.25=)0.125千克.
5.96
因为三角形BCE的面积是长方形ABCD面积的一半,且三角形AFD与三角形BCF的面积和也是长方形ABCD面积的一半.所以阴影部分面积为(15+47+34=)96.6.三
若一年有365天,则全年有52个星期零1天,若全年有53个星期二,且元旦不是星期二,则元旦必为星期一,该年为闰年,有366天,下一年有365天.
(366+365)÷7=104 (3)
所以下一年最后一天是星期三.
7.1,7,13,19
因为四个数中任意两个数之和是2的倍数,所以这四个数同奇、同偶.
因为四个数中任意三个数之和是3的倍数,所以这四个数被3除余数相同.
由此可知,这四个数被6除余数相同,为使四个数尽量小,可取1,7,13,19.
正方形内分割线上的每个小线段都同时属于两个长方形,正方形边上的每个小线段只属于一个长方形.设正方形边长为a,则
[(4+5)×2+4]×a=33
22a=33
9.410
(1)按规则机器猫应给孙悟空多少个甜饼?
(2)按规则米老鼠应给机器猫多少个泡泡糖?
(3)按规则米老鼠应给孙悟空多少个泡泡糖?
(4)米老鼠共拿出多少个泡泡糖?
170+240=410(个)
10.8月2日9时
7月29日零点至8月5日上午7点共(24×7+7=)175小时.设标准时间的速度为1,则这种表的速度为
这种表与标准时间共同需要经过
因为105=24×4+9,所以此时是8月2日上午9时.
二、解答题:
1.1
2.1000袋
3.14.2
因为A+B最小,A+C次小;D+E最大,C+E次大.所以有
A+B=17D+E=39
由此可知:B=C-5,D=C+3.可以看出,B、D同奇同偶,所以B+D是偶数.在已知条件中,剩下的偶数只有28,于是B+D=28.由于B+D=C-5+C+3=28,
所以C=15.
于是A=7,B=10,D=18,E=21.
五个数的平均数为
(7+10+15+18+21)÷5=14.2
4.60分
设甲、乙两地距离为1,则电车之间的车距为
小张的速度为
小王的速度为
小张与小王相遇所需时间为
小升初数学综合模拟试卷
一、填空题:
1.用简便方法计算下列各题:
(2)1997×19961996-1996×19971997=______;
(3)100+99-98-97+…+4+3-2-1=______.
2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).
3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.
4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.
5.在乘积1×2×3×…×98×99×100中,末尾有______个零.
6.如图中,能看到的方砖有______块,看不到的方砖有______块.
7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.
8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.
9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.
10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙
每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.
二、解答题:
1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸
(1)若P点在岸上,则A点在岸上还是水中?
(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的
次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.
2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.
3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?
4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.
答案
一、填空题:
1.(1)(24)
(2)(0)
原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0
(3)(100)
原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=100
2.(1、0、9、8)
由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)
(65-9)÷2=28
4.(50、150)
40O÷8=50,8÷2-1=3
3×50=150
5.(24)
由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)
由图观察发现:第一层能看到:1块,第二层能看到:
2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.
7.(25)
8.(5)
考虑已失分情况。
要使平均成绩达到95分以上,也就是每次平均失分不多于5分.(100-90)×4÷5=8(次)8-4=4次,即再考4次满分平均分可达到95,要达到95以上即需4+1=5次.
9.(280)
第一堆中钱数必为5+2=7元的倍数;第二堆钱必为20元的倍数(因至少需5个贰元与2个伍元才能有相等的钱数).但两堆钱数相等,所以两堆钱数都应是7×20=140元的倍数.所以至少有2×140=280元.
10.(25)
转换一个角度思考:当甲、乙相会时,甲、乙和狗走路的时间都是一样的.
30÷(3.5+2.5)=5(小时)
5×5=25(千米)
二、解答题:
1.
(1)在水中.
连结AP,与曲线交点数是奇数.
(2)在岸上.
从水中经过一次岸进到水中,脱鞋与穿鞋次数和为2.由于A点在水中,所以不管怎么走,走在水中时,穿鞋、脱鞋次数和为偶数,则B点必在岸上.
2.1997不可能,2160不可能.2142能.
这样框出的九个数的和一定是被框出的九个数的中间的那个数的9倍,即九个数的和能被9整除.但1997数字和不能被9整除,所以(1)不可能.
又左右两边两列的数不能作为框出的九个数的中间一个数,即能被15整除或被15除余数是1的数,不能作为中间一个数.2160÷9=240,又240÷15=16,余数是零.所以(2)不可能.
3.(0场)
四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场.若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以只可能是甲、乙、丙各胜2场,此时丁三场全败.也就是胜0场.
4.只切两刀,分成三块重新拼合即可.
正方形面积为(2R)2=(2×3)2=36(cm2)
小升初数学综合模拟试卷
一、填空题:
2.如图是由18个边长为2厘米的小正立方体拼成的,那么,该图在空间露出的表面积有______平方厘米.
五个数的和是______.
4.有一次数学练习,共有25题,每做对一题得4分,错一题或不做一题扣1分,小琴得了75分,则她做对的题数是___________个.
面积
为______.
6.一个整数a与7920的乘积是一个完全平方数,则a的最小值是_______,这个平方数是______.
7.将所给除法算式中的*号填出来,使其成为一个完整的算式(各*表示的数字不一定相同).
8.已知甲、乙两数的商及差都等于5,那么甲、乙两数的和等于______.9.有一本科普知识书共30篇短文,这些短文占的篇幅从1到30页各不相同.如果从书的第1页开始印第一篇短文,下一篇短文总是从新的
一页开始印,那么,这些短文从奇数号码起头的最多_______篇,最少
_______篇.
10.有一个三位数,它等于去掉它的首位数字之后剩下的两位数的七倍与66的和,则符合条件的所有三位数是______.
二、解答题:
1.有甲、乙、丙三辆小轿车同时从同一地点出发,沿同一公路追赶前面的一辆大卡车,这三辆车分别用6分、8分、10分追上大卡车,现在
已知甲轿车的速度为每小时120千米,乙轿车每小时100千米,那么丙轿
车和大卡车每小时多少千米?
2.15克盐放入135克水中,放置一段时间后,盐水重量变为120克,这时盐水的浓度是多少?浓度比原来提高了百分之几?
3.学校组织秋游活动,小英买了二个汉堡包,小燕买了三个汉堡包,她俩看见小萌没有吃的,就将五个汉堡包平分了,经过计算,小萌应给小
英1.5元,问小萌应给小燕多少元?
4.一艘轮船顺流航行98千米、逆流航行42千米时共用了8小时;
当这艘轮船顺流航行72千米、逆流航行108千米时共用了12小时.问此
艘轮船的速度是多少?如果两个码头相距315千米,则轮船往返一次需要多少小时?
答案,仅供参考。
一、填空题
1.1
2.184
此立方体的上下、左右、前后面的面积分别相等,因此:2×2×[(9+9)×2+10]
=4×[36+10]
=184(平方厘米)
由五个分数之比为1∶3∶5∶7∶9可知,分母为1+3+5+7+9=25的
4.20
少做或做错一题除不得分外反扣一分,共减去(4+1=)5分,现总共减去(100-75=)25分,所以:
25-(100-75)÷(4+1)=20(题)
如图,连结FD,
∵FE=EC
∴S△FED=S△EDC
S△AEF=S△AEC
∴S阴影=S△AFD=S△ADC
6.55、435600.
因7920×a=24×32×5×11×a,且7920=24×32×5×11的质因数分解中5和11的指数是奇数,故a必含质因数5和11,a的最小值就应为5×11=55,所以这个平方数为:7920×55=
7.
由商的百位数9乘以除数得到一个两位数可知,除数必为11;由商的十
位数乘以11后所得的数仍为两位数,则千位数只能是1,所以商为1997,被除数为21967.
8.7.5
已知甲、乙两数的商等于5,也就是甲数是乙数的5倍;又知道甲、乙两数之差等于5,说明乙数的4倍等于5,即:
5÷(5-1)×(5+1)
=1.25×6
9.23、8
如果一篇短文是偶数页,它与下一篇短文开头页码数的奇偶性相同,否则奇偶性不同.共有15篇短文是奇数页,所以开头页码数的奇偶性共转换15次,且第一篇短文开头页码是奇数.若偶数页全排在前面或后面,得奇数页开头的篇数为:15+8=23(篇),反之也一样.若排一个奇数页后,后面全排们数页,再排其余奇数页,共得15-7=8(篇).10.339、689
设这三位数的百位数码为A,去掉首位数后剩下的两位数为x,则有:100A+x=7x+66,得:6x=10OA-66,等式右端应是6的倍数,故A=3或6,x=39或89,符合条件的三位数是339或689.
二、解答题:
1.丙车速度:88千米/时,卡车速度:40千米/时.
乙车行驶8小时的路程等于甲车行驶6小时的路程再加2小时卡车所行
两车在10小时内所行驶的路程等于乙车行驶8小时的路程再加2小时卡
2.12.5%,25%
盐水的浓度变为:15÷120=12.5%
原来盐水浓度为:15÷150=10%
浓度比原来提高的百分比为:
3.6元
4.16.8千米/时,40小时.
由于两次航行所用的时间不相等,因此,先取两次时间的最小公倍数,等价地化为相等时间的两次航行.8和12的最小公倍数是24,所以,第一次顺流航行98×3=294千米,逆流航行42×3=126千米,与第二次顺流航行72×2=144千米、逆流航行108×2=216千米所用的时间相等,即为24小时.这样,在相同时间内,第一次航行比第二次航行顺流多行150千米,逆流少行90千米,这表明顺流150千米与逆流90千米所用的时间相等,所
∴顺流速度为:168÷8=21(千米/时)
∴船速为:(21+12.6)÷2=16.8(千米/时)
往返两码头一次所用时间为:
315÷21+315÷12.6=40(时)。