北京北师大实验中学七年级数学上册第一单元《有理数》-填空题专项经典习题(课后培优)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶
解析:16
【分析】
从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.
【详解】
⨯⨯=;
解:第1次:280.50.57
⨯+=;
第2次:371334
⨯=;
第3次:340.517
⨯+=;
第4次:3171364
⨯⨯⨯⨯⨯⨯=;
第5次:640.50.50.50.50.50.51
⨯+=;
第6次:311316
⨯⨯⨯⨯=,等于第5次.
第7次:160.50.50.50.51
所以从第5次开始,奇数次等于1,偶数次等于16.
因为2020是偶数,
所以数28经过2020次“H运算”得到的结果是16.
故答案为16.
【点睛】
本题考查了有理数的乘法,发现循环规律,是解题的关键.
2.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;
(2)近似数2.428×105精确到___位;
(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就
解析:(1)千分 (2)百 (3)3.14 十万
【分析】
(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;
(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答
即可.
【详解】
解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;
(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而
2.428的最后一位8应该是在百位上,因而这个数是精确到百位;
(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位. 故答案为: (1)千分; (2)百; (3)3.14、十万.
【点睛】
本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.
3.计算:(-0.25)-134⎛
⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭
=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算
【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+
解析:-1.75
【分析】
根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.
【详解】
解:原式=-0.25+3.25+2.75-7.5
=(-0.25-7.5)+( 3.25+2.75)
=-7.75+6
=-1.75.
故答案为:-1.75.
【点睛】
本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.
4.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则
200720082009()()()a a b cd b
++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运
解析:2
【分析】
利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.
【详解】
解:根据题意得:a+b=0,cd=1,
1a b
=- 则原式=0+1-(-1)=2.
故答案为:2.
【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
5.比较大小:364
--_____________()6.25--.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小
解析:<
【分析】
利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.
【详解】 ∵3276 6.7544
--=-=-,()6.25 6.25--=, 由于 6.75 6.25-<, ∴36
( 6.25)4--<--, 故答案为:<.
【点睛】
本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.
6.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108
【分析】
科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
【详解】
150 000 000将小数点向左移8位得到1.5,
所以150 000 000用科学记数法表示为:1.5×108,
故答案为1.5×108.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
7.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .-5或1
【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的
解析:-5或1
【分析】
根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.
【详解】
分为两种情况:
①当点在表示-2的点的左边时,数为-2-3=-5;
②当点在表示-2的点的右边时,数为-2+3=1;
故答案为-5或1.
【点睛】
本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.
8.已知4a a =>,6b =,则+a b 的值是________.2或-10【分析】利用绝对值的代数意义确定出a 与b 的值即可求出所求【详解】解:∵|a|=4>
a|b|=6∴a=-4b=6或-6当a=-4b=6时a+b=-4+6=2;当a=-4b=-6时a+b=-4 解析:2或-10
【分析】
利用绝对值的代数意义确定出a 与b 的值,即可求出所求.
【详解】
解:∵|a|=4>a ,|b|=6,
∴a=-4,b=6或-6,
当a=-4,b=6时,a+b=-4+6=2;
当a=-4,b=-6时,a+b=-4-6=-10.
故答案为:2或-10.
【点睛】
此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 9.绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:
0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了
绝对值的性质要求掌握绝
解析:0
【分析】
先找出绝对值小于100的所有整数,再求它们的乘积.
【详解】
:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,
因为在因数中有0所以其积为0.
故答案为0.
【点睛】
本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
10.若m﹣1的相反数是3,那么﹣m=__.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=
解析:2
【分析】
根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.
【详解】
解:由m-1的相反数是3,得
m-1=-3,
解得m=-2.
-m=+2.
故选:A.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
11.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的
解析:-70
【分析】
先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.
【详解】
解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法
则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.
∵-20-50=-20+(-50)=-70
∴答案为:-70.
【点睛】
本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.
12.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:
(1)a3•a4=(a•a•a)•(a•a•a•a)=__;
(2)归纳、概括:a m•a n=__;
(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即
解析:a7 a m+n 36
【分析】
(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;
(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;
(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.
【详解】
解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;
(2)归纳、概括:a m•a n=
m n
a a a a
⎛⎫⎛⎫
⎪⎪
⎪⎪
⎝⎭⎝⎭
=a m+n;
(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.
故答案为:a7,a m+n,36.
【点睛】
本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.
13.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线
解析:2020或2021
【分析】
分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度
+1,不重合时盖住的整点是线段的长度,由此即可得出结论.
【详解】
若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点
+=,所以2020厘米不与整点重合,则1厘米长的线段盖住1个整点,因为202012021
长的线段AB盖住2020或2021个整点.
故答案为:2020或2021.
【点睛】
本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.
14.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;
(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;
(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解
解析:(1)5.6 (2)2000 (3)36.55
【分析】
(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;
(2)把十分位上的数字5进行四舍五入即可;
(3)把千分位上的数字7进行四舍五入即可.
【详解】
解:(1)5.649≈5.6.
(2)1999.58≈2000
(3)36.547≈36.55
故答案为:5.6;2000;36.55
【点睛】
本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.
15.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第________次喊过“拉”声后就可获得胜利.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取
解析:7
【分析】
⨯-=,离胜利还差
根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)
-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.
30246(cm)
【详解】
解:由题意得喊过一次“拉”声之后可拉过4cm.
⨯-=.
当喊到第6次时,一共拉过了6(73)24(cm)
-=,
离胜利还差30246(cm)
所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.
故答案为:7.
【点睛】
此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.
16.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积
abcde=,则它们的和a b c d e
2000
++++的最小值为__.【分析】先把
abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:
abcde=2000=
解析:【分析】
先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.
【详解】
解:abcde=2000=24×53,
为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.
故答案为:23.
【点睛】
本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.17.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语
解析:4460
【分析】
工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.
【详解】
++-⨯=(元).
根据题意,得他九月份工资为4000300(1320010000)5%4460
故答案为:4460.
【点睛】
主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.
18.下列说法正确的是________.(填序号)
①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a
=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶
解析:④
【分析】
利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.
【详解】
①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;
②0a b 时,a ,b 互为相反数,但是对于等式1b a
=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;
④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.
综上,正确的有④.
故答案为:④.
【点睛】
本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.
19.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为
,则计算结果为________.73xy3=-2【分析】首先确定使
用的是xy 键先按底数再按yx 键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40
解析:73,x y ,3,= -2
【分析】
首先确定使用的是x y 键,先按底数,再按y x 键,接着按指数,最后按等号即可.
【详解】
解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.
【点睛】
此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.20.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答
解析:90
【分析】
要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.
【详解】
解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数
35.89543精确到百分位的近似数为35.90,
故答案为:35.90.
【点睛】
本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.
21.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时
b=3∴-5-3=-8故答案为:
解析:±8
【分析】
首先根据绝对值的性质得出两数,进而分析得出答案.
【详解】
设|a|=5,|b|=3,
则a=±5,b=±3,
∵ab<0,
∴当a=5时,b=-3,
∴5-(-3)=8;
当a=-5时,b=3,
∴-5-3=-8.
故答案为:±8.
【点睛】
本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.
22.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a
(a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和
解析:-1
【分析】
设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.
【详解】
解:设其中一个数为a(a≠0),则它的相反数为-a,
所以这两个数的商为a÷(-a)=-1.
故答案为:-1.
【点睛】
本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.
23.计算
325
3.1410.31431.40.2
84
⨯+⨯-⨯=__.0【分析】先把0314314都转化为
314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便
解析:0
【分析】
先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.
【详解】
解:
325
3.1410.31431.40.2
84
⨯+⨯-⨯,
35
3.141 3.14 3.142
88
=⨯+⨯-⨯,
35
3.14(12)
88
=⨯+-,
3.140
=⨯,
=.
故答案为:0.
【点睛】
本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便.24.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)
=[________]+1.2
=________+1.2
=____;
(2)32.5+46+(-22.5)
=[____]+46
=_____+46
=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法
解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56
【分析】
(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;
(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.
【详解】
解:(1)(-0.8)+1.2+(-0.7)+(-2.1)
=[(-0.8)+(-0.7)+(-2.1)]+1.2
=(-3.6)+1.2
=-2.4;
(2)32.5+46+(-22.5)
=[32.5+(-22.5)]+46
=10+46
=56.
故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.
【点睛】
本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.
25.绝对值不大于2.1的所有整数是____,其和是____.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值
解析:﹣2,﹣1,0,1,2 0
【分析】
找出绝对值不大于2.1的所有整数,求出之和即可.
【详解】
绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,
故答案为:﹣2,﹣1,0,1,2;0
【点评】
此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.
26.数轴上A、B两点所表示的有理数的和是 ________.
-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1
解析:-1
【解析】
由数轴得,点A表示的数是﹣3,点B表示的数是2,
∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,
故答案为-1.
27.已知|a|=3,|b|=2,且ab<0,则a﹣b=_____.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b
解析:5或﹣5
【分析】
先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b
中求值即可.
【详解】
解:∵|a|=3,|b|=2,
∴a=±3,b=±2;
∵ab<0,
∴当a=3时b=﹣2;当a=﹣3时b=2,
∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.
【点睛】
本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.
28.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8
解析:8
【解析】
试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.
解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.
故答案为8.
-、9,现以点C为29.一条数轴上有点A、B、C,其中点A、B表示的数分别是16
A B'=,则C点表示的折点,将放轴向右对折,若点A对应的点A'落在点B的右边,若3
数是______.
【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键
解析:2-
【分析】
根据3
A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.
【详解】
解:翻折后A'在B右侧,且3
A B'=.所以点A'为12,
∵A与A'以C为折点对折,则C为A,A'中点,

1216
:2
2
C
-
=-.
【点睛】
本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.
30.计算:(1)(2)(3)(4)(2019)(2020)
++-+++-++++-=_____.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两
解析:1010
-
【分析】
第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.
【详解】
原式(12)(34)(20192020)11111010 =-+-++-=-----=-.
故答案为:1010
-.
【点睛】
本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.。

相关文档
最新文档