2020年数学中考模拟试题含答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.解方程: x ﹣ 1 =1. x3 x
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【分析】
由科学记数法知 0.000000007 7 109 ;
【详解】
解: 0.000000007 7 109 ;
故选:D. 【点睛】
本题考查科学记数法;熟练掌握科学记数法 a 10n 中 a 与 n 的意义是解题的关键. 2.A
故答案为 9.6×106.
16.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根
据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作
轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案
2020 年数学中考模拟试题含答案
一、选择题 1.华为 Mate20 手机搭载了全球首款 7 纳米制程芯片,7 纳米就是 0.000000007 米.数据
0.000000007 用科学记数法表示为( ).
A. 7 10﹣7
B. 0.7 10﹣8
C. 7 10﹣8
D. 7 10﹣9
2.如图是某个几何体的三视图,该几何体是()
三、解答题
21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部 分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过 1 千克 的,按每千克 22 元收费;超过 1 千克,超过的部分按每千克 15 元收费.乙公司表示:按 每千克 16 元收费,另加包装费 3 元.设小明快递物品 x 千克. (1)请分别写出甲、乙两家快递公司快递该物品的费用 y(元)与 x(千克)之间的函数关系 式; (2)小明选择哪家快递公司更省钱? 22.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m), 绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
x
y 5 x 0 的图象上,则 tan BAO 的值为_____.
x
17.某品牌旗舰店平日将某商品按进价提高 40%后标价,在某次电商购物节中,为促销该 商品,按标价 8 折销售,售价为 2240 元,则这种商品的进价是______元.
18.如图,在平面直角坐标系 xOy 中,函数 y= k (k>0,x>0)的图象经过菱形 OACD x
2
考点:菱形的性质;勾股定理.
14.n<2且【解析】分析:解方程得:x=n﹣2∵ 关于x的方程的解是负数∴ n﹣2 <0解得:n<2又∵ 原方程有意义的条件为:∴ 即∴ n的取值范围为n<2且
解析:n<2 且 n 3 2
【解析】
分析:解方程 3x n 2 得:x=n﹣2, 2x 1
∵关于 x 的方程 3x n 2 的解是负数,∴n﹣2<0,解得:n<2. 2x 1
(Ⅰ)图 1 中 a 的值为
;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定 9 人进入复赛,请直接写出初赛成绩为 1.65m 的
运动员能否进入复赛.
23.已知
A
x2
2x 1 x2 1
x. x 1
(1)化简 A;
(2)当
x
满足不等式组
x x
1 0 3 0
,且
x
为整数时,求
A
的值.
24.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的 个
主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的
统计图.根据图中提供的信息,解答下列问题: (1)这次调查的学生共有多少名; (2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数; (3)如果要在这 个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表 法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次 记为 A、B、C、D、E).
1 x(x﹣1)=36, 2
故选:A. 【点睛】 此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.
7.C
解析:C 【解析】 从上面看,看到两个圆形, 故选 C.
8.D
解析:D 【解析】 【分析】
由 a2 a 可确定 a 的范围,排除掉在范围内的选项即可.
【详解】
解:当 a ≥0 时, a2 a ,
12.A
解析:A 【解析】 【分析】
由平行四边形的性质可知: OA OC , OB OD ,再证明 OM ON 即可证明四边形 AMCN 是平行四边形.
【详解】
∵四边形 ABCD 是平行四边形, ∴ OA OC , OB OD , ∵对角线 BD 上的两点 M 、 N 满足 BM DN , ∴ OB BM OD DN ,即 OM ON , ∴四边形 AMCN 是平行四边形, ∵ OM 1 AC ,
又∵原方程有意义的条件为: x 1 ,∴ n 2 1 ,即 n 3 .
2
2
2
∴n 的取值范围为 n<2 且 n 3 . 2
15.6×106【解析】【分析】【详解】将 9600000 用科学记数法表示为 96×106
故答案为 96×106
解析:6×106.
【解析】
【分析】
【详解】
将 9600000 用科学记数法表示为 9.6×106.
C. x x 1 36
D. x x 1 36
7.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图
是( ).
A.
B.
C.
D.
8.已知命题 A:“若 a 为实数,则 a2 a ”.在下列选项中,可以作为“命题 A 是假
命题”的反例的是( )
A.a=1
B.a=0
C.a=﹣1﹣k(k 为实数)
D.a=﹣1
﹣k2(k 为实数)
9.二次函数 y=ax2+bx+c 的图象如图所示,对称轴是 x=-1.有以下结论:①abc>0,
②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是( )
A.1 10.如果
B.2
C.3
,则 a 的取值范围是( )
Hale Waihona Puke BaiduA.
B.
C.
D.
11.下面的几何体中,主视图为圆的是( )
a2
a
a a
9.C
a0
,正确理解该性质是解题的关键.
a0
解析:C 【解析】 【详解】
①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线 x= =﹣1,∴b=2a<0,∵抛
物线与 y 轴的交点在 x 轴上方,∴c>0,∴abc>0,所以①正确; ②∵抛物线与 x 轴有 2 个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确; ③∵b=2a,∴2a﹣b=0,所以③错误; ④∵x=﹣1 时,y>0,∴a﹣b+c>2,所以④正确. 故选 C.
的顶点 D 和边 AC 的中点 E,若菱形 OACD 的边长为 3,则 k 的值为_____.
19.若式子 x 3 在实数范围内有意义,则 x 的取值范围是_____.
20.在一个不透明的口袋中,装有 A,B,C,D4 个完全相同的小球,随机摸取一个小球 然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.
解析:A 【解析】 试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几 何体是三棱柱,故选 A. 考点:由三视图判定几何体.
3.B
解析:B 【解析】 【分析】 ①点 P 在 AB 上时,点 D 到 AP 的距离为 AD 的长度,②点 P 在 BC 上时,根据同角的余角相 等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到 y 与 x 的关系式,从而得 解. 【详解】 ①点 P 在 AB 上时,0≤x≤3,点 D 到 AP 的距离为 AD 的长度,是定值 4; ②点 P 在 BC 上时,3<x≤5,
【点睛】 本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
5.C
解析:C 【解析】 试题解析:∵这组数据的众数为 7, ∴x=7, 则这组数据按照从小到大的顺序排列为:2,3,5,7,7, 中位数为:5. 故选 C. 考点:众数;中位数.
6.A
解析:A 【解析】 【分析】 共有 x 个队参加比赛,则每队参加(x-1)场比赛,但 2 队之间只有 1 场比赛,根据共安排 36 场比赛,列方程即可. 【详解】 解:设有 x 个队参赛,根据题意,可列方程为:
∵∠APB+∠BAP=90°, ∠PAD+∠BAP=90°, ∴∠APB=∠PAD, 又∵∠B=∠DEA=90°, ∴△ABP∽△DEA,
∴ AB = AP AB AP , DE AD DE AD
即3 x, y4
∴y= 12 , x
纵观各选项,只有 B 选项图形符合, 故选 B.
4.B
解析:B 【解析】 【分析】 由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形, 细心观察即可求解. 【详解】 A、正方体的左视图与主视图都是正方形,故 A 选项不合题意; B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故 B 选项与题意相符; C、球的左视图与主视图都是圆,故 C 选项不合题意; D、圆锥左视图与主视图都是等腰三角形,故 D 选项不合题意; 故选 B.
A.
B.
C.
D.
5.若一组数据 2,3, ,5,7 的众数为 7,则这组数据的中位数为( )
A.2
B.3
C.5
D.7
6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛 36 场,设有 x 个队参 赛,根据题意,可列方程为()
A. 1 x x 1 36
2
B. 1 x x 1 36
2
A.三棱柱
B.三棱锥
C.圆柱
D.圆锥
3.如图,矩形 ABCD 中,AB=3,BC=4,动点 P 从 A 点出发,按 A→B→C 的方向在 AB
和 BC 上移动,记 PA=x,点 D 到直线 PA 的距离为 y,则 y 关于 x 的函数图象大致是( )
A.
B.
C.
D.
4.在下面的四个几何体中,左视图与主视图不相同的几何体是( )
D.4
A.
B.
C.
D.
12.如图,在平行四边形 ABCD 中, M 、 N 是 BD 上两点, BM DN ,连接 AM 、
MC 、 CN 、 NA,添加一个条件,使四边形 AMCN 是矩形,这个条件是( )
A. OM 1 AC 2
二、填空题
B. MB MO
C. BD AC
13.如图,在菱形 ABCD 中,AB=5,AC=8,则菱形的面积是 .
D. AMB CND
14.已知关于 x 的方程 3x n 2 的解是负数,则 n 的取值范围为 . 2x 1
15.中国的陆地面积约为 9 600 000km2,把 9 600 000 用科学记数法表示为 .
16.如图, RtAOB 中, AOB 90 ,顶点 A , B 分别在反比例函数 y 1 x 0 与
2 ∴ MN AC , ∴四边形 AMCN 是矩形.
故选:A. 【点睛】 本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决 问题.
二、填空题
13.【解析】【分析】连接 BD 交 AC 于点 O 由勾股定理可得 BO=3 根据菱形的性 质求出 BD 再计算面积【详解】连接 BD 交 AC 于点 O 根据菱形的性质可得 AC⊥BDAO=CO=4 由勾股定理可得 BO=3 所以 BD=6 即可
当 a <0 时, a2 a ,
∵ a =1>0,故选项 A 不符合题意,
∵ a =0,故选项 B 不符合题意, ∵ a =﹣1﹣k,当 k<﹣1 时, a >0,故选项 C 不符合题意, ∵ a =﹣1﹣k2(k 为实数)<0,故选项 D 符合题意, 故选:D. 【点睛】
本题考查了二次根式的性质,
10.B
解析:B 【解析】
试题分析:根据二次根式的性质 1 可知:
,即
故
答案为 B. . 考点:二次根式的性质.
11.C
解析:C 【解析】 试题解析:A、的主视图是矩形,故 A 不符合题意; B、的主视图是正方形,故 B 不符合题意; C、的主视图是圆,故 C 符合题意; D、的主视图是三角形,故 D 不符合题意; 故选 C. 考点:简单几何体的三视图.
解析:【解析】 【分析】 连接 BD,交 AC 于点 O,由勾股定理可得 BO=3,根据菱形的性质求出 BD,再计算面积. 【详解】 连接 BD,交 AC 于点 O,根据菱形的性质可得 AC⊥BD,AO=CO=4, 由勾股定理可得 BO=3, 所以 BD=6, 即可得菱形的面积是 1 ×6×8=24.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【分析】
由科学记数法知 0.000000007 7 109 ;
【详解】
解: 0.000000007 7 109 ;
故选:D. 【点睛】
本题考查科学记数法;熟练掌握科学记数法 a 10n 中 a 与 n 的意义是解题的关键. 2.A
故答案为 9.6×106.
16.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根
据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作
轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案
2020 年数学中考模拟试题含答案
一、选择题 1.华为 Mate20 手机搭载了全球首款 7 纳米制程芯片,7 纳米就是 0.000000007 米.数据
0.000000007 用科学记数法表示为( ).
A. 7 10﹣7
B. 0.7 10﹣8
C. 7 10﹣8
D. 7 10﹣9
2.如图是某个几何体的三视图,该几何体是()
三、解答题
21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部 分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过 1 千克 的,按每千克 22 元收费;超过 1 千克,超过的部分按每千克 15 元收费.乙公司表示:按 每千克 16 元收费,另加包装费 3 元.设小明快递物品 x 千克. (1)请分别写出甲、乙两家快递公司快递该物品的费用 y(元)与 x(千克)之间的函数关系 式; (2)小明选择哪家快递公司更省钱? 22.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m), 绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
x
y 5 x 0 的图象上,则 tan BAO 的值为_____.
x
17.某品牌旗舰店平日将某商品按进价提高 40%后标价,在某次电商购物节中,为促销该 商品,按标价 8 折销售,售价为 2240 元,则这种商品的进价是______元.
18.如图,在平面直角坐标系 xOy 中,函数 y= k (k>0,x>0)的图象经过菱形 OACD x
2
考点:菱形的性质;勾股定理.
14.n<2且【解析】分析:解方程得:x=n﹣2∵ 关于x的方程的解是负数∴ n﹣2 <0解得:n<2又∵ 原方程有意义的条件为:∴ 即∴ n的取值范围为n<2且
解析:n<2 且 n 3 2
【解析】
分析:解方程 3x n 2 得:x=n﹣2, 2x 1
∵关于 x 的方程 3x n 2 的解是负数,∴n﹣2<0,解得:n<2. 2x 1
(Ⅰ)图 1 中 a 的值为
;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定 9 人进入复赛,请直接写出初赛成绩为 1.65m 的
运动员能否进入复赛.
23.已知
A
x2
2x 1 x2 1
x. x 1
(1)化简 A;
(2)当
x
满足不等式组
x x
1 0 3 0
,且
x
为整数时,求
A
的值.
24.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的 个
主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的
统计图.根据图中提供的信息,解答下列问题: (1)这次调查的学生共有多少名; (2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数; (3)如果要在这 个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表 法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次 记为 A、B、C、D、E).
1 x(x﹣1)=36, 2
故选:A. 【点睛】 此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.
7.C
解析:C 【解析】 从上面看,看到两个圆形, 故选 C.
8.D
解析:D 【解析】 【分析】
由 a2 a 可确定 a 的范围,排除掉在范围内的选项即可.
【详解】
解:当 a ≥0 时, a2 a ,
12.A
解析:A 【解析】 【分析】
由平行四边形的性质可知: OA OC , OB OD ,再证明 OM ON 即可证明四边形 AMCN 是平行四边形.
【详解】
∵四边形 ABCD 是平行四边形, ∴ OA OC , OB OD , ∵对角线 BD 上的两点 M 、 N 满足 BM DN , ∴ OB BM OD DN ,即 OM ON , ∴四边形 AMCN 是平行四边形, ∵ OM 1 AC ,
又∵原方程有意义的条件为: x 1 ,∴ n 2 1 ,即 n 3 .
2
2
2
∴n 的取值范围为 n<2 且 n 3 . 2
15.6×106【解析】【分析】【详解】将 9600000 用科学记数法表示为 96×106
故答案为 96×106
解析:6×106.
【解析】
【分析】
【详解】
将 9600000 用科学记数法表示为 9.6×106.
C. x x 1 36
D. x x 1 36
7.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图
是( ).
A.
B.
C.
D.
8.已知命题 A:“若 a 为实数,则 a2 a ”.在下列选项中,可以作为“命题 A 是假
命题”的反例的是( )
A.a=1
B.a=0
C.a=﹣1﹣k(k 为实数)
D.a=﹣1
﹣k2(k 为实数)
9.二次函数 y=ax2+bx+c 的图象如图所示,对称轴是 x=-1.有以下结论:①abc>0,
②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是( )
A.1 10.如果
B.2
C.3
,则 a 的取值范围是( )
Hale Waihona Puke BaiduA.
B.
C.
D.
11.下面的几何体中,主视图为圆的是( )
a2
a
a a
9.C
a0
,正确理解该性质是解题的关键.
a0
解析:C 【解析】 【详解】
①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线 x= =﹣1,∴b=2a<0,∵抛
物线与 y 轴的交点在 x 轴上方,∴c>0,∴abc>0,所以①正确; ②∵抛物线与 x 轴有 2 个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确; ③∵b=2a,∴2a﹣b=0,所以③错误; ④∵x=﹣1 时,y>0,∴a﹣b+c>2,所以④正确. 故选 C.
的顶点 D 和边 AC 的中点 E,若菱形 OACD 的边长为 3,则 k 的值为_____.
19.若式子 x 3 在实数范围内有意义,则 x 的取值范围是_____.
20.在一个不透明的口袋中,装有 A,B,C,D4 个完全相同的小球,随机摸取一个小球 然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.
解析:A 【解析】 试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几 何体是三棱柱,故选 A. 考点:由三视图判定几何体.
3.B
解析:B 【解析】 【分析】 ①点 P 在 AB 上时,点 D 到 AP 的距离为 AD 的长度,②点 P 在 BC 上时,根据同角的余角相 等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到 y 与 x 的关系式,从而得 解. 【详解】 ①点 P 在 AB 上时,0≤x≤3,点 D 到 AP 的距离为 AD 的长度,是定值 4; ②点 P 在 BC 上时,3<x≤5,
【点睛】 本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
5.C
解析:C 【解析】 试题解析:∵这组数据的众数为 7, ∴x=7, 则这组数据按照从小到大的顺序排列为:2,3,5,7,7, 中位数为:5. 故选 C. 考点:众数;中位数.
6.A
解析:A 【解析】 【分析】 共有 x 个队参加比赛,则每队参加(x-1)场比赛,但 2 队之间只有 1 场比赛,根据共安排 36 场比赛,列方程即可. 【详解】 解:设有 x 个队参赛,根据题意,可列方程为:
∵∠APB+∠BAP=90°, ∠PAD+∠BAP=90°, ∴∠APB=∠PAD, 又∵∠B=∠DEA=90°, ∴△ABP∽△DEA,
∴ AB = AP AB AP , DE AD DE AD
即3 x, y4
∴y= 12 , x
纵观各选项,只有 B 选项图形符合, 故选 B.
4.B
解析:B 【解析】 【分析】 由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形, 细心观察即可求解. 【详解】 A、正方体的左视图与主视图都是正方形,故 A 选项不合题意; B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故 B 选项与题意相符; C、球的左视图与主视图都是圆,故 C 选项不合题意; D、圆锥左视图与主视图都是等腰三角形,故 D 选项不合题意; 故选 B.
A.
B.
C.
D.
5.若一组数据 2,3, ,5,7 的众数为 7,则这组数据的中位数为( )
A.2
B.3
C.5
D.7
6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛 36 场,设有 x 个队参 赛,根据题意,可列方程为()
A. 1 x x 1 36
2
B. 1 x x 1 36
2
A.三棱柱
B.三棱锥
C.圆柱
D.圆锥
3.如图,矩形 ABCD 中,AB=3,BC=4,动点 P 从 A 点出发,按 A→B→C 的方向在 AB
和 BC 上移动,记 PA=x,点 D 到直线 PA 的距离为 y,则 y 关于 x 的函数图象大致是( )
A.
B.
C.
D.
4.在下面的四个几何体中,左视图与主视图不相同的几何体是( )
D.4
A.
B.
C.
D.
12.如图,在平行四边形 ABCD 中, M 、 N 是 BD 上两点, BM DN ,连接 AM 、
MC 、 CN 、 NA,添加一个条件,使四边形 AMCN 是矩形,这个条件是( )
A. OM 1 AC 2
二、填空题
B. MB MO
C. BD AC
13.如图,在菱形 ABCD 中,AB=5,AC=8,则菱形的面积是 .
D. AMB CND
14.已知关于 x 的方程 3x n 2 的解是负数,则 n 的取值范围为 . 2x 1
15.中国的陆地面积约为 9 600 000km2,把 9 600 000 用科学记数法表示为 .
16.如图, RtAOB 中, AOB 90 ,顶点 A , B 分别在反比例函数 y 1 x 0 与
2 ∴ MN AC , ∴四边形 AMCN 是矩形.
故选:A. 【点睛】 本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决 问题.
二、填空题
13.【解析】【分析】连接 BD 交 AC 于点 O 由勾股定理可得 BO=3 根据菱形的性 质求出 BD 再计算面积【详解】连接 BD 交 AC 于点 O 根据菱形的性质可得 AC⊥BDAO=CO=4 由勾股定理可得 BO=3 所以 BD=6 即可
当 a <0 时, a2 a ,
∵ a =1>0,故选项 A 不符合题意,
∵ a =0,故选项 B 不符合题意, ∵ a =﹣1﹣k,当 k<﹣1 时, a >0,故选项 C 不符合题意, ∵ a =﹣1﹣k2(k 为实数)<0,故选项 D 符合题意, 故选:D. 【点睛】
本题考查了二次根式的性质,
10.B
解析:B 【解析】
试题分析:根据二次根式的性质 1 可知:
,即
故
答案为 B. . 考点:二次根式的性质.
11.C
解析:C 【解析】 试题解析:A、的主视图是矩形,故 A 不符合题意; B、的主视图是正方形,故 B 不符合题意; C、的主视图是圆,故 C 符合题意; D、的主视图是三角形,故 D 不符合题意; 故选 C. 考点:简单几何体的三视图.
解析:【解析】 【分析】 连接 BD,交 AC 于点 O,由勾股定理可得 BO=3,根据菱形的性质求出 BD,再计算面积. 【详解】 连接 BD,交 AC 于点 O,根据菱形的性质可得 AC⊥BD,AO=CO=4, 由勾股定理可得 BO=3, 所以 BD=6, 即可得菱形的面积是 1 ×6×8=24.