数学中考模拟试题及答案

合集下载

【好题】数学中考模拟试题(带答案)

【好题】数学中考模拟试题(带答案)

【好题】数学中考模拟试题(带答案)一、选择题1 .二次函数y= x 2-6x+m 满足以下条件:当-2vxv-1时,它的图象位于 x 轴的下方;当8vxv9时,它的图象位于 x 轴的上方,则 m 的值为()A. 27B. 9C. - 7D. - 162 .下列各式中能用完全平方公式进行因式分解的是( )A. x 2+x+1B. x 2+2x- 1C. x 2- 1D. x 2- 6x+93 .已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是(B.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是 50m minD.林茂从文具店回家的平均速度是60m min4 .若一元二次方程 x 2- 2kx+k 2= 0的一根为x= - 1,则k 的值为( ) A. - 1B. 0C. 1 或-1D. 2 或 05 .有31位学生参加学校举行的最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定 不发生变化的是()A.中位数B.平均数C.众数D.方差6 .如图,AB, AC 分别是。

O 的直径和弦,OD AC 于点D,连接BD, BC,且AB 10, AC 8,则 BD 的长为()A. 2V 5B. 4C. 2辰D. 4.87 .如图,某小区规划在一个长 16ml 宽9m 的矩形场地ABCDh,修建同样宽的小路,使其中两条与AB 平行,另一条与 AD 平行,其余部分种草,如果使草坪部分的总面积为 112m2,设小路的宽为xm,那么x 满足的方程是()x 表不时)A.体育场离林茂家2.5km8 .如图是二次函数 y=ax 2+bx+c (a, b, c 是常数,a 为)图象的一部分,与 x 轴的交点A 在点(2, 0)和(3, 0)之间,对称轴是 x=1 .对于下列说法:①ab <0;②2a+b=0 ;③3a+c>0;④a+b>m (am+b ) ( m 为实数); ⑤ 当-1vxv3时,y>0,其中正确的是( .)11.绿水青山就是金山银山某工程队承接了 ।季的到来,实际B. x 2-25x+32=0C. x 2-17x+16=0D. x 2-17x-16=0B.①②⑤C.②③④D.③④⑤B. - 4,AG 平分C. ID. 11EFC 40°,则 GAF 的度数为()115° C. 125° D. 130°60万平方米的荒山绿化任务,为了迎接雨'25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米, A. C.12.A. 606030(1 25%) x(1 25%) 60 旬 ------ - 30 x已知实数a a-7 > b-7xb,若a>b,则下列结论错误的是 B. 6+a>b+660 60 ,(1 25%) x x60 60 (1 25%)xx30 D. -3a>-3bA. 2x 2-25x+16=0A.①②④结果大于19.根据以下程序,当输入 x= 2时,输出结果为(A. 一 1则下面所列方程中正确的是(B.D.工作时每天的工作效率比原计划提高了二、填空题13.关于x的一元二次方程ax2 3X 1 0的两个不相等的实数根都在-1和0之间(不包^^-1和0),则a的取值范围是14.在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计摸出黑球”的概率是(结果保留小数点后一位).15.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为.16.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后秒与甲相遇.,评)A,Q 30 120 M秒)17.如图,矩形ABCD中,AB=3, BC=4,点E是BC边上一点,连接AE,把/ B沿AE折叠,使点B落在点g 处,当为直角三角形时,BE的长为—.18.分解因式:2x2 -18 =19.从-2, - 1, 1, 2四个数中,随机抽取两个数相乘,积为大于- 4小于2的概率是20.如图,在矩形ABCD中,AB=3, AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos/EFC的值是三、解答题21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.某校开展了互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出进取”所对应的圆心角的度数;(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).配等四灌取23.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价X (元)(0 x 20)之间满足一次函数关系,其图象如图所示:【参考答案】***试卷处理标记,请不要删除一、选择题1. D解析:D 【解析】 【分析】先确定抛物线的对称轴为直线 x=3,根据抛物线的对称性得到 x=-2和 相等,然后根据题意判断抛物线与x 轴的交点坐标为(-2,0), ( 8,1(-2 , 0)代入y = x 2-6x+m 可求得m 的值.【详解】—6解:♦.•抛物线的对称轴为直线x= -------- =3,⑴ (2) 求y 与x 之间的函数关系式;商贸公司要想获利 2090元,则这种干果每千克应降价多少元?24 .直线AB 交。

【必考题】数学中考模拟试题(含答案)

【必考题】数学中考模拟试题(含答案)

【必考题】数学中考模拟试题(含答案)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A.14cm B.4cm C.15cm D.3cm6.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,在半径为13的Oe中,弦AB与CD交于点E,75DEB∠=︒,6,1AB AE==,则CD的长是()A.26B.210C.211D.4312.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.若一个数的平方等于5,则这个数等于_____.18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.分解因式:2x 2﹣18=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD22200100-3∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。

数学中考全真模拟测试卷(附答案)

数学中考全真模拟测试卷(附答案)
1.﹣3的绝对值是( )
A.﹣3B.3C.- D.
2.小友家阳台上有一个如图所示的移动台阶,它的主视图是( )
A. B. C. D.
3.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.已知正比例函数y=mx的图象过第一、三象限,则m的取值范围是( )
A.m<0B.m≤0C.m≥0D.m>0
5.计算(﹣2x2y3)•3xy2结果正确的是( )
A. ﹣6x2y6B. ﹣6x3y5C. ﹣5x3y5D. ﹣24x7y5
【答案】B
【解析】
【分析】根据单项式乘单项式法则直接计算即可.
【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,
故选B.
【点睛】本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.
【详解】解:由图知,6张卡片中有2张是数字3,
∴从中任取一张是数字3的概率是 .
故选B.
【点睛】本题考查了概率公式.概率=所求情况数与总情况数之比.
8.广西北部湾某中学为了使学生能够更好地进行体育活动,决定修建一个长方体形状的游泳池,其底面周长为100 m,设游泳池的底面长方形的长为xm,要使游泳池的底面面积为400 m2,则可列方程为( )
【解析】
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】A、不是轴对称图形,也不是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,又是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误,

中考综合模拟考试 数学试题 含答案解析

中考综合模拟考试 数学试题 含答案解析
A.0<k<1B.–1<k<0C.1<k<2D.0<k<
9.如图,在矩形 中, 、 相交于点 ,点 是边 上的一点,若 ,则 的度数为()
A. B. C. D.
10.如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是 上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()
A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
21.如图1是一把折叠椅子,如图2是椅子完全打开支稳后 侧面示意图, 表示地面所在的直线,其中 和 表示两根较粗的钢管, 表示座板平面, ,交 于点F,且 , 长 , , 长24cm, 长24cm,
(1)求座板 的长;
(2)求此时椅子的最大高度(即点D到直线 的距离).(结果保留根号)
22.如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
A. 或 B. C. D. 或
7.如图,在 中, ,以顶点 为圆心,适当长为半径画弧,分别交边 、 于点 、 ,再分别以点 、 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 交边 于点 ,若 , ,则 的面积是()
A B. C. D.
8.若关于x,y的方程组 满足1<x+y<2,则k的取值范围是( )
A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)

中考仿真模拟考试 数学试题 附答案解析

中考仿真模拟考试 数学试题 附答案解析
A. B.
C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4

中考数学仿真模拟试卷(含答案)

中考数学仿真模拟试卷(含答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。

中考仿真模拟测试《数学试题》含答案解析

中考仿真模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。

中考仿真模拟测试《数学试卷》含答案解析

中考仿真模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列实数中,无理数是( )A. 3.14B. 2.12122C. 39D. 237 2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D. 3. 下列计算正确的是( )A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅= D. ()()2111a a a -+--=- 4. 如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A. B. C. D.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒ 7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线解析式为( ) A. 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A. B. 4.5 C. D.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 3B. 62C. 3D. 9210. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 32-B. 3C. 32D. 52二、填空题11. 分解因式:224ax ay -=________.12. 已知正六边形的周长为,则这个正六边形的边心距是_______. 13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 17. 如图,已知ABC ∆,点AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等学生有多少人?20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线.(1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.答案与解析一、选择题1. 下列实数中,无理数是()A. 3.14B. 2.12122C. 39D. 23 7【答案】C【解析】【分析】根据无理数的定义,逐一判断选项,即可得到答案.【详解】∵3.14,2.12122,237是分数,属于有理数,39是无理数,∴C符合题意,故选C.【点睛】本题主要考查无理数的定义,掌握实数的分类以及无理数的定义,是解题的关键.2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.3. 下列计算正确的是()A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅=D. ()()2111a a a -+--=- 【答案】D【解析】【分析】 根据完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,逐一判断选项,即可.【详解】A. ()2222a b a ab b +=++,故本选项错误,B. ()3328a a -=-,故本选项错误,C 426a a a ⋅=,故本选项错误,D. ()()22211(1)1a a a a -+--=--=-,故本选项正确. 故选D .【点睛】本题主要考查完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,熟练掌握上述公式和法则是解题的关键.4. 如图所示,已知AB∥CD,EF 平分∠CEG,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°【答案】C【解析】 【详解】解:∵EF 平分∠CEG ,∴∠CEG=2∠CEF又∵AB ∥CD ,∴∠2=∠CEF=(180°-∠1)÷2=50°,故选:C .5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A.B. C. D.【答案】D【解析】【分析】把()2,4A a 和()2,B a 代入y kx =,结合函数y kx =图象的经过一、三象限,即可得到答案. 【详解】∵正比例函数y kx =图象过点()2,4A a 和()2,B a , ∴422ak a k =⎧⎨=⎩,解得:1k =±, ∵正比例函数y kx =图象的经过一、三象限,∴k >0,∴k=1.故选D .【点睛】本题主要考查正比例函数的待定系数法以及比例系数的几何意义,掌握正比例函数y kx =图象的经过一、三象限,则k >0,是解题的关键.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒【答案】B【解析】【分析】 根据等腰三角形的性质,得∠ABC=∠C ,∠A=40°,由直角三角形的性质得∠ABD=50°,从而得∠BDE=65°,进而即可求解.【详解】∵ABC ∆中,,70AB AC C =∠=︒,∴∠ABC=∠C=70°,∠A=180°-70°=70°=40°,∵BD 是AC 边上的高线,∴∠ADB=90°,∴∠ABD=90°-40°=50°,∵BE BD =,∴∠BDE=∠BED=(180°-50°)÷2=65°,∴ADE ∠=90°-65°=25°.故选B .【点睛】本题主要考查等腰三角形的性质定理,直角三角形的性质定理,掌握等腰三角形的底角相等,直角三角形的两个锐角互余,是解题的关键.7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线的解析式为( ) A 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 【答案】A【解析】【分析】根据一次函数的平移规律:”左加右减,上加下减”,即可得到答案.【详解】将直线1:12L y x =-向左平移个单位长度得到:11(4)1122y x x =+-=+, 故选A .【点睛】本题主要考查一次函数的平移后所得的新一次函数解析式,掌握一次函数的平移规律:”左加右减,上加下减”,是解题的关键.8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A.B. 4.5C.D.【答案】B【解析】【分析】由6OB =,菱形ABCD 的面积为,得OC=4.5,根据直角三角形的性质,即可求解.【详解】∵6OB =,菱形ABCD 的面积为,∴54413.5BOC S =÷=,∵AC ⊥BD ,∴OC=13.5×2÷6=4.5, ∵AE BC ⊥,AO=CO ,∴OE=OC=4.5,故选B .【点睛】本题主要考查菱形的性质定理和直角三角形的性质定理,掌握菱形的对角线互相垂直平分,直角三角形斜边上的中线等于斜边的一半,是解题的关键.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 63B. 2C. 93D. 2【答案】A【解析】【分析】 连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,易得∠AOB=∠COD=90°,∠DAC=∠ACB=45°,从而得∠OAD=∠CAB ,进而得∠OAD=∠AOD ,可得∠AOD=60°,∠BOC=120°,进而即可求解.【详解】连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,∵在四边形ABCD 内接于半径为的O 中,,45AB CD ACB =∠=︒,∴∠AOB=∠COD=2∠ACB=90°,∠DAC=∠ACB=45°,∵OA=OB ,∴∠OAB=45°,∴∠OAD=∠DAC+∠CAO=∠OAB+∠CAO=∠CAB ,又∵∠ACD=12∠AOD ,12ACD BAC ∠=∠, ∴∠AOD=∠BAC ,∴∠OAD=∠AOD ,∴AD=OD ,∵OD=OA ,∴∆AOD 是等边三角形,∴∠AOD=60°,∴∠BOC=360°-90°-90°-60°=120°,∵OC=OC=6,∴∠OCM=30°, ∴CM=32OC=33, ∴BC=2 CM==63.故选A .【点睛】本题主要考查圆的基本性质,熟练掌握圆周角定理以及推论,圆心角定理,垂径定理,等腰三角形的性质定理,是解题的关键.10. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 3 3 C. 32 D. 52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为,与轴交于点,∴A(2,c-4),B(0,c),∵将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键. 二、填空题11. 分解因式:224ax ay -=________.【答案】a(x-2y)( x+2y)【解析】【分析】先提取公因式,再利用平方差公式进行分解因式,即可.【详解】224ax ay -=a(x 2-4y 2)= a(x-2y)( x+2y).故答案是:a(x-2y)( x+2y).【点睛】本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.12. 已知正六边形的周长为,则这个正六边形的边心距是_______.【解析】【分析】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB ,易得∆AOB 是等边三角形,进而即可求解.【详解】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB , ∴∠AOB=60°,OA=OB ,即:∆AOB 是等边三角形,∴∠OAB=60°,∵正六边形的周长为,∴OA=OB =AB=2,∴OC=32OA=3. ∴这个正六边形的边心距是:3.故答案是:3.【点睛】本题主要考查正六边形的性质以及等边三角形的判定和性质定理,掌握等边三角形的性质定理,是解题的关键.13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.【答案】-2【解析】【分析】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,易得∆DAO ~∆ EOB ,从而得2()AOD BOE S AD S OE=,进而得228b k a-=,由ABC ∆的面积为,得1610b a ka -=+,进而得到关于b a 的方程,即可求解. 【详解】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,由题意得:k <0,a <0,b >0, ∴4AOD S =,22BOE k k S ==-,AD=8a -,OE=k b-, ∵AD ∥OE ,OD ∥BE ,∴∠DAO=∠EOB ,∠AOD=∠OBE ,∴∆DAO ~∆ EOB ,∴2()AOD BOE S AD S OE =,即:2842a k k b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,化简得:228a k b =-, ∴228b k a -=, ∵ABC ∆的面积为,∴(b-a )(8a --k b)=18,化简:22810a k b ab kab -=+, ∴21610b ab kab -=+,即:1610b a ka -=+,∴24-8-5=0b b a a ⎛⎫ ⎪⎝⎭,解得:12b a =-或52b a =(不合题意,舍去), ∴228b k a-==-2. 故答案是:-2.【点睛】本题主要考查反比例函数的图象和性质,比例系数的几何意义以及相似三角形的判定和性质定理,根据函数图象上点的坐标特征,三角形的面积公式以及相似三角形的性质,列出方程,是解题的关键. 14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.【答案】45【解析】【分析】 先证明当AP=DP=2时, s in BPC ∠有最大值,过点B 作BE ⊥PC 于点E ,根据勾股定理求出PB=PC=25根据三角形的面积法,求出BE 的值,进而即可得到答案.【详解】设∠APB=x ,∠DPC=y ,∴∠BPC=180°-∠APB -∠DPC=180°-(x+y ),∵当x >0,y >0时,2()0x y ≥, ∴20x y xy +-≥,即:2x y xy +≥x=y 时,2x y xy +=,∴当x=y 时,x+y 有最小值,此时,∠BPC=180°-(x+y )有最大值,即 s in BPC ∠有最大值.∵在正方形ABCD 中,∠A=∠D ,AB=CD ,当∠APB=∠DPC 时,∴∆APB ≅ DPC (AAS ),∴AP=DP=2,∴PB=PC=222425+=,过点B 作BE ⊥PC 于点E ,∵114422BCP S PC BE =⨯⨯=⋅, ∴BE=855, ∴ s in BPC ∠=8545525BE PB ==. 故答案是:45.【点睛】本题主要考查正方形的性质定理,勾股定理,锐角三角函数的定义以及全等三角形的判定和性质定理,证明当点P 是AD 的中点时, s in BPC ∠有最大值,是解题的关键.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 【答案】【解析】【分析】先算负整数指数幂,绝对值以及特殊角三角函数值,再进行加减运算,即可求解.【详解】原式=13931)333⨯-+⨯=3313=.【点睛】本题主要考查实数的混合运算,掌握负整数指数幂的运算法则,求绝对值法则以及特殊角三角函数值,是解题的关键.16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 【答案】-x+1【解析】【分析】先算分式的减法运算,再把除法化为乘法,然后进行约分,即可得到答案.【详解】原式=212111x x x x x x ⎛⎫+-+-+⋅ ⎪+-⎝⎭=221111x x x x x ⎛⎫-+-+⋅ ⎪+-⎝⎭=2(1)111x x x x -+-⋅+- =-(x-1)=-x+1.【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.17. 如图,已知ABC ∆,点在AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】作AD 的垂直平分线交AD 于点O ,以点O 为圆心,OD 长为半径,画圆,交BC 于点P ,即可.【详解】如图所示:∆ADC 的外接圆与BC 的交点P ,即为所求.【点睛】本题主要考查尺规作垂直平分线以及三角形的外接圆,掌握直角三角形的外接圆的圆心是斜边的中点,圆周角定理的推论,是解题的关键.18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.【答案】见详解【解析】【分析】根据平行线的性质得∠A=∠B ,∠CDE=∠DCF ,从而得∠ADE=∠BCF ,再根据ASA ,即可得到结论.【详解】∵//DE CF ,∴∠CDE=∠DCF ,∴∠ADE=∠BCF ,∵//AE BF ,∴∠A=∠B ,又∵AD BC =,∴∆ADE ≅∆BCF (ASA ),∴AE BF =.【点睛】本题主要考查三角形全等的判定和性质定理以及平行线的性质定理,掌握 ASA 证明三角形全等,是解题的关键.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等的学生有多少人?【答案】(1)被调查学生的人数为200人.补全条形统计图见解析;(2)等对应的圆心角的度数为18︒;(3)对政策内容了解程度达到等的学生人数有75人.【解析】【分析】(1)从两个统计图中可得B 组的人数为50人,占调查人数的25%,可求出调查人数,从而计算出A 等人数和D 等人数,补全条形统计图,(2)用360°乘以D 组所占的百分比即可,(3)样本估计总体,用样本中D 组所占的百分比乘以总人数即可.【详解】(1)5020025%=(人) ∴被调查学生的人数为200人.等的人数:20060%120⨯=(人),等的人数:200120502010---=(人),补全条形统计图如下.(2)1036018200⨯︒=︒ ∴等对应的圆心角的度数为18︒. (3)10150075200⨯=(人) ∴对政策内容了解程度达到等的学生人数有75人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据,理清统计图中各个数据之间的关系是解决问题的关键,用样本估计总体是统计中常用的方法.20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.【答案】22m【解析】【分析】延长CD 交AB 的延长线于H ,设DH=xm ,在Rt △DHB 中,利用正切的定义,用x 表示出BH ,在Rt △CAH 中,根据正切的定义,列出关于x 的方程,即可求解.【详解】延长CD 交AB 延长线于H ,则CD ⊥AB ,设DH=xm ,则CH=(x+2)m ,在Rt △DHB 中,tan45°=DH BH, ∴BH=DH tan45°=xm ,∴AH=AB+BH=(x+10)m ,在Rt △CAH 中,tan=CH AH ,即210x x ++=0.75, 解得:x=22, 答:广告牌架下端D 到地面的距离为22m .【点睛】本题主要考查解直角三角形的实际应用,熟练掌握锐角三角函数的定义,添加合适的辅助线,构造直角三角形,是解题的关键.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线. (1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.【答案】(1)2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩;(2)103(小时) 【解析】【分析】(1)当0≤t ≤1时,是正比例函数,用待定系数法进行求解,即可,当1<t ≤10时,是一次函数,用待定系数法求函数的关系式,即可;(2)当0≤t ≤1时,当含药量上升到4微克时,控制病情开始有效,令y=4,代入y=6t ,求出对应的t 值,同理,当1<t ≤10时,求出另一个t 值,他们的差就是药的有效时间.【详解】(1)当0≤t ≤1时,设y=k 1t ,则6=k 1×1,∴k 1=6,∴y=6t .当1<t ≤10时,设y=k 2t+b ,∴226010k b k b =+=+⎧⎨⎩,解得:223203k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴ y=23-t+203, 综上所述:2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩; (2)当0≤t ≤1时,令y=4,即:6t=4,解得:t=23, 当0<t ≤10时,令y=4,即:23-t+203=4,解得:t=4, ∴控制病情的有效时间为:4−23=103(小时). 【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象上的点的坐标特征和待定系数法,是解题的关键.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上的图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.【答案】(1)14;(2)12 【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)∵4中卡片中,只有1张是中心对称图形,∴从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14, 故答案为:14; (2)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果, ∴两次所抽取的卡片恰好都是轴对称图形的概率为:61122=.【点睛】本题主要考查等可能随机事件的概率,学会画树状图,掌握概率公式,是解题的关键. 23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.【答案】(1)见详解;(2)35【解析】【分析】(1)要证EF 是 O 的切线,只要连接OE ,再证∠FEO=90°即可;(2)证明△FEA ∽△FBE ,得出EF AF BF EF =,从而得到AF 的值,进而得到12AE BE =,结合勾股定理得到关于AE 的方程,即可求出AE 的长.【详解】(1)连接OE ,∵∠B 的平分线BE 交AC 于D ,∴∠CBE=∠OBE ,∵EF ∥AC ,∴∠CAE=∠FEA ,∵∠OBE=∠OEB ,∠CBE=∠CAE ,∴∠FEA=∠OEB ,∵AB 是O 的直径,∴∠AEB=90°,∴∠FEO=90°,∴EF 是O 切线;(2)∵∠FEA=∠OEB=∠OBE ,∠F=∠F ,∴∆FEA ~∆FBE , ∴EF AF BF EF =, 即:2EF AF BF =⋅,∴AF×(AF+15)=10×10,解得:AF=5或AF=-20(舍去), ∴51102AE AF BE EF ===, ∵在Rt ∆ABE 中,AE 2+BE 2=AB 2,∴AE 2+(2AE )2=152,∴AE=35.【点睛】本题主要考查切线的判定定理,圆周角定理,相似三角形的判定和性质定理以及勾股定理,掌握切线的判定定理以及相似三角形的判定和性质定理是解题的关键.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.【答案】(1)2 6y x x =--+;(2)(0,6)或(-2,4)或(17-+17-).【解析】【分析】(1)根据待定系数法,即可得到答案;(2)先求出直线AB 的解析式,由平行四边形的性质得AO=MN=3且AO ∥MN ,设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),根据M ,N 的纵坐标相等,列出关于x 的方程,即可求解.【详解】(1)∵抛物线2y x bx c =-++与直线AB 交于点() 3,0A -,点() 1,4B , ∴ 09341b c b c =--+=-++⎧⎨⎩,解得: 16b c =-=⎧⎨⎩, ∴抛物线解析式为:26y x x =--+; (2)设直线AB 的解析式为:y=kx+m , 把() 3,0A -,() 1,4B ,代入得: 034k m k m =-+=+⎧⎨⎩,解得: 13k m ==⎧⎨⎩, ∴直线AB 的解析式为:y=x+3.∵以A O M N 、、、为顶点的四边形是以OA 为边的平行四边形,∴AO=MN=3且AO ∥MN ,∵点M 是轴上方抛物线上一点,点是直线AB 上一点,∴设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),∴26x x --+=x+6或26x x --+=x ,解得:10x =,22x =-,317x =-417x =-令y=0代入26y x x =--+,得:2 60x x --+=,解得:x=-3或x=2,∴抛物线与x 轴的另一个交点坐标为(2,0),∵点M 是轴上方抛物线上一点,∴点M 的横坐标取值范围为:-3<x <2,∴点M 的坐标为:(0,6)或(-2,4)或(17-+,17-+).【点睛】本题主要考查二次函数与一次函数的综合以及平行四边形的性质,掌握待定系数法,函数图象上的点的坐标特征以及平行四边形的对边平行且相等,是解题的关键.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.【答案】(12)AM=2.5,作图见详解;(3)存在PM ,使得PM 平分该空地的面积,AM= 146(米).【解析】【分析】(1)作CD ⊥AB 于点D ,利用等边三角形三线合一的性质和直角三角形的性质求出AD 的长,即可;(2)经过平行四边形对角线的交点的直线将平行四边形的面积分成相等的两部分,当MN ⊥BC 时,MN 最短,过A 作AE ⊥BC 于点E ,根据三角函数的定义,求AE 的长,即是MN 的长,再求出EN 的长,即AM 的长;(3)作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,通过锐角三角函数的定义,求得OD 的值,从而得AOD S ,OBCD S 四边形,在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050,进而求出OM ,即可求出AM 的值,然后得到结论.【详解】(1)如图①,作CD ⊥AB 于点D ,∵ABC ∆为边长为的等边三角形,∴AD=BD ,∴CD 平分ABC ∆的面积,∴(2)连接AC 、BD 交于点O ,过点O 作直线MN ,交AD 于M ,交BC 于N ,如图②,∵四边形ABCD 为平行四边形,∴OA=OC ,AD ∥BC ,∴∠CAD=∠ACB ,∵∠AOM=∠CON ,∴△AOM ≌△CON (ASA ),∴S △AOM =S △CON ,同理可得:△OMD ≌△ONB ,△AOB ≌△COD ,∴S △OMD =S △ONB ,S △AOB =S △COD ,∴S △AOM +S △AOB +S △BON =S △CON +S △COD +S △OMD ,即:MN 将四边形ABCD 分成面积相等的两部分,当MN ⊥BC 时,MN 最短,如图③所示,过A 作AE ⊥BC 于点E ,在Rt △ABE 中,∵∠ABC=60°,∴sin60°=AE AB,∴AE=2× ∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴∴此时MN 的长度为∵AE ∥MN ,AO=CO ,∴EN=CN ,∵BE=12AB=3, ∴CE=BC-BE=8-3=5,∴EN=2.5,∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴四边形AENM 是矩形,即:AM=EN=2.5;(3)存在PM ,使得PM 平分该空地的面积,理由如下:作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,如图④, ∵点P 是AC 的中点,∴点P 在直线EF 上,∵160AB =(米),120BC =(米),90ABC ∠=︒,∴=200(米),AD=12AC=100(米), ∵tan ∠BAC =34OD BC AD AB ==, ∴OD=34AD=75(米),∴11007537502AOD S =⨯⨯=(平方米), ∵112016096002ABC S =⨯⨯=(平方米), ∴960037505850OBCD S =-=四边形(平方米),∴图形OBCP 的面积比图形AOP 的面积多2100平方米,∴在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050(平方米),即可.∵sin ∠BAC=35OD BC OA AC ==, ∴OA=53OD=53×75=125(米), ∴OP=OA=125(米),过点M 作MN ⊥EF 于点N ,∴12OP ∙MN=1050,即:MN=2100÷125=845(米), ∵MN ∥AC ,∴∆AOD ~∆MON ,∴AD AO MN MO =,即:100125845MO =,解得:MO=21(米), ∴AM=AO+MO=125+21=146(米),∵AM <AB ,∴存在PM ,使得PM 平分该空地的面积,此时,AM= 146(米).【点睛】本题主要等边三角形的性质,平行四边形的性质,圆的基本性质,三角函数的定义以及相似三角形的判定和性质,熟练掌握垂径定理,三角函数的定义和相似三角形的性质,合理添加辅助线,构造直角三角形和相似三角形,是解题的关键.。

中考仿真模拟考试《数学卷》附答案解析

中考仿真模拟考试《数学卷》附答案解析
【详解】设生产1t甲种药品成本的年平均下降率为x,由题意得:
6000(1﹣x)2=3600
解得:x1= ,x2= (不合题意,舍去),
∴生产1t甲种药品成本的年平均下降率为 .
故选:A.
【点睛】本题主要考查了一元二次方程的实际应用,熟练掌握相关方法是解题关键.
9.如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为( )
A.2- B. C. D.1
10.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是( )
(1)对任意实数k,函数与x轴有两个交点
(2)当x≥﹣k时,函数y的值都随x的增大而增大
(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上
(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点
22.阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣ ,x1x2= .
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m= ,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于 ?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
6.抛物线y=2(x﹣2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是()
A.x=2B.x=﹣1C.x=5D.x=0
7.已知点A(﹣1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是( )

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。

中考综合模拟检测 数学试题 附答案解析

中考综合模拟检测 数学试题 附答案解析
15.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件是________
【答案】AB=AC
【解析】
【分析】
添加AB=AC,根据等边等角可得∠B=∠C,再利用ASA定理判定△ABD≌△ACE.
【详解】添加AB=AC.
8.从边长为 的正方形内去掉-一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()
A. B.
C. D.
【答案】B
【解析】
【分析】
分别求出从边长为a的正方形内去掉一个边长为b的小正方形后剩余部分的面积和拼成的矩形的面积,根据面积相等即可得出算式,即可选出选项.
排球
进价(元/个)
80
50
售价(元/个)
95
60
22.如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度( ,结果保留一位小数).
23.如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数 (m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE= .
【答案】B
【解析】
试题分析:A. ,故错误;B. ,故正确;C. ,故错误;D. 不能合并,故错误.
故选B.
考点:幂的运算性质.
5.如图所示,该几何体的俯视图是()
A. B.
C. D.
【答案】C
【解析】

中考模拟测试《数学试题》含答案解析

中考模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -172.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A 主视图不变B. 俯视图不变C 左视图不变D. 三种视图都不变3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B. 59C. 62D. 644.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 235.下列运算正确是() A. 428a a a ⋅= B. 221a a -= C. 2222a a a -+= D. ()325x x =6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 23C. 33D.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C. 60D. 709.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A. B. C. D. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11.5_.12.如图,在正六边形ABCDEF 中,CAD ∠的度数为____.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC 交于,E F 两点,且,A C 两点在轴上,点的坐标为()2,4,则点的坐标为_____.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()1082 3.146012cos π-⎛⎫+⎭- ⎪⎝︒. 16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.20.如图1所示的是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.2 1.414,31(.732≈≈,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -17【答案】A【解析】【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】|﹣7|=7.故选A.【点睛】本题考查了绝对值的性质①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A. 主视图不变B. 俯视图不变C. 左视图不变D. 三种视图都不变【答案】C【解析】【分析】分别得到将正方体A移动前后的三视图,依次即可作出判断.【详解】将正方体放到正方体的上面后,主视图改变,左视图不变,俯视图改变.故选:C .【点睛】此题主要考查立体组合体的三视图,熟练画立体图形的三视图是解题关键.3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B 59C. 62D. 64【答案】B【解析】【分析】先根据平行线的性质求出62,BOE ∠=︒再根据邻补角求得118,COE ∠=︒然后根据角平分线即可求解.【详解】解:∵DE AB∴62,BOE B ∠=∠=︒∴118,COE ∠=︒∵OF 是COE ∠的角平分线∴1∠=59︒故选:B【点睛】此题主要考查平行线的性质、邻补角的性质和角平分线的定义,熟练掌握性质定理是解题关键. 4.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 23【答案】C直接把()2,3-代入(0)y kx k =≠即可求解.【详解】解:把()2,3-代入(0)y kx k =≠ 解得:3k 2=-故选:C【点睛】此题主要考查待定系数法求正比例函数解析式中的参数k ,正确理解函数的图象和性质是解题关键. 5.下列运算正确的是()A. 428a a a ⋅=B. 221a a -=C. 2222a a a -+=D. ()325x x =【答案】C【解析】【分析】直接根据同底数幂的乘法法则、合并同类项法则和幂的乘方法则即可求解.【详解】解:A. 426a a a ⋅=,此选项错误B. 22a a -=-,此选项错误C. 2222a a a -+=,此选项正确D. ()326x x =,此选项错误 故选:C【点睛】此题主要考查同底数幂的乘法法则、合并同类项法则和幂的乘方法则,熟练掌握法则是解题关键. 6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 3C. 33D.【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. 8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C 60D. 70【答案】C【解析】【分析】根据同弧所对的圆心角等于圆周角的2倍,可得出∠B=25︒,然后根据三角形的内角和为180︒即可求解.【详解】解:∵50AOC ∠=︒,∴∠B=25︒,∵35C ∠=︒,∠ADB=∠CDO ,∴A ∠+∠B=∠C+∠AOC ,即∠A=355025︒+︒-︒=60︒,故选:C .【点睛】此题主要考查同弧所对的圆心角与圆周角之间的关系及三角形的内角和,熟练掌握性质是解题关键.9.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF Sx =,求出x 即可解答. 【详解】解:∵AD ∥BC ,是矩形ABCD 中AD 边的中点,∴AEF ~CBF ,设AEF S x =△,那么4BCF Sx =, ∵2ABF S =, ∴()1x 2422x +=+, 解得:x 1=,∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键. 10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A.B. C. D. 【答案】B【解析】【分析】由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =,根据当3x ≥时,随的增大而增大,得到0,a >且1x ≤时,随的增大而减小,再根据当20x -≤≤时,的最大值为,得到当2x =-时,28110a a ++=,求出1a =,那么2(1)1y x =-+关于轴对称的抛物线为()211y x =++,即可求解. 【详解】解:由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =.当3x ≥时,随的增大而增大,0,a ∴>且1x ≤时,随的增大而减小.当20x -≤≤时,的最大值为10,当2x =-时,28110,a a ++= 1a 或9a =-(舍去),2222()11y x x x ∴=-+=-+关于轴对称的抛物线为()211,y x =++函数()211y x =++在23x -≤≤内的最大值在3x =处取得,最大值为17,y =故选.【点睛】此题主要考查二次函数的性质,熟练掌握二次函数的图象和性质是解题关键. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11._.【答案】2【解析】【分析】估算得出所求即可.【详解】解:∵459,∴23<<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.12.如图,在正六边形ABCDEF中,CAD∠的度数为____.【答案】30【解析】【分析】根据正六边形得到∠ABC=∠BCD=∠CDE=120︒,AB=BC=CD,进而得到∠ACB=30,∠ACD=90︒,∠ADC=60︒,即可求解.【详解】解:在正六边形ABCDEF中,∠ABC=∠BCD=∠CDE=120︒,AB=BC,∴∠ACB=30,∠ACD=90︒,∠ADC=60︒,∴∠CAD=30,故答案为:30.【点睛】此题主要考查正六边形的性质,灵活运用性质是解题关键.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于,E F两点,且,A C两点在轴上,点的坐标为()2,4,则点的坐标为_____.【答案】4 6,3⎛⎫ ⎪⎝⎭【解析】【分析】先根据待定系数法求得8y x =,再根据OA=6即可求解. 【详解】解:令y k x =,E (2,4), ∴k=8,即8y x=, ∵OA =OC+AC =2+4=6,∴F(6,43), 故答案为:46,3⎛⎫ ⎪⎝⎭.【点睛】此题主要考查待定系数法求反比例函数解析式,然后根据函数解析式确定点的坐标,熟练掌握待定系数法是解题关键.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.【答案】2212+【解析】【分析】BFA'的周长=FA'+BF+BA'=AF+BF+BA'=AB+BA'=10+BA',推出当BA'最小时,BFA'的周长最小,由此即可求解.【详解】解:如图,作BH AD ⊥于点,连接BP ,∵10,16,60AB AD A ==∠=︒,8,5PA AH ==,853PH ∴=-=, 5BH =PB ∴===由翻折可知'8,'PA PA FA FA ===,'BFA ∴的周长''''10'FA BF BA AF BF BA AB BA BA =++=++=+=+, 当'BA 的长度最小时,'BFA 的周长最小,''BA PB PA ∴≥-,'8BA ∴≥,'BA ∴的最小值为8,'BFA ∴的周长的最小值为1082+=.故答案为:2.【点睛】此题主要考查平行四边形的性质,翻折不变性,勾股定理,含30度直角三角形的性质等,灵活运用性质是解题关键.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒. 【答案】12-【解析】【分析】 根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++ 12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 【答案】a【解析】【分析】 根据分式的加减乘除混合运算法则即可求解.【详解】解:原式()()()()()22211122111111a a a a a a a a a a a a a -+--+-÷=⋅=-++--. 【点睛】此题主要考查分式的加减乘除运算,熟练掌握运算法则是解题关键.17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)【答案】见解析【解析】【分析】作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【详解】解:如图,作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【点睛】此题主要考查旋转的性质,尺规作图,正确理解作图依据是解题关键.18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .【答案】见解析【解析】【分析】根据//FD AC ,得到ACB DFE ∠=∠,再根据BF CE =,得到BC EF =,加上AC FD =,得到ACB DFE △≌△,进而得到B E ∠=∠,即可证明.【详解】证明://FD AC ,ACB DFE ∴∠=∠,BF CE =,BF FC CE FC ∴+=+BC EF ∴=.,AC FD =,ACB DFE ∴≌,B E ∴∠=∠//∴.AB DE【点睛】此题主要考查全等三角形的判定和性质、平行线的性质和判定,灵活运用判定定理和性质定理是解题关键.19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.【答案】(1)见解析;(2)5天,6天;(3)600人【解析】【分析】(1)根据9天和9天以上的3人,占5,可求得总人数为60人,求出8天的人数即可补全条形统计图;(2)根据众数和中位数的概念即可求解.(3)先求出7天、8天、9天和9天以上的人数的比例,再用样本估计总体即可求解.÷=(人),【详解】解:()135%60----=(人),6024121536补全统计图如图所示:()2参加”网络自习室”自主学习天的人数最多,所以众数是天;60人中,按照参加”网络自习室”自主学习的天数从少到多排列,第人和人都是天,所以中位数是天; ()15633150060060++⨯=(人) 答:估计全校初三可能有600名学生参加”网络的自习室”自主学习的天数不少于天.【点睛】此题主要考查条形统计图与扇形统计图的综合应用,众数、中位数和用样本估计总体,正确理解概念是解题关键.20.如图1所示是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.231.732≈≈,最后结果取整数)【答案】37米【解析】【分析】根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米,在'Rt PO B 中,'90,'60PO B PBO ∠=︒∠=︒,得到3''3O B P =,在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,得到''O D O P =,进而得到3''1'15BD O D O B O P ⎛=-== ⎝⎭米,'35.4931O P =≈-米,最后根据''OP OO O P =+即可求解.【详解】解:根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米.在'Rt PO B 中,'90,'60,PO B PBO ∠=︒∠=︒3''3O B P ∴= 在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,''O D O P ∴=, 3''1'153BD O D O B O P ⎛∴=-=-= ⎝⎭米,'35.49O P ∴=≈米,''37.09OP OO O P ∴=+=米37≈米,答:”天下第一灯”的高度约为37米.【点睛】此题主要考查解直角三角形的应用,正确地构造直角三角形和解直角三角形是解题关键. 21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【答案】(1) 4.65137.7y x =-;(2)3300m【解析】【分析】(1)根据实际问题列出函数表达式即可.(2)先判断用水量在哪一阶梯,再计算.详解】解:()()1 3.80162 4.65162y x =⨯+-,即 4.65137.7y x =-.()2由()1知,当162275x <≤时, 4.65137.7,y x =-当275x =时,1141.05y =.1141.051320.55y =<,该户居民2019年的年用水量在3275m 以上,终端水价为7.18元/3m .当275x >时,()1141.057.18275,y x =+-即7.18 833.45,y x =-7.18 833.451320.55,x∴-=解得300x=.答:该户居民2019年的年用水量为3300m.【点睛】此题主要考查根据实际问题列函数解析式,找出实际问题中的等量关系是解题关键.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【答案】(1)图表见解析,14;(2)不公平,理由见解析【解析】【分析】(1)先用列表法列出所有可能的结果,再求概率.(2)比较两种结果的概率即可求解.【详解】解:()1列表如下从表格可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以两人抽取相同数字的概率为1 4()2不公平.从()1中表格可以看出,两人抽取数字和为的倍数的结果有种,两人抽取数字和为的倍数的结果有种, 所以甲获胜的概率为38,乙获胜的概率为31633816> 甲获胜的概率大,游戏不公平.【点睛】此题主要考查列表法或画树状图法求概率,正确理解概率的概念是解题关键.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 【答案】(1)相切,理由见解析;(2)35【解析】【分析】(1)连接BD ,根据90BAD ∠=︒,得出点在BD 上,即BD 是直径,进而得到90BCD ∠=︒,90DEC CDE ∠+∠=︒,再根据DEC BAC ∠=∠,得出90BAC CDE ∠+∠=︒,由同弧所对的圆周角相等,得到90BDC CDE ∠+∠=︒,即可求证.(2)根据90BAF BDE ∠=∠=︒,得到90F ABC FDE ADB ∠+∠=∠+∠=,由AB AC =,得到A ABC CB =∠∠,再根据ADB ACB ∠=∠,得到,ABC ADB F EDF ∠=∠∠=∠,进而得到6DE EF ==,再根据4,90CE BCD =∠=︒,得到2290,25DCE CD DE CE ∠=︒=-=90,BDE CD BE ∠=︒⊥,得到CDECBD ,最后根据对应边成比例即可求解. 【详解】解:()1DE 与O 相切.理由:如图,连接BD .90,BAD ∠=︒点在BD 上,即BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒.,DEC BAC ∠=∠90BAC CDE ∴∠+∠=︒.,BAC BDC ∠=∠90,BDC CDE ∴∠+∠=︒90,BDE ∴∠=︒即BD DE ⊥.点在O 上,DE ∴是O 的切线.()290BAF BDE ∠=∠=︒.90F ABC FDE ADB ∴∠+∠=∠+∠=.,AB AC =ABC ACB ∴∠=∠.,ADB ACB ∠=∠,,ABC ADB F EDF ∴∠=∠∠=∠6.DE EF ∴==4,90CE BCD =∠=︒,2290,2 5.DCE CD DE CE ∴∠=︒=-=90,BDE CD BE ∠=︒⊥,,CDE CBD ∴ CD BD CE DE ∴= O ∴的直径256354BD ⨯== 【点睛】此题主要考查圆周角定理,勾股定理,切线的判定和相似三角形的判定及性质,熟练掌握判定定理和性质定理是解题关键.24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)点M 的坐标为17,24⎛⎫-⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭【解析】【分析】(1)利用待定系数法即可解决问题; (2)根据223tan 3m m MG MBA BG m-++∠==-,1tan 2BE BDE DE ∠==,由∠MBA=∠BDE ,构建方程即可解决问题.【详解】解:()1把点()()3,0,0,3B C 代入2,y x bx c =-++ 得到930,3,b c c -++=⎧⎨=⎩解得2,3,b c =⎧⎨=⎩抛物线的解析式为2y x 2x 3=-++.()2如图,作MG x ⊥轴于点,G 连接,BM 则90MGB ∠=︒.()2,23,M m m m -++223,3,MG m m BG m ∴=-++=-2233m m MG tan MBA BG m-++∴∠==- ()222314y x x x =-++=--+,顶点的坐标为()1,4 DE x ⊥∵轴,90,4,1DEB DE OE ∴∠=︒==()3,0B ,2BE ∴=12BE tan BDE DE ∴∠== ,MBA BDE ∠=∠223132m m m -++∴=-当点M 在轴上方时223132m m m -++=- 解得112m =-,23m =(舍弃), 17,24M ⎛⎫∴- ⎪⎝⎭当点M 在轴下方时,223132m m m -++=-- 解得123,32m m ==-(舍弃),点39,24M ⎛⎫-- ⎪⎝⎭综上所述,满足条件的点M 的坐标为17,24⎛⎫- ⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭ 【点睛】此题主要考查待定系数法求二次函数解析式和利用三角函数解直角三角形,熟练掌握二次函数的性质是解题关键.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.【答案】[问题发现]25;[问题解决]①出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②总造价的最小值为160010元,出口距直线OB 的距离为36665-米 【解析】【分析】 [问题发现]PAB 的底边一定,面积最大也就是P 点到AB 的距离最大,故当OP AB ⊥时底边AB 上的高最大,再计算此时PAB 面积即可.[问题解决]①根据四边形CODE 面积=CDO CDE S S +,求出CDE S △最大时即可,然后作'E H OB ⊥,证明COD OHE ',利用相似三角形的性质求出E H '即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE ,求CE+QE 的最小值问题,然后利用相似三角形性质和勾股定理求解即可.【详解】解:[问题发现]:如图1,点运动至半圆中点时,底边AB 上的高最大,即' 5.P O r ==此时PAB △的面积最大,最大值为1105252⨯⨯=; [问题解决]①如图2,连接,CD 作OG CD ⊥,垂足为,G 延长OG 交AB 于点,则此时CDE △的面积最大.12,4,OA OB AC D ===为OB 的中点,8,6OC OD ∴==,在Rt COD 中,10, 4.8CD OG ==,'12 4.87.2GE ∴=-=,四边形CODE 面积的最大值为1168107.26022CDO CDE SS '+=⨯⨯+⨯⨯=, 作',E H OB ⊥垂足为, ''90,'90,E OH OE H E OH ODC ∠+∠=︒∠+∠='OE H ODC ∴∠=∠.又'90COD E HO ∠=∠=︒,CODOHE '∴, ''OD E H CD OE ∴= 6'1012E H ∴= '7.2E H ∴=,出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②铺设小路CE 和DE 的总造价为()2004002002.CE DE CE DE +=+如图3,连接,OE 延长OB 到点,Q 使12BQ OB ==,连接EQ在EOD △与QOE 中,EOD QOE =∠,且12OD OE OE OQ ==, ,EOD QOE ∴故2,QE DE =2CE DE CE QE ∴+=+,问题转化为求CE QE +的最小值,连接,CQ 交AB 于点,此时CE QE +取得最小值为CQ .在Rt COQ 中,8,24CO OQ ==,810CQ ∴= 故总造价的最小值为10作',E H OB ⊥垂足为,连接'OE .设',E H x =则3QH x =.在'Rt E OH 中,222'OH HE OE '+=,()22224312,x x ∴-+= 解得13666x -=,23666x +=舍去), 总造价的最小值为10OB 的距离为36665-米. 【点睛】此题考查圆的综合问题,涉及圆的基本性质,相似三角形的判定和性质,勾股定理等知识,综合程度较高,需要灵活运用知识,解题关键是:利用对称或相似灵活地将折线和转化为线段长,从而求折线段的最值.。

中考数学模拟考试卷(有答案解析)

中考数学模拟考试卷(有答案解析)

中考数学模拟考试卷(有答案解析)一、选择题1.9的算术平方根是()A. ±3B. 3C. −3D. √32.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,数据499.5亿用科学记数法应表示为()A. 4.995×1010B. 49.95×1010C. 0.4995×1011D. 4.995×1011图象上,则y1,y2,y3的大小关系为()3.已知(−2,y1),(−3,y2),(2,y3)在反比例函数y=−0.8xA. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y24.某班篮球爱好小组10名队员进行定点投篮练习,每人投篮20次,将他们投中的次数进行统计,制成如表:投中次数121315161718人数123211则关于这10名队员投中次数组成的数据,下列说法错误的是()A. 平均数为15B. 中位数为15C. 众数为15D. 方差为55.利用配方法将二次函数y=x2+2x+3化为y=a(x−ℎ)2+k(a≠0)的形式为()A. y=(x−1)2−2B. y=(x−1)2+2C. y=(x+1)2+2D. y=(x+1)2−26.下列关于x的方程中一定没有实数根的是()A. x2−x−1=0B. 4x2−6x+9=0C. x2=−xD. x2−mx−2=07.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF//BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;∠A;②∠BOC=90°+12③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是()A. ①②③B. ①②④C. ②③④D. ①③④8.平行四边形、矩形、菱形、正方形都具有的是()A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线互相垂直且相等9.如图,已知⊙O的弦AB、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=2√5cm,则PE的长为()A. 4cmB. 3cmC. 5cmD. √2cm10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC的边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则y与x函数关系的图象大致是()A. B. C. D.二、填空题11.分解因式:x2﹣9y2=.12.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN 交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为.14.如图,A、B是函数y=(x>0)图象上两点,作PB∥y轴,PA∥x轴,PB与PA交于点P,若S△BOP=2,则S△ABP=.15.如图,△ABO中,以点O为圆心,OA为半径作⊙O,边AB与⊙O相切于点A,把△ABO绕点A逆时针旋转得到△AB'O',点O的对应点O'恰好落在⊙O上,则sin∠B'AB的值是.三、解答题16.解方程:x2+2x﹣3=0(公式法)17.某校760名学生参加植树活动,要求每人植树的范围是2≤x≤5棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:2棵;B:3棵;C:4棵;D:5棵,将各类的人数绘制成扇形统计图(如图2)和条形统计图(如图1).回答下列问题:(1)补全条形统计图;(2)被调查学生每人植树量的众数、中位数分别是多少?(3)估计该校全体学生在这次植树活动中共植树多少棵?18.在坐标系中作出函数y=x+2的图象,根据图象回答下列问题:(1)方程x+2=0的解是;(2)不等式x+2>1的解;(3)若﹣2≤y≤2,则x的取值范围是.19.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=3cm,DE=cm,求⊙O直径的长.20.某中学计划购买A、B两种学习用品奖励学生,已知购买一个A比购买一个B多用20元,若用400元购买A的数量是用160元购买B数量的一半.(1)求A、B两种学习用品每件各需多少元?(2)经商谈,商店给该校购买一个A奖品赠送一个B奖品的优惠,如果该校需要B奖品的个数是A奖品个数的2倍还多8个,且该学校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A奖品?21.在平面直角坐标系xOy中,二次函数y=ax2+bx+4(a<0)的图象与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C,直线BC与对称轴于点D.(1)求二次函数的解析式.(2)若抛物线y=ax2+bx+4(a<0)的对称轴上有一点M,以O、C、D、M四点为顶点的四边形是平行四边形时,求点M的坐标.(3)将抛物线y=ax2+bx+4(a<0)向右平移2个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点,当以D、E、F、G四点为顶点的四边形是菱形时,求点F的坐标.22.如图1,在正方形ABCD中,E为边AD上的一点,连结CE,过D作DF⊥CE于点G,DF交边AB于点F.已知DG=4,CG=16.(1)EG的长度是.(2)如图2,以G为圆心,GD为半径的圆与线段DF、CE分别交于M、N两点.①连结CM、BM,若点P为BM的中点,连结CP,求证∠BCP=∠MCP.②连结CN、BN,若点Q为BN的中点,连结CQ,求线段CQ的长.参考答案与解析一、选择题1.B试题分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.∵32=9,∴9的算术平方根是3.故选:B.2.A解:499.5亿=49950000000=4.995×1010,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.3.A解:当x=−2时,y1=−0.8−2=615;当x=−3时,y2=−0.8−3=415;当x=2时,y3=−0.82=−0.4,所以y1>y2>y3.故选:A.分别把x=−2、−3、2代入反比例函数解析式计算出y1,y2,y3的值,从而得到它们的大小关系.4.D解:这组数据的平均数为12+13×2+15×3+16×2+17+1810=15,故A选项正确,不符合题意;将数据从小到大排列,第5第6个数都是15,中位数为15+152=15,故B选项正确,不符合题意;15出现的次数最多,众数为15,故C选项正确,不符合题意;方差为110×[(12−15)2+2×(13−15)2+3×(15−15)2+2×(16−15)2+(17−15)2+(18−15)2]= 3.2,故D选项错误,符合题意;故选:D.依次根据加权平均数、中位数、众数及方差的定义求解即可.5.C解:y=x2+2x+3=(x+1)2+3−1=(x+1)2+2.故选:C.化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).6.B解:A、△=5>0,方程有两个不相等的实数根;B、△=−108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.A【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误.【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°−12∠A,∴∠BOC=180°−(∠OBC+∠OCB)=90°+12∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF//BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE⋅OM+12AF⋅OD=12OD⋅(AE+AF)=12mn;故④错误;故选:A.8.A解:A、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B、对角线互相垂直是菱形、正方形具有的性质;C、对角线相等是矩形和正方形具有的性质;D、对角线互相垂直且相等是正方形具有的性质.故选:A.9.A试题分析:首先根据相交弦定理得PA⋅PB=PC⋅PD,得PD=2.设DE=x,再根据切割线定理得AE2=ED⋅EC,即x(x+8)=20,x=2或x=−10(负值舍去),则PE=2+2=4.∵PA⋅PB=PC⋅PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED⋅EC,∴x(x+8)=20,∴x=2或x=−10(负值舍去),∴PE=2+2=4.故选A.10.D解:当点P在AB上时,△BDP是等腰直角三角形,故BD=x=DP,∴△BDP的面积y=12×BD×DP=12x2,(0≤x≤2)当点P在AC上时,△CDP是等腰直角三角形,BD=x,故CD=4−x=DP,∴△BDP的面积y=12×BD×DP=12x(4−x)=−12x2+2x,(2<x≤4)∴当0≤x≤2时,函数图象是开口向上的抛物线;当2<x≤4时,函数图象是开口向下的抛物线,故选:D.先根据点P在AB上时,得到△BDP的面积y=12×BD×DP=12x2,(0≤x≤2),再根据点P在AC上时,△BDP的面积y=12×BD×DP=−12x2+2x,(2<x≤4),进而得到y与x函数关系的图象.二、填空题11.解:x2﹣9y2=(x+3y)(x﹣3y).12.解:树状图如下所示,由上可得,一共有4种可能性,其中数字之积为偶数的可能性有3种,∴数字之积为偶数的概率为:,故答案为:.13.解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.故答案为:6.14.解:如图,延长BP交x轴于N,延长AP交y轴于M,设点M的纵坐标为m,点N的横坐标为n,∴AM⊥y轴,BN⊥x轴,又∠MON=90°,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO=S△BNO=3,∵S△BOP=2,∴S△PMO=S△PNO=1,∴S矩形OMPN=2,∴mn=2,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=||,∴S△ABP=×2|n|×||=4,故答案为:4.15.解:由旋转得OA=O′A,∠OAB=∠O′AB′,∴OA=O′A=OO′,∴△OO′A是等边三角形,∴∠O′AO=60°,∵边AB与⊙O相切于点A,∴∠OAB=∠O′AB′=90°,∴∠B'AB=60°,∴sin∠B'AB=.故答案为:.三、解答题16.解:△=22﹣4×(﹣3)=16>0,x=,所以x1=1,x2=﹣3.17.解:(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人),补全统计图如下:(2)∵植3棵的人数最多,∴众数是3棵,把这些数从小到大排列,中位数是第10、11个数的平均数,则中位数是=3(棵).(3)这组数据的平均数是:×(4×2+8×3+4×6+5×2)=3.3(棵),3.3×760=2508(棵).答:估计这760名学生共植树2508棵.18.解:y=x+2列表如下:图象如下图所示:(1)由图形可得,方程x+2=0的解是x=﹣2,故答案为x=﹣2;(2)由图象可得,不等式x+2>1的解是x>﹣1,故答案为x>﹣1;(3)若﹣2≤y≤2,则x的取值范围是﹣4≤x≤0,故答案为﹣4≤x≤0.19.(1)证明:如图1,连接OD,∵AC是⊙O的直径,∴∠ADC=∠BDC=90°,∵E是BC的中点,∴ED=EC,∴∠EDC=∠ECD,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠ECD=90°,∴∠EDC+∠ODC=90°,∵OD为半径,∴DE是⊙O的切线;(2)解:如图2,∵DE是Rt△BDC斜边上的中线,DE=cm,CD=3cm,∴BC=2DE=cm,∴BD===(cm),∵∠A+∠ACD=∠BCD+∠ACD=90°,∴∠BCD=∠A,∵∠BDC=∠CDA=90°,∴△BDC ∽△CDA ,∴,即,∴AC =(cm ), ∴⊙O 直径的长cm .20.解:(1)设A 种学习用品每件x 元钱,则B 种学习用品每件(x ﹣20)元钱,由题意得:=×, 解得:x =25,经检验,x =25是原方程的解,且符合题意,则x ﹣20=5,答:A 种学习用品每件25元钱,则B 种学习用品每件5元钱;(2)设该校可购买y 个A 奖品,则可购买(2y +8﹣y )个B 奖品,由题意得:25y +5(2y +8﹣y )≤670,解得:y ≤21,答:该校最多可购买21个A 奖品.21.解:(1)将点A (﹣2,0)和点B (4,0)代入抛物线解析式y =ax 2+bx +4(a <0),∴{4a −2b +4=016a +4b +4=0,解得{a =−12b =1, ∴抛物线解析式为y =−12x 2+x +4.(2)由(1)知抛物线解析式为y =−12x 2+x +4=−12(x ﹣1)2+92,∴抛物线的对称轴为:直线x =1,令x =0,则y =0,∴C (0,4),∴直线BC 的解析式为:y =﹣x +4,OC =4,∴D (1,3).∵点M 在对称轴上,∴DM ∥OC ,若以O 、C 、D 、M 四点为顶点的四边形是平行四边形,则OC =DM ,∴|3﹣y M |=4,解得y M =﹣1或7.∴点M 的坐标为(1,﹣1)或(1,7).(3)将抛物线y =−12(x ﹣1)2+92向右平移2个单位得到新抛物线y ′=−12(x ﹣3)2+92, 令−12(x ﹣1)2+92=−12(x ﹣3)2+92,解得x =2,∴E (2,4),∴DE =√2,若以D 、E 、F 、G 四点为顶点的四边形是菱形,则△DEF 是等腰三角形,需要分情况讨论,当DE =DF 时,如图1,以点D 为圆心,DE 长为半径作圆,圆与直线x =3无交点,不存在点F ; 当ED =EF 时,如图1,以点E 为圆心,DE 长为半径作圆,圆与直线x =3交于点F ;设点F (3,n ),∴(2﹣3)2+(4﹣n )2=2,解得n =3或n =5(此时D ,E ,F 三点共线,不符合题意),∴F (3,3).当FD =FE 时,作DE 的垂直平分线交直线x =3于点F ,则有(2﹣3)2+(4﹣n )2=(1﹣3)2+(3﹣n )2,解得n =2.此时F (3,2).综上,点F 的坐标为(3,3)或(3,2).22.(1)解:∵四边形ABCD 为正方形,∴∠ADC =90°,∴∠EDG +∠CDG =90°,∵DF ⊥CE ,∴∠DGE =∠CGD =90°,∠DCG +∠CDG =90°,∴∠EDG =∠DCG ,∴△DGE ∽△CGD ,∴EG DG =DG CG ,即EG 4=416,解得:EG =1,故答案为:1;(2)①证明:如图2,连接CM 、BM 、CP ,∵点G 为DM 的中点,CG ⊥DM ,∴CM =CD ,∵CD =CB ,∴CB =CM ,∵点P 为BM 的中点,∴∠BCP =∠MCP ;②解:如图3,连接BN 、CQ ,过点Q 作QH ⊥CD 于H ,连接NH 并延长交BC 的延长线于L ,过点N 作NK ⊥CD 于K ,在Rt △CGD 中,DG =4,CG =16,则CD =√CG 2+DG 2=4√17,∵CG =16,GN =4,∴CN =16﹣4=12,∵∠CGD =∠CKN =90°,∠NCK =∠DCG ,∴△CKN ∽△CGD ,∴CN CD =CK CG =NK DG ,即4√17=CK 16=NK 4, 解得:CK =48√1717,NK =12√1717, ∵QH ⊥CD ,∠DCB =90°,NK ⊥CD ,∴NK ∥QH ∥BC ,∵NQ =QB ,∴KH =HC =12KC =24√1717,QH =12×(KN +BC )=40√1717, ∴CQ =√CH 2+QH 2=8√2.。

数学中考仿真模拟试题word版含答案

数学中考仿真模拟试题word版含答案

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分120分,考试时间100分钟.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣52.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=34.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣85.下列图形中,不是正方体表面展开图的是()A .B .C .D .6.如图,在Rt △A B C 中,∠C =90°,A B =4,A C =3,则sin B =( )A .35B .45C .34D .√747.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =238.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0B .k <0,B >0C .k >0,B <0D .k >0,B >09.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是( )A .100°B .105°C .110°D .120°10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103二、填空题(每小题3分,共18分)在实数范围内有意义,则x的取值范围是.11.若式子√x−112.因式分解:y3﹣4y2+4y=.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.15.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.18.(4分)已知:如图,Rt△A B C 中,∠C =90°,M是A B 的中点,A N=1A B ,A N∥C M.2求证:MN=A C .19.(6分)先化简(1﹣xx−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x 元(x≥30),一周的销售量为y 件.(1)直接写出y 与x 的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E (要求:尺规作图,保留作图痕迹,不写作法,要下结论); (2)在A D 边上截取A F =A B ,连接EF ,若A B =3,∠B =60°,求四边形A B EF 的面积.23.(10分)如图,直线y=x+B 与双曲线y=k(x>0)的交点为A (1,A ),与x轴的交点为B (﹣1,0),点C 为双曲x(x>0)上的一点.线y=kx(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.24.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 为AB上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 恰好是CD中点,求证:C E2=B E•B A ;是否为定值,如(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A BMN 果是,请求出这个值,如果不是,请说明理由.25.(12分)在平面直角坐标系中,点A 是抛物线y=﹣1x2+mx+2m+2与y轴的交点,点B 在该抛物线上,该抛2物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G.设点B 的横坐标为2m﹣1.(1)当m=1时,①当函数y的值随x的增大而增大时,自变量x的取值范围为.②求图象G最高点的坐标.(2)当m<0时,若图象G与x轴只有一个交点,求m的取值范围.(3)设图象G最高点与最低点的纵坐标之差为h,求h与m之间对应的函数关系式.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣5【答案】C【解答】解:与15为倒数的数为:5.故选:C .2.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .【答案】A【解答】解:A 、既是中心对称图形,又是轴对称图形,故本选项符合题意;B 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;C 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;D 、是中心对称图形,不是轴对称图形,故本选项不合题意.故选:A .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=3【答案】B【解答】解:A 、√2+√3,无法计算,故此选项错误;B 、√4×2=2√2,故此选项正确;C 、√6+2,无法计算,故此选项错误;D 、3√2﹣√2=2√2,故此选项错误;故选:B .4.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣8【答案】B【解答】解:0.000000125=1.25×10﹣7,故选:B .5.下列图形中,不是正方体表面展开图的是()A .B .C .D .【答案】C【解答】解:根据正方体的展开图的11种情况可得,C 选项中的图形不是它的展开图.故选:C .6.如图,在Rt△A B C 中,∠C =90°,A B =4,A C =3,则sin B =()A .35B .45C .34D .√74【答案】C【解答】解:∵在Rt △A B C 中,∠C =90°,A B =4,A C =3, ∴sin B =,故选:C .7.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =23【答案】C【解答】解:图2所示的算筹图我们可以表述为:{3x +2y =19x +4y =23.故选:C .8.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0 B .k <0,B >0C .k >0,B <0D .k >0,B >0【答案】D【解答】解:此题可通过观察图象求解,如图所示,(1)y =﹣x 只有向上平移时,图象才会经过第一象限,即B >0;(2)y =kx ﹣4(k ≠0),①k <0时,图象不经过第一象限,不合题意,②k >0时,图象经过第一象限,和y =﹣x +B 的交点在第一象限,符合题意.故选:D .9.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是()A .100°B .105°C .110°D .120°【答案】B【解答】解:过O 分别作OE ⊥A B 于E ,OF ⊥B C 于F ,连接OB ,则A E =B E =12A B =√22,B F =C F =12B C =√32,OB =1∴C os ∠OB E =OE OB =√32,C os ∠OB F =√32,∴∠OB E =45°,∠OB F =30°,∴∠A B C =∠OB E +∠OB F =75°,∵四边形A B C D 内接于⊙O ,∴∠A D C +∠A B C =180°,∴∠A D C =180°﹣75°=105°,故选:B .10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103【答案】B【解答】解:∵A +B =2,C ﹣3A =4,∴B =2﹣A ,C =3A +4,∵B ,C 都是非负数,∴{2−A ≥0①3A +4≥0②,解不等式①得,A ≤2,解不等式②得,A ≥﹣43,∴﹣43≤A ≤2,又∵A 是非负数,∴0≤A ≤2,S=A 2+B +C =A 2+(2﹣A )+3A +4, =A 2+2A +6,∴对称轴为直线A =﹣22×1=﹣1, ∴A =0时,最小值n=6,A =2时,最大值m=22+2×2+6=14, ∴m﹣n=14﹣6=8.故选:B .二、填空题(每小题3分,共18分)11.若式子在实数范围内有意义,则x的取值范围是.√x−1【答案】x>1【解答】解:根据题意得:x﹣1>0,解得:x>1,故答案为:x>1.12.因式分解:y3﹣4y2+4y=.【答案】y(y﹣2)2【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2.故答案为:y(y﹣2)2.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.【答案】56【解答】解:∵A B ∥C D ,∴∠A B E+∠B EC =180°,∵∠A B E=146°,∴∠B EC =180°﹣146°=34°,∵FE⊥C D ,∴∠C EF=90°,∴∠FEB =∠C EF﹣∠B EC =90°﹣34°=56°.故答案为:56.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.【答案】A ≥﹣43【解答】解:∵关于x的一元二次方程x2+4x﹣3A =0有实数根,∴△≥0,即42﹣4×(﹣3A )≥0,.解得A ≥﹣43故答案为:A ≥﹣4.315.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.【答案】20【解答】解:根据题意得6=0.3,m解得:m=20,经检验:m=20是分式方程的解,故答案为:20.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.【答案】①②③④【解答】解:在正方形A B C D 中,C D =B C ,∠B C D =90°,∴∠B C N +∠D C N =90°,又∵C N ⊥D M ,∴∠C D M +∠D C N =90°,∴∠B C N =∠C D M ,又∵∠C B N =∠D C M =90°,∴△C NB ≌△D MC (A SA ),故①正确;∵△C NB ≌△D MC ,∴C M =B N ,又∵∠OC M =∠OB N =45°,OC =OB ,∴△OC M ≌△OB N (SA S ),∴OM =ON ,∠C OM =∠B ON ,∴∠D OC +∠C OM =∠C OB +∠B PN ,即∠D OM =∠C ON ,又∵D O =C O ,∴△C ON ≌△D OM (SA S ),故②正确;∵∠B ON +∠B OM =∠C OM +∠B OM =90°,∴∠MON =90°,即△MON 是等腰直角三角形,又∵△A OD 是等腰直角三角形,∴△OMN ∽△OA D ,故③正确;∵A B =B C ,C M =B N ,∴B M =A N ,又∵Rt △B MN 中,B M 2+B N 2=MN 2,∴A N 2+C M 2=MN 2,故④正确;∵△OC M ≌△OB N ,∴四边形B MON 的面积=△B OC 的面积=1,即四边形B MON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设B N =x =C M ,则B M =2﹣x ,∴△MNB 的面积=12x (2﹣x )=﹣12x 2+x ,∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1﹣12=12,故⑤错误,故答案为①②③④.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.【解答】解:原式=1+4﹣2×14=1+4﹣12 =92.18.(4分)已知:如图,Rt △A B C 中,∠C =90°,M 是A B 的中点,A N =12A B ,A N ∥C M . 求证:MN =A C .【解答】证明:在Rt △A B C 中,∠C =90°,∵M 是A B 的中点,∴C M =12A B , ∵A N =12A B ,∴C M =A N ,∵A N ∥C M ,∴四边形A C MN 是平行四边形.∴MN =A C .19.(6分)先化简(1﹣x x−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.【解答】解:原式=x−1−x x−1·(x+1)(x−1)(x−2)2 =−1x−1·(x+1)(x−1)(x−2)2 =﹣x+1(x−2)2,∵x ﹣1≤2,且x≠1,2,∴x ≤3,把x =3代入上式得,原式=﹣x+1(x−2)2=3+112=-4.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?【解答】解:(1)在这次评价中,共抽查的学生有:224÷40%=560(名).故答案为:560;(2)选择“讲解题目”的人数为:560-84-168-224=84(人),讲解题目组所在扇形的圆心角的大小是:360°×84560=54°.故答案为:54°;(3)168560×12000=3600(人),答:在试卷讲评课中,“独立思考”的学生约有3600人.21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y 件.(1)直接写出y与x的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?【解答】(1)依题意得:y=500-10(x-30)=-10x+800(x≥30).(2)依题意得:(x-20)(-10x+800)=8000,整理得:x2-100x+2400=0,解得:x1=40,x2=60.当x=40时,20(-10x+800)=8000(元),8000>5000,不合题意,舍去;当x=60时,20(-10x+800)=4000(元),4000<5000,符合题意.答:销售单价应定为60元.22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E(要求:尺规作图,保留作图痕迹,不写作法,要下结论);(2)在A D 边上截取A F=A B ,连接EF,若A B =3,∠B =60°,求四边形A B EF的面积.【解答】解:(1)如图,A E即为所求;(2)在平行四边形A B C D 中,A D ∥B C ,∴∠D A E=∠A EB ,由(1)知:A E平分∠B A D ,∴∠D A E=∠B A E,∴∠A EB =∠B A E,∴A B =EB ,∵A B =A F,∴A F =B E ,∴A F ∥B E ,∴四边形A B EF 是平行四边形,∵A B =A F ,∴▱A B EF 是菱形,作A H ⊥B E 于点H ,∵A B =B E =3,∠B =60°,∴A H =3√32, ∴四边形A B EF 的面积为:B E ×A H =3×3√32=9√32.23.(10分)如图,直线y =x +B 与双曲线y =k x (x >0)的交点为A (1,A ),与x 轴的交点为B (﹣1,0),点C 为双曲线y =k x (x >0)上的一点.(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.【解答】解:(1)∵直线A B 过点B (﹣1,0),∴﹣1+B =0,解得:B =1,∴直线A B 的表达式为y =x +1.∵点A (1,A )在直线A B 上,∴A =1+1=2,∴点A 的坐标为(1,2).又∵双曲线y =k x (x >0)过点A (1,2),∴k =1×2=2,∴反比例函数的表达式为y =2x (x >0). (2)在图1中,过点C 作C D ⊥x 轴于点D ,过点O 作OE ⊥A B 于点E ,设直线A B 与y 轴交于点M . ∵直线A B 的表达式为y =x +1,OC ∥A B ,∴直线OC 的表达式为y =x .联立两函数表达式成方程组,{y =x y =2x,解得:{x =√2y =√2或{x =−√2y =−√2(不合题意,舍去), ∴点C 的坐标为(√2,√2),∴OD =C D =√2,∴OC =√OD 2+C D 2=2.当x =0时,y =0+1=1,∴点M 的坐标为(0,1),∴OM =OB =1,∴△B OM 为等腰直角三角形,∴OE =12B M =12√OB 2+OM 2=√22, ∴S △A OC =12OC •OE =12×2×√22=√22.(3)在图1中,过点A 作A F ⊥x 轴于点F ,则B F =1﹣(﹣1)=2,A F =2,∴A B =√B F 2+A F 2=2√2,∴A E =A B ﹣B E =2√2﹣√22=3√22, ∴tA n ∠OA E =OE A E =13.∵OB =OM ,∠B OM =90°,∴∠A B O =45°.在图2中,过点C 作C N ⊥x 轴于点N .∵∠A ON =∠A B O +∠B A O ,∠A OC =∠A B O =45°,∠A ON =∠A OC +∠C ON ,∴∠C ON =∠B A O ,∴tA n ∠C ON =13.设点C 的坐标为(m,1m),3∵点C 在反比例函数y=2(x>0)的图象上,x∴m×1m=2,3∴m=√6或m=﹣√6(舍去),).∴点C 的坐标为(√6,√6324.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 中点,求证:C E2=B E•B A ;(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A B是否为定值,如MN 果是,请求出这个值,如果不是,请说明理由.【解答】解:(1)∵=,∴∠C A B =∠C D B =40°,∵∠A B C +∠A C B +∠C A B =180°,∠A B C =∠A C B =α,∴α=12×(180°−40°)=70°;(2)证明:∵点B 的中点,∴=,∴∠D C B =∠A ,∵∠A B C =∠C B E,∴△B C E∽△B A C ,∴B CB A =B EB C,∴B C 2=B E•B A ,∵∠A C B =∠A C D +∠B C D ,∠B EC =∠A C D +∠A ,∠B C D =∠A ,∴∠A B C =∠A C B =∠B EC ,∴C B =C E,∴C E2=B E•B A ;(3)是定值.∵将C D 分别沿B C 、A C 翻折得到C M、C N,∴∠D C N=2∠D C A ,∠D C M=2∠D C B ,C N=C D =C M=2r,∴∠MC N=2∠A C B =2α,过点C 作C Q⊥MN于点Q,则MN=2NQ,∠NC Q=12∠MC N=α,∠C QN=90°,连接A O并延长交⊙O于点P,连接B P,则∠A B P=90°,,∴∠P=∠A C B =∠NC Q=α,∵A P=C N,∠A B P=90°=∠NQC ,∴△A B P ≌△NQC (A A S ),∴A B =NQ =12MN ,∴A B MN =12,A B MN 为定值.25.(12分)在平面直角坐标系中,点A 是抛物线y =﹣12x 2+mx +2m +2与y 轴的交点,点B 在该抛物线上,该抛物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G .设点B 的横坐标为2m ﹣1.(1)当m =1时,①当函数y 的值随x 的增大而增大时,自变量x 的取值范围为 .②求图象G 最高点的坐标.(2)当m <0时,若图象G 与x 轴只有一个交点,求m 的取值范围.(3)设图象G 最高点与最低点的纵坐标之差为h ,求h 与m 之间对应的函数关系式.【解答】解:(1)①当m =1时,抛物线的表达式为y =﹣12x 2+x +2, ∵-12<0,故抛物线开口向下,当函数y 的值随x 的增大而增大时,则图象在对称轴的左侧,即x ≤1,故答案为x ≤1;②函数的对称轴为x =1,当x =1时,y =﹣12x 2+x +2=92, 即点G 的坐标为(1,92);(2)当x =2m ﹣1时,y =﹣12x 2+mx +2m +2=3m +32,则点B 的坐标为(2m ﹣1,3m +32), 同理,点A 的坐标为(0,2m +2),∵m <0,则y B ﹣y A =3m +32﹣2m ﹣2=m ﹣12<0,即点A 在点B 的上方,故当y A >0且y B ≤0时,符合题意,即2m +2>0且3m +32≤0, 解得﹣1<m ≤﹣12;(3)设抛物线的顶点为H ,则点H (m ,12m 2+2m +2),由抛物线的表达式知,点A 、B 的坐标分别为(0,2m +2)、(2m ﹣1,3m +32), ①当m ≤0时,由(2)知,y B <y A ,而y H ﹣y A =12m 2+2m +2﹣2m ﹣2≥0,故图象G 的H 点和B 点分别是最高和最低点,则h =y H ﹣y B =12m 2+2m +2﹣3m ﹣32=12m 2﹣m +12;②当0<m ≤12时,此时点A 、B 分别是G 的最高和最低点,则h =y A ﹣y B =(2m +2)﹣(3m +32)=﹣m +12;③当12<m ≤1时,此时点B 、A 分别是G 的最高和最低点,则h =y B ﹣y A =m ﹣12;④当m >1时,此时点H 、A 分别是G 的最高和最低点,则h =y H ﹣y A =12m 2;∴h ={12m 2−m +12(m ≤0)−m +12(0<m ≤12)m −12(12<m ≤1)12m 2(m >1)。

中考数学模拟测试题(附含答案)

中考数学模拟测试题(附含答案)

中考数学模拟测试题(附含答案)(满分:120分;考试时间120分钟)一、单选题。

(每小题4分,共40分) 1.实数﹣2023的绝对值是( )A.2023B.﹣2023C.12023 D.﹣120232.如图是由6个相同的正方体搭成的几何体,这个几何体的主视图是( )A. B. C. D.3.山东省济南济阳区躯曲堤街道,号称中国黄瓜之乡,特产曲堤黄瓜,全国农产品地理标志,2022年,该街道黄瓜年产值超15 0000 0000元,将数字15 0000 0000用科学记数法表示为( ) A.15×108 B.1.5×109 C.0.15×1010 D.1.5×1084.如图,AB ∥CD ,点E 在AB 上,EC 平分∠AED ,若∠2=50°,则∠1的度数为( ) A.45° B.50° C.65° D.80°(第4题图) (第8题图) (第9题图)5.数学中的对称之美无处不在,下列是张强看到的他所在小区的垃圾桶上的四幅垃圾分类标志图案,如果不考虑图案下面的文字说明,那么这四幅图案既是轴对称图形,又是中心对称图形的是( )A.有害垃圾B.可回收物C.厨余垃圾D.其它垃圾 6.化简:x 2x 2-4÷xx -2=( )A.1B.xC.xx-2D.xx+27.现将正面分别标有“善”、“美”、“济”、“阳”图案的四张卡片(除卡片正面内容不同处,其余完全相同),背面朝上放在桌面上,混合洗匀后,王刚从中随机抽取两张,则这两张卡片的图案恰好可以组成济阳概率是()A.12B.13C.14D.168.反比例函数y=kx在第一象限的图案如图所示,则k的值可能是()A.9B.18C.25D.369.如图,点C是直线AB为4的半圆的中点,连接BC,分别以点B和点C为圆心,大于12BC的长为半径画弧,两弧相交于点D,作直线OD交BC于点E,连接AE,则阴影部分面积为()A.πB.2πC.3√3-πD.2√3-π10.把二次函数y=ax2+bx+c(a>0)的图象作关于y轴的对称变换,所的图象的解析式为y=a (x+1)2-a2,若(m-2)a+b+c≥0成立,则m的最小整数值为()A.2B.3C.4D.5二、填空题。

中考模拟考试 数学试卷 附答案解析

中考模拟考试 数学试卷 附答案解析
C.线段EF的长不变D.线段EF的长不能确定
二、空题(本大题共8个小题,每小题3分,满分24分)
11.点P(a,a-3)在第四象限,则a的取值范围是_____.
12.已知函数y=(m﹣1)x+m2﹣1 正比例函数,则m=_____.
13.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()
一、选择题.(本大题共10个小题,每小题3分,满分30分)
1.有一直角三角形 两边长分别为3和4,则第三边长是()
A.5B.5或 C. D.
2.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()
A.33B.-33C.-7D.7
3. 在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()
根据平行四边形的判定方法逐项判断即可.
【详解】解:A、AB∥CD,AD=BC,如等腰梯形,不能判断是平行四边形,故本选项错误;
B、∠B=∠C,∠A=∠D,不能判断是平行四边形,如等腰梯形,故本选项错误;
C、AB=CD,CB=AD,两组对边分别相等,可判断是平行四边形,正确;
D、AB=AD,CD=BC,两组邻边分别相等,不能判断是平行四边形;
考点:点的平移.
4.函数 中自变量x的取值范围是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据二次根式中的被开方数非负数的性质进行计算,即可得到答案.
【详解】由二次根式中的被开方数非负数的性质可得 ,则 ,故选择B.
【点睛】本题考查函数自变量的取值范围,解题的关键是知道二次根式中的被开方数非负数.
∴线段EF的长不改变.

中考仿真模拟检测《数学试卷》含答案解析

中考仿真模拟检测《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题共10个小题,每小题3分,共30分)1. 3-的倒数是( )A. B. 13C.13- D. 3-2. 在函数y=1x-中,x的取值范围是()A. x≥1B. x≤1C. x≠1D. x<03. 下列运算正确的是( )A. x3·x3=2x6B. (-2x2)2=-4x4C. (x3)2=x6D. x5÷x=x54. 下列图形中,既轴对称图形又是中心对称图形有()A. 1个B. 2个C. 3个D. 4个5. 下列各式中,计算正确的是( )A. -2-3=-1B. -2m²+m²=-m²C. 3÷5445⨯=3÷1=3 D. 3a+b=3a6. 一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A. 3,3,0.4B. 2,3,2C. 3,2,0.4D. 3,3,27. 某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确是( )A. 100(1+2x%)2=120B. 100(1+x2)2=120C. 100(1-x%)2=120D. 100(1+x%)2=1208. 命题:①对顶角相等;②相等的角是对顶角;③在同一平面,垂直于同一条直线的两条直线平行;④平行于同一条直线的两条直线垂直.其中真命题有A. 1个B. 2个C. 3个D. 4个9. 如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )A. 5B. 6C. 2D. 310. 如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A. 2B. 54C.53D.75二、填空题(共8小题;共24分)11. 计算(2+1)(2-1)的结果为_____.12. 分解因式:2a2﹣8b2=________.13. 已知某水库容量约为112000立方米,将112000用科学记数法表示为.14. 如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15. 如图,在平面直角坐标系中,函数y=kx(x>0,常数k>0)的图象经过点A(1,2),B(m,n),(m>1),过点B作y轴的垂线,垂足为C.若△ABC的面积为2,则点B的坐标为____________.16. 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.17. 如图,在矩形ABCD 中,AB=5,BC=103,一圆弧过点B 和点C ,且与AD 相切,则图中阴影部分面积________.18. 如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2.则 cos ∠MCN=________.三、解答题(共9小题;共72分)19. 计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a ﹣b)﹣a(a ﹣b)20. (1)解分式方程: 2216124x x x --=+- (2)先化简,再求值: 222111x x x x x ++---,其中x 满足不等式组 1030x x -≥⎧⎨-<⎩且x 整数. 21. 已知:如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:DC=CF .22. 萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:(1)这次调查中,一共调查了名学生,图1中C类所对应的圆心角度数为 ;(2)请补全条形统计图;(3)在非常喜欢外教的5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.23. 如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.24. 小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?25. (2011贵州安顺,23,10分)如图,已知反比例函数图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.26. 如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=22,BC=2,求⊙O的半径.27. 已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.(1)求证:四边形ABCD是矩形;(2)如果AE=EG,求证:AC2=BC•BG.答案与解析一、选择题:(本大题共10个小题,每小题3分,共30分)1. 3-的倒数是( )A. B. 13 C. 13- D. 3- 【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C2. 在函数中,x 的取值范围是( )A. x≥1B. x≤1C. x≠1D. x <0【答案】A【解析】分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数.详解:根据题意可得:x -1≥0, 解得:x≥1, 故选A .点睛:本题主要考查的是二次根式的性质,属于基础题型.明确二次根式的性质是解决这个问题的关键. 3. 下列运算正确的是( )A. x 3·x 3=2x 6B. (-2x 2)2=-4x 4C. (x 3)2=x 6D. x 5÷x =x 5 【答案】C【解析】试题分析:A.333+36x x =x =x ⋅,故A 错误;B.()()()222224-2x =-2x =4x ⋅,故B 错误;C.()23326x =x =x ⨯,故C 正确;D.55-14x x=x =x ÷,故D 错误.考点:幂的运算4. 下列图形中,既是轴对称图形又是中心对称图形有 ( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】 中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解: 只有图2和图3既是轴对称又是中心对称图形.故,选B【点睛】本题考查中心对称图形和轴对称图形,本题属于基础应用题,只需学生熟练掌握中心对称图形和轴对称图形的定义,即可完成.5. 下列各式中,计算正确的是( )A. -2-3=-1B. -2m²+m²=-m²C. 3÷5445⨯=3÷1=3 D. 3a+b=3a 【答案】B【解析】分析:根据有理数的计算法则以及合并同类项的法则即可得出正确答案.详解:A 、-2-3=-5,故错误;B 、原式=2m -,故正确;C 、原式=444835525⨯⨯=,故错误;D 、不是同类项,无法进行加法计算, 故本题选B .点睛:本题主要考查的是有理数的计算法则和合并同类项的法则,属于基础题型.明确计算法则是解决这个问题的关键.6. 一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A. 3,3,0.4B. 2,3,2C. 3,2,0.4D. 3,3,2 【答案】A【解析】 试题分析:依题意得:1(2433)35x ++++=,解得:x =3,把原数据由小到大排列为:2,3,3,3,4,所以中位数为3,众数为3,方差为:15(1+0+1+0+0)=0.4,故答案选A.考点:中位数;众数;方差.7. 某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确是( )A. 100(1+2x%)2=120B. 100(1+x 2)2=120C. 100(1-x%)2=120D. 100(1+x%)2=120【答案】D【解析】分析:根据涨价前的价格×(1+涨价率)涨价次数=涨价后的数量得出方程.详解:根据题意可得:()21001x%120+=,故选D .点睛:本题主要考查的是一元二次方程的应用,属于基础题型.根据题意得出等量关系是解决这个问题的关键.8. 命题:①对顶角相等;②相等角是对顶角;③在同一平面,垂直于同一条直线的两条直线平行;④平行于同一条直线的两条直线垂直.其中真命题有A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】试题分析:①③正确;②相等的角不一定就是对顶角,也有可能是内错角、同位角等,④平行于同一条直线的两条直线互相平行考点:概念的掌握点评:本题难度不大,考查的是学生对于知识概念的一些掌握程度9. 如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A. 5B. 6C. 2D. 3【答案】C【解析】 【详解】试题解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB•DH=32O ,∴DH=16,在Rt △ADH 中,AH=22AD DH -=12, ∴HB=AB ﹣AH=8,在Rt △BDH 中,BD=2285+=DH BH ,设⊙O 与AB 相切于F ,连接AF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH ,∴=OA OF BD BH, ∴100885=F , ∴OF=25.故选C .考点:1.切线的性质;2.菱形的性质.10. 如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A. 2B. 54C. 53D. 75【答案】D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,2222247555 BC BE⎛⎫-=-=⎪⎝⎭.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.二、填空题(共8小题;共24分)11. 计算22-1)的结果为_____.【答案】1【解析】利用平方差公式进行计算即可. 【详解】原式=(2)2﹣1 =2﹣1 =1, 故答案为1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式. 12. 分解因式:2a 2﹣8b 2=________. 【答案】2(2)(2)a b a b -+ 【解析】 【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解即可. 【详解】2a 2﹣8b 2=2(a 2﹣4b 2)=2(a +2b )(a ﹣2b ). 故答案为2(a +2b )(a ﹣2b ).【点睛】本题考查了提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.13. 已知某水库容量约为112000立方米,将112000用科学记数法表示为 . 【答案】1.12×105. 【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数且为这个数的整数位数减1,,由于112000亿有6位,所以可以确定n=6﹣1=5.即112000=1.12×105. 考点:科学记数法.14. 如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃. 考点:1.有理数大小比较;2.有理数的减法. 15. 如图,在平面直角坐标系中,函数y=kx(x >0,常数k >0)的图象经过点A (1,2),B (m ,n ),(m >1),过点B 作y 轴的垂线,垂足为C .若△ABC 的面积为2,则点B 的坐标为____________.【答案】1(4,)2B 【解析】考点:反比例函数综合题. 分析:由于函数ky x(x >0常数k >0)的图象经过点A(1,2),把(1,2)代入解析式即可确定k=2,依题意BC=m ,BC 边上的高是2-n="2-"2m,根据三角形的面积公式得到关于m 的方程,解方程即可求出m ,然后把m 的值代入y=2x,即可求得B 的纵坐标,最后就求出点B 的坐标. 解:∵函数y=kx(x >0常数k >0)的图象经过点A(1,2), ∴把(1,2)代入解析式得2=1k , ∴k=2,∵B(m ,n)(m >1), ∴BC=m ,当x=m 时,n=2m,∴BC边上的高是2-n=2-2m,而S△ABC=12m(2-2m)=2,∴m=3,∴把m=3代入y=2x,∴n=23,∴点B的坐标是(3,23).故填空答案:(3,23 ).16. 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.【答案】24π.【解析】底面半径为3cm,则底面周长=6πcm,侧面面积=12×6π×8=24πcm2.17. 如图,在矩形ABCD中,AB=5,BC=103,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为________.【答案】753﹣100 3【解析】设圆弧圆心为O,与AD切于E,连接OE交BC于F,连接OB、OC,设圆的半径为x,则OF=x-5,由勾股定理得,OB2=OF2+BF2,即x 2=(x-5)2+(53 )2解得,x=10, 则∠BOF=60°,∠BOC=120°, 则阴影部分面积为:矩形ABCD 的面积-(扇形BOCE 的面积-△BOC 的面积)2120101103510353602π⨯⨯=⨯-+⨯⨯1007533π=-故答案是:1007533π-. 18. 如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2.则 cos ∠MCN=________.【答案】1314【解析】 【分析】连接AC ,通过三角形全等,求得∠BAC=30°,从而求得BC 的长,然后根据勾股定理求得CM 的长,连接MN ,过M 点作ME ⊥CN 于E ,则△MNA 是等边三角形求得MN=2,设NE=x ,表示出CE ,根据勾股定理即可求得ME ,然后求得tan ∠MCN .【详解】∵AB=AD=6,AM :MB=AN :ND=1:2, ∴AM=AN=2,BM=DN=4, 连接MN ,连接AC ,∵AB ⊥BC ,AD ⊥CD ,∠BAD=60° 在Rt △ABC 与Rt △ADC 中,AB ADAC AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ADC (HL ) ∴∠BAC=∠DAC=12∠BAD=30°,MC=NC , ∴BC=12AC , ∴AC 2=BC 2+AB 2,即(2BC )2=BC 2+AB 2, 3BC 2=AB 2, ∴BC=23,在Rt △BMC 中,CM=22224(23)27BM BC +=+=∵AN=AM ,∠MAN=60°, ∴△MAN 是等边三角形, ∴MN=AM=AN=2,过M 点作ME ⊥CN 于E ,设NE=x ,则CE=27-x ,∴MN 2-NE 2=MC 2-EC 2,即4-x 2=(7)2-(7-x )2, 解得:7, ∴7-7137 ∴223217MN NE -=,∴cos ∠MCN=1377131427CECM==.考点:1.全等三角形的判定与性质;2.三角形的面积;3.角平分线的性质;4.含30度角的直角三角形;勾股定理.三、解答题(共9小题;共72分)19. 计算:(1)|﹣6|+(﹣2)37)0; (2)(a+b)(a ﹣b)﹣a(a ﹣b) 【答案】(1)-1;(2)ab ﹣b 2.【解析】分析:(1)、根据绝对值、立方和零次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据平方差公式和多项式的乘法计算法则将括号去掉,然后进行合并同类项. 详解:(1)、原式=6﹣8+1=﹣1; (2)、原式=a 2﹣b 2﹣a 2+ab=ab ﹣b 2.点睛:本题主要考查的是实数的计算以及整式的乘法,属于基础题型.在去括号的时候,如果括号前面为负号,则去掉括号后括号里面的每一项都要变号. 20. (1)解分式方程:2216124x x x --=+- (2)先化简,再求值: 222111x x xx x ++---,其中x 满足不等式组 1030x x -≥⎧⎨-<⎩且x 为整数. 【答案】(1) 原方程无解;(2)11x -,1. 【解析】分析:(1)、首先进行去分母将分式方程转化为整式方程,从而求出整式方程的解,然后对解进行检验,看是否使分式的分母为零;(2)、将分式进行通分,然后根据减法的计算法则将分式进行化简;求出不等式组的解,然后选择出合适的x 的值代入化简后的分式进行计算得出答案. 详解:(1)、解:去分母得: , 解方程得:检验:当 时,∴是原方程增根, ∴ 原方程无解(2)、解:==解不等式组得: 1≤x <3 .∵x 为整数, ∴x =1或x =2. 当x =1时,原式无意义, ∴ 当x =2时,原式=1.点睛:本题主要考查的是分式的化简和解分式方程,属于基础题型.求出分式的公分母是解题的前提条件. 21. 已知:如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:DC=CF .【答案】见解析 【解析】分析:根据平行四边形的性质、中点的性质以及对顶角证明出△ABE和△FCE全等,从而得出AB=CF,根据平行四边形的性质得出AB=CD,从而得出答案.详解:证明:∵四边形ABCD是平行四边形,∴CD∥AB,AB=CD,∴∠DFA=∠FAB;∵E为BC中点,∴EC=EB,∴在△ABE与△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∴DC=CF.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于基础题型.证明出三角形全等是解题的关键.22. 萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:(1)这次调查中,一共调查了名学生,图1中C类所对应的圆心角度数为 ;(2)请补全条形统计图;(3)在非常喜欢外教5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.【答案】(1)40;54°;(2)补全条形统计图见解析;(3)树状图或列表见解析,P(一男一女)=3 5【解析】试题分析:(1)通过D类型有4人占比10%即可得到调查的人数;然后根据条形图得到C类的人数,通过占比求得相应圆心角的度数;(2)用调查的总人数减去A、B、D类的人数得到C类的人数,补全图形即可;(3)通过列表法即可求得概率.试题解析:(1)一共调查了4÷10%=40人,40-8-22-4=6,360°×640=54°,故填:40;54°;(2)补全条形统计图,如图所示:(3)列表:男1 男2 男3 女1 女2 男1 √√男2 √√男3 √√女1 √√√女2 √√√所有等可能的情况有20种情况,其中一男一女的情况有12种,则P(一男一女)=35.23.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.24. 小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?【答案】(1)每个篮球80元,每个足球50元;(2)最多可以买33个篮球.【解析】试题分析:(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元,列出方程组,求解即可;(2)设买m个篮球,则购买(60-m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.试题解析:(1)设每个篮球x元,每个足球y元,由题意得,23310 {52500 x yx y+-+=,解得:80 {50xy==,答:每个篮球80元,每个足球50元; (2)设买m个篮球,则购买(60-m)个足球,由题意得,80,m+50(60-m)≤4000,解得:m≤3313,∵m为整数,∴m最大取33,答:最多可以买33个篮球.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.25. (2011贵州安顺,23,10分)如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x 轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.【答案】(1)∵点A(-1,m)在第二象限内,∴AB = m,OB = 1,∴即:,解得,∴A (-1,4),∵点A (-1,4),在反比例函数的图像上,∴4 =,解得,∵反比例函数为,又∵反比例函数的图像经过C(n,)∴,解得,∴C (2,-2),∵直线过点A (-14),C (2,-2)∴解方程组得 ∴直线的解析式为; (2)当y = 0时,即解得,即点M (1,0) 在中,∵AB = 4,BM = BO +OM =" 1+1" = 2,由勾股定理得AM =. 【解析】试题分析:(1)根据点A 的横坐标与△AOB 的面积求出AB 的长度,从而得到点A 的坐标,然后利用待定系数法求出反比例函数解析式,再利用反比例函数解析式求出点C 的坐标,根据点A 与点C 的坐标利用待定系数法即可求出直线y=ax+b 的解析式;(2)根据直线y=ax+b 的解析式,取y=0,求出对应的x 的值,得到点M 的坐标,然后求出BM 的长度,在△ABM 中利用勾股定理即可求出AM 的长度.试题解析:(1)∵点A(-1,m )在第二象限内,∴AB=m ,OB=1,∴S △ABO =12AB•BO=2, 即:12×m×1=2, 解得m=4,∴A (-1,4),∵点A (-1,4),在反比例函数y =k x 的图象上, ∴4=1k , 解得k=-4,∴反比例函数为y=-4x又∵反比例函数y=-4x的图象经过C(n ,-2) ∴-2=4-n , 解得n=2,∴C (2,-2),∵直线y=ax+b 过点A (-1,4),C (2,-2)∴4{22a b a b-+-+==, 解方程组得2{2a b -==, ∴直线y=ax+b 的解析式为y=-2x+2;(2)当y=0时,即-2x+2=0,解得x=1,∴点M 的坐标是M(1,0),在Rt △ABM 中,∵AB=4,BM=BO+OM=1+1=2,由勾股定理得AM=2222=42=25AB BM ++.26. 如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且∠ACB =∠DCE .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若tan ∠ACB 2,BC =2,求⊙O 的半径. 【答案】(1)相切(2)64【解析】【分析】(1)连接OE .欲证直线CE 与⊙O 相切,只需证明∠CEO =90°,即OE ⊥CE 即可;(2)在直角三角形ABC 中,根据三角函数的定义可以求得AB 2,然后根据勾股定理求得AC 6同理知DE =1;在Rt △COE 中,利用勾股定理可以求得CO 2=OE 2+CE 2,即6-r) 2=r 2+3,从而易得r 的值;【详解】解:(1)直线CE与⊙O相切理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AEO+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.(2)∵tan∠ACB=22ABBC=,BC=2,∴AB=BC•tan∠ACB2,∴AC6;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB 2,∴DE=DC•tan∠DCE=1;在Rt△CDE中,CE223CD DE+=连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即6-r) 2=r2+3解得:r=6 427. 已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.(1)求证:四边形ABCD是矩形;(2)如果AE=EG,求证:AC2=BC•BG.【答案】(1)见解析;(2)见解析.【解析】【详解】分析:(1)、因为四边形ABCD是平行四边形,所以只要证明∠BAD=90°,即可得到四边形ABCD 是矩形;(2)、连接AG,由平行四边形的性质和矩形的性质以及结合已知条件可证明△BCG∽△ABC,再由相似三角形的性质:对应边的比值相等即可证明AC2=BC•BG.详解:(1)、解:证明:∵BE⊥AC,∴∠AFB=90°.∴∠ABE+∠BAF=90°.∵∠ABE=∠CAD.∴∠CAD+∠BAF=90°.即∠BAD=90°.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)、解:连接AG.∵AE=EG,∴∠EAG=∠EGA,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABG=∠BGC,∴∠CAD=∠BGC,∴∠AGC=∠GAC,∴CA=CG,∵AD∥BC,∴∠CAD=∠ACB,∴∠ACB=∠BGC,∵四边形ABCD是矩形,∴∠BCG=90°,∴∠BCG=∠ABC,∴△BCG∽△ABC,∴AC BCBG CG,∴AC2=BC•BG.点睛:本题考查了平行四边形的性质、矩形的判断和性质、等腰三角形的判断和性质以及相似三角形的判断和性质,题目的综合性较强,难度中等,熟记相似三角形的各种判断方法是解题的关键.。

2024年中考数学模拟考试试卷(有参考答案)

2024年中考数学模拟考试试卷(有参考答案)
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵





在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式

【小问2详解】
原式

【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届湘潭市中考模拟试题数 学温馨提示:1. 本试卷分试题卷和答题卷两部分。

满分120分, 考试时间120分钟. 2.答题时, 应该在答题卷密封区内写明校名, 姓名和学号。

3.考试时不能使用计算器,所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应.4.考试结束后, 上交答题卷.一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分) 1、下列一元二次方程中,没有实数根的是( ) A.2210x x +-= B.2x +22x+2=0 C.210x +=D.220x x -++=2、如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到△A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°_1_ A _1_ A3、在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为( )A .430.610⨯辆B .33.0610⨯辆C .43.0610⨯辆D .53.0610⨯辆4、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形.其中,真命题的个数是( )A.4 B.3 C.2 D.1 5、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③ 6、在△ABC 中,90C ∠=,若4BC =,2sin 3A =,则AC 的长是( ) A.6B.C.D.7、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 8、如图,EF 是圆O 的直径,5cm OE =,弦MN =(第8题图)则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cm C.8cm D.3cm9、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( )A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0)10、反比例函数ky x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为( )x x x x二、填空题:(每小题4分,共16分)A . B.C.D .(第13题图)11、2020年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 .12、方程2(34)34x x -=-的根是.13、如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14、在Rt △ABC 中,90C ∠=,D 为BC 上一点,30DAC ∠=,2BD=,AB =,则AC 的长是 .三、(第15题每小题6分,第16题6分,共18分)15、解答下列各题:(1)计算:323+—02)(-+2cos30°—23—A( 第14题图)(2)解方程:2+-=.x x43017、把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。

(1)如果从中抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字。

当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢。

现请你利用数状图或列表法分析游戏规则对双方是否公平?并说明理由。

w W w .18、城市规划期间,欲拆除一电线杆AB(如图所示),已知距电线杆AB水平距离14米的D处有一大坝,背水坡CD的坡度2:1i=,坝高CF为2米,在坝顶C处测得杆顶A的仰角为30.D,E之间是宽为2米的人行道.试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域).( 1.732≈,1.414≈)五、(每小题10分,共20分)19、如图,在直角坐标系中,O为原点.点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数12yx=的图象经过点A.(1)求点A的坐标;(2)如果经过点30人行道ABED FA 的一次函数图象与y 轴的正半轴交于点B ,且OB AB ,求这个一次函数的解析式.20、如图,已知ED ∥BC ,∠EAB=∠BCF, (1)四边形ABCD 为平行四边形。

(2)求证:OB 2 =OE ·OF(3)连接BD ,若∠OBC=∠ODC,求证,四边形ABCD 为菱形。

B 卷(共50分)一、填空题:(每小题4分,共20分)EDCBFAO21.已知22222()()60a b a b +-+-=, 则=+22b a ______.22、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、 交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3,则DM 的长为 。

23.如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程x 2 – 2mx + n 2 = 0有实数根的概率为 .24. 如图,⊙O 的直径EF 为10cm ,弦AB 、CD 分别为6cm 、8cm ,且AB ∥EF ∥CD .则图中阴影部分面积之和为( ).24题图第19题图PN MDCBA 22题图25、如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=________.25题图二、(共8分)26.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?三、(共10分)27. 已知,如图,AB是⊙O的直径,AD是弦,C是弧AB的中点,连结BC并延长与AD的延长线相交与点P,BE⊥DC,垂足为E,DF∥EB,交AB与点F,FH⊥BD,垂足为H,BC=4,CP=3.求(1)BD和DH的长,(2)BE·BF的值四、(共12分)PCEBOHFDA28. 如图所示,在平面直角坐标系中,以点M(2,3)为圆心,5为半径的圆交x 轴于A,B两点,过点M作x轴的垂线,垂足为D;过点B作⊙M的切线,与直线MD 交于N点。

(1)求点B、点N的坐标以及直线BN的解析式;(2) 求过A、N、B、三点(对称轴与y轴平行)的抛物线的解析式;(3)设(2)中的抛物线与y轴交于点P,以点D,B,P三点为顶点作平行四边答案一.选择题1.C2.A3.D4.C5.C6.B7.C8.B9.C 10.B二、填空题:(每小题4分,共16分) 11、75 12、34,3521==x x13、16 14、3 三、15、(1)3-3 (2)-1,4317、(1)31(2)P (小李)=32,P (小王)=31, 3231≠不公平18、AB ≈10.66m,BE=12m,BE>AB,无危险,不需封人行道。

五、19、(1)设A (m,3m ) (2)设一次函数:y=kx+b ∴B (0,b )(b>0) ∵A 在y=x 12上 ∵OB=AB ∴b=310,B(0,310) ∴3mm=12,m=±2 y=31034+x ∵A 在第一象限 ∴m=2,A(2,6)20、 (1) ∵DE ∥BC ∴∠D=∠BCF ∵∠EAB=∠BCF ∴∠EAB=∠D ∴AB ∥CD ∵DE ∥BC∴四边形ABCD 为平行四边形 (2)∵DE ∥BC ∴OAOCOE OB =∵AB ∥CD∴OBOFOA OC =∴OBOFOA OB =∴OF OE OB •=2(3)连结BD,交AC 于点H,连结OD ∵DE ∥BCE OBC ∠=∠∴ ODC OBC ∠=∠EDCBFAOEDC BFAOHDOEDOF EODC ∠=∠∠=∠∴ODF ∆∴∽OED ∆ODOB OE OF OB OF OE OD ODOFOE OD =∴•=•=∴=∴22 DH BH ABCD =中平行四边形 w W w .B D OH ⊥∴∴四边形ABCD 为菱形B 卷(共50分)一、填空题:(每小题4分,共20分) 21. 3 22. 2 23.43 24.π225 25、20二、(共8分)26.(1)解:设今年三月份甲种电脑每台售价x 元100000800001000x x=+解得:4000x =经检验:4000x =是原方程的根, 所以甲种电脑今年每台售价4000元. (2)设购进甲种电脑x 台,4800035003000(15)50000x x +-≤≤解得610x ≤≤因为x 的正整数解为6,7,8,9,10,所以共有5种进货方案 (3)设总获利为W 元,(40003500)(38003000)(15)(300)1200015W x a x a x a=-+---=-+-当300a =时,(2)中所有方案获利相同.此时,购买甲种电脑6台,乙种电脑9台时对公司更有利(利润相同,成本最低).三、(共10分)27. 已知,如图,AB 是⊙O 的直径,AD 是弦,C 是弧AB 的中点,连结BC 并延长与AD 的延长线相交与点P ,BE ⊥DC ,垂足为E ,DF ∥EB ,交AB 与点F ,FH ⊥BD ,垂足为H ,BC=4,CP=3.求(1)BD 和DH 的长,(2)BE ·BF 的值(1) 107,528==DH BD (2) BE ·BF 598=四、(共12分)28.1、B (-2,0);N (2,)316-直线BN :3834--=x y PC EBO HF DA2、434312--=x x y 3、)4,0();4,4();4,4(321Q Q Q --- 2Q 在抛物线上。

相关文档
最新文档