2018-2019随州市中考必备数学考前押题密卷模拟试卷9-10(共2套)附详细试题答案
2018年湖北省随州市九年级中考模拟数学试卷及答案解析
km 。
.
13.已知:如图,圆锥的底面直径是 10cm,高为 12cm,则它的侧面展开图的面积是
cm2
。
。
14.一个等腰三角形的两边长是方程 x2-6x+8=0 的两个根,那么这个等腰三角形的周长是
k2 15. 如图,已知一次函数 y1=k1x+b 的图象与 x 轴、y 轴分别交于 A、B 两点,与反比例函数 y2= 的 x 图象分别交于 C、D 两点,点 D 的坐标为(2,-3),点 B 是线段 AD 的中点. k2 则不等式 k1x+b — >0 的解集是 。 x
。(填写
第 3 题图
第 5 题图
第 6 题图
三.解答题。 (本题共 8 小题,共 72 分) 17.(6 分)先化简,再求值:
3 3x x2 x (x 1 ) x 1 x 1
,其中 x 的值从﹣1、0、1、2 中选取.
18.(8 分)已知关于 x 的方程 x2+(2k﹣1)x+k2﹣1=0 有两个实数根 x1,x2. (1)求实数 k 的取值范围;(4 分) (2)若 x1,x2 满足 x12+x22=16+x1x2,求实数 k 的值.(4 分)
A.
B.
C.
D.
3.下列计算正确的是( A. 2 x 3 y 5 xy
)
2
2 B. m 3 m 9
C. xy 2
3
xy 6
10 5 5 D. a a a
4.某交警在一个路口统计的某时段来往车辆的车速情况如表: 车速(km/h) 车辆数(辆) 48 5 49 4 50 8 ) D.49,8 51 2 52 1
2018 年湖北省随州市九年级中考模拟数学试卷及答案解析
2019年湖北省随州市二中中考数学模拟试卷(二)(包含参考答案)
2019年湖北省随州市二中中考数学模拟试卷(二)一.选择题(每题3分,满分30分)1.下列图标既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图是一根空心方管,它的俯视图是()A.B.C.D.3.下列各式计算正确的是()A.a+2a=3a B.x4•x3=x12C.()﹣1=﹣D.(x2)3=x54.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.某中学篮球队12名队员的年龄情况如下表:关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为146.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算7.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.8.如图矩形ABCD中,AB=3,BC=3,点P是BC边上的动点,现将△PCD沿直线PD折叠,使点C落在点C1处,则点B到点C1的最短距离为()A.5 B.4 C.3 D.29.如图,△ABC中,∠C=90°,∠B=60°,AC=2,点D在AC上,以CD为直径作⊙O与BA相切于点E,则BE的长为()A.B.C.2 D.310.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0二.填空题(满分18分,每小题3分)11.分解因式:3x2﹣6x2y+3xy2=.12.移动互联网已经全面进入人们的日常生活.截止2017年12月,全国4G用户总数947000 000,这个数用科学记数法表示为.13.计算:﹣20180+()﹣1﹣2cos45°=.14.如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=度.15.如图,▱ABCD中,点E、F分别在BC,AD上,且BE:EC=2:1,EF∥CD,交对角线AC于点G,则=.16.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DF=BF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号).三.解答题(共8小题,满分66分)17.先化简,再求值:(x﹣2+)÷,其中x=﹣.18.一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m 的范围.(2)设方程两实根为x 1,x 2,且|x 1﹣x 2|=1,求m .19.济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A ,B ,C ,D 表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l )杨老师采用的调查方式是 (填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C 班作品数量所对应的圆心角度数 . (3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.20.为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:≈1.414,≈1.732)21.如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为BA 延长线上一点,∠ACD =∠B . (1)求证:DC 为⊙O 的切线;(2)线段DF 分别交AC ,BC 于点E ,F 且∠CEF =45°,⊙O 的半径为5,sin B =,求CF 的长.22.某商店以15元/件的价格购进一批纪念品销售,经过市场调查发现:若每件卖20元,则每天可以售出50件,且售价每提高1元,每天的销量会减少2件,于是该商店决定提价销售,设售价x元件,每天获利y元.(1)求每件售价为多少元时,每天获得的利润最大?最大利润是多少?(2)若该商店雇用人员销售,在营销之前,对支付给销售人员的工资有如下两种方案:方案一:每天支付销售工资100元,无提成;方案二:每销售一件提成2元,不再支付销售工资.综合以上所有信息,请你帮着该商店老板算一算,应该采用哪种支付方案,才能使该商店每天销售该纪念品的利润最大?最大利润是多少?23.已知:m是的小数部分,求的值.24.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.参考答案一.选择题1.解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.2.解:如图所示:俯视图应该是.故选:B.3.解:A、a+2a=3a,正确;B、x4•x3=x7,错误;C、,错误;D、(x2)3=x6,错误;故选:A.4.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.5.解:A、这12个数据的众数为14,正确;B、极差为16﹣12=4,错误;C、中位数为=14,错误;D、平均数为=,错误;故选:A.6.解:本题没有AB两地的单程,可设为1,那么总路程为2,总时间为+.平均速度=2÷(+)=2÷=.故选B.7.解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.8.解:连接BD,BC1,在△C′BD中,BC1+DC1>BD,由折叠的性质可知,C1D=CD=3,∴当C1在线段BD上时,点B到点C1的距离最短,在Rt△BCD中,BD==6,此时BC1=6﹣3=3,故选:C.9.解:∵∠C=90°,∠B=60°,AC=2,∴BC===2,∵CD为⊙O直径,∴BC是⊙O的切线,∴BE=BC=2,故选:C.10.解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B、∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D、∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)12.解:947000 000=9.47×108.故答案为:9.47×108.13.解:原式=3﹣1+3﹣2×=3﹣1+3﹣=2+2.故答案为:2+2.14.解:∵∠A=20°,∴∠BOC=40°,∵BC是⊙O的切线, B为切点,∴∠OBC=90°,∴∠OCB=90°﹣40°=50°,故答案为:50.15.解:∵四边形ABCD是平行四边形,∴AB∥CD、BC∥AD,且AD=BC,∵EF ∥CD ,∴四边形ABEF 是平行四边形, ∴BE =AF ,∵=2,∴=、=,设S △ECG =a由BC ∥AD 知△ECG ∽△FAG ,则=()2,即=,则S △FAG =4a ;由EF ∥AB 知△ECG ∽△BCA ,则=()2,即=,则S △BCA =9a ,∴S 四边形ABEG =S △BCA ﹣S △ECG =8a ,则==,故答案为:.16.解:在△ABC 与△AEF 中 ∵AB =AE ,BC =EF ,∠B =∠E ∴△AEF ≌△ABC , ∴AF =AC , ∴∠AFC =∠C ;由∠B =∠E ,∠ADE =∠FDB , 可知:△ADE ∽△FDB ; ∵∠EAF =∠BAC , ∴∠EAD =∠CAF ,由△ADE ∽△FDB 可得∠EAD =∠BFD , ∴∠BFD =∠CAF . 综上可知:①③④正确.三.解答题(共8小题,满分66分)17.解:原式=(+)•=• =2(x +2)=2x +4,当x =﹣时,原式=2×(﹣)+4=﹣1+4=3.18.解:(1)∵关于x 的一元二次方程mx 2﹣2mx +m ﹣2=0有两个实数根,∴m ≠0且△≥0,即(﹣2m )2﹣4•m •(m ﹣2)≥0,解得m ≠0且m ≥0,∴m 的取值范围为m >0.(2)∵方程两实根为x 1,x 2,∴x 1+x 2=2,x 1•x 2=,∵|x 1﹣x 2|=1,∴(x 1﹣x 2)2=1,∴(x 1+x 2)2﹣4x 1x 2=1,∴22﹣4×=1, 解得:m =8;经检验m =8是原方程的解.19.解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.20.解:作PD⊥AB于D.设BD=x,则AD=x+200.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°•AD,即DB=PD=tan30°•AD=x=(200+x),解得:x≈273.2,∴PD=273.答:凉亭P到公路l的距离为273m.21.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sin B=,∴AC=6,BC=8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,Rt△OCD中,OC2+CD2=OD2,52+(4x)2=(5+3x)2,x=0(舍)或,∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴,a=,∴CF=.22.解:(1)y=(x﹣15)[50﹣2(x﹣20)]=﹣2(x﹣30)2+450,当x=30时,y的最大值为450,答:每件售价为30元时,每天获得的利润最大,最大利润是450元.(2)方案一:每天的最大利润为450﹣100=350(元),方案二:y=(x﹣15﹣2)[50﹣2(x﹣20)]=﹣2(x﹣31)2+392,∴每天的最大利润为392元,392>350,∴采用方案二支付,利润最大;23.解:∵m是的小数部分,∴m=﹣2,原式==|m﹣|∵m=﹣2,∴==+2,即>m,∴原式=﹣(m﹣)=﹣m+=﹣(﹣2)++2=4.24.解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,△EFC ∽△EMP ,∴===∴MP =3ME ,∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3),∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得t 1=﹣2,t 2=3,(与P 在二象限,横坐标小于0矛盾,舍去),当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3∴P (﹣2,3),∴当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).。
2019-2020年最新湖北省随州市中考仿真模拟数学试题及答案解析
湖北省随州市中考数学试卷一、单项选择题:本大题共10小题,每小题3分,共30分随州市初中毕业升学考试数学试题1.在﹣1,﹣2,0,1四个数中最小的数是()2.(3分)(2015•随州)如图,AB∥CD,∠A=50°,则∠1的大小是()3.(3分)(2015•随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()4.(3分)(2015•随州)下列说法正确的是()方差.5.(3分)(2015•随州)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC 于点D,则△BDC的周长是()6.(3分)(2015•随州)若代数式+有意义,则实数x的取值范围是()+7.(3分)(2015•随州)如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()=D.==8.(3分)(2015•随州)如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A×360°=72°,∠BOC=×72°=36°,(=,9.(3分)(2015•随州)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是(),10.(3分)(2015•随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()二、填空题:本大题共6小题,每小题3分,共18分11.(3分)(2015•随州)4的算术平方根是 2 ,9的平方根是±3,﹣27的立方根是﹣3 .12.(3分)(2015•随州)为创建“全国环保模范城”,我市对白云湖73个排污口进行了封堵,每年可减少污水排放185000吨,将185000用科学记数法表示为 1.85×105.了多少位,13.(3分)(2015•随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24 cm3.14.(3分)(2015•随州)某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第 2 组.15.(3分)(2015•随州)观察下列图形规律:当n= 5 时,图形“●”的个数和“△”的个数相等.;最后根据1=3=;6=;10=;3n=16.(3分)(2015•随州)在▱ABCD中,AB<BC,已知∠B=30°,AB=2,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为4或6 .AB=2B′C=AB=×2AB=2=2三、解答题:本大题共9小题,共72分17.(6分)(2015•随州)解不等式组请结合题意,完成本题解答.(Ⅰ)解不等式①,得x>2 ;(Ⅱ)解不等式②,得x≤4;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为2<x≤4.18.(6分)(2015•随州)先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.﹣19.(6分)(2015•随州)端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?意得:=20.(8分)(2015•随州)如图,反比例函数y=(k<0)的图象与矩形ABCD的边相交于E、F两点,且BE=2AE,E(﹣1,2).(1)求反比例函数的解析式;(2)连接EF,求△BEF的面积.y=,利用待定系﹣CF=,那=,然后根据△BEF BE•BF,y=﹣)∴AE=1,,得y=,∴CF=﹣,BE•BF=×2×=的解析式,21.(8分)(2015•随州)为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有100 人,将条形图补充完整;(2)扇形图中m= 25 ,n= 108 ;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.)∵m%=×100%=25%,=.22.(8分)(2015•随州)如图,射线PA切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.中,tan60°===23.(8分)(2015•随州)如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?﹣+5t+t= =×2.8+5×2.8+,t+5t+t=×2.8+5×2.8+24.(10分)(2015•随州)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)点A∴EF=BE+DF=80+40(25.(12分)(2015•随州)如图,已知抛物线y=(x+2)(x﹣4)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.(1)求点A、B、C的坐标;(2)设动点N(﹣2,n),求使MN+BN的值最小时n的值;(3)P是抛物线上一点,请你探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD 相似(△PAB与△ABD不重合)?若存在,求出点P的坐标;若不存在,说明理由.﹣))代入得:y=.﹣﹣AD==3,即:B=6即:=6即:6即:B=6,即:=2,即:2y=22)﹣4,22)或(﹣。
湖北省随州市2019-2020学年中考数学第一次押题试卷含解析
湖北省随州市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=2.计算4×(–9)的结果等于A .32B .–32C .36D .–363.若点()()()112233,,,,,x y x y x y 都是反比例函数21a y x --=的图象上的点,并且1230x x x <<<,则下列各式中正确的是(( )A .132y y y <<B .231y y y <<C .321y y y <<D .123y y y <<4.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >45.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A .12B .13C .14D .166.如图,已知直线 PQ ⊥MN 于点 O ,点 A ,B 分别在 MN ,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C ,使△ABC 是等腰三角形,则这样的 C 点有( )A .3 个B .4 个C .7 个D .8 个7.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O是以原点为圆心,半径为22圆,则⊙O的“整点直线”共有()条A.7 B.8 C.9 D.108.31-的值是()A.1 B.﹣1 C.3 D.﹣39.定义运算“※”为:a※b=()()22ab bab b⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是()A.B.C.D.10.下列计算正确的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5D.a2p÷a﹣p=a3p11.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=3;④∠ACB=50°.其中错误的是()A.①②B.②④C.①③D.③④12.方程x2﹣4x+5=0根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:32816a a a -+=__________.14.分解因式:2x 2﹣8xy+8y 2= .15.关于x 的方程1101ax x +-=-有增根,则a =______. 16.抛物线y =2x 2+3x+k ﹣2经过点(﹣1,0),那么k =_____.17.如图,AB=AC ,AD ∥BC ,若∠BAC=80°,则∠DAC=__________.18.123=⨯________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC ∆在平面直角坐标系中的位置如图所示.(1)直接写出ABC ∆关于原点O 的中心对称图形111A B C ∆各顶点坐标:1A ________1B ________1C ________;(2)将ABC ∆绕B 点逆时针旋转90︒,画出旋转后图形22A BC ∆.求ABC ∆在旋转过程中所扫过的图形的面积和点C 经过的路径长.20.(6分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度=1:3,AD =9米,点C 在DE 上,CD =0.5米,CD 是限高标志牌的高度(标志牌上写有:限高 米).如果进入该车库车辆的高度不能超过线段CF 的长,则该停车库限高多少米?(结果精确到0.1米,参考数2≈1.41310)21.(6分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?22.(8分)如图,某校数学兴趣小组要测量大楼AB 的高度,他们在点C 处测得楼顶B 的仰角为32°,再往大楼AB 方向前进至点D 处测得楼顶B 的仰角为48°,CD =96m ,其中点A 、D 、C 在同一直线上.求AD 的长和大楼AB 的高度(结果精确到2m )参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,3≈2.7323.(8分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA ,OC 为邻边作矩形 OABC , 动点 M ,N 以每秒 1 个单位长度的速度分别从点 A 、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N 沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP ⊥BC ,交 OB 于点 P ,连接 MP .(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记△OMP 的面积为 S ,求 S 与 t 的函数关系式()06t <<;并求 t 为何值时,S 有最大值,并求出最大值.24.(10分)如图,在平面直角坐标系xOy 中,一次函数y =x 与反比例函数()0k y k x =≠的图象相交于点)3,A a .(1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y =x 、反比例函数k y x=的图象相交于点M 、N ,当MN =2时,画出示意图并直接写出b 的值.25.(10分)已知BD 平分∠ABF ,且交AE 于点D .(1)求作:∠BAE 的平分线AP (要求:尺规作图,保留作图痕迹,不写作法);(2)设AP 交BD 于点O ,交BF 于点C ,连接CD ,当AC ⊥BD 时,求证:四边形ABCD 是菱形.26.(12分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:求y 与x 之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?27.(12分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:2230x x +-=223x x +=2214x x ++=()214x +=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.2.D【解析】【分析】根据有理数的乘法法则进行计算即可.【详解】()494936.⨯-=-⨯=-故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.3.B【解析】【分析】【详解】解:根据题意可得:210a --p∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x <0时y >0,当x >0时,y <0,∴2y <3y <1y .4.C【解析】【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4,故选C .【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.5.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况, 则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.7.D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.8.B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,31 ﹣1.故选:B.此题主要考查了立方根,正确把握立方根的定义是解题关键.,9.C【解析】【分析】根据定义运算“※” 为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,可得y=2※x 的函数解析式,根据函数解析式,可得函数图象. 【详解】解:y=2※x=()()222020x x x x ⎧>⎪⎨-≤⎪⎩, 当x>0时,图象是y=22x 对称轴右侧的部分;当x <0时,图象是y=22x -对称轴左侧的部分,所以C 选项是正确的.【点睛】本题考查了二次函数的图象,利用定义运算“※”为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩得出分段函数是解题关键.10.D【解析】【分析】直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案.【详解】解:A .﹣5x ﹣2x=﹣7x ,故此选项错误;B .(a+3)2=a 2+6a+9,故此选项错误;C .(﹣a 3)2=a 6,故此选项错误;D .a 2p ÷a ﹣p =a 3p ,正确.故选D .【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键. 11.B【解析】【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B 在C 处的北偏西50°,故①正确;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A 在B 处的北偏西120°,故②错误;∵∠1=∠2=60°,∴∠BAC=30°,∴cos ∠BAC=32,故③正确; ∵∠6=90°﹣∠5=40°,即公路AC 和BC 的夹角是40°,故④错误.故选B .【点睛】本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.12.D【解析】【分析】【详解】解: ∵a=1,b=﹣4,c=5,∴△=b 2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a(a -4)2【解析】【分析】首先提取公因式a ,进而利用完全平方公式分解因式得出即可.【详解】32816a a a -+22816()4.)(a a a a a =-+=-故答案为:2()4.a a - 【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底. 14.1(x ﹣1y )1 【解析】试题分析:1x 1﹣8xy+8y 1 =1(x 1﹣4xy+4y 1) =1(x ﹣1y )1.故答案为:1(x ﹣1y )1.考点:提公因式法与公式法的综合运用 15.-1 【解析】 根据分式方程11ax x +--1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1. 故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数. 16.3. 【解析】试题解析:把(-1,0)代入2232y x x k =++-得: 2-3+k-2=0, 解得:k=3. 故答案为3. 17.50° 【解析】 【分析】根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答. 【详解】解:∵AB=AC ,∠BAC=80°, ∴∠B=∠C=(180°﹣80°)÷2=50°; ∵AD ∥BC , ∴∠DAC=∠C=50°,故答案为50°. 【点睛】本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等. 18.1 【解析】 【分析】先将二次根式化为最简,然后再进行二次根式的乘法运算即可. 【详解】解:原式=1. 故答案为1. 【点睛】本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1(3,3)A -,1(4,1)B -,1(0,2)C -;(2)作图见解析,面积71724π=+,l =. 【解析】 【分析】(1)由ABC ∆在平面直角坐标系中的位置可得A 、B 、C 的坐标,根据关于原点对称的点的坐标特点即可得1A 、1B 、1C 的坐标;(2)由旋转的性质可画出旋转后图形22A BC ∆,利用面积的和差计算出22∆A BC S ,然后根据扇形的面积公式求出2扇形CBC S ,利用ABC ∆旋转过程中扫过的面积222S A BC CBC S S ∆+=扇形进行计算即可.再利用弧长公式求出点C 所经过的路径长. 【详解】解:(1)由ABC ∆在平面直角坐标系中的位置可得:(3,3)-A ,(4,1)B -,(0,2)C ,∵111A B C ∆与ABC ∆关于原点对称, ∴1(3,3)A -,1(4,1)B -,1(0,2)C - (2)如图所示,22A BC ∆即为所求,∵(4,1)B -,(0,2)C ,∴22(40)(12)17=--+-=BC ∴2扇形CBC S 2290(17)173604πππ⋅⨯===BC , ∵22∆A BC S 1117421213142222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴ABC ∆在旋转过程中所扫过的面积:222扇形∆+=A BC CBC S S S 71724π=+ 点C 所经过的路径:901717π⨯==l .【点睛】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键. 20.2.1. 【解析】 【分析】 据题意得出tanB =13, 即可得出tanA, 在Rt △ADE 中, 根据勾股定理可求得DE, 即可得出∠FCE 的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.【详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.【点睛】点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值. 21.30元【解析】试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.考点:分式方程的应用.22.AD的长约为225m,大楼AB的高约为226m【解析】【分析】首先设大楼AB的高度为xm,在Rt△ABC中利用正切函数的定义可求得3AB=3x,然后根据∠ADB的正切表示出AD的长,又由CD=96m,x3x961.11-=,解此方程即可求得答案.【详解】解:设大楼AB的高度为xm,在Rt△ABC中,∵∠C=32°,∠BAC=92°,∴ABAC=3AB3x tan30==o,在Rt△ABD中,ABtan ADB tan48AD ∠=︒=,∴AB xAD=tan48 1.11=︒,∵CD=AC-AD,CD=96m,x3x961.11-=,解得:x≈226,∴x116AD1051.11 1.11=≈≈答:大楼AB的高度约为226m,AD的长约为225m.【点睛】本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.23.(1)(6,4),23y x=;(2)21(3)3(06)3S t t=--+<<,1,1.【解析】【分析】(1)根据四边形OABC 为矩形即可求出点B 坐标,设直线OB 解析式为y kx =,将B (6,4)代入即可求直线OB 的解析式;(2)由题意可得6OM t =-,由(1)可得点P 的坐标为2,3t t ⎛⎫⎪⎝⎭, 表达出△OMP 的面积即可,利用二次函数的性质求出最大值. 【详解】解:(1)∵OA=6,OC=4, 四边形OABC 为矩形, ∴AB=OC=4, ∴点B (6,4),设直线OB 解析式为y kx =,将B (6,4)代入得46k =,解得23k =, ∴23y x =, 故答案为:(6,4);23y x =(2)由题可知,CN AM t ==,6OM t ∴=-由(1)可知,点P 的坐标为2,3t t ⎛⎫⎪⎝⎭1223OMP S OM t ∴=⨯⨯V ,12(6)23t t =⨯-⨯ 21t 2t 3=-+21(3)3(06)3t t =--+<<∴当3t =时,S 有最大值1. 【点睛】本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式.24.(1)a =k=2;(2)b=2或1. 【解析】 【分析】(1)依据直线y=x 与双曲线ky x=(k≠0)相交于点)A a ,即可得到a 、k 的值;(2)分两种情况:当直线x=b在点A的左侧时,由3x-x=2,可得x=1,即b=1;当直线x=b在点A的右侧时,由x3x-=2,可得x=2,即b=2.【详解】(1)∵直线y=x与双曲线kyx=(k≠0)相交于点()3A a,,∴3a=,∴()33A,,∴33k=,解得:k=2;(2)如图所示:当直线x=b在点A的左侧时,由3x-x=2,可得:x=1,x=﹣2(舍去),即b=1;当直线x=b在点A的右侧时,由x3x-=2,可得x=2,x=﹣1(舍去),即b=2;综上所述:b=2或1.【点睛】本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式.25.(1)见解析:(2)见解析.【解析】试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.试题解析:(1)如图所示:(2)如图:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.考点:1.菱形的判定;2.作图—基本作图.26.(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y与x之间的函数关系式为:y=kx+b,把(2,120)和(4,140)代入得,2120 4140 k bk b+=⎧⎨+=⎩,解得:10100 kb=⎧⎨=⎩,∴y与x之间的函数关系式为:y=10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x=1或x=9,∵为了让顾客得到更大的实惠,∴x=9,答:这种干果每千克应降价9元;(3)该干果每千克降价x元,商贸公司获得利润是w元,根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,∴w=﹣10(x﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元. 【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.27.(1)3,补图详见解析;(2)712【解析】 【分析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数 (2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可 【详解】由扇形图可以看到发箴言三条的有3名学生且占25%, 故该班团员人数为: 325%12÷=(人), 则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712P =. 【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键。
湖北随州市2018年数学中考模拟试题(word版,无答案)
2019中考模拟试卷一中高俊一、选择题(本大题共10小题,每小题3分,共30分)1.在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣22. 下列计算正确的是()A.a3÷a3B.(x2)35C.m2•m46D.248a3.研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10124.如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.5.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.抛物线2﹣22+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米8.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法9.一张矩形纸片,已知3,2,小明按如图步骤折叠纸片,则线段长为()A.B.C.1 D.210.下列关于函数2﹣610的四个命题:①当0时,y有最小值10;②n为任意实数,3时的函数值大于3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④二、填空题(每题3分,满分18分)11.分解因式:2-34.12.若分式的值为0,则x的值为.13.若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2019=14.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.15.如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.116.一副含30°和45°角的三角板和叠合在一起,边与重合,12(如图1),点G 为边()的中点,边与相交于点H,此时线段的长是.现将三角板绕点G 按顺时针方向旋转(如图2),在∠从0°到60°的变化过程中,点H相应移动的路径长共为.(结果保留根号)三、解答题(本大题共8个小题,共75分)17.(6分)先化简,再求值:(2)(2﹣x)+(x﹣1)(5),其中.18.(8分)如图,△内接于⊙O,且为⊙O的直径,⊥,与19.(9分)(2019•内江)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.19.(8分)关于x的方程x2-(21)2-23=0有两个不相等的实数根。
2018-2019学年随州市随县九年级上期末数学模拟试卷(有答案)
2018-2019学年湖北省随州市随县九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=22.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108B.168(1﹣x2)=108C.168(1﹣2x)=108D.168(1+x)2=1084.下列说法中,不正确的是()A.在同圆或等圆中,若两弧相等,则他们所对的弦相等B.在同一个圆中,若弦长等于半径,则该弦所对的劣弧的度数为60°C.在同一个圆中,若两弧不等,则大弧所对的圆心角较大D.若两弧的度数相等,则这两条弧是等弧5.掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.6.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.57.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6D.y=﹣2(x+1)2﹣68.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C 为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3B.﹣3C.6D.﹣69.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.10.下列命题中正确的是()A.平分弦的直径垂直于弦B.圆心角的度数等于圆周角度数的2倍C.对角线相等且互相垂直的四边形是菱形D.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线二.填空题(共6小题,满分18分,每小题3分)11.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为.12.如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=度.13.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.14.二次函数y=ax2+bx+c(a≠0)的函数值y与自变量x之间的部分对应值如下表:x…﹣2﹣1012…y…﹣7﹣1355…则的值为.15.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是.16.如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是.三.解答题(共9小题,满分72分)17.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.18.小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.19.淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?20.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.21.如图,在平面直角坐标系xOy中,已知直线y=x与反比例函数y=(k≠0)的图象交于点A,且点A的横坐标为1,点B是x轴正半轴上一点,且AB⊥OA.(1)求反比例函数的解析式;(2)求点B的坐标;(3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OA、OB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)22.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号).23.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?24.如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).(1)填空:PC=,FC=;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.25.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.2.【解答】解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.3.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:A.4.【解答】解:A、在同圆或等圆中,若两弧相等,则他们所对的弦相等,正确;B、在同一个圆中,若弦长等于半径,则该弦所对的劣弧的度数为60°,正确;C、在同一个圆中,若两弧不等,则大弧所对的圆心角较大,正确;D、若两弧的度数相等,则这两条弧不一定是等弧,错误.故选:D.5.【解答】解:由题意可得,点数为奇数的概率是:,故选:C.6.【解答】解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.7.【解答】解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.8.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,=S△CAB=3,∴S△OAB=|k|,而S△OAB∴|k|=3,∵k<0,∴k=﹣6.故选:D.9.【解答】解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.10.【解答】解:A、此弦不能是直径,故此选项错误;B、必须是同弧或等弧所对的圆心角和圆周角之间才有2倍的关系,故此选项错误;C、对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据两条平行线间的距离的概念,故此选项正确.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵在一个不透明的盒子中装有8个白球,从中随机摸出一个球,它是白球的概率为,设黄球有x个,根据题意得出:∴=,解得:x=4.故答案为:4.12.【解答】解:∵弧AB=弧BC,且弧AB:弧AmC=3:4,∴弧ABC:弧AmC=6:4,∴∠AOC的度数为(360°÷10)×4=144°.13.【解答】解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180.故答案为180°.14.【解答】解:∵x=1、x=2时的函数值都是﹣1相等,∴此函数图象的对称轴为直线x=﹣==,即=﹣.故答案为:﹣.15.【解答】解:设方程的另一根为x,∵方程x2+5x+m=0的一个根为﹣2,∴x+(﹣2)=﹣5,解得x=﹣3,即方程的另一根是﹣3,故答案为:﹣3.16.【解答】解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F.∵AB=4,O为AB的中点,∴A(﹣2,0),B(2,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,,∴△ECP≌△FPB.∴EC=PF=y,FB=EP=2﹣x.∴C(x+y,y+2﹣x).∵AB=4,O为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴当y=1时,AC有最大值,AC的最大值为=3.故答案为:3.三.解答题(共9小题,满分72分)17.【解答】解:(1)5x(x+1)﹣2(x+1)=0,(x+1)(5x﹣2)=0x+1=0或5x﹣2=0,所以x1=﹣1,x2=;(2)△=(﹣3)2﹣4×(﹣1)=13,x=,所以x1=,x2=.18.【解答】解:(1)列表如下和123545679678911789101289101113共有16种等可能的结果,和为偶数的有6种,故P(小莉去)=.(2)不公平,因为P(哥哥去)=,P(小莉去)=,哥哥去的可能性大,所以不公平.可以修改为:和大于9,哥哥去,小于9,小莉去,等于9,重新开始.19.【解答】解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:12100×(1+10%)=13310(元),答:第四天该校能收到的捐款是13310元.20.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.21.【解答】解:(1)由题意,设点A的坐标为(1,m),∵点A在正比例函数y=x的图象上,∴m=.∴点A的坐标(1,),∵点A在反比例函数y=的图象上,∴=,解得k=,∴反比例函数的解析式为y=.(2)过点A作AC⊥OB⊥,垂足为点C,可得OC=1,AC=.∵AC⊥OB,∴∠ACO=90°.由勾股定理,得AO=2,∴OC=AO,∴∠OAC=30°,∴∠ACO=60°,∵AB⊥OA,∴∠OAB=90°,∴∠ABO=30°,∴OB=2OA,∴OB=4,∴点B的坐标是(4,0).(3)如图作∠AOB的平分线OM,AB的垂直平分线EF,OM与EF的交点就是所求的点P,∵∠POB=30°,∴可以设点P坐标(m,m),∵PA2=PB2,∴(m﹣1)2+(m﹣)2=(m﹣4)2+(m)2,解得m=3,∴点P的坐标是(3,).22.【解答】解:作BG⊥AD于G,作EF⊥AD于F,则在Rt△ABG中,∠BAD=60°,AB =40,所以就有BG=AB•Sin60°=20,AG=AB•Cos60°=20,同理在Rt△AEF中,∠EAD=45°,则有AF=EF=BG=20,所以BE=FG=AF﹣AG=20(﹣1)米.故BE至少是20(﹣1)米.23.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,=4500;∴当x=80时,y最大值(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.24.【解答】解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴CP=3﹣x,PC=CD﹣DP=3﹣x故答案为:3﹣x,x=S梯形EDCF﹣S△DEP﹣S△CFP,(2)∵S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+∴S△EFP∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.25.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,=AB•CD=﹣.∴S△ABC(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.。
湖北省随州市随县达标名校2024届中考押题数学预测卷含解析
湖北省随州市随县达标名校2024届中考押题数学预测卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.23﹣2 D.4﹣232.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱3.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ4.下列各数中,最小的数是()A.﹣4 B.3 C.0 D.﹣25.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.0.5×10﹣4B.5×10﹣4C.5×10﹣5D.50×10﹣36.下列四个命题中,真命题是()A .相等的圆心角所对的两条弦相等B .圆既是中心对称图形也是轴对称图形C .平分弦的直径一定垂直于这条弦D .相切两圆的圆心距等于这两圆的半径之和7.已知空气的单位体积质量是0.001239g/cm 3,则用科学记数法表示该数为( )A .1.239×10﹣3g/cm 3B .1.239×10﹣2g/cm 3C .0.1239×10﹣2g/cm 3D .12.39×10﹣4g/cm 38.如图,△ABC 为等腰直角三角形,∠C=90°,点P 为△ABC 外一点,CP=2,BP=3,AP 的最大值是( )A .2+3B .4C .5D .32 9.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.在平面直角坐标系内,点P (a ,a+3)的位置一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.若a+|a|=0,则()222a a -+等于( ) A .2﹣2a B .2a ﹣2C .﹣2D .2 12.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 逆时针旋转,使ON 边与BC 边重合,完成第一次旋转;再绕点C 逆时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,O 间的距离不可能是( )A .0B .0.8C .2.5D .3.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8的立方根为_______.14.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.=,15.如图,ABC的顶点落在两条平行线上,点D、E、F分别是ABC三边中点,平行线间的距离是8,BC6 =时,EF的长度是______.移动点A,当CD BD16.6-的相反数是_____,倒数是_____,绝对值是_____17.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD =16cm1,S△BQC=15cm1,则图中阴影部分的面积为_____cm1.18.如图,在矩形ABCD中,AD=5,AB=4,E是BC上的一点,BE=3,DF⊥AE,垂足为F,则tan∠FDC=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).20.(6分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.21.(6分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 …甲复印店收费(元) 0.5 2 …乙复印店收费(元) 0.6 2.4 …(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.22.(8分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.23.(8分)如图所示,一艘轮船位于灯塔P的北偏东60︒方向与灯塔Р的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45︒方向上的B处.求此时轮船所在的B处与灯塔Р的距离.(结果保留根号)24.(10分)解方程:1322xx x+= --.25.(10分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,DEF和ABC的顶点都在格点上,回答下列问题:()1DEF可以看作是ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由ABC得到DEF的过程:______;()2画出ABC绕点B逆时针旋转90的图形A'BC';()3在()2中,点C所形成的路径的长度为______.26.(12分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.27.(12分)如图,AB为☉O的直径,CD与☉O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE,交☉O于点F,交切线于点C,连接AC.(1)求证:AC是☉O的切线;(2)连接EF,当∠D= °时,四边形FOBE是菱形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】先判断出PQ⊥CF,再求出AC=23,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【题目详解】解:如图,连接PF,QF,PC,QC∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=12∠AFC=30°,∠QFC=12∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,∴3AF=2,CF=2AF=4,∴S△ACF=12AF×AC=12×2×33过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=12AF×PM+12AC×PN+12CF×PG=12×2×PG+12×PG+12×4×PG=(+2)PG=()PG∴1,∴1故选C.【题目点拨】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.2、A【解题分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【题目详解】解:观察图形可知,这个几何体是三棱柱.故选A.【题目点拨】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..3、C【解题分析】根据三角形高线的定义即可解题.【题目详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【题目点拨】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.4、A【解题分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可【题目详解】根据有理数比较大小的方法,可得﹣4<﹣2<0<3∴各数中,最小的数是﹣4故选:A【题目点拨】本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小5、C【解题分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005=5⨯,510-故选C.6、B【解题分析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;B. 圆既是中心对称图形也是轴对称图形,正确;C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.故选B.7、A【解题分析】试题分析:0.001219=1.219×10﹣1.故选A.考点:科学记数法—表示较小的数.8、C【解题分析】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,证明ACQ ≌,BCP 根据全等三角形的性质,得到3,AQ BP == 2,CQ CP ==根据等腰直角三角形的性质求出PQ 的长度,进而根据AP AQ PQ ≤+,即可解决问题.【题目详解】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,90,ACQ BCQ BCP BCQ ∠+∠=∠+∠=,ACQ BCP ∠=∠在ACQ 和BCP 中,AC BC ACQ BCP CQ CP =⎧⎪∠=∠⎨⎪=⎩ACQ ≌,BCP3,AQ BP ∴== 2,CQ CP ==222,PQ CQ CP =+=325,AP AQ P ≤++=AP 的最大值是5.故选:C.【题目点拨】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.9、C【解题分析】试题分析:根据一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像10、D【解题分析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【题目详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选D.【题目点拨】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.11、A【解题分析】直接利用二次根式的性质化简得出答案.【题目详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【题目点拨】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12、D【解题分析】如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK可得0≤d即0≤d≤3.1,由此即可判断;【题目详解】如图,点O的运动轨迹是图在黄线,作CH⊥BD于点H,∵六边形ABCDE是正六边形,∴∠BCD=120º,∴∠CBH=30º,∴BH=cos30 º·BC 33 BC=,∴BD3.∵DK22112+=∴BK32点B,O间的距离d的最小值为0,最大值为线段BK32+∴0≤d320≤d≤3.1,故点B,O间的距离不可能是3.4,故选:D.【题目点拨】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2.【解题分析】根据立方根的定义可得8的立方根为2.本题考查了立方根.14、7【解题分析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 15、1【解题分析】过点D 作DH BC ⊥于点H ,根等腰三角形的性质求得BD 的长度,继而得到AB 2BD =,结合三角形中位线定理求得EF 的长度即可.【题目详解】解:如图,过点D 作DH BC ⊥于点H ,过点D 作DH BC ⊥于点H ,BC 6=,BH CH 3∴==.又平行线间的距离是8,点D 是AB 的中点,DH 4∴=,∴在直角BDH 中,由勾股定理知,2222BD DH BH 435++=.∴点D 是AB 的中点,AB 2BD 10∴==.又点E 、F 分别是AC 、BC 的中点,EF ∴是ABC 的中位线,1EF AB 52∴==. 故答案是:1.【题目点拨】考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH 的长度.166 ,6-6∵只有符号不同的两个数是互为相反数,∴6-的相反数是6;∵乘积为1的两个数互为倒数,∴6-的倒数是66 -;∵负数得绝对值是它的相反数,∴6-绝对值是 6.故答案为(1). 6(2).66-(3). 617、41【解题分析】试题分析:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴阴影部分的面积为S△EPF+S△EFQ=16+15=41cm1.考点:1、三角形面积,1、平行四边形18、【解题分析】首先根据矩形的性质以及垂线的性质得到∠FDC=∠ABE,进而得出tan∠FDC=tan∠AEB=,即可得出答案. 【题目详解】∵DF⊥AE,垂足为F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF =∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=,∵在矩形ABCD中,AB=4,E是BC上的一点,BE【题目点拨】本题主要考查了锐角三角函数的关系以及矩形的性质,根据已知得出tan∠FDC=tan∠AEB是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、旗杆AB的高为(43+1)m.【解题分析】试题分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE 中,求出AE、CE的长度,继而可求得AB的长度.试题解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF=DFBD=12,cos∠DBF=BFBD=32.∵BD=8,∴DF=4,BF=22228443BD DF-=-=.∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=43,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=43,∴AB=43+1(m).答:旗杆AB的高为(3)m.20、(1)150,(2)36°,(3)1.【解题分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【题目详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动.故答案为150,36°,1.【题目点拨】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.21、(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.【解题分析】(1)根据收费标准,列代数式求得即可;(2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x≥0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;(3)设y=y1-y2,得到y与x的函数关系,根据y与x的函数关系式即可作出判断.【题目详解】解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x≥0);y2=0.12x0x20 0.09x+0.6x20≤≤⎧⎨>⎩()();(3)顾客在乙复印店复印花费少;当x>70时,y1=0.1x,y2=0.09x+0.6,∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,设y=0.01x﹣0.6,由0.01>0,则y随x的增大而增大,当x=70时,y=0.1∴x>70时,y>0.1,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.【题目点拨】本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键.22、(1)证明见解析;(2)BC=;.【解题分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.23、6海里【解题分析】⊥,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB.过点P作PC AB【题目详解】⊥,垂足为点C.解:如图,过点P作PC AB∴30APC ︒∠=,45BPC ︒∠=,80AP =海里.在Rt APC ∆中,cos PC APC AP∠=, ∴3cos 804032PC AP APC =⋅∠≡⨯=. 在Rt PCB ∆中,cos PC BPC PB∠=, ∴36cos cos 45PC PB BPC ︒===∠. ∴此时轮船所在的B 处与灯塔P 的距离是6海里.【题目点拨】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24、52【解题分析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.详解:去分母,得()132x x -=-.去括号,得136x x -=-.移项,得 361x x -=-.合并同类项,得 25x =.系数化为1,得52x =. 经检验,原方程的解为52x =. 点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.25、(1)先沿y 轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y 轴翻折;(2)见解析;(3)π.(1)△ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到△DEF;()2按照旋转中心、旋转角度以及旋转方向,即可得到△ABC绕点B逆时针旋转90︒的图形△A BC'';()3依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可.【题目详解】解:(1)答案不唯一.例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折.(2)分别将点C、A绕点B逆时针旋转90︒得到点C'、A',如图所示,△A BC''即为所求;(3)点C所形成的路径的长为:902= 180ππ⨯⨯.故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)π..【题目点拨】本题考查坐标与图形变化-旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.26、(1)120;(2)42人;(3) 90°;(4)【解题分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.【题目点拨】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.27、(1)详见解析;(2)30.【解题分析】(1)利用切线的性质得∠CEO=90°,再证明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根据切线的判定定理得到结论;(2)利用四边形FOBE是菱形得到OF=OB=BF=EF,则可判定△OBE为等边三角形,所以∠BOE=60°,然后利用互余可确定∠D的度数.【题目详解】(1)证明:∵CD与⊙O相切于点E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB为⊙O的直径,∴AC为⊙O的切线;(2)∵四边形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE为等边三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【题目点拨】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.。
湖北省随州市数学中考模拟试卷(二)
湖北省随州市数学中考模拟试卷(二)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·深圳模拟) 在﹣1,1,﹣3,3四个数中,最小的数是()A . ﹣1B . 1C . ﹣3D . 32. (2分)(2020·乌鲁木齐模拟) 下列图形中,既是中心对称图形,又是轴对称图形的是()A .B .C .D .3. (2分)已知地球上海洋面积约为316 000 000km2 , 316 000 000这个数用科学记数法可表示为()A . 3.16×109B . 3.16×108C . 3.16×107D . 3.16×1064. (2分)下列运算正确的是()A . x8÷x2=x6B . (x3y)2=x5y2C . ﹣2(a﹣1)=﹣2a+1D . (x+3)2=x2+95. (2分) (2018九下·新田期中) 如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是()A . 20°B . 35°C . 40°D . 70°6. (2分)(2019·合肥模拟) 某组长统计组内5人一天在课堂上的发言次数分别为3,0,4,3,5,关于这组数据,下列说法错误的是()A . 平均数是3B . 众数是3C . 中位数是4D . 方差是2.87. (2分)已知圆锥的侧面积为10πcm2 ,侧面展开图的圆心角为36°,则该圆锥的母线长为()A . 100cmB . cmC . 10cmD . cm8. (2分)(2019·铜仁) 一元二次方程4x2﹣2x﹣1=0的根的情况为()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个实数根D . 没有实数根9. (2分)(2017·西安模拟) 已知一函数y=kx+3和y=﹣kx+2.则两个一次函数图象的交点在()A . 第一、二象限B . 第二、三象限C . 三、四象限D . 一、四象限10. (2分) (2019九上·玉田期中) 在平行四边形中,点是边上一点,且交对角线于点,则与的周长比为()A .B .C .D .11. (2分) (2015八下·宜昌期中) 如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A . 2条B . 4条C . 5条D . 6条12. (2分) (2017九上·赣州开学考) 已知二次函数y=﹣﹣7x+ ,若自变量x分别取x1 , x2 ,x3 ,且﹣13<x1<0,x3>x2>2,则对应的函数值y1 , y2 , y3的大小关系正确的是()A . y1>y2>y3B . y1<y2<y3C . y2>y3>y1D . 无法确定二、填空题 (共4题;共4分)13. (1分) (2019九上·长春月考) 计算: =________ .14. (1分) (2017九上·铁岭期末) 2路公交车每隔5分钟发一班车,豆豆来到2路公交站牌,候车时间不少于2分钟的概率为________.15. (1分) (2016八上·兖州期中) 已知∠AOB=30°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是________.16. (1分)(2018·眉山) 如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.三、解答题 (共8题;共70分)17. (5分)(2019·铁岭模拟) 先化简,再求值.(1﹣)÷ ,其中x=()﹣2﹣tan45°.18. (5分)先化简,再求值:÷(x-),其中x=.19. (2分) (2017八下·罗山期中) 在某市外郊一段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时,并在离该公路100米处设置了一个监测点A,在如图所示的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60°方向上,点C在点A的北偏东45°方向上,另外一条高等级公路在y轴上,OA为其中一段.(1)求点B和C的坐标.(2)一辆汽车从点B匀速行驶到点C所用时间为15秒.请你通过计算,判断该汽车在这段限速路上是否超速?(参考数据:)20. (11分)(2018·海陵模拟) 一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中摸出一个球,记下颜色,放回后搅匀再次摸出一个球,记下颜色,请用树状图(或列表法)求这两个球都是白球的概率.21. (10分) (2017七下·乌海期末) 在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22. (7分)(2017·绵阳) 如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA= ,AN=2 ,求圆O的直径的长度.23. (15分) (2018九上·邗江期中) 如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A、B两点,连接AP并延长分别交⊙P、x轴于点D、点E,连接DC并延长交y轴于点F,且DC=FC,点D的坐标为(12,-2).(1)判断⊙P与x轴的位置关系,并说明理由;(2)求⊙P半径;(3)若弧BD上有一动点M,连接AM,过B点作BN⊥AM,垂足为N,连DN,则DN的最小值是________.24. (15分) (2017·丹东模拟) 如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点.交y轴与C点,已知抛物线的对称轴为x=1,B(3,0),C(0,﹣3)(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴上是否存在一点P,使点P到A,C两点的距离之和最小?若存在,求出点P的坐标;若不存在,请说明理由(3)在抛物线上是否存在一点M,使∠MAB=45°?若存在,求出点M的坐标;若不存在,请说明理由(4)若点G在直线BC上,点H在抛物线上,是否存在这样的点G,点H,使得以G,H,O,C为顶点的四边形是平行四边形?若存在,请直接写出点G的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共8题;共70分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、24-4、。
随州市中考数学押题试卷
随州市中考数学押题试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) -2013的相反数是()A . -2013B . 2013C .D .2. (2分)学校舞蹈队买了8双舞蹈鞋,鞋的尺码分别为:36,35,36,37,38,35,36,36,这组数据的众数是()A . 35B . 36C . 37D . 383. (2分)如果关于x的不等式(1-k)x>2可化为x<-1,则k的值是()A . 1B .C . 3D .4. (2分)(2017·湖州) 如图是按的比例画出的一个几何体的三视图,则该几何体的侧面积是()A .B .C .D .5. (2分) (2019九上·偃师期中) 如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是()A . 5米B . 6米C . 6.5米D . 7米6. (2分)在同圆中,同弦所对的两个圆周角()A . 相等B . 互补C . 相等或互补D . 互余7. (2分) (2019八上·鄂州期末) 一个多边形的外角和是内角和的,这个多边形的边数为()A . 5B . 6C . 7D . 88. (2分)若n(n≠0)是方程x2+mx+2n=0的根,则m+n的值为()A . 1B . -1C . 2D . -29. (2分) (2017九上·鄞州月考) 下列每张方格纸上都有一个三角形,只用圆规就能做出三角形的外接圆的是()①②③④A . ①②B . ①③C . ②④D . ③④10. (2分)(2017·武汉模拟) 如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A . 4B . 8C . 16D . 8二、填空题 (共6题;共6分)11. (1分)(2020·宿迁) 2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为________.12. (1分) (2019八下·鄂伦春期末) 使有意义的的取值范围是________.13. (1分) (2017八下·徐汇期末) 关于x的方程a2x+x=1的解是________.14. (1分) (2019九上·宁波期末) 矩形的两边长分别为和6(),把它按如图方式分割成三个全等的小矩形,每一个小矩形与原矩形相似,则 ________.15. (1分) (2017九下·杭州开学考) 已知圆的两条平行的弦长分别为6cm和8cm,圆的半径为5cm,则两条平行弦的距离为________.16. (1分)如图把Rt△ABC(∠C=90°)折叠,使A、B两点重合,得到折痕ED,再沿BE折叠,C点恰好与D点重合,则∠ABC等于________度.三、解答题 (共10题;共125分)17. (20分)计算(1)×(2) +|1+ |(3)﹣4 +(4)(2﹣)(2+ )﹣(3﹣)2 .18. (5分)(2017·含山模拟) 己知x+y=﹣3,求代数式÷ 的值.19. (10分) (2016八上·阳新期中) 如图,AD为△ABC的中线,BE为三角形ABD中线.(1)在△BED中作BD边上的高EH;(2)若△ABC的面积为40,BD=5,求EH的长.20. (10分)(2020·新疆模拟) 一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关.第一道题有4个选项,第二道题有3个选项,这两道题小新都不会,不过小新还有一个“求助卡”没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.(1)如果小新在第--题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;(2)从概率的角度分析,你建议小新在第几题使用“求助卡”.为什么.21. (10分)(2018·肇源模拟) 某服装店用4 500元购进一批衬衫,很快售完,服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?22. (10分) (2019九下·萧山开学考) Jack同学从点A出发,沿着坡角为α的斜坡向上走了650米到达点B,且sinα=,然后又沿着坡比i=1:3的斜坡向上走了500米到达点C。
随州市中考数学最新仿真猜押卷(五)
随州市中考数学最新仿真猜押卷(五)姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分)如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A . 2B . 3C . 4D . 52. (3分)(2019·萍乡模拟) sin60°的相反数()A . -B . -C . -D . -3. (3分)震惊世界的MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中,首次侦听到疑是飞机黑匣子的脉冲信号,探测到的信号所在海域水深4500米左右,其中4500用科学记数法表示为()A . 4.5×102B . 4.5×103C . 45.0×102D . 0.45×1044. (3分)若代数式x+2的值为1,则x等于()A . 1B . ﹣1C . 3D . ﹣35. (3分)不等式组的解集在数轴上表示为()A .B .C .D .6. (3分)(2017·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x≥﹣5B . x≤﹣5C . x≥5D . x≤57. (3分)某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为()A . 4B . 4.5C . 3D . 28. (3分)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为()A .B .C .D .9. (3分)若两个相似多边形的面积之比为1:4,则它们的周长之比为()A . 1:4B . 1:2C . 2:1D . 1:1610. (3分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F 作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题:(共6题,24分) (共6题;共24分)11. (4分)观察下列等式:第一个等式是1+2=3,第二个等式是2+3=5,第三个等式是4+5=9,第四个等式是8+9=17,…猜想:第n个等式是________ .12. (4分)若|x﹣3|+|y+2|=0,则|x|+|y|=________ .13. (4分)新定义:[a , b]为一次函数y=ax+b(a≠0,a , b为实数)的“关联数”.若“关联数”[1,m-3]的一次函数是正比例函数,则关于x的方程的解为________ .14. (4分) 100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是 ________.15. (4分)如左下图,已知Rt△ABC中,斜边BC上的高AD=4,cosB= ,则AC=________.16. (4分)如右下图,在Rt△ABC中,∠ABC=90°,AB=BC= ,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是________.三、问答题:(共1题,6分) (共1题;共6分)17. (6分) (2019七上·杨浦月考) 先化简,再求值:,其中x=2,y=-1;四、综合题:(共8题,60分) (共8题;共63分)18. (9分) (2020八下·曹县月考) 如图,已知线段a和∠α,求作Rt△ABC,使∠C=90°,BC=a,∠ABC=∠α(使用直尺和圆规,并保留作图痕迹)。
随州市九年级下学期初中毕业生学业考试押题卷数学试卷
随州市九年级下学期初中毕业生学业考试押题卷数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·湖州月考) 在下列选项中,具有相反意义的量是()A . 胜二局与负三局B . 气温升高3℃与气温为﹣3℃C . 盈利3万元与支出3万元D . 甲乙两队篮球比赛比分分别为65:60与60:652. (2分)(2019·永州) 2019年“五一”假期期间,我市共接待国内、外游客140.42万人次,实现旅游综合收入8.94亿元,则“旅游综合收入”用科学记数法表示正确的是()A . 1.4042×106B . 14.042×105C . 8.94×108D . 0.894×1093. (2分) (2019七下·东城期末) 不等式 x - 3≤0 的正整数解的个数是()A . 1B . 2C . 3D . 44. (2分)一元二次方程x2﹣4x+5=0的根的情况是()A . 方程有两个不相等的实数根B . 方程有两个相等的实数根C . 方程没有实数根D . 不能确定5. (2分) (2019八上·兰州期末) 李华根据演讲比赛中九位评委所给的分数制作了表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A . 平均数B . 众数C . 方差D . 中位数6. (2分) (2019七下·武汉月考) 已知:如图,AB∥EF,BC⊥CD,则、、之间的关系是()A . - + =90°B . + - =90°C . - + =180°D . + - =907. (2分)(2017·十堰) 如图,直线y= x﹣6分别交x轴,y轴于A,B,M是反比例函数y= (x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4 ,则k的值为()A . ﹣3B . ﹣4C . ﹣5D . ﹣68. (2分)下列手机软件图标中,是轴对称图形的是()A .B .C .D .9. (2分)如图,在⊙O中,∠C=30°,AB=2,则弧AB的长为()A .B .C .D .10. (2分) (2016九上·仙游期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①abc <0;②2a+b=0;③当x=﹣1或x=3时,函数y的值都等于0;④4a+2b+c>0,其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(2016·长沙) 分解因式:x2y﹣4y=________.12. (1分) (2017七上·天门期中) 若|x-2|+(y- )2=0,则yx=________.13. (1分)(2017·奉贤模拟) 如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A,B,C和点D,E,F.如果AB=6,BC=10,那么的值是________.14. (1分)(2019·长沙模拟) 一个密闭不透明的盒子里有若干个质地、大小均完全相同的白球和黑球,在不允许将球倒出来的情况下,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,则从中随机摸出一个球是白球的概率为________.15. (1分) (2019七上·南宁月考) 定义一种运算☆,其规则为☆ ,根据这个规则,计算2☆3的值是________。
2019年湖北省随州市随县中考数学模拟试卷【附答案】
2019年湖北省随州市随县中考数学模拟试卷一、选择题(在每小题给出的四个选项中,只有一个是正确的,每小题4分,共32分)1.(4分)下列计算错误的是()A.x2•x3=x6B.3﹣1=C.﹣2+|﹣2|=0D.3+=4 2.(4分)人们越来越关注健康的话题.关于甲醛污染问题也一直困扰人们.我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为()A.0.75×10﹣4B.7.5×10﹣4C.7.5×10﹣5D.75×10﹣63.(4分)如图所示,是由几个相同的小正方体搭成的几何体的三视图,则这个几何体的小正方体的个数是()A.4B.5C.6D.74.(4分)如图,已知AB∥CD,OM是∠BOF的平分线,∠2=70°,则∠1的度数为()A.100°B.125°C.130°D.140°5.(4分)反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2C.3D.16.(4分)一组数据3,x,4,5,8的平均数为5,则这组数据的众数、中位数是()A.5,6B.4,4.5C.5,5D.5,4.57.(4分)如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.48.(4分)如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t秒(0≤t≤4),则能大致反映S与t的函数关系的图象是()A.B.C.D.二、填空题(每小题4分,共32分)9.(4分)函数y=中,自变量x的取值范围是.10.(4分)掷一枚均匀的正方体,6个面上分别标有数字1,2,3,4,4,6,随意掷出这个正方体,朝上的数字不小于“3”的概率为.11.(4分)如图,晚上小亮站在与路灯底部M相距3米的A处,测得此时小亮的影长AP 为1米,已知小亮的身高是1.5米,那么路灯CM高为米.12.(4分)如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.13.(4分)如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b <0的解集是.14.(4分)已知一个多边形的内角和是外角和的3倍,则这个多边形为边形.15.(4分)甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x 千米,根据题意列出的方程是.16.(4分)如图,⊙A与x轴相切于点O,点A的坐标为(0,1),点P在⊙A上,且在第一象限,∠P AO=60°,⊙A沿x轴正方向滚动,当点P第n次落在x轴上时,点P的横坐标为.三、解答题(共8小题,满分86分)17.(10分)(1)解分式方程:.(2)先化简,再求值:÷,其中x=.18.(9分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?19.(9分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率;(3)求小明、小华各取一次小球所确定的数x,y满足y<的概率.20.(10分)如图,等腰△ABC中,AB=AC,∠BAC=36°,以C为旋转中心,顺时针旋转△ABC到△DCE位置,使点A落在BC边的延长线上的E处,连接AD和BD.(1)求证:△ADC≌△BCD;(2)请判断△ABE的形状,并证明你的结论.21.(10分)如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.22.(12分)如图,△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于D点,E为BC 的中点,连接ED并延长交BA延长线于F点.(1)求证:直线DE是⊙O的切线;(2)若AB=,AD=1,求线段AF的长;(3)当D为EF的中点时,试探究线段AB与BC之间的数量关系.23.(12分)某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售.(1)请建立销售价格y(元)与周次x之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为z=﹣(x﹣8)2+12,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?24.(14分)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.(1)求抛物线的解析式;(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.2019年湖北省随州市随县中考数学模拟试卷参考答案与试题解析一、选择题(在每小题给出的四个选项中,只有一个是正确的,每小题4分,共32分)1.(4分)下列计算错误的是()A.x2•x3=x6B.3﹣1=C.﹣2+|﹣2|=0D.3+=4【解答】解:A、x2•x3=x2+3=x5,故本选项符合题意;B、3﹣1=,故本选项不符合题意;C、﹣2+|﹣2|=﹣2+2=0,故本选项不符合题意;D、3+=4,故本选项不符合题意.故选:A.2.(4分)人们越来越关注健康的话题.关于甲醛污染问题也一直困扰人们.我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为()A.0.75×10﹣4B.7.5×10﹣4C.7.5×10﹣5D.75×10﹣6【解答】解:0.000 075=7.5×10﹣5.故选:C.3.(4分)如图所示,是由几个相同的小正方体搭成的几何体的三视图,则这个几何体的小正方体的个数是()A.4B.5C.6D.7【解答】解:综合三视图可知,这个几何体的底层应该有2+1+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选:B.4.(4分)如图,已知AB∥CD,OM是∠BOF的平分线,∠2=70°,则∠1的度数为()A.100°B.125°C.130°D.140°【解答】解:∵AB∥CD,∠2=70°,∴∠BOM=∠2=70°,∵OM是∠BOF的平分线,∴∠BOF=2∠BOM=140°,∵AB∥CD,∴∠1=∠BOF=140°.故选:D.5.(4分)反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2C.3D.1【解答】解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C 为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣=.故选:A.6.(4分)一组数据3,x,4,5,8的平均数为5,则这组数据的众数、中位数是()A.5,6B.4,4.5C.5,5D.5,4.5【解答】解:∵一组数据3,x,4,5,8的平均数为5,∴(3+x+4+5+8)÷5=5,∴x=5,∴这组组数据的众数为5;这组数据按从小到大的顺序排列为:3、4、5、5、8,∴中位数是5,故选:C.7.(4分)如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.4【解答】解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=6,BC=8,点E是BC中点,∴BE=CE=CE′=4,∵AB⊥BC,CD⊥BC,∴=,即=,解得CF=2,∴DF=CD﹣CF=6﹣2=4.故选:D.8.(4分)如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t秒(0≤t≤4),则能大致反映S与t的函数关系的图象是()A.B.C.D.【解答】解:过A作AD⊥x轴于D,∵OA=OC=4,∠AOC=60°,∴OD=2,由勾股定理得:AD=2,①当0≤t<2时,如图所示,ON=t,MN=ON=t,S=ON•MN=t2;②2≤t≤4时,ON=t,MN=2,S=ON•2=t.故选:C.二、填空题(每小题4分,共32分)9.(4分)函数y=中,自变量x的取值范围是x≥2.【解答】解:根据题意得,x﹣2≥0且x≠0,解得x≥2且x≠0,所以,自变量x的取值范围是x≥2.故答案为:x≥2.10.(4分)掷一枚均匀的正方体,6个面上分别标有数字1,2,3,4,4,6,随意掷出这个正方体,朝上的数字不小于“3”的概率为.【解答】解:∵投掷一次会出现1,2,3,4,5,6共六种情况,并且出现每种情况都是等可能的,其中不小于3的情况有3,4,5,6四种,∴朝上的数字不小于3的概率是=.故答案为.11.(4分)如图,晚上小亮站在与路灯底部M相距3米的A处,测得此时小亮的影长AP 为1米,已知小亮的身高是1.5米,那么路灯CM高为6米.【解答】解:根据题意,设路灯高度为x米,则,解得x=6故答案为6.12.(4分)如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是4cm.【解答】解:∵把一个半径为12cm的圆形硬纸片等分成三个扇形,∴扇形的弧长为:×2πr=8π,∵扇形的弧长等于圆锥的底面周长,∴2πr=8π,解得:r=4,故答案为:413.(4分)如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b <0的解集是x<﹣2.【解答】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx+b<0.故答案为:x<﹣2.14.(4分)已知一个多边形的内角和是外角和的3倍,则这个多边形为八边形.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.15.(4分)甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x千米,根据题意列出的方程是﹣=.【解答】解:设乙每小时行x千米,根据题意列出的方程:﹣=.故答案为:﹣=.16.(4分)如图,⊙A与x轴相切于点O,点A的坐标为(0,1),点P在⊙A上,且在第一象限,∠P AO=60°,⊙A沿x轴正方向滚动,当点P第n次落在x轴上时,点P的横坐标为π.【解答】解:根据弧长公式,得弧OP的长==,圆周长是2π,则点P第1次落在x轴上时,点P的横坐标是,点P第2次落在x轴上时,点P的横坐标是2π+=,以此类推,点P第n次落在x轴上时,点P的横坐标是2(n﹣1)π+=π.故答案为:π.三、解答题(共8小题,满分86分)17.(10分)(1)解分式方程:.(2)先化简,再求值:÷,其中x=.【解答】解:(1)方程的两边同乘(x﹣2),得:x﹣1﹣1=3(x﹣2),解得:x=2.检验:把x=2代入(x﹣2)=0,即x=2不是原分式方程的解,故原分式方程无解;(2)原式=÷=÷=÷=•=.当x=﹣1时,原式==.18.(9分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?【解答】解:(1)第一组的频率为1﹣0.96=0.04,第二组的频率为0.12﹣0.04=0.08,故总人数为=150(人),即这次共抽调了150人;(2)第一组人数为150×0.04=6(人),第三、四组人数分别为51人、45人,这次测试的优秀率为×100%=24%;(3)前三组的人数为69,而中位数是第75和第76个数的平均数,而120是第四组中最小的数值,因而第75和第76都是120,所以成绩为120次的学生至少有76﹣69=7人.19.(9分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y =的图象上的概率;(3)求小明、小华各取一次小球所确定的数x,y满足y <的概率.【解答】解:(1)列表如下:12 3 4xy1 (1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)(2)共有16种情况,乘积为4的,即落在反比例函数y=的图象上的情况有3种,所以概率是;(3)乘积小于4的,即满足y<的情况有5种,所以概率是.20.(10分)如图,等腰△ABC中,AB=AC,∠BAC=36°,以C为旋转中心,顺时针旋转△ABC到△DCE位置,使点A落在BC边的延长线上的E处,连接AD和BD.(1)求证:△ADC≌△BCD;(2)请判断△ABE的形状,并证明你的结论.【解答】解:(1)证明:∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,由旋转可得:△EDC≌△ABC,∴∠DCE=∠ACB=72°,BC=DC,DE=AB=AC,又B、C、E三点共线,∴∠BCD=108°,∵BC=DC,∴∠CBD=∠CDB=36°,又∠E=36°,∴∠DBE=∠E,∴BD=ED,∴BD=CA,在△ADC和△BCD中,,∴△ADC≌△BCD(SAS);(2)△ABE为等腰三角形,理由为:证明:∵△ADC≌△BCD,∴∠ADC=∠BCD=108°,又∠CDE=72°,∴∠ADC+∠CDE=180°,即A、D、E三点共线,又∠BAE=∠BAC+∠CAD=72°,∠ABE=72°,∴∠BAE=∠ABE,∴AE=BE,即△ABE为等腰三角形.21.(10分)如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.【解答】解:∵飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°,到B处时,往后测得山头C的俯角为30°,∴∠BAC=60°,∠ABC=30°,∠BAD=30°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣30°﹣60°=90°,即△ABC为直角三角形,∵AB=6千米,∴BC=AB•cos30°=6×=3千米.Rt△ABD中,BD=AB•tan30°=6×=2千米,作CE⊥BD于E点,∵AB⊥BD,∠ABC=30°,∴∠CBE=60°,则BE=BC•cos60°=,DE=BD﹣BE=,CE=BC•sin60°=,∴CD===千米.∴山头C、D之间的距离千米.22.(12分)如图,△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于D点,E为BC 的中点,连接ED并延长交BA延长线于F点.(1)求证:直线DE是⊙O的切线;(2)若AB=,AD=1,求线段AF的长;(3)当D为EF的中点时,试探究线段AB与BC之间的数量关系.【解答】证明:(1))连接BD,DO,∵AB是⊙O的直径,∴∠ADB=90°.∴∠CDB=90°又∵E为BC的中点,∴DE=EB=EC,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDB+∠OBD=90°.即OD⊥DE.∴DE是⊙O的切线.(2)设AF=x,则FD==(切割线定理),在RT△ABD中,BD==2,∵∠AFD=∠DFB,∠FDA=∠FBD,∴△AFD∽△DFB,∴==,即=,解得:x=,即线段AF的长度为;(3)∵点D为EF中点,∴BD=FD=DE(斜边中线等于斜边一半),又∵ED=EB(切线的性质),∴△EDB为等边三角形,∴∠DBE=60°,∠BCD=30°,∴BC=AB;23.(12分)某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售.(1)请建立销售价格y(元)与周次x之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为z=﹣(x﹣8)2+12,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?【解答】解:(1)y=;(2)设利润为W,则W=W=x2+14,对称轴是直线x=0,当x>0时,W随x的增大而增大,∴当x=5时,W最大=+14=17.125(元)W=(x﹣8)2+18,对称轴是直线x=8,当x>8时,W随x的增大而增大,∴当x=11时,W最大=×9+18=19=19.125(元)综上可知:在第11周进货并售出后,所获利润最大且为每件19.125元.24.(14分)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.(1)求抛物线的解析式;(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.【解答】解:(1)∵x2﹣4x﹣12=0,∴x1=﹣2,x2=6.∴A(﹣2,0),B(6,0),又∵抛物线过点A、B、C,故设抛物线的解析式为y=a(x+2)(x﹣6),将点C的坐标代入,求得,∴抛物线的解析式为;(2)设点M的坐标为(m,0),过点N作NH⊥x轴于点H(如图(1)).∵点A的坐标为(﹣2,0),点B的坐标为(6,0),∴AB=8,AM=m+2,∵MN∥BC,∴△MNA∽△BCA.∴,∴,∴,∴,=,=.∴当m=2时,S△CMN有最大值4.此时,点M的坐标为(2,0);(3)∵点D(4,k)在抛物线上,∴当x=4时,k=﹣4,∴点D的坐标是(4,﹣4).①如图(2),当AF为平行四边形的边时,AF平行且等于DE,∵D(4,﹣4),∴DE=4.∴F1(﹣6,0),F2(2,0),②如图(3),当AF为平行四边形的对角线时,设F(n,0),∵点A的坐标为(﹣2,0),则平行四边形的对称中心的横坐标为:,∴平行四边形的对称中心坐标为(,0),∵D(4,﹣4),∴E'的横坐标为:﹣4+=n﹣6,E'的纵坐标为:4,∴E'的坐标为(n﹣6,4).把E'(n﹣6,4)代入,得n2﹣16n+36=0.解得.,,综上所述F1(﹣6,0),F2(2,0),F3(8﹣2,0),F4(8+2,0).。