辽宁省沈阳市中考数学试卷 (全word版及答案)
2021年辽宁省沈阳市中考数学试卷(含答案)
2021年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)9的相反数是()A.B.﹣C.9D.﹣9 2.(2分)如图是由6个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.3.(2分)据报道,截至2021年5月24日16时,沈阳市新冠疫苗累计接种3270000次()A.32.7×105B.0.327×107C.3.27×105D.3.27×106 4.(2分)下列计算结果正确的是()A.a4•a2=a8B.6a﹣2a=4aC.a6÷a2=a3D.(﹣a2b)2=﹣a4b25.(2分)如图,直线a,b被直线c所截,∠1=70°,则∠2的度数是()A.70°B.100°C.110°D.120°6.(2分)信息技术课上,在老师的指导下,小好同学训练打字速度(字/min),17,23,17,17,21,21,对于这组数据,下列说法正确的是()A.众数是17B.众数是15C.中位数是17D.中位数是18 7.(2分)如图,△ABC与△A1B1C1位似,位似中心是点O,若OA:OA1=1:2,则△ABC与△A1B1C1的周长比是()A.1:2B.1:3C.1:4D.1:8.(2分)一次函数y=﹣3x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(2分)下列说法正确的是()A.任意掷一枚质地均匀的骰子,掷出的点数一定是奇数B.“从一副扑克牌中任意抽取一张,抽到大王”是必然事件C.了解一批冰箱的使用寿命,采用抽样调查的方式D.若平均数相同的甲、乙两组数据,s甲2=0.3,s乙2=0.02,则甲组数据更稳定10.(2分)如图,△ABC是⊙O的内接三角形,AB=2,连接OA,OB,则()A.B.C.πD.二、填空题(本大题共6小题,每小题3分,合计18分)11.(3分)分解因式:ax2+2ax+a=.12.(3分)不等式组的解集是.13.(3分)化简:()•(x+4)=.14.(3分)如图,平面直角坐标系中,O是坐标原点(k≠0)图象上的一点,过点A分别作AM⊥x轴于点M,则k的值是.15.(3分)某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,其销售量相应减少4件,那么将销售价定为元时,才能使每天所获销售利润最大.16.(3分)如图,△ABC中,AC=3,AB=5.四边形ABEF是正方形,点D是直线BC上一点,且PD=DE.过点P作直线l 与BC平行,AD于点G,H,则GH的长是.三、解答题(第17小题6分,第18、19题各8分,共22分)17.(6分)计算:(π﹣2021)0﹣3tan30°+|1﹣|+()﹣2.18.(8分)如图,在菱形ABCD中,点M,DC上的点,BM=,DN=DC.连接AM,延长AN交线段BC延长线于点E.(1)求证:△ABM≌△ADN;(2)若AD=4,则ME的长是.19.(8分)某品牌免洗洗手液按剂型分为凝胶型、液体型,泡沫型三种型号(分别用A,B,C依次表示这三种型号).小辰和小安计划每人购买一瓶该品牌免洗洗手液(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是.(2)请你用列表法或画树状图法,求小辰和小安选择同一种型号免洗洗手液的概率.四、解答题(每小题8分,共16分)20.(8分)学史明理,学史增信,学史崇德,在建党100周年之际,某校对全校学生进行了一次党史知识测试,B,C,D四个等级,随机抽取了部分学生的成绩进行调查根据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生;(2)请根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中,D等级对应的圆心角度数是度;(4)根据抽样调查的结果,请你估计该校2000学生中有多少名学生的成绩评定为C等级.21.(8分)某校团体操表演队伍有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同五、解答题(本题10分)22.(10分)如图,AB是⊙O的直径,AD与⊙O交于点A(点E 不与点O,A重合).连接DE交⊙O于点C,连接CA,∠ABC =∠D.(1)求证:AD是⊙O的切线;(2)若AB=13,CA=CD=5,则AD的长是.六、解答题(本题10分)23.(10分)如图,平面直角坐标系中,O是坐标原点(k≠0)经过点C(3,6),与x轴交于点A,交直线y=x于点D,AD.(1)填空:k=,点A的坐标是(,);(2)求证:四边形OADC是平行四边形;(3)动点P从点O出发,沿对角线OD以每秒1个单位长度的速度向点D运动,直到点D为止,沿对角线DO以每秒1个单位长度的速度向点O运动,直到点O为止.设两个点的运动时间均为t秒.①当t=1时,△CPQ的面积是.②当点P,Q运动至四边形CPAQ为矩形时,请直接写出此时t 的值.七、解答题(本题12分)24.(12分)在△ABC中,AB=AC,△CDE中(CE≥CA),BC =CD,∠D=α,点B,C,E不共线,且PB=PD.(1)如图1,点D在线段BC延长线上,则∠ECD=,∠ABP=(用含α的代数式表示);(2)如图2,点A,E在直线BC同侧;(3)若∠ABC=60°,BC=+1,当BP⊥DE时,直线PC交BD于点G,请直接写出GM的长.八、解答题(本题12分)25.(12分)如图,平面直角坐标系中,O是坐标原点2+bx+c与x 轴交于A、B两点(点A在点B的左侧),点B坐标是(3,0).抛物线与y轴交于点C(0,3),连接PC.(1)求抛物线的函数表达式并直接写出顶点P的坐标.(2)直线BC与抛物线对称轴交于点D,点Q为直线BC上一动点.①当△QAB的面积等于△PCD面积的2倍时,求点Q的坐标;②在①的条件下,当点Q在x轴上方时,过点Q作直线l垂直于AQ x﹣交直线l于点F x﹣上,且AG=AQ时参考答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.参考答案:9的相反数是﹣9,故选:D.点拨:此题主要考查了相反数,解题的关键是掌握相反数的概念.2.参考答案:从几何体的正面看,底层是四个小正方形.故选:B.点拨:本题主要考查了简单组合体的三视图,正确把握观察的角度是解题的关键.画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.3.参考答案:3270000=3.27×106.故选:D.点拨:此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.参考答案:A.a4•a2=a8,故本选项错误;B.6a﹣2a=5a;C.a6÷a2=a3,故本选项错误;D.(﹣a2b)2=a3b2,故本选项错误;故选:B.点拨:本题主要考查了同底数幂的乘法法则、合并同类项法则、同底数幂的除法法则以及积的乘方法则的运用,关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.5.参考答案:如图,∵a∥b,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=180°﹣∠8=180°﹣70°=110°.故选:C.点拨:本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键.6.参考答案:以上数据重新排列为:15,15,17,18,21,23,∴众数为17、中位数为,故选:A.点拨:本题考查的是众数和中位数的概念;熟练掌握中位数、众数的概念是解题的关键.7.参考答案:∵△ABC与△A1B1C4位似,∴△ABC∽△A1B1C8,AC∥A1C1,∴△AOC∽△A6OC1,∴==,∴△ABC与△A1B1C4的周长比为1:2,故选:A.点拨:本题考查的是位似图形的概念、相似三角形的性质,掌握位似图形是相似图形、位似图形的对应边平行是解题的关键.8.参考答案:∵一次函数y=﹣3x+1,k=﹣6,∴该函数图象经过第一、二、四象限,故选:C.点拨:本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.9.参考答案:A.任意掷一枚质地均匀的骰子,故原说法错误;B.“从一副扑克牌中任意抽取一张,故原说法错误;C.了解一批冰箱的使用寿命,说法正确;D.若平均数相同的甲,s甲2=0.2,s乙2=0.02,则乙组数据更稳定,不合题意;故选:C.点拨:本题主要考查了随机事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.10.参考答案:过点O作OD⊥AB于D,则AD=DB=AB=,由圆周角定理得:∠AOB=2∠ACB=120°,∴∠AOD=60°,∴OA===2,∴的长==,故选:D.点拨:本题考查的是三角形的外接圆与外心,掌握垂径定理、圆周角定理、弧长公式是解题的关键.二、填空题(本大题共6小题,每小题3分,合计18分)11.参考答案:ax2+2ax+a,=a(x3+2x+1)﹣﹣(提取公因式)=a(x+3)2.﹣﹣(完全平方公式)点拨:本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.12.参考答案:解不等式x﹣5<1,得:x<5,解不等式3x﹣5≥7,得:x≥,则不等式组的解集为≤x<6,故答案为:≤x<6.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.参考答案:()•(x+4)=•(x+4)=•(x+4)=5,故答案为:1.点拨:本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.14.参考答案:∵四边形AMON的面积为12,∴|k|=12,∵反比例函数图象在二四象限,∴k<0,∴k=﹣12,故答案为:﹣12.点拨:本题考查了反比例函数函数k的几何意义:在反比例函数y =图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.参考答案:设销售单价定为x元(x≥9),每天所获利润为y 元,则y=[20﹣4(x﹣3)]•(x﹣8)=﹣4x4+88x﹣448=﹣4(x﹣11)2+36,所以将销售定价定为11元时,才能使每天所获销售利润最大,故答案为11.点拨:本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.16.参考答案:∵△ABC中,AC=3,AB=5,∴AC7+BC2=25,AB2=25,∴AC7+BC2=AB2,∴△ABC为直角三角形,①当点D位于C点左侧时,如图:设直线l交BE于点M,∵l∥BC,∴,∠MGB=∠ABC,又∵四边形ABEF是正方形,且PD1=D1E,∴BE=AB=8,∠EBA=90°,即,解得:BM=,∵∠MGB=∠ABC,∠EBA=∠ACB=90°,∴△GBM∽△BCA,∴,∴,解得:GB=,∴AG=AB﹣GB=,∵l∥BC,∴△AGH∽△ABD1,∴,∵CD1=1,∴BD8=BC﹣CD1=3,∴,解得:GH=;②当点D位于C点右侧时,如图:与①同理,此时CD8=BC+CD1=5,∴,解得:GH=,综上,GH的长为或,故答案为:或.点拨:本题考查勾股定理逆定理,相似三角形的判定和性质,理解题意,证明出△GBM∽△BCA,特别注意分类思想的运用是解题关键.三、解答题(第17小题6分,第18、19题各8分,共22分)17.参考答案:(π﹣2021)0﹣3tan30°+|5﹣|+()﹣2=1﹣6×+﹣1+4=5﹣+﹣4+4=4.点拨:此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.参考答案:(1)证明:∵四边形ABCD为菱形,∴AB=AD=BC=CD,∠B=∠D,∵BM=BC DC,∴BM=DN,在△ABM和△ADN中,,∴△ABM≌△ADN(SAS),(2)∵四边形ABCD为菱形,∴AD∥CE,∴∠DAN=∠CEN,∵∠AND=∠CNE,∴△AND∽△ENC,∴=,∵DN=DC,∴==,∴=,∴CE=,∵BM=BC,∴MC=BC=6,∴ME=MC+CE=,故答案为:.点拨:本题考查了菱形的性质,全等三角形的判定,相似三角形的判定和性质,通过菱形的性质得到△AND∽△ENC是关键.19.参考答案:(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是,故答案为:;(2)列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,所以小辰和小安选择同一种型号免洗洗手液的概率为=.点拨:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(每小题8分,共16分)20.参考答案:(1)32÷40%=80(名),故答案为:80;(2)B等级的学生为:80×20%=16(名),补全条形图如下,(3)D等级所对应的扇形圆心角的度数为:360°×=36°;(4)2000×=600(名),答:估计该校2000学生中有600名学生的成绩评定为C等级.点拨:本题考查扇形统计图、条形统计图,理解两个统计图中数量关系是解决问题的关键.21.参考答案:设增加了x行,则增加的列数为x,根据题意,得:(6+x)(8+x)﹣7×8=51,整理,得:x2+14x﹣51=3,解得x1=3,x7=﹣17(舍),答:增加了3行3列.点拨:本题主要考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系.五、解答题(本题10分)22.参考答案:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°.又∵CA=CD,∴∠D=∠CAD,又∵∠ABC=∠D,∴∠CAD+∠BAC=90°,即OA⊥AD,∴AD是⊙O的切线;(2)由(1)可得∠ABC+∠BAC=90°=∠D+∠DEA,∵∠ABC=∠D,∴∠BAC=∠DEA,∴CE=CA=CD=5,∴DE=10,在Rt△ABC中,由勾股定理得,BC===12,∵∠ACB=∠DAE=90°,∠ABC=∠D,∴△ABC∽△EDA,∴=,即=,解得,AD=.点拨:本题考查切线的判定,圆周角定理以及相似三角形,掌握切线的判定方法和圆周角定理、相似三角形的判定和性质是解决问题的前提.六、解答题(本题10分)23.参考答案:(1)∵直线y=kx+15(k≠0)经过点C(3,6),∴3k+15=6,解得k=﹣5,即直线的解析式为y=﹣3x+15,当y=0时,x=7,∴A(5.0),故答案为:﹣3,5,0;(2)∵线段CD平行于x轴,∴D点的纵坐标与C点一样,又∵D点在直线y=x上,当y=6时,x=6,即D(8,6),∴CD=5﹣3=5,∵OA=4,∴OA=CD,又∵OA∥CD,∴四边形OADC是平行四边形;(3)①作CH⊥OD于H,∵H点在直线y=x上,∴设H点的坐标为(m,m),∴CH2=(m﹣6)2+(m﹣6)2,DH5=(m﹣8)2+(m﹣6)8,由勾股定理,得CH2+DH2=CD3,即(m﹣3)2+(m﹣6)2+(m﹣8)2+(m﹣6)7=52,整理得m=或8(舍去),∴CH=3,∵OD==10,∴当t=1时,PQ=OD﹣t﹣t=10﹣1﹣5=8,∴S△CPQ=PQ•CH=,故答案为:12;②∵OD=10,当4≤t≤5时,PQ=10﹣2t,当2≤t≤10时,PQ=2t﹣10,当点P,Q运动至四边形CPAQ为矩形时,∵AC==2,当0≤t≤4时,10﹣2t=2,解得t=2﹣,当5≤t≤10时,2t﹣10=2,解得t=5+,综上,当点P或5+.点拨:本题主要考查一次函数的性质,熟练掌握待定系数法求解析式,平行四边形的性质和矩形的性质是解题的关键.七、解答题(本题12分)24.【解答】(1)解:如图1中,∵CE=CD,∴∠D=∠E=α,∴∠ECD=180°﹣2α,∴∠ECB=∠E+∠D=7α,∵AB=AC,∴∠ABC=∠ACB=2α,∵PB=PD,∴∠PBD=∠D=α,∴∠ABP=∠ABC﹣∠PBD=α,故答案为:180°﹣2α,α.(2)证明:如图5中,连接BD.∵CB=CD,PB=PD,∴∠CBD=∠CDB,∠PBD=∠PDB,∴∠PBC=∠PDC=α,∵∠ABC=2α,∴∠ABP=∠PBC=α,∴PB平分∠ABC.(3)解:如图3﹣3中,设BP交AC于J.∵BP⊥PD,BP=PD,∴△PBD是等腰直角三角形,∵CB=CD,PB=PD,∴PG垂直平分线段BG,∴BG=DG,∵PM=MD,∴GM=PB,∵∠ABC=∠ACB=60°,∴∠ECD=180°﹣60°=120°,△ACB是等边三角形,∵CE=CD,∴∠CDE=30°,∴∠PBC=∠PDC=30°,∴∠BJC=90°,∴CJ=BC=CJ=,∵∠CPD=∠CPJ=45°,∴PJ=JC=,∴PB=BJ+PJ=+2,∴GM=.如图3﹣5中,设PC交BC于K,同法可证GM=.∵∠PBC=30°,∠GPB=∠PBC+∠PCB=45°,∴PCB=∠PCD=15°,∴∠KCE=120°﹣15°﹣15°=90°,∵∠E=30°,CE=CB=,∴CK==1+,∴KB=BC﹣CK=,∴PB=BK•cos30°=×=1,∴GM=PB=,综上所述,GM的长为或.点拨:本题属于几何变换综合题,考查了等腰三角形的性质,线段的垂直平分线的性质,等腰直角三角形的判定和性质,等边三角形的判定和性质,解直角三角形,三角形的中位线定理等知识,解题的关键是利用特殊三角形的性质解决问题,学会用转化的思想思考问题,属于中考压轴题.八、解答题(本题12分)25.【解答】解(1)由题意得,,∴b=2,∴y=﹣x7+2x+3=﹣((x﹣5)2+4,∴P(5,4).(2)①如图1,作CE⊥PD于E,∵C (2,3),0),∴直线BC:y=﹣x+5,∴D(1,2),8﹣a),∴CE=PE=DE,∴△PCD是等腰直角三角形,∴S△PCD=PD•CE=,∴AB•|3﹣a|=2,∴×4•|4﹣a|=2,∴a=2或a=6.∴Q(2,1)或(3.②如图2,设G(m,m﹣),由AG2=AQ2得,(m+1)4+=(7+1)2+52,化简,得5m2+2m﹣16=0,∴m5=﹣2,m2=,∴G1(﹣4,﹣3),G2(,﹣),作QH⊥AB于H,∵AQ⊥QF,∴△AHQ∽△QHM,∴QH2=AH•HM,即:14=3•HM,∴HM=,∴M(,7),设直线QM是:y=kx+b,∴,∴k=﹣8,b=7,∴y=﹣3x+5,由得,x=,y=﹣∴F(,﹣)∴G1F==,G2F==.点拨:本题考查了二次函数,一次函数图象和性质及相似三角形等知识,解决问题的关键将点的坐标化成长度,转化成图形的相似等知识.。
2023年辽宁省沈阳市中考数学真题试卷(解析版)
2023年辽宁省沈阳市中考数学真题试卷及答案一、选择题(本大题共10小题,共20)1. 2的相反数是()A. 2B. -2C.D.【答案】B【解析】2的相反数是-2.故选:B.2. 如图是由个相同的小立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.【答案】A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中;解:此几何体的主视图从左往右分列,小正方形的个数分别是,,.故选:A【点拨】本题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图3. 我国自主研发的口径球面射电望远镜()有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据为()A. B. C. D.【答案】D【解析】科学记数法的表示形式为的形式,其中为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数;解:,故选:D【点拨】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值4. 下列计算结果正确的是()A. B. C. D.【答案】D【解析】根据整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算即可求解.解:、,故此选项错误,不符合题意;B.,故此选项错误,不符合题意;C.,故此选项错误,不符合题意;D.,正确,符合题意.故选:.【点拨】本题主要考查整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算,掌握整式的混合运算是解题的关键.5. 不等式的解集在数轴上表示正确的是()A. B.C. D.【答案】C【解析】根据在数轴上表示不等式解集的方法求解即可.解:∵,∴1处是实心原点,且折线向右.故选:C.【点拨】题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6. 某班级准备利用暑假去研学旅行,他们准备定做一批容量一致的双肩包为此,活动负责人征求了班内同学的意向,得到了如下数据:容量人数则双肩包容量的众数是()A. B. C. D.【答案】C【解析】根据众数的定义求解即可.解:出现次,出现次数最多,众数是,故选:C.【点拨】本题考查了众数的定义,众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.7. 下列说法正确的是()A. 将油滴入水中,油会浮在水面上是不可能事件B. 抛出的篮球会下落是随机事件C. 了解一批圆珠笔芯的使用寿命,采用普查的方式D. 若甲、乙两组数据的平均数相同,,,则甲组数据较稳定【答案】D【解析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.解:、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B.抛出的篮球会下落是必然事件,故B不符合题意;C.了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定,故D符合题意;故选:.【点拨】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.8. 已知一次函数的图象如图所示,则,的取值范围是()A. ,B. ,C. ,D. ,【答案】A【解析】根据一次函数图象进行判断.解:一次函数的图象经过第一、三、四象限,,.故选:A.【点拨】本题考查一次函数的图象和性质,熟知一次函数的图象与系数的关系是解题的关键.9. 二次函数图象的顶点所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】根据抛物线,可以写出该抛物线的顶点坐标,从而可以得到顶点在第几象限.解:,顶点坐标为,顶点在第二象限.故选:.【点拨】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.10. 如图,四边形内接于,的半径为,,则的长是()A. B. C. D.【答案】C【解析】根据圆内接四边形的性质得到,由圆周角定理得到,根据弧长的公式即可得到结论.解:四边形内接于,,,,的长.故选:.【点拨】本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题(本大题共6小题,共18分)11. 因式分解:__________.【答案】a(a+1)2【解析】先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a±2ab+b=(a±b):a3+2a2+a,=a(a2+2a+1),=a(a+1)2.【点拨】此题考查提公因式法与公式法的综合运用,掌握运算法则是解题关键12. 当时,代数式的值为______ .【答案】2【解析】先将原式去括号,然后合并同类项可得,再把前两项提取,然后把的值代入可得结果.解:当时,原式,故答案为:.【点拨】此题主要是考查了整式化简求值,能够熟练运用去括号法则,合并同类项法则化简是解题的关键.13. 若点和点都在反比例函数的图象上,则______ .(用“”“”或“”填空)【答案】【解析】把和分别代入反比例函数中计算y的值,即可做出判断.解:∵点和点都在反比例函数的图象上,∴令,则;令,则,,,故答案为:.【点拨】本题考查了反比例函数图像上点的坐标特征,计算y的值是解题的关键.14. 如图,直线,直线分别与,交于点,,小明同学利用尺规按以下步骤作图:(1)点为圆心,以任意长为半径作弧交射线于点,交射线于点;(2)分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;(3)作射线交直线于点;若,则______度.【答案】58【解析】由作图得平分,再根据平行线的性质“两直线平行,内错角相等”易得,即可获得答案.解:由作图得:平分,∴,∵,∴,∴.故答案为:.【点拨】本题主要考查了尺规作图-基本作图以及平行线的性质,由作图得到平分是解题关键.15. 如图,王叔叔想用长为的栅栏,再借助房屋的外墙围成一个矩形羊圈,已知房屋外墙足够长,当矩形的边______ 时,羊圈的面积最大.【答案】15【解析】设为,则,根据矩形的面积公式可得关于x的二次函数关系式,配方后即可解.解:设为,面积为,由题意可得:,当时,取得最大值,即时,羊圈的面积最大,故答案为:.【点拨】本题考查了二次函数的性质在实际生活中的应用.最大面积的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在时取得.16. 如图,在中,,,点在直线上,,过点作直线于点,连接,点是线段的中点,连接,则的长为______ .【答案】或【解析】分两种情况当在延长线上和当在上讨论,画出图形,连接,过点作于,利用勾股定理解题即可解:当在线段上时,连接,过点作于,当在线段上时,,,,,点是线段的中点,,,,,,,,,,当在延长线上时,则,是线段的中点,,,,,,,,,,,,的长为或.故答案为:或.【点拨】本题考查等腰直角三角形的判定和性质,勾股定理,正确作出辅助线是解题的关键.三、解答题(本大题共9小题,共82)17. 计算:.【答案】10【解析】根据零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,进行计算即可.解:.【点拨】本题主要考查了实数混合运算,解题的关键是熟练掌握零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,准确计算.18. 为弘扬中华优秀传统文化,学校举办“经典诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类(分别用,,依次表示这三类比赛内容).现将正面写有,,的三张完全相同的卡片背面朝上洗匀,由选手抽取卡片确定比赛内容选手小明先从三张卡片中随机抽取一张,记下字母后放回洗匀,选手小梅再随机抽取一张,记下字母请用画树状图或列表的方法,求小明和小梅抽到同一类比赛内容的概率.【答案】图见解析,【解析】用树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可;解:用树状图法表示所有等可能出现的结果如下:共有种等可能出现的结果,其中小明和小梅抽到同一类比赛内容的有种,所以小明和小梅抽到同一类比赛内容的概率为.【点拨】本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的关键19. 如图,在中,,是边上的中线,点在的延长线上,连接,过点作交的延长线于点,连接、,求证:四边形是菱形.【答案】证明见解析【解析】先根据等腰三角形的性质,得到垂直平分,进而得到,,,再利用平行线的性质,证明,得到,进而得到,即可证明四边形是菱形.证明:,是边上的中线,垂直平分,,,,,,,在和中,,,,,四边形是菱形.【点拨】本题考查了等腰三角形的性质,垂直平分线的性质,全等三角形的判定和性质,菱形的判定,灵活运用相关知识点解决问题是解题关键.20. “书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查问卷设置了五种选项:“艺术类”,“文学类”,“科普类”,“体育类”,“其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______ 名;(2)请直接补全条形统计图;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是______ 度;(4)据抽样调查结果,请你估计该校名学生中,有多少名学生最喜爱“科普类”图书.【答案】(1)100 (2)见解析(3)36 (4)720名【解析】(1)用B的人数除以对应百分比可得样本容量;(2)用样本容量减去其它四类的人数可得D类的人数,进而补全条形统计图;(3)用360乘A“艺术类”所占百分比可得对应的圆心角度数;(4)用总人数乘样本中C类所占百分比即可;(1)此次被调查的学生人数为:名,故答案为:;(2)类的人数为:名,补全条形统计图如下:;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是:,故答案为:;(4)(名),答:估计该校名学生中,大约有名学生最喜爱“科普类”图书.【点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小21. 甲、乙两人加工同一种零件,每小时甲比乙多加工个这种零件,甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工个这种零件.【解析】设乙每小时加工个这种零件,则甲每小时加工个这种零件,利用“甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等”列分式方程即可求解.解:设乙每小时加工个这种零件,则甲每小时加工个这种零件,根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:乙每小时加工个这种零件.【点拨】本题主要考查了分式方程的应用,解题的关键在于能够根据题意找到等量关系列出方程进行求解.22. 如图,是的直径,点是上的一点(点不与点,重合),连接、,点是上的一点,,交的延长线于点,且.(1)求证:是的切线;(2)若的半径为,,则的长为______ .【答案】(1)证明见解析(2)8【解析】(1)利用圆周角定理,等腰三角形的性质定理,对顶角相等,三角形的内角和定理和圆的切线的判定定理解答即可得出结论;(2)利用直角三角形的边角关系定理得到设, 则, 利用x的代数式表示出线段,再利用勾股定理列出关于x的方程,解方程即可得出结论.(1)证明:是的直径,,,,,,,,,,,即.为的直径,是的切线;(2)解:,,,设,则,,,,,是的直径,,,,解得:不合题意,舍去或..故答案为:.【点拨】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,三角形的内角和定理,圆的切线的判定定理,勾股定理,直角三角形的边角关系定理,熟练掌握圆周角定理是解题的关键.23. 如图,在平面直角坐标系中,一次函数的图象交轴于点,交轴于点直线与轴交于点,与直线交于点点是线段上的一个动点(点不与点重合),过点作轴的垂线交直线于点设点的横坐标为.(1)求的值和直线的函数表达式;(2)以线段,为邻边作▱,直线与轴交于点.①当时,设线段的长度为,求与之间的关系式;②连接,,当面积为时,请直接写出的值.【答案】(1),(2)①;②或【解析】(1)根据直线的解析式求出点C的坐标,用待定系数法求出直线的解析式即可;(2)①用含m的代数式表示出的长,再根据得出结论即可;②根据面积得出l的值,然后根据①的关系式的出m的值.(1)点在直线上,,一次函数的图象过点和点,,解得,直线解析式为;(2)①点在直线上,且的横坐标为,的纵坐标为:,点在直线上,且点的横坐标为,点的纵坐标为:,,点,线段的长度为,,,,即;②的面积为,,即,解得,由①知,,,解得,即的值为或.【点拨】本题考查一次函数的知识,熟练掌握一次函数的图象和性质,待定系数法求解析式是解题的关键.24. 如图,在纸片中,,,,点为边上的一点(点不与点重合),连接,将纸片沿所在直线折叠,点,的对应点分别为、,射线与射线交于点.(1)求证:;(2)如图,当时,的长为______ ;(3)如图,当时,过点作,垂足为点,延长交于点,连接、,求的面积.【答案】(1)证明见解析;(2);(3)【解析】(1)根据平行四边形的性质和平行线的性质,得到,再根据折叠的性质,得到,然后结合邻补角的性质,推出,即可证明;(2)作,交的延长线于,先证明四边形是正方形,再利用特殊角的三角函数值,求出,进而得到,即可求出的长;(3)作,交的延长线于,作于,交的延长线于,作于,解直角三角形,依次求出、、、的值,进而求得的值,根据和,求得、,进而得出的值,解直角三角形,求出的值,进而得出的值,根据,得出,从而设,,进而表示出,最后根据,列出,求出,根据,得出,进而得到,即可求出的面积.(1)证明:四边形是平行四边形,,,由折叠性质可知,,,,,;(2)解:如图,作,交的延长线于,,,,,,,,四边形是矩形,由(1)可知:,矩形是正方形,,,,,,,故答案为:;(3)解:如图,作,交的延长线于,作于,交的延长线于,作于,四边形是平行四边形,,,,,,在中,,,,在中,,由(1)可知:,,,又纸片沿所在直线折叠,点,的对应点分别为,,,,,,,,,,,,,,在中,,,,,,,,,,设,,,,,,,,,,,,,,,,,,.【点拨】本题考查了平行四边形的性质,正方形的判定和性质,等腰三角形的性质,解直角三角形、轴对称的性质等知识,正确作辅助线,熟练解直角三角形是解题关键.25. 如图,在平面直角坐标系中,二次函数的图象经过点,与轴的交点为点和点.(1)求这个二次函数的表达式;(2)点,在轴正半轴上,,点在线段上,以线段,为邻边作矩形,连接,设.连接,当与相似时,求的值;当点与点重合时,将线段绕点按逆时针方向旋转后得到线段,连接,,将绕点按顺时针方向旋转后得到,点,对应点分别为、,连接当的边与线段垂直时,请直接写出点的横坐标.【答案】(1)(2)①或;②或或【解析】(1)利用待定系数法解答即可;(2)①利用已知条件用含a的代数式表示出点E,D,F,G的坐标,进而得到线段的长度,利用分类讨论的思想方法和相似三角形的性质,列出关于a的方程,解方程即可得出结论;②利用已知条件,点的坐标的特征,平行四边形的判定与性质,旋转的性质,全等三角形的判定与性质求得,和的长,利用分类讨论的思想方法分三种情形讨论解答利用旋转的性质,直角三角形的边角关系定理,勾股定理求得相应线段的长度即可得出结论;(1)二次函数的图象经过点,与轴的交点为点,解得:此抛物线的解析式为(2)令,则解得:或,∴.∵,∴四边形为矩形,∴∴∴Ⅰ当时,∴∴∴Ⅱ当时,∴∴∴综上,当与相似时,的值为或;点与点重合,∴∴∴四边形为平行四边形,和中,Ⅰ、当所在直线与垂直时,如图,,,三点在一条直线上,过点作轴于点,则∴此时点的横坐标为Ⅱ当所在直线与垂直时,如图,,,设的延长线交于点,过点作,交的延长线于点,过点作,交的延长线于点,则轴,.,,.,.,,此时点的横坐标为;Ⅲ当所在直线与垂直时,如图,,,,,,三点在一条直线上,则,过点作,交的延长线于点,,此时点的横坐标为.综上,当的边与线段垂直时,点的横坐标为或或.【点拨】本题主要考查了二次函数的图象与性质,抛物线上点的坐标的特征,矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,利用点的坐标表示出相应线段的长度和正确利用分类讨论的思想方法是解题的关键。
2019年辽宁省沈阳市中考数学试题及答案(Word版)
2019年沈阳中考数学试卷 考试时间:120分钟,试卷满分150分, 参考公式:参考公式:抛物线2y ax bx c =++的顶点坐标是24(,)24b ac b a a--. 对称轴是直线2b x a =-,一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.2019年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),讲196亿用科学记数法表示为( )A .81.9610⨯B .819.610⨯C .101.9610⨯D .1019.610⨯2.右图是一个几何体的三视图,这个几何体的名称是( )A .圆柱体B .三棱锥C .球体D .圆锥体3.下面计算一定正确的是( )A .3362b a b +=B .222(3)9pq p q -=-C .3585315y y y ⋅= D .933b b b ÷= 4.如果71m =-,那么m 的取值范围是( )A .01m <<B .12m <<C .23m <<D .34m <<5.下列事件中,是不可能事件的是( )A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环.C .明天会下雨D .度量三角形的内角和,结果是360°6. 计算2311x x+-- 的结果是( ) A .11x - B .11x - C .51x - D .51x - 7、在同一平面直角坐标系中,函数1y x =-与函数1y x=的图象可能是( )8.如图,ABC ∆中,AE 交BC 于点D ,C E ∠=∠,AD=4,BC=8,BD:DC=5:3,则DE 的长等于( )A .203B .154C .163D .174二、填空题(每小题4分,共32分)9.分解因式: 2363a a ++= _________.10.一组数据2,4,x ,-1的平均数为3,则x 的值是 =_________.11.在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 _________.12.若关于x 的一元二次方程240x x a +-=有两个不相等的实数根,则a的取值方位是 _________.13.如果x=1时,代数式2234ax bx ++的值是5,那么x= -1时,代数式2234ax bx ++的值 _________.14.如图,点A 、B 、C 、D 都在⊙O 上,ABC ∠=90°,AD=3,CD=2,则⊙O的直径的长是_________.15.有一组等式:22222222222222221233,2367,341213,452021++=++=++=++=…… 请观察它们的构成规律,用你发现的规律写出第8个等式为_________16.已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 _________三、解答题(第17、18小题各8分,第19小题10分.共26分) 17.计算:2016sin 30282-⎛⎫-︒++- ⎪⎝⎭(-2)18.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价, 图①和图②是该公司采集数据后,绘制的两幅不完整的统计图。
2011年至2013年沈阳中考数学试题汇总及答案(word版)
2011年沈阳招生中考数学试题试题满分150分 考试时间120分钟参考公式:抛物线2y ax bx c =++的顶点是24(,)24b ac b a a --,对称轴是直线2bx a=-. 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题4分,共24分)1. 下列各选项中,既不是正数也不是负数的是 A .-1B .0CD .π2.左下图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是3.下列运算中,一定正确的是A .m 5-m 2=m 3B .m 10÷m 2=m 5C . m •m 2=m 3D .(2m )5=2m 54.下列各点中,在反比例函数8y x=图象上的是 A .(-1,8) B .(-2,4)C .(1,7)D .(2,4)5.下列图形是中心对称图形的是6.下列说法中,正确的是A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C .某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D .“2012年将在我市举办全运会,这期间的每一天都是晴天”是必然事件.7.如图,矩形ABCD 中,AB <BC ,对角线AC 、BD 相交于点O ,则图中的等腰三角形有 A .2个 B .4个 C .6个 D .8个8.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米 ,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .253010(180%)60x x -=+ B .253010(180%)x x -=+C .302510(180%)60x x -=+D .302510(180%)x x-=+A .BCD第2题图A .B .C 第5题图C第7题图二、填空题(每小题4分,共32分) 9.2(1)-=___________.10.不等式2-x ≤1的解集为____________.11.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.12.小窦将本班学生上学方式的调查结果绘制成如图所示的统计图,若步行上学的学生有27人,则骑车上学的学生有__________人.13.如果一次函数y =4x +b 的图象经过第一、三、四象限,那么b 的取值范围是_________. 14.如图,在□ABCD 中,点E 、F 分别在边AD 、BC 上,且BE ∥DF ,若∠EBF =45°,则∠EDF 的度数是__________度.15.16.如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且AE =EF =F A .下列结:①△ABE ≌△ADF ;②CE =CF ;③∠AEB =75°;④BE +DF =EF ;⑤S △ABE +S △ADF =S△CEF ,其中正确的是____________________________(只填写序号).一、 解答题(第17、18小题各8分,第19小题10分,共28分)17.先化简,再求值(x +1)2-(x +2)(x -2)x ,且x 为整数. 18.沈阳地铁一号线的开通运行给沈阳市民的出行方式带来了一些变化.小王和小林准备利用课余时间,以问卷的方式对沈阳市民的出行方式进行调查.如图是沈阳地铁一号线图(部分),小王和小林分别从太原街站(用A 表示)、南市场站(用B 表示)、青年大街站(用C 表示)这三站中,随机选取一站作为调查的站点.⑴在这三站中,小王选取问卷调查的站点是太原街站的概率是多少?(请直接写出结果)⑵请你用列表法或画树状图(树形图)法,求小王选取问卷调查的站点与小林选取问卷调查的站点相邻的概率.(各站点用相应的英文字母表示)第12题图第14题图F第16题图19.如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°,∠DAB =45°.⑴求∠DAC 的度数; ⑵求证:DC =AB四、(每小题10分,共20分)20.某班数学兴趣小组收集了本市4月份30天的日最高气温的数据,经过统计分析获得了两条信息和一个统计表信息1 4月份日最高气温的中位数是15.5℃;信息2 日最高气温是17℃的天数比日最高气温是18℃的天数多4天.请根据上述信息回答下列问题:⑴4月份最高气温是13℃的有________天,16℃的有_______天,17℃的有__________天.⑵4月份最高气温的众数是________℃,极差是_________℃。
2021年辽宁省沈阳市中考数学试卷及解析(真题样卷)
2021年辽宁省沈阳市中考数学试卷一。
选择题(每小题3分,共24分,只有一个答案是正确的)1.(3分)(2021•沈阳)比0大的数是()C.﹣0。
5 D.1A.﹣2 B.﹣2.(3分)(2021•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(3分)(2021•沈阳)下列事件为必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.(3分)(2021•沈阳)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°5.(3分)(2021•沈阳)下列计算结果正确的是()A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2 6.(3分)(2021•沈阳)一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3。
5,5 B.4,4 C.4,5 D.4。
5,47.(3分)(2021•沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形C.矩形D.正方形8.(3分)(2021•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.二。
填空题(每小题4分,共32分)9.(4分)(2021•沈阳)分解因式:ma2﹣mb2=.10.(4分)(2021•沈阳)不等式组的解集是.11.(4分)(2021•沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm 为半径作⊙A,当AB=cm时,BC与⊙A相切.12.(4分)(2021•沈阳)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65。
辽宁省沈阳市中考数学试卷及答案
辽宁省沈阳市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。
2022年辽宁省沈阳市中考数学试题及答案解析
2022年辽宁省沈阳市中考数学试卷一、选择题(本大题共10小题,共20.0分)1.计算5+(−3),结果正确的是( )A. 2B. −2C. 8D. −82.如图是由4个相同的小立方体搭成的几何体,这个几何体的主视图是( )A.B.C.D.3.下列计算结果正确的是( )A. (a3)3=a6B. a6÷a3=a2C. (ab4)2=ab8D. (a+b)2=a2+2ab+b24.在平面直角坐标系中,点A(2,3)关于y轴对称的点的坐标是( )A. (−2,−3)B. (−2,3)C. (2,−3)D. (−3,−2)5.调查某少年足球队全体队员的年龄,得到数据结果如下表:年龄/岁1112131415人数34722则该足球队队员年龄的众数是( )A. 15岁B. 14岁C. 13岁D. 7人6.不等式2x+1>3的解集在数轴上表示正确的是( )A. B.C. D.7.如图,在Rt△ABC中,∠A=30°,点D、E分别是直角边AC、BC的中点,连接DE,则∠CED的度数是( )A. 70°B. 60°C. 30°D. 20°8. 在平面直角坐标系中,一次函数y =−x +1的图象是( )A.B.C.D.9. 下列说法正确的是( )A. 了解一批灯泡的使用寿命,应采用抽样调查的方式B. 如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C. 若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D. “任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件10. 如图,一条河的两岸互相平行,为了测量河的宽度PT(PT 与河岸PQ 垂直),测量得P ,Q 两点间距离为m 米,∠PQT =α,则河宽PT 的长为( )A. msinαB. mcosαC. mtanαD. mtanα二、填空题(本大题共6小题,共18.0分) 11. 因式分解:ay 2+6ay +9a =______. 12. 二元一次方程组{x +2y =5y =2x的解是______.13. 化简:(1−1x+1)⋅x 2−1x=______.14. 如图,边长为4的正方形ABCD 内接于⊙O ,则AB⏜的长是______(结果保留π).15. 如图,四边形ABCD 是平行四边形,CD 在x 轴上,点B 在y 轴上,反比例函数y =kx (x >0)的图象经过第一象限点A ,且▱ABCD 的面积为6,则k =______.16. 如图,将矩形纸片ABCD 折叠,折痕为MN ,点M ,N 分别在边AD ,BC 上,点C ,D 的对应点分别为点E ,F ,且点F 在矩形内部,MF 的延长线交边BC 于点G ,EF 交边BC 于点H.EN =2,AB =4,当点H 为GN 的三等分点时,MD 的长为______.三、解答题(本大题共9小题,共82.0分) 17. 计算:√12−3tan30°+(12)−2+|√3−2|.18. 为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是______;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.19. 如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于12AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的______. (2)求证:四边形AEDF 是菱形.20.某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B(摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______名;(2)直接在答题卡中补全条形统计图;(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.21.如图,用一根60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成的矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积的最大值为______平方厘米.22.如图,四边形ABCD内接于⊙O,AD是⊙O的直径,AD,BC的延长线交于点E,延长CB交PA于点P,∠BAP+∠DCE=90°.(1)求证:PA是⊙O的切线;(2)连接AC,sin∠BAC=1,BC=2,AD的长为______.323.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为______(用含有m的代数式表示);②当0<m<10时,S与m的关系式为______;3③当S=24时,m的值为______.524.【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是______;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3√3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是______;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx−3经过点B(6,0)和点D(4,−3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.答案解析1.【答案】A【解析】解:5+(−3)=2,故选:A.根据有理数异号相加法则即可处理.本题主要考查有理数加法,掌握其运算法则是解题关键.2.【答案】D【解析】解:从正面看,底层有2个正方形,上层左边有1个正方形,故选:D.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识.注意主视图是指从物体的正面看物体.3.【答案】D【解析】解:A.(a3)3=a9,因此选项A不符合题意;B.a6÷a3=a6−3=a3,因此选项B 不符合题意;C.(ab4)2=a2b8,因此选项C不符合题意;D.(a+b)2=a2+2ab+b2,因此选项D符合题意;故选:D.根据幂的乘方与积的乘方,同底数幂的除法以及完全平方公式逐项进行计算即可.本题考查幂的乘方与积的乘方,同底数幂的除法以及完全平方公式,掌握幂的乘方与积的乘方的计算方法,同底数幂的除法的计算法则以及完全平方公式的结构特征是正确判断的前提.4.【答案】B【解析】解:点A(2,3)关于y轴的对称点坐标为(−2,3).故选:B.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.【答案】C【解析】解:该足球队队员年龄13岁出现的次数最多,故众数为13岁.故选:C.一组数据中出现次数最多的数据叫做众数.本题考查了众数,掌握众数的定义是解答本题的关键.6.【答案】B【解析】解:不等式2x+1>3的解集为:x>1,故选:B.解不等式求得不等式的解集,然后根据数轴上表示出的不等式的解集,再对各选项进行逐一分析即可.本题考查的解一元一次不等式以及在数轴上表示不等式解集,熟知实心圆点与空心圆点的区别是解答此题的关键.7.【答案】B【解析】解:在Rt△ABC中,∠A=30°,则∠B=90°−∠A=60°,∵D、E分别是边AC、BC的中点,∴DE是△ABC的中位线,∴DE//AB,∴∠CED=∠B=60°,故选:B.根据直角三角形的性质求出∠B,根据三角形中位线定理得到DE//AB,根据平行线的性质解答即可.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形中位线平行于第三边是解题的关键.8.【答案】C【解析】解:一次函数y=−x+1中,令x=0,则y=1;令y=0,则x=1,∴一次函数y=x+1的图象经过点(0,1)和(1,0),∴一次函数y=x+1的图象经过一、二、四象限,故选:C.依据一次函数y=x+1的图象经过点(0,1)和(1,0),即可得到一次函数y=−x+1的图象经过一、二、四象限.本题主要考查了一次函数的图象,一次函数的图象是与坐标轴不平行的一条直线.9.【答案】A【解析】解:A.了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A符合题意;B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B不符合题意;C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则甲组数据较稳定,因此选项C不符合题意;D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D不符合题意;故选:A.根据抽样调查与全面调查的定义,概率以及方差的定义逐项进行判断即可.本题考查全面调查与抽样调查,方差以及随机事件、不可能事件、必然事件,理解全面调查与抽样调查的方法,方差的意义以及随机事件、不可能事件、必然事件的定义是正确判断的前提.10.【答案】C【解析】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ⋅tanα=mtanα(米),∴河宽PT的长度是mtanα米,故选:C.根据垂直定义可得PT⊥PQ,然后在Rt△PQT中,利用锐角三角函数的定义进行计算即可解答.本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.11.【答案】a(y +3)2【解析】解:ay 2+6ay +9a=a(y 2+6y +9)=a(y +3)2.故答案为:a(y +3)2.首先提取公因式a ,进而利用完全平方公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用完全平方公式是解题关键.12.【答案】{x =2y =4【解析】解:{x +2y =5①y =2x②, 将②代入①,得x +4x =10,解得x =2,将x =2代入②,得y =4,∴方程组的解为{x =2y =4, 故答案为:{x =2y =4. 用代入消元法解二元一次方程组即可.本题考查二元一次方程组,理解二元一次方程组的解,掌握二元一次方程组的解法是正确解答的关键.13.【答案】x −1【解析】解:(1−1x+1)⋅x 2−1x =x+1−1x+1⋅(x+1)(x−1)x =x x+1⋅(x+1)(x−1)x=x −1,故答案为:x −1.先算括号内的式子,然后计算括号外的乘法即可.本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.14.【答案】√2π【解析】解:连接OA、OB.∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴AB⏜=BC⏜=CD⏜=AD⏜,∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=42,解得:AO=2√2,∴AB⏜的长=90⋅π⋅2√2180=√2π,故答案为:√2π.连接OA、OB,可证∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.本题考查了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.15.【答案】6【解析】解:作AE⊥CD于E,如图,∵四边形ABCD为平行四边形,∴AB//x轴,∴四边形ABOE为矩形,∴S平行四边形ABCD =S矩形ABOE=6,∴|k|=6,而k>0,∴k=6.故答案为:6.作AE⊥CD于E,由四边形ABCD为平行四边形得AB//x轴,则可判断四边形ABOE为矩形,所以S平行四边形ABCD=S矩形ABOE,根据反比例函数k的几何意义得到S矩形ABOE=|−k|,利用反比例函数图象得到.本题考查了反比例函数y=kx (k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】2√13−4或4【解析】解:当HN=13GN时,GH=2HN,∵将矩形纸片ABCD折叠,折痕为MN,∴MF=MD,CN=EN,∠E=∠C=∠D=∠MFE=90°,∠DMN=∠GMN,AD//BC,∴∠GFH=90°,∠DMN=∠MNG,∴∠GMN=∠MNG,∴MG=NG,∵∠GFH=∠E=90°,∠FHG=∠EHN,∴△FGH∽△ENH,∴FGEN =GHHN=2,∴FG=2EN=4,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,则MG=GN=x+4,∴CG=x+6,∴PM=6,∵GP2+PM2=MG2,∴42+62=(x+4)2,解得:x=2√13−4,∴MD=2√13−4;当GH=13GN时,HN=2GH,∵△FGH∽△ENH,∴FGEN =GHHN=12,∴FG=12EN=1,∴MG=GN=x+1,∴CG=x+3,∴PM=3,∵GP2+PM2=MG2,∴42+32=(x+1)2,解得:x=4,∴MD=4;故答案为:2√13−4或4.根据点H为GN三等分点,分两种情况分别计算,根据折叠的性质和平行线的性质证明∠GMN=∠MNG,得到MG=NG,证明△FGH∽△ENH,求出FG的长,过点G作GP⊥AD 于点P,则PG=AB=4,设MD=MF=x,根据勾股定理列方程求出x即可.本题考查了翻折变换(折叠问题),矩形的性质,考查了分类讨论的思想,根据勾股定理列方程求解是解题的关键.17.【答案】解:原式=2√3−3×√3+4+2−√33=2√3−√3+4+2−√3=6.【解析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可.此题考查的是实数的运算,负整数指数幂的运算,特殊三角形函数值,掌握其运算法则是解决此题的关键.18.【答案】14【解析】解:(1)由题意得,.随机抽取一张卡片,卡片上的数字是“4”的概率是14.故答案为:14(2)画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是“2”和“3”的结果有2种,∴小明随机抽取两张卡片,两张卡片上的数字是“2”和“3”的概率为212=16.(1)根据概率公式求解即可.(2)画树状图,表示出所有等可能的结果数,以及两张卡片上的数字是“2”和“3”的结果数,再结合概率公式即可得出答案.本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法是解答本题的关键.19.【答案】垂直平分线【解析】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF//AB,同理DE//AF,∴四边形AEDF是平行四边形,∵FA=ED,∴四边形AEDF为菱形.(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF//AB,同理DE//AF,于是可判断四边形AEDF是平行四边形,加上FA=ED,则可判断四边形AEDF为菱形.本题考查了作图−基本作图以及菱形的判定方法,熟知线段垂直平分线的作法是解答此题的关键.20.【答案】120【解析】解:(1)此次被调查的学生人数为:12÷10%=120(名),故答案为:120;(2)选择B的学生有:120−12−48−24=36(名),补全的条形统计图如图所示;=72°,(3)360°×24120即拓展课程D(劳动实践)所对应的扇形的圆心角的度数是72°;(3)800×48=320(名),120答:估计该校800名学生中,有320名学生最喜欢C(音乐鉴赏)拓展课程.(1)根据选择A的人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据条形统计图中的数据,即可计算出选择B的人数,然后即可将条形统计图补充完整;(3)用360°乘以D(劳动实践)所占比例可得答案;(4)用样本估计总体即可.本题考查条形统计图、扇形统计图、用样本估计总体、频数(率)分布表,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】150cm,【解析】解:(1)设框架的长AD为xcm,则宽AB为60−2x3∴x⋅60−2x=144,3解得x=12或x=18,∴AB=12cm或AB=18cm,∴AB的长为12厘米或18厘米;(2)由(1)知,框架的长AD为xcm,则宽AB为60−2x3cm,∴S=x⋅60−2x3,即S=−23x2+20x=−23(x−15)2+150,∵−23<0,∴要使框架的面积最大,则x=15,此时AB=10,最大为150平方厘米.故答案为:150.(1)设框架的长AD为xcm,则宽AB为60−2x3cm,根据面积公式列出二元一次方程,解之即可;(2)在(1)的基础上,列出二次函数,再利用二次函数的性质可得出结论.此题考查的是二次函数在实际生活中的运用及求函数最值的方法,属较简单题目.解题的关键是用一个未知数表示出长和宽,利用面积公式来列出函数表达式后再求其最值.22.【答案】6【解析】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠BAD=∠DCE,∵∠BAP+∠DCE=90°,∴∠BAP+∠BAD=90°,∴∠OAP=90°,∵OA是⊙O的半径,∴PA是圆O的切线;(2)连接BO并延长交⊙O于点F,连接CF,∵BF是⊙O的直径,∴∠BCF=90°,∵∠BAC=∠F,∴sin∠BAC=sinF=13,在Rt△BCF中,BC=2,∴BF=BCsinF =213=6,∴AD=BF=6,故答案为:6.(1)根据圆内接四边形对角互补以及平角定义可得∠BAD=∠DCE,然后根据已知可得∠BAP+∠BAD=90°,从而可得∠OAP=90°,即可解答;(2)连接BO并延长交⊙O于点F,连接CF,根据直径所对的圆周角是直角可得∠BCF= 90°,再利用同弧所对的圆周角相等可得sin∠BAC=sinF=13,最后在Rt△BCF中,利用锐角三角函数的定义进行计算即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.23.【答案】910m925m215−√153或15−2√55【解析】解:(1)将点B(0,9),C(8,3)的坐标代入直线y=kx+b,∴{b=98k+b=3,解得{k=−34b=9.∴直线AB的函数表达式为:y=−34x+9;(2)①由(1)知直线AB的函数表达式为:y=−34x+9,令y=0,则x=12,∴A(12,0),∴OA=12,OB=9,∴AB=15;如图1,过点C作CF⊥C′D′于点F,∴CF//OA,∴∠OAB=∠FCC′,∵∠C′FC=∠BOA=90°,∴△CFC′∽△AOB,∴OB:OA:AB=C′F:CF:CC′=9:12:15,∵CC′=m,∴CF=45m,C′F=35m,∴C′(8−45m,3+35m),A′(12−45m,35m),D′(8−45m,35m),∵C(8,3),∴直线OC的解析式为:y=38x,∴E(8−45m,3−310m).∴C′E=3+35m−(3−310m)=910m.故答案为:910m.②当点D′落在直线OC上时,有35m=3 8(8−45m),解得m=103,∴当0<m<103时,点D′未到直线OC,此时S=12C′E⋅CF=12⋅910m⋅45m=925m2;故答案为:925m2.③分情况讨论,当0<m<103时,由②可知,S=925m2;令S=925m2=245,解得m=2√303>103(舍)或m=−2√303(舍);当103≤m<5时,如图2,设线段A′D′与直线OC交于点M,∴M(85m,35m),∴D′E=35m−(3−310m)=910m−3,D′M=85m−(8−45m)=125m−8;∴S=925m2−12⋅(910m−3)⋅(125m−8)=−1825m2+365m−12,令−1825m2+365m−12=245;整理得,3m 2−30m +70=0,解得m =15−√153或m =15+√153>5(舍); 当5≤m <10时,如图3,S =S △A′C′D′=12×4×3=6≠245,不符合题意; 当10≤m <15时,如图4,此时A′B =15−m ,∴BN =35(15−m),A′N =45(15−m),∴S =12⋅35(15−m)⋅45(15−m)=625(15−m)2,令625(15−m)2=245,解得m =15+2√5>15(舍)或m =15−2√5.故答案为:15−√153或15−2√5.(1)将点B(0,9),C(8,3)的坐标代入直线解析式,求解即可;(2)①过点C 作CF ⊥C′D′,易得△CFC′∽△AOB ,可用m 表达CF 和C′F 的长度,进而可表达点C′,D′的坐标,由点C 的坐标可得出直线OC 的解析式,代入可得点E 的坐标; ②根据题意可知,当0<m <103时,点D′未到直线OC 上,利用三角形面积公式可得出本题结果;③分情况讨论,分别求出当0<m <103时,当103<m <5时,当5<m <10时,当10<m <15时,S 与m 的关系式,分别令S =245,建立方程,求出m 即可.本题属于一次函数综合题,涉及待定系数法求函数解析式,三角形的面积,相似三角形的性质与判定,分类讨论思想等知识,根据△A′C′D′的运动,进行正确的分类讨论是解题关键.24.【答案】AD =BC 8+3√6【解析】解:(1)AD =BC.理由如下:如图1,∵△AOB 和△COD 是等腰直角三角形,∠AOB =∠COD =90°,∴OA=OB,OD=OC,在△AOD和△BOC中,{OA=OB∠AOD=∠BOC=90°OD=OC,∴△AOD≌△BOC(SAS),∴AD=BC,故答案为:AD=BC;(2)AD=BC仍然成立.证明:如图2,∵∠AOB=∠COD=90°,∴∠AOB+∠AOC=∠AOC+∠COD=90°+α,即∠BOC=∠AOD,在△AOD和△BOC中,{OA=OB∠AOD=∠BOC OD=OC,∴△AOD≌△BOC(SAS),∴AD=BC;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,∵△ABT和△CBD都是等腰直角三角形,∴BT=√2AB,BD=√2BC,∠ABT=∠CBD=45°,∴BTAB =BDBC=√2,∠ABC=∠TBD,∴△ABC∽△TBD,∴DTAC =BTAB=√2,∴DT=√2AC=√2×3√3=3√6,∵AT=AB=8,DT=3√6,∴点D的运动轨迹是以T为圆心,3√6为半径的圆,∴当D在AT的延长线上时,AD的值最大,最大值为8+3√6,故答案为:8+3√6;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,∵BTAB =BDBC=cos30°=√32,∠ABC=∠TBD=30°+∠TBC,∴△BAC∽△BTD ,∴ DT AC =BD BC =√32, ∴DT =√32AC =√32×3√3=92, 在Rt △ABT 中,AT =AB ⋅sin∠ABT =8sin30°=4,∵∠BAT =90°−30°=60°,∴∠TAH =∠BAT −∠DAB =60°−30°=30°,∵TH ⊥AD ,∴TH =AT ⋅sin∠TAH =4sin30°=2,AH =AT ⋅cos∠TAH =4cos30°=2√3, 在Rt △DTH 中,DH =√DT 2−TH 2=√(92)2−22=√652, ∴AD =AH +DH =2√3+√652. (1)证明△AOD≌△BOC(SAS),即可得出结论;(2)利用旋转性质可证得∠BOC =∠AOD ,再证明△AOD≌△BOC(SAS),即可得出结论;(3)①过点A 作AT ⊥AB ,使AT =AB ,连接BT ,AD ,DT ,BD ,先证得△ABC∽△TBD ,得出DT =3√6,即点D 的运动轨迹是以T 为圆心,3√6为半径的圆,当D 在AT 的延长线上时,AD 的值最大,最大值为8+3√6;②如图4,在AB 上方作∠ABT =30°,过点A 作AT ⊥BT 于点T ,连接AD 、BD 、DT ,过点T 作TH ⊥AD 于点H ,可证得△BAC∽△BTD ,得出DT =√32AC =√32×3√3=92,再求出DH 、AH ,即可求得AD .本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线,构造全等三角形或相似三角形解决问题,综合性较强,难度较大,属于中考压轴题.25.【答案】解:(1)①∵抛物线y =ax 2+bx −3经过点B(6,0)和点D(4,−3), ∴{36a +6b −3=016a +4b −3=−3, 解得:{a =14b =−1, ∴抛物线的函数表达式为y =14x 2−x −3;②由①得y =14x 2−x −3,当y =0时,14x 2−x −3=0,解得:x 1=6,x 2=−2,∴A(−2,0),设直线AD 的函数表达式为y =kx +d ,则{−2k +d =04k +d =−3, 解得:{k =−12d =−1, ∴直线AD 的函数表达式为y =−12x −1; (2)设点E(t,14t 2−t −3),F(x,y),过点E 作EM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图1,∵S 1=2S 2,即S △BDF S△DEF =2, ∴BF EF =2, ∴BFBE =23, ∵EM ⊥x 轴,FN ⊥x 轴,∴EM//FN ,∴△BFN∽△BEM ,∴BNBM =FNEM =BF BE =23, ∵BM =6−t ,EM =−(14t 2−t −3)=−14t 2+t +3,∴BN =23(6−t),FN =23(−14t 2+t +3),∴x =OB −BN =6−23(6−t)=2+23t ,y =−23(−14t 2+t +3)=16t 2−23t −2, ∴F(2+23t,16t 2−23t −2), ∵点F 在直线AD 上,∴16t 2−23t −2=−12(2+23t)−1,解得:t 1=0,t 2=2,∴E(0,−3)或(2,−4);(3)∵y =14x 2−x −3=14(x −2)2−4,∴顶点坐标为G(2,−4),当x =0时,y =3,即点C (0,−3),∴点C′(0,3),G′(2,4),∴向上翻折部分的图象解析式为y =−14(x −2)2+4,∴向上翻折部分平移后的函数解析式为y =−14(x −2)2+4−n ,平移后抛物线剩下部分的解析式为y =14(x −2)2−4−n ,设直线BC 的解析式为y =k′x +d′(k′≠0),把点B(6,0),C(0,−3)代入得:{6k′+d′=0d′=−3, 解得:{k′=12d′=−3, ∴直线BC 的解析式为y =12x −3,同理直线C′G′的解析式为y =12x +3,∴BC//C′G′,设点P 的坐标为(s,12s −3),∵点C′(0,3),G′(2,4),∴点C′向右平移2个单位,再向上平移1个单位得到点G′,∵四边形C′G′QP 是平行四边形,∴点Q(s +2,12s −2),当点P ,Q 均在向上翻折部分平移后的图象上时,则{−14(s −2)2+4−n =12s −3−14(s +2−2)2−4−n =12s −2, 解得:{s =0n =6(不符合题意,舍去), 当点P 在向上翻折部分平移后的图象上,点Q 在平移后抛物线剩下部分的图象上时,则{−14(s −2)2+4−n =12s −314(s +2−2)2−4−n =12s −2, 解得:{s =1+√17n =0或{s =1−√17n =0(不合题意,舍去), 当点P 在平移后抛物线剩下部分的图象上,点Q 在向上翻折部分平移后的图象上时,则{14(s −2)2−4−n =12s −3−14(s +2−2)2+4−n =12s −2, 解得:{s =1−√13n =√13或{s =1+√13n =−√13(不合题意,舍去), 综上所述,点P 的坐标为(1−√13,−5+√132).【解析】(1)运用待定系数法即可求得抛物线解析式和直线AD 的解析式;(2)设点E(t,14t 2−t −3),F(x,y),过点E 作EM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图1,根据三角形面积关系可得BF BE =23,由EM//FN ,可得△BFN∽△BEM ,得出BN BM =FN EM =BFBE=23,可求得F(2+23t,16t2−23t−2),代入直线AD的解析式即可求得点E的坐标;(3)根据题意可得:点C′(0,3),G′(2,4),向上翻折部分的图象解析式为y=−14(x−2)2+4,向上翻折部分平移后的函数解析式为y=−14(x−2)2+4−n,平移后抛物线剩下部分的解析式为y=14(x−2)2−4−n,利用待定系数法可得:直线BC的解析式为y=12x−3,直线C′G′的解析式为y=12x+3,由四边形C′G′QP是平行四边形,分类讨论即可.本题主要是二次函数综合题,考查了待定系数法求函数解析式,二次函数的图象和性质,三角形面积,平行四边形的性质,相似三角形的判定和性质,抛物线的平移、翻折变换等,利用数形结合思想解答是解题的关键.。
2021年辽宁省沈阳市中考数学试卷及答案
辽宁省沈阳市2021年中考数学试卷一、选择题〔以下各题的备选答案中,只有一个答案是正确的,每题3分,共24分〕A.1.96×108B.19.6×108C.1.96×1010D.19.6×1010考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于196亿有11位,所以可以确定n=11﹣1=10.解答:解:196亿=19 600 000 000=1.96×1010.应选C.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.A.圆柱体B.三棱锥C.球体D.圆锥体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.应选A.点评:此题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也表达了对空间想象能力.A.b3+b3=2b6B.〔﹣3pq〕2=﹣9p2q2C.5y3•3y5=15y8D.b9÷b3=b3考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项的法那么判断A;根据积的乘方的性质判断B;根据单项式乘单项式的法那么判断C;根据同底数幂的除法判断D.解答:解:A、b3+b3=2b3,故本选项错误;B、〔﹣3pq〕2=9p2q2,故本选项错误;C、5y3•3y5=15y8,故本选项正确;D、b9÷b3=b6,故本选项错误.应选C.点评:此题考查了合并同类项,积的乘方,单项式乘单项式,同底数幂的除法,熟练掌握运算性质与法那么是解题的关键.A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4 考点:估算无理数的大小分先估算出在2与3之间,再根据m=,即可得出m的取值范围.析:解答:解:∵2<3,m=,∴m的取值范围是1<m<2;应选B.点评:此题考查了估算无理数的大小,解题关键是确定无理数的整数局部,是一到根底题.A.买一张电影票,座位号是奇数B.射击运发动射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°考点:随机事件分析:不可能事件是指在一定条件下,一定不发生的事件.解答:解:A、买一张电影票,座位号是奇数,是随机事件;B、射击运发动射击一次,命中9环,是随机事件;C、明天会下雨,是随机事件;D、度量一个三角形的内角和,结果是360°,是不可能事件.应选D.点评:此题考查了不可能事件、随机事件的概念.用到的知识点为:不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A.B.C.D.考点:分式的加减法专题:计算题.分析:先通分,再根据同分母的分式相加减的法那么进行计算即可.解答:解:原式=﹣==.应选B.点评:此题考查的是分式的加减法,异分母分式加减把分母不相同的几个分式化成分母相同的分式,再把分子相加减即可.A.B.C.D.考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的性质可得:函数的图象在第一三象限,由一次函数与系数的关系可得函数y=x﹣1的图象在第一三四象限,进而选出答案.解答:解:函数中,k=1>0,故图象在第一三象限;函数y=x﹣1的图象在第一三四象限,应选:C.点评:此题主要考查了反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.A.B.C.D.考点:相似三角形的判定与性质分析:由∠ADC=∠BDE,∠C=∠E,可得△ADC∽△BDE,然后由相似三角形的对应边成比例,即可求得答案.解答:解:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.应选B.点评:此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解答:解:3a2+6a+3,=3〔a2+2a+1〕,=3〔a+1〕2.故答案为:3〔a+1〕2.点评:此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.考点:算术平均数.分析:根据求平均数的公式:,列出算式,即可求出x的值.解答:解:∵数据2,4,x,﹣1的平均数为3,∴〔2+4+x﹣1〕÷4=3,解得:x=7;故答案为:7.点评:此题考查了平均数的求法,属于根底题,熟记求算术平均数的公式是解决此题的关键.考点:关于原点对称的点的坐标.专题:数形结合.分析:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.解答:解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点〔﹣3,2〕关于原点对称的点的坐标是〔3,﹣2〕,故答案为〔3,﹣2〕.点评:此题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.考点:根的判别式.分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于a的不等式,求出不等式的解集即可得到a的范围.解答:解:根据题意得:△=〔4a〕2﹣4a>0,即4a〔4a﹣1〕>0,解得:a>或a<0,那么a的范围是a>或a<0.故答案为:a>或a<0点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解此题的关键.考点:代数式求值分析:将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.解答:解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣〔2a+3b〕+4=﹣1+4=3.故答案为:3点评:此题考查了代数式求值,利用了整体代入的思想,是一道基此题型.考点:圆周角定理;勾股定理分析:首先连接AC,由圆的内接四边形的性质,可求得∠ADC=90°,根据直角所对的弦是直径,可证得AC是直径,然后由勾股定理求得答案.解答:解:连接AC,∵点A、B、C、D都在⊙O上,∠ABC=90°,∴∠ADC=180°﹣∠ABC=90°,∴AC是直径,∵AD=3,CD=2,∴AC==.故答案为:.点评:此题考查了圆周角定理、圆的内接四边形的性质以及勾股定理.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.考点:规律型:数字的变化类专题:规律型.分观察不难发现,两个连续自然数的平方和加上它们积的平方,等于比它们的积大1的析:数的平方,然后写出即可.解答:解:∵12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,∴第8个等式为:82+92+〔8×9〕2=〔8×9+1〕2,即82+92+722=732.故答案为:82+92+722=732.点评:此题是对数字变化规律的考查,仔细观察底数的关系是解题的关键,也是此题的难点.考点:等边三角形的性质;平行线之间的距离.专题:计算题.分析:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,利用锐角三角函数定义及特殊角的三角函数值求出DB与FB的长,以及CG 与CE的长,进而由DB+BC+CE求出DE的长,由BC﹣BF﹣CG求出FG的长,求出等边三角形NFG与等边三角形MDE的高,即可确定出点P到BC的最小距离和最大距离.解答:解:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG 与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,∴DB=FB==,CE=CQ==,∴DE=DB+BC+CE=++=,FG=BC﹣BF﹣CG=,∴NH=FG=1,MQ=DE=7,那么点P到BC的最小距离和最大距离分别是1,7.故答案为:1,7点评:此题考查了等边三角形的性质,以及平行线间的距离,作出相应的图形是解此题的关键.考实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值点:专题:计算题.分析:此题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法那么求得计算结果.解答:解:原式=﹣6×+1+2﹣2=2.点评:此题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、绝对值、特殊角的三角函数值、二次根式化简等考点的运算.考点:条形统计图;扇形统计图.分析:〔1〕用A的人数与所占的百分比列式计算即可得解;〔2〕先求出C的人数,再求出百分比即可得到a的值,用C所占的百分比乘以360°计算即可得解;〔3〕根据计算补全统计图即可.解答:解:〔1〕20÷10%=200人;〔2〕C的人数为:200﹣20﹣46﹣64=70,所占的百分比为:×100%=35%,所以,a=35,所占的圆心角的度数为:35%×360°=126°;故答案为:〔1〕200;〔2〕35,126.〔3〕补全统计图如下图.点评:此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.考点:全等三角形的判定与性质;勾股定理.专题:证明题.分析:〔1〕先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角〞证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AF,从而得证;〔2〕根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.解答:〔1〕证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF〔ASA〕,∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AF,∴BF=2AE;〔2〕解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.点评:此题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.考点:列表法与树状图法;概率公式分析:〔1〕由在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,,直接利用概率公式求解即可求得答案;〔2〕首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与两次好抽取的卡片上的实数之差为有理数的情况,再利用概率公式求解即可求得答案.解答:解:〔1〕∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.∴从盒子中随机抽取一张卡片,卡片上的实数是3的概率是:;〔2〕画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况,∴两次好抽取的卡片上的实数之差为有理数的概率为:=.点评:此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.考点:解直角三角形的应用分析:〔1〕过A作AP⊥GF于点P.在直角△PAG中利用三角函数求得GP的长,进而求得GF的长;〔2〕在直角△MNF中,利用勾股定理求得NF的长度,NF的长加上身高再加上竹竿长,与GF比拟大小即可.解答:解:〔1〕过A作AP⊥GF于点P.那么AP=BF=12,AB=PF=1.4,∠GAP=37°,在直角△PAG中,tan∠PAG=,∴GP=AP•tan37°≈12×0.75=9〔米〕,∴GF=9+1.4≈10.4〔米〕;〔2〕由题意可知MN=5,MF=3,∴在直角△MNF中,NF==4,∵10.4﹣5﹣1.65=3.75<4,∴能触到挂在树上的风筝.点评:此题考查了勾股定理,以及三角函数、正确求得GF的长度是关键.考点:切线的判定;扇形面积的计算.分析:〔1〕首先过点A作AF⊥ON于点F,易证得AF=AB,即可得ON是⊙A的切线;〔2〕由∠MON=60°,AB⊥OM,可求得AF的长,又由S阴影=S△AEF﹣S扇形ADF,即可求得答案.解答:〔1〕证明:过点A作AF⊥ON于点F,∵⊙A与OM相切与点B,∴AB⊥OM,∵OC平分∠MON,∴AF=AB=2,∴ON是⊙A的切线;〔2〕解:∵∠MON=60°,AB⊥OM,∴∠OEB=30°,∴AF⊥ON,∴∠FAE=60°,在Rt△AEF中,tan∠FAE=,∴AF=AF•tan60°=2,∴S阴影=S△AEF﹣S扇形ADF=AF•EF﹣×π×AF2=2﹣π.点评:此题考查了切线的判定与性质、扇形的面积以及三角函数的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.考点:二次函数的应用;一次函数的应用分析:〔1〕设函数的解析式为y=ax2,然后把点〔1,60〕代入解析式求得a的值,即可得出抛物线的表达式,根据图象可得自变量x的取值范围;〔2〕设需要开放x个普通售票窗口,根据售出车票不少于1450,列出不等式解不等式,求最小整数解即可;〔3〕先求出普通窗口的函数解析式,然后求出10点时售出的票数,和无人售票窗口当x=时,y的值,然后把运用待定系数法求解析式即可.解答:解:〔1〕设函数的解析式为y=ax2,把点〔1,60〕代入解析式得:a=60,那么函数解析式为:y=60x2〔0≤x≤〕;〔2〕设需要开放x个普通售票窗口,由题意得,80x+60×5≥1450,解得:x≥14,∵x为整数,∴x=15,即至少需要开放15个普通售票窗口;〔3〕设普通售票的函数解析式为y=kx,把点〔1,80〕代入得:k=80,那么y=80x,∵10点是x=2,∴当x=2时,y=160,即上午10点普通窗口售票为160张,由〔1〕得,当x=时,y=135,∴图②中的一次函数过点〔,135〕,〔2,160〕,设一次函数的解析式为:y=mx+n,把点的坐标代入得:,解得:,那么一次函数的解析式为y=50x+60.点评:此题考查了二次函数及一次函数的应用,解答此题的关键是根据题意找出等量关系求出函数解析式,培养学生的读图能力以及把生活中的实际问题转化为数学问题来解决.考点:四边形综合题分析:〔1〕利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;〔2〕△AOE和△DOE是“友好三角形〞,即可得到E是AD的中点,那么可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC 的面积.即可求出△ABC的面积.②解答:〔1〕证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.〔2〕解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE.∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合局部的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合局部的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′DCB是平行四边形,∴BD=A′C=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.点评:此题考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据题意和所学的定理进行推理.题目比拟好,但是有一定的难度.考点:二次函数综合题.分析:〔1〕利用待定系数法求出抛物线的函数表达式;〔2〕由∠BDA=∠DAC,可知BD∥x轴,点B与点D纵坐标相同,解一元二次方程求出点D的坐标;〔3〕①由BE与OA平行且相等,可判定四边形OAEB为平行四边形;②点M在点B的左右两侧均有可能,需要分类讨论.综合利用相似三角形的性质、等腰三角形的性质和勾股定理,求出线段BM的长度.解答:解:〔1〕将A〔,0〕、B〔1,〕代入抛物线解析式y=x2+bx+c,得:,解得:.∴y=x2x+.〔2〕当∠BDA=∠DAC时,BD∥x轴.∵B〔1,〕,当y=时,=x2x+,解得:x=1或x=4,∴D〔4,〕.〔3〕①四边形OAEB是平行四边形.理由如下:抛物线的对称轴是x=,∴BE=﹣1=.∵A〔,0〕,∴OA=BE=.又∵BE∥OA,∴四边形OAEB是平行四边形.②∵O〔0,0〕,B〔1,〕,F为OB的中点,∴F〔,〕.过点F作FN⊥直线BD于点N,那么FN=﹣=,BN=1﹣=.在Rt△BNF中,由勾股定理得:BF==.∵∠BMF=∠MFO,∠MFO=∠FBM+∠BMF,∴∠FBM=2∠BMF.〔I〕当点M位于点B右侧时.在直线BD上点B左侧取一点G,使BG=BF=,连接FG,那么GN=BG﹣BN=1,在Rt△FNG中,由勾股定理得:FG==.∵BG=BF,∴∠BGF=∠BFG.又∵∠FBM=∠BGF+∠BFG=2∠BMF,∴∠BFG=∠BMF,又∵∠MGF=∠MGF,∴△GFB∽△GMF,∴,即,∴BM=;〔II〕当点M位于点B左侧时.设BD与y轴交于点K,连接FK,那么FK为Rt△KOB斜边上的中线,∴KF=OB=FB=,∴∠FKB=∠FBM=2∠BMF,又∵∠FKB=∠BMF+∠MFK,∴∠BMF=∠MFK,∴MK=KF=,∴BM=MK+BK=+1=.综上所述,线段BM的长为或.点评:此题是中考压轴题,考查了二次函数的图象与性质、待定系数法、解方程、相似三角形、等腰三角形、平行四边形、勾股定理等知识点.难点在于第〔3〕②问,满足条件的点M可能有两种情形,需要分类讨论,分别计算,防止漏解.。
2019年辽宁省沈阳市中考数学试卷(含解析)完美打印版
2019年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)﹣5的相反数是()A.5B.﹣5C.D.2.(2分)2019年1月1日起我国开始贯彻《国务院关于印发个人所得税专项附加扣除暂行办法的通知》的要求,此次减税范围广,其中有6500万人减税70%以上,将数据6500用科学记数法表示为()A.6.5×102B.6.5×103C.65×103D.0.65×1043.(2分)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.4.(2分)下列说法正确的是()A.若甲、乙两组数据的平均数相同,S甲2=0.1,S乙2=0.04,则乙组数据较稳定B.如果明天降水的概率是50%,那么明天有半天都在降雨C.了解全国中学生的节水意识应选用普查方式D.早上的太阳从西方升起是必然事件5.(2分)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m26.(2分)某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁)1213141516人数31251则这12名队员年龄的众数和中位数分别是()A.15岁和14岁B.15岁和15岁C.15岁和14.5岁D.14岁和15岁7.(2分)已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是()A.3:5B.9:25C.5:3D.25:98.(2分)已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A.k<0B.k<﹣1C.k<1D.k>﹣19.(2分)如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A.B.C.D.10.(2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.abc<0B.b2﹣4ac<0C.a﹣b+c<0D.2a+b=0二、填空题(每小题3分,共18分)11.(3分)因式分解:﹣x2﹣4y2+4xy=.12.(3分)二元一次方程组的解是.13.(3分)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有个白球.14.(3分)如图,在四边形ABCD中,点E,F,G,H分别是AB,CD,AC,BD的中点,若AD=BC=2,则四边形EGFH的周长是.15.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=(x>0)的图象相交于点A(,2),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是.16.(3分)如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:(﹣)﹣2+2cos30°﹣|1﹣|+(π﹣2019)0.18.(8分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.19.(8分)如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是.四、(每小题8分,共16分)20.(8分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是,类别D所对应的扇形圆心角的度数是度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.21.(8分)2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?五、(本题10分)22.(10分)如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN 于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是.六、(本题10分)23.(10分)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接写出点C的坐标.七、(本题12分)24.(12分)思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P 可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N 的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.2019年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)﹣5的相反数是()A.5B.﹣5C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.2.(2分)2019年1月1日起我国开始贯彻《国务院关于印发个人所得税专项附加扣除暂行办法的通知》的要求,此次减税范围广,其中有6500万人减税70%以上,将数据6500用科学记数法表示为()A.6.5×102B.6.5×103C.65×103D.0.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:6500=6.5×103,故选:B.3.(2分)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选:A.4.(2分)下列说法正确的是()A.若甲、乙两组数据的平均数相同,S甲2=0.1,S乙2=0.04,则乙组数据较稳定B.如果明天降水的概率是50%,那么明天有半天都在降雨C.了解全国中学生的节水意识应选用普查方式D.早上的太阳从西方升起是必然事件【分析】根据方差、概率、全面调查和抽样调查以及随机事件的意义分别对每一项进行分析即可得出答案.【解答】解:A、∵S甲2=0.1,S乙2=0.04,∴S甲2>S乙2,∴乙组数据较稳定,故本选项正确;B、明天降雨的概率是50%表示降雨的可能性,故此选项错误;C、了解全国中学生的节水意识应选用抽样调查方式,故本选项错误;D、早上的太阳从西方升起是不可能事件,故本选项错误;故选:A.5.(2分)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【解答】解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选:B.6.(2分)某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁)1213141516人数31251则这12名队员年龄的众数和中位数分别是()A.15岁和14岁B.15岁和15岁C.15岁和14.5岁D.14岁和15岁【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是14512名队员的年龄数据里,第6和第7个数据的平均数=14.5,因而中位数是14.5.故选:C.7.(2分)已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是()A.3:5B.9:25C.5:3D.25:9【分析】相似三角形的周长比等于对应的中线的比.【解答】解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:3.故选:C.8.(2分)已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A.k<0B.k<﹣1C.k<1D.k>﹣1【分析】根据一次函数的增减性确定有关k的不等式,求解即可.【解答】解:∵观察图象知:y随x的增大而减小,∴k+1<0,解得:k<﹣1,故选:B.9.(2分)如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A.B.C.D.【分析】首先利用直径所对的圆周角为90°得到△ABD是直角三角形,然后利用勾股定理求得AD边的长,然后求得∠B的正弦即可求得答案.【解答】解:∵AB是直径,∴∠ADB=90°,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B===,∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选:D.10.(2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.abc<0B.b2﹣4ac<0C.a﹣b+c<0D.2a+b=0【分析】由图可知a>0,与y轴的交点c<0,对称轴x=1,函数与x轴有两个不同的交点,当x=﹣1时,y>0;【解答】解:由图可知a>0,与y轴的交点c<0,对称轴x=1,∴b=﹣2a<0;∴abc>0,A错误;由图象可知,函数与x轴有两个不同的交点,∴△>0,B错误;当x=﹣1时,y>0,∴a﹣b+c>0,C错误;∵b=﹣2a,D正确;故选:D.二、填空题(每小题3分,共18分)11.(3分)因式分解:﹣x2﹣4y2+4xy=﹣(x﹣2y)2.【分析】先提取公因式﹣1,再套用公式完全平方公式进行二次因式分解.【解答】解:﹣x2﹣4y2+4xy,=﹣(x2+4y2﹣4xy),=﹣(x﹣2y)2.12.(3分)二元一次方程组的解是.【分析】通过观察可以看出y的系数互为相反数,故①+②可以消去y,解得x的值,再把x的值代入①或②,都可以求出y的值.【解答】解:,①+②得:4x=8,解得x=2,把x=2代入②中得:2+2y=5,解得y=1.5,所以原方程组的解为.故答案为.13.(3分)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有3个白球.【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.【解答】解:由题意可得,红球的概率为70%.则白球的概率为30%,这个口袋中白球的个数:10×30%=3(个),故答案为3.14.(3分)如图,在四边形ABCD中,点E,F,G,H分别是AB,CD,AC,BD的中点,若AD=BC=2,则四边形EGFH的周长是4.【分析】根三角形的中位线定理即可求得四边形EFGH的各边长,从而求得周长.【解答】证明:∵E、G是AB和AC的中点,∴EG=BC=×=,同理HF=BC=,EH=GF=AD==.∴四边形EGFH的周长是:4×=4.故答案为:4.15.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=(x>0)的图象相交于点A(,2),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是2.【分析】把点A(,2)代入y1=k1x和y2=(x>0)可求出k1、k2的值,即可正比例函数和求出反比例函数的解析式,过点B作BD∥x轴交OA于点D,结合点B的坐标即可得出点D的坐标,再根据三角形的面积公式即可求出△AOB的面积.【解答】解:(1)∵正比例函数y1=k1x的图象与反比例函数y2=(x>0)的图象相交于点A(,2),∴2=k1,2=,∴k1=2,k2=6,∴正比例函数为y=2x,反比例函数为:y=,∵点B是反比例函数图象上一点,它的横坐标是3,∴y==2,∴B(3,2),∴D(1,2),∴BD=3﹣1=2.∴S△AOB=S△ABD+S△OBD=×2×(2﹣2)+×2×2=2,故答案为2.16.(3分)如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是.【分析】如图,作FH⊥PE于H.利用勾股定理求出EF,再证明△CEF∽△FEP,可得EF2=EC•EP,由此即可解决问题.【解答】解:如图,作FH⊥PE于H.∵四边形ABCD是正方形,AB=5,∴AC=5,∠ACD=∠FCH=45°,∵∠FHC=90°,CF=2,∴CH=HF=,∵CE=4AE,∴EC=4,AE=,∴EH=5,在Rt△EFH中,EF2=EH2+FH2=(5)2+()2=52,∵∠GEF=∠GCF=90°,∴E,G,F,C四点共圆,∴∠EFG=∠ECG=45°,∴∠ECF=∠EFP=135°,∵∠CEF=∠FEP,∴△CEF∽△FEP,∴=,∴EF2=EC•EP,∴EP==.故答案为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:(﹣)﹣2+2cos30°﹣|1﹣|+(π﹣2019)0.【分析】直接利用负指数幂的性质、特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=4+2×﹣+1+1=6.18.(8分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.【解答】解:(1)小明从中随机抽取一张卡片是足球社团B的概率=;(2)列表如下:A B C DA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,所以小明两次抽取的卡片中有一张是科技社团D的概率为=.19.(8分)如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是24.【分析】(1)根据已知条件得到AF=CE,根据平行线的性质得到∠DF A=∠BEC,根据全等三角形的性质得到AD=CB,∠DAF=∠BCE,于是得到结论;(2)根据已知条件得到△BCG是等腰直角三角形,求得BG=CG=4,解直角三角形得到AG=10,根据平行四边形的面积公式即可得到结论.【解答】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=45°,∴△BCG是等腰直角三角形,∵BC=4,∴BG=CG=4,∵tan∠CAB=,∴AG=10,∴AB=6,∴▱ABCD的面积=6×4=24,故答案为:24.四、(每小题8分,共16分)20.(8分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了50名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是32,类别D所对应的扇形圆心角的度数是57.6度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.【分析】(1)本次共调查了10÷20%=50(人);(2)B类人数:50×24%=12(人),D类人数:50﹣10﹣12﹣16﹣4=8(人),根据此信息补全条形统计图即可;(3)=32%,即m=32,类别D所对应的扇形圆心角的度数360°×=57.6°;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名).【解答】解:(1)本次共调查了10÷20%=50(人),故答案为50;(2)B类人数:50×24%=12(人),D类人数:50﹣10﹣12﹣16﹣4=8(人),(3)=32%,即m=32,类别D所对应的扇形圆心角的度数360°×=57.6°,故答案为32,57.6;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名),答:估计该校有448名学生寒假在家做家务的总时间不低于20小时.21.(8分)2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?【分析】(1)根据题意列出分式方程求解即可;(2)根据题意列出不等式求解即可.【解答】解:(1)设甲种树苗每棵x元,根据题意得:,解得:x=40,经检验:x=40是原方程的解,答:甲种树苗每棵40元;(2)设购买乙中树苗y棵,根据题意得:40(100﹣y)+34y≤3800,解得:y≥33,∵y是正整数,∴y最小取34,答:至少要购买乙种树苗34棵.五、(本题10分)22.(10分)如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN 于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是5.【分析】(1)连接OC,由切线的性质可得OC⊥MN,即可证得OC∥BD,由平行线的性质和等腰三角形的性质可得∠CBD=∠BCO=∠ABC,即可证得结论;(2)连接AC,由勾股定理求得BD,然后通过证得△ABC∽△CBD,求得直径AB,从而求得半径.【解答】(1)证明:连接OC,∵MN为⊙O的切线,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO=∠ABC,∴∠CBD=∠ABC.;(2)解:连接AC,在Rt△BCD中,BC=4,CD=4,∴BD==8,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,即=,∴AB=10,∴⊙O的半径是5,故答案为5.六、(本题10分)23.(10分)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是﹣;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接写出点C的坐标.【分析】(1)根据点A的坐标,利用待定系数法可求出k值;(2)①利用一次函数图象上点的坐标特征可得出点B的坐标,由平行四边形的性质结合点E为OB的中点可得出CE是△ABO的中位线,结合点A的坐标可得出CE的长,在Rt△DOE中,利用勾股定理可求出DE的长,再利用平行四边形的周长公式即可求出▱OCED的周长;②设点C的坐标为(x,﹣x+4),则CE=|x|,CD=|﹣x+4|,利用三角形的面积公式结合△CDE的面积为可得出关于x的方程,解之即可得出结论.【解答】解:(1)将A(8,0)代入y=kx+4,得:0=8k+4,解得:k=﹣.故答案为:﹣.(2)①由(1)可知直线AB的解析式为y=﹣x+4.当x=0时,y=﹣x+4=4,∴点B的坐标为(0,4),∴OB=4.∵点E为OB的中点,∴BE=OE=OB=2.∵点A的坐标为(8,0),∴OA=8.∵四边形OCED是平行四边形,∴CE∥DA,∴==1,∴BC=AC,∴CE是△ABO的中位线,∴CE=OA=4.∵四边形OCED是平行四边形,∴OD=CE=4,OC=DE.在Rt△DOE中,∠DOE=90°,OD=4,OE=2,∴DE==2,∴C平行四边形OCED=2(OD+DE)=2(4+2)=8+4.②设点C的坐标为(x,﹣x+4),则CE=|x|,CD=|﹣x+4|,∴S△CDE=CD•CE=|﹣x2+2x|=,∴x2+8x+33=0或x2+8x﹣33=0.方程x2+8x+33=0无解;解方程x2+8x﹣33=0,得:x1=﹣3,x2=11,∴点C的坐标为(﹣3,)或(11,﹣).七、(本题12分)24.(12分)思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P 可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是200米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.【分析】(1)由由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB=CD,即可解题.(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC =PE,PC⊥PE.②作BF∥DE,交EP延长线于点F,连接CE、CF,易证△FBP≌△EDP(SAS),结合已知得BF=DE =AE,再证明△FBC≌△EAC(SAS),可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.③作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA延长线于H点,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,得∠FBC=∠EAC,同②可证可得PC =PE,PC⊥PE,再由已知解三角形得∴EC2=AH2+HE2=,即可求出PC2=.【解答】(1)解:∵CD∥AB,∴∠C=∠B,在△ABP和△DCP中,,∴△ABP≌△DCP(AAS),∴DC=AB.∵AB=200米.∴CD=200米,故答案为:200.(2)①PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.理由如下:如解图1,延长EP交BC于F,同(1)理,可知∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,又∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵EP=FP,∴PC=PE,PC⊥PE.②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.理由如下:如解图2,作BF∥DE,交EP延长线于点F,连接CE、CF,同①理,可知△FBP≌△EDP(AAS),∴BF=DE,PE=PF=,∵DE=AE,∴BF=AE,∵当α=90°时,∠EAC=90°,∴ED∥AC,EA∥BC∵FB∥AC,∠FBC=90,∴∠CBF=∠CAE,在△FBC和△EAC中,,∴△FBC≌△EAC(SAS),∴CF=CE,∠FCB=∠ECA,∵∠ACB=90°,∴∠FCE=90°,∴△FCE是等腰直角三角形,∵EP=FP,∴CP⊥EP,CP=EP=.③如解图3,作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,∴∠FBC=∠EAC=α=150°同②可得△FBP≌△EDP(AAS),同②△FCE是等腰直角三角形,CP⊥EP,CP=EP=,在Rt△AHE中,∠EAH=30°,AE=DE=1,∴HE=,AH=,又∵AC=AB=3,∴AH=3+,∴EC2=AH2+HE2=∴PC2==.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N 的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.【分析】(1)将点D、E的坐标代入函数表达式,即可求解;(2)S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO,即可求解;(3)过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接P A″交直线DE于点M,此时,点Q运动的路径最短,即可求解.【解答】解:(1)将点D、E的坐标代入函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+2,同理可得直线DE的表达式为:y=x﹣1…①;(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,将点FB代入一次函数表达式,同理可得直线BF的表达式为:y=﹣x+1,设点P(x,﹣x2+x+2),则点H(x,﹣x+1),S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO=2+2(﹣x2+x+2+x﹣1)=7,解得:x=2或,故点P(2,3)或(,);(3)当点P在抛物线对称轴的右侧时,点P(2,3),过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接P A″交直线DE于点M,此时,点Q 运动的路径最短,∵MN=2,相当于向上、向右分别平移2个单位,故点A′(1,2),A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,联立①②得x=2,则A′A″中点坐标为(2,1),由中点坐标公式得:点A″(3,0),同理可得:直线A″P的表达式为:y=﹣3x+9…③,联立①③并解得:x=,即点M(,),点M沿ED向下平移2个单位得:N(,﹣).。
辽宁省沈阳市中考数学试题有答案(Word版)
沈阳市数学中考试题一、选择题(下列各题的备选答案中,只有一个答案是正确的每小题2分,共20分)1.下列各数中是有理数的是A.πB.0C 2.辽宁男篮冠后,从4月21日至24日各类媒体关于“辽篮CBA 夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为A.0.81×104B.0.81×105C.8.1×104D.8.1×1053左下图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是4.在平面直角坐标系中,点B 的坐标是(4,-1),点A 与点B 关于x 轴对称,则点A 的坐标是A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)5.下列运算错误的是A.(m 2)3=m 6B.a 10÷a 9=aC .x 3·x 5=x 8 D.a 4 +a 3=a 76.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是A.60°B.100°C.110°D.120°7.下列事件中,是必然事件的是A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<09.点A (-3,2)在反比例函数y =k x(k ≠O )的图象上,则k 的值是A.-6B.32- C.-1D.610.如图,正方形ABCD 内接于⊙O,AB =AB 的长是A.πB.32πC.2πD.12π 二、填空题(每小题3分,共18分)11.因式分解:3x 3-12x =.12.一组数3,4,7,4,3,4,5,6,5的众数是.13.化简:22124a a a ---=. 14.不等式组20360x x -<⎧⎨+≥⎩的解集是. 15.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱篱笆的厚度忽略不计),当AB =m 时,矩形土地ABCD 面积最大.16.如图,△ABC 是等边三角形,AB D 是边BC 上一点,点H 是线段AD 上一点,连接BH 、CH ,当∠BHD=60°∠AHC=90°时,DH =.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:2013()(4)2π-︒+--2tan45 18.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE =1,DE =2,则菱形ABCD 的面积是.19.经过校园某路口的行人,可能左转,也可能直行或右转假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、(每小题8分,共16分)20.九年三班的小雨同学想了解本校九年级学生对哪门课感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程),将获得的数据整理绘制成如下两幅不完整的统计图:学生感兴趣的课程情况条形统计图学生感兴的课程情况扇形统计图根据统计图提供的信息,解答下列问题(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据以上信息直接..在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21,某公司今年1月份的生产成本是400万元,由于改进生产技术,生产成本逐月下降,3月份的生产成本是361万元、假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下下降率;(2)请你预测4月份该公司的生产成本.五、(本题10分)22.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数(2)若AB=AC,CE=2,求⊙O半径的长.六、(本题10分)23.如图,在平面直角坐标系中,点F的坐标为(0,10),点E的坐标为(20,0),直线l1经过点F和点E,直线11与直线12:y=x相交于点P(1)求直线的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于X轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x轴平行,已知矩形ABCD A移动到点E时停止移动),设移动时间为t秒(t>0),①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线11或12上,请直接..写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线11于点N,交直线于点M,当△PMN的面积等于18时,请直.接.写出此时t的值.七、(本题12分)24.已知△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N 不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN 上,且AE=DE.(1)如图,当∠ACB=90°时,①求证:△BCM≌△CAN;②求∠BDE的度数;(2)当∠ACB=α,其它条件不变时,∠BDE的度数是(用含α的代数式表示)(3)若△ABC是等边三角形,AB=N是BC边上的三等分点,直线ED与直线BC交于点F,请直接..写出线段CF的长八、(本题12分)25.如图,在平而直角坐标系中,抛抛物线C1:y=ax2+bx-1经过点A(-2,1)和点B(-1,-1),抛抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连连接KQ和QN.当KO=1且∠KNO=∠BNP时,请直接..写出点Q的坐标参考答案一、选择题(每小题2分,共20分)1.B2.C3.D4.A5.D6.D7.B8.C9.A10.A二、填空题(每小题3分,共18分)11.3x(x+2)(x-2) 12.4 13.12a+14.22x-≤<15.15016.13三、解答题(第17小题6分,第18、19小题各8分,共22分)17.218.证明:(1)四边形ABCD为菱形,AC⊥BD,∠COD=90°,CE∥OD,DE∥OC,四边形OCED是平行四边形,∠COD=90º,平行四边形OCED是矩形(2)4。
2021年辽宁省沈阳市中考数学试卷及解析答案word版
2021年辽宁省沈阳市中考数学试卷及解析答案word版2021年辽宁省沈阳市中考数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)7的相反数是()a.7b.c.d.72.(2分后)如图所示的几何体的左视图()a.b.c.d.3.(2分后)“弘扬雷锋精神,资源共享美好沈阳”,美好沈阳须要830万沈阳人共同创造,将数据830万用科学记数法可以则表示为()万.a.83×10b.8.3×102c.8.3×103d.0.83×1034.(2分)如图,ab∥cd,∠1=50°,∠2的度数是()a.50°b.100°c.130°d.140°5.(2分)点a(2,5)在反比例函数y=(k≠0)的图象上,则k的值是()a.10b.5c.5d.106.(2分)在平面直角坐标系中,点a,点b关于y轴对称,点a的坐标是(2,8),则点b的坐标是()a.(2,8)b.(2,8)c.(2,8)d.(8,2)7.(2分)下列运算正确的是()a.x3+x5=x8b.x3+x5=x15c.(x+1)(x1)=x218.(2分后)以下事件中,就是必然事件的就是()a.将油滴进水中,油会沉在水面上b.车辆随机抵达一个路口,碰到红灯d.(2x)5=2x5c.如果a2=b2,那么a=bd.掷一枚质地均匀的硬币,一定正面向上9.(2分后)在平面直角坐标系则中,一次函数y=x1的图象就是()a.是()b.c.d.10.(2分)正六边形abcdef内接于⊙o,正六边形的周长是12,则⊙o的半径a.b.2c.2d.2二、填空题(本大题共6小题,每小题3分后,共18分后)11.(3分后)因式分解3a2+a=.12.(3分)一组数2,3,5,5,6,7的中位数是.13.(3分)=.14.(3分后)甲、乙、丙三人展开射击测试,每人10次射击成绩的平均值都就是8.9环,方差分别就是s甲2=0.53,s乙2=0.51,s丙2=0.43,则三人中成绩最稳定的是(填上“甲”或“乙”或“丙”)15.(3分)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是元/件,才能在半月内获得最大利润.16.(3分后)例如图,在矩形abcd中,ab=5,bc=3,将矩形abcd绕点b按顺时针方向转动获得矩形gbef,点a落到矩形abcd的边cd上,相连接ce,则ce的短就是.。
2020年辽宁省沈阳市中考数学试题及参考答案(word解析版)
2020年辽宁省沈阳市中考数学试题及参考答案与解析(试题满分120分,考试时间120分钟)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.32.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×1053.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a35.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°6.不等式2x≤6的解集是()A.x≤3 B.x≥3 C.x<3 D.x>37.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.π C.D.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.12.二元一次方程组的解是.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.16.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B 逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.参考答案与解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.3【知识考点】有理数大小比较.【思路分析】根据有理数的大小比较的法则分别进行比较即可.【解题过程】解:由于﹣2<0<1<2<3,故选:A.【总结归纳】此题考查了有理数的大小比较,掌握正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.2.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将10900用科学记数法表示为1.09×104.故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解题过程】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形.故选:D.【总结归纳】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a3【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解题过程】解:A、a2+a3,不是同类项,无法合并,不合题意;B、a2•a3=a5,故此选项错误;C、(2a)3=8a3,正确;D、a3÷a=a2,故此选项错误;故选:C.【总结归纳】此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握相关运算法则是解题关键.5.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°【知识考点】垂线;平行线的性质.【思路分析】由三角形内角和定理可求∠ABC的度数,由平行线的性质可求解.【解题过程】解:∵AC⊥CB,∴∠ACB=90°,∴∠ABC=180°﹣90°﹣∠BAC=90°﹣35°=55°,∵直线AB∥CD,∴∠ABC=∠BCD=55°,故选:B.【总结归纳】本题考查了平行线的性质,垂线的性质,三角形内角和定理,掌握平行线的性质是本题的关键.6.不等式2x≤6的解集是()A.x≤3 B.x≥3 C.x<3 D.x>3【知识考点】解一元一次不等式.【思路分析】不等式左右两边同时除以2,不等号方向不变,即可求出不等式的解集.【解题过程】解:不等式2x≤6,左右两边除以2得:x≤3.故选:A.【总结归纳】此题考查了一元一次不等式的解法,熟练运用不等式的性质是解不等式的关键.7.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯【知识考点】随机事件.【思路分析】根据事件发生的可能性大小判断.【解题过程】解:A、从一个只有白球的盒子里摸出一个球是白球,是必然事件;B、任意买一张电影票,座位号是3的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件;故选:A.【总结归纳】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【知识考点】根的判别式.【思路分析】根据根的判别式即可求出答案.【解题过程】解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.【总结归纳】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式,本题属于基础题型.9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【知识考点】函数的图象;一次函数图象与系数的关系;待定系数法求一次函数解析式.【思路分析】(方法一)根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限;(方法二)描点、连线,画出函数y=kx+b(k≠0)的图象,观察函数图象,即可得出一次函数y=kx+b(k≠0)的图象不经过第四象限.【解题过程】解:(方法一)将A(﹣3,0),B(0,2)代入y=kx+b,得:,解得:,∴一次函数解析式为y=x+2.∵k=>0,b=2>0,∴一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限.故选:D.(方法二)依照题意,画出函数图象,如图所示.观察函数图象,可知:一次函数y=kx+b(k≠0)的图象不经过第四象限.故选:D.【总结归纳】本题考查了待定系数法求一次函数解析式、一次函数图象与系数的关系以及函数图象,解题的关键是:(方法一)根据点的坐标,利用待定系数法求出一次函数解析式;(方法二)画出函数图象,利用数型结合解决问题.10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.π C.D.【知识考点】矩形的性质;弧长的计算.【思路分析】根据矩形的性质和三角函数的定义得到∠BAE=30°,根据弧长公式即可得到结论.【解题过程】解:∵四边形ABCD是矩形,∴AD=BC=2,∠B=90°,∴AE=AD=2,∵AB=,∴cos∠BAE==,∴∠BAE=30°,∴∠EAD=60°,∴的长==,故选:C.【总结归纳】本题考查了弧长的计算,矩形的性质,熟练掌握弧长公式是解题的关键.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.【知识考点】因式分解﹣提公因式法.【思路分析】原式提取公因式即可.【解题过程】解:原式=x(2x+1).故答案为:x(2x+1).【总结归纳】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.二元一次方程组的解是.【知识考点】解二元一次方程组.【思路分析】方程组利用加减消元法求出解即可.【解题过程】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=3,则方程组的解为.故答案为:.【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).甲【知识考点】方差.【思路分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解题过程】解:∵甲=7=乙,S甲2=2.9,S乙2=1.2,∴S甲2>S乙2,∴乙的成绩比较稳定,故答案为:乙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A 在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.【知识考点】反比例函数图象上点的坐标特征;等腰三角形的性质;勾股定理.【思路分析】利用等腰三角形的性质求出点A的坐标即可解决问题.【解题过程】解:∵AO=AB,AC⊥OB,∴OC=BC=2,∵AC=3,∴A(2,3),把A(2,3)代入y=,可得k=6,故答案为6.【总结归纳】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.【知识考点】三角形中位线定理;平行四边形的性质.【思路分析】根据三角形中位线定理和平行四边形的性质即可得到结论.【解题过程】解:∵点E,点F分别是BM,CM中点,∴EF是△BCM的中位线,∵EF=6,∴BC=2EF=12,∵四边形ABCD是平行四边形,∴AD=BC=12,∵AM=2MD,∴AM=8,故答案为:8.【总结归纳】本题考查了平行四边形的性质,三角形中位线定理,熟练掌握平行四边形的性质是解题的关键.16.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.【知识考点】勾股定理;矩形的性质;翻折变换(折叠问题).【思路分析】分两种情况讨论,当∠DPF=90°时,过点O作OH⊥AD于H,由平行线分线段成比例可得OH=AB=3,HD=AD=4,由折叠的性质可得∠APO=∠EPO=45°,可求OH=HP=3,可得PD=1;当∠PFD=90°时,由勾股定理和矩形的性质可得OA=OC=OB=OD=5,通过证明△OFE∽△BAD,可得,可求OF的长,通过证明△PFD∽△BAD,可得,可求PD的长.【解题过程】解:如图1,当∠DPF=90°时,过点O作OH⊥AD于H,∵四边形ABCD是矩形,∴BO=OD,∠BAD=90°=∠OHD,AD=BC=8,∴OH∥AB,∴,∴OH=AB=3,HD=AD=4,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴∠APO=∠EPO=45°,又∵OH⊥AD,∴∠OPH=∠HOP=45°,∴OH=HP=3,∴PD=HD﹣HP=1;当∠PFD=90°时,∵AB=6,BC=8,∴BD===10,∵四边形ABCD是矩形,∴OA=OC=OB=OD=5,∴∠DAO=∠ODA,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴AO=EO=5,∠PEO=∠DAO=∠ADO,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴,∴,∴OF=3,∴DF=2,∵∠PFD=∠BAD,∠PDF=∠ADB,∴△PFD∽△BAD,∴,∴,∴PD=,综上所述:PD=或1,故答案为或1.【总结归纳】本题考查了翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解题过程】解:原式=2×+9+1+2﹣=+12﹣=12.【总结归纳】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).【知识考点】列表法与树状图法.【思路分析】画树状图展示所有6种等可能的结果,找出抽出的两名学生性别相同的结果数,然后根据概率公式求解.【解题过程】解:画树状图为:共有6种等可能的结果,其中抽出的两名学生性别相同的结果数为3,所以抽出的两名学生性别相同的概率==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.【知识考点】全等三角形的判定;线段垂直平分线的性质;矩形的性质.【思路分析】(1)利用线段垂直平分线的性质以及矩形的性质,即可得到判定△AOM≌△CON 的条件;(2)连接CE,设AE=CE=x,则DE=6﹣x,再根据勾股定理进行计算,即可得到AE的长.【解题过程】解:(1)∵MN是AC的垂直平分线,∴AO=CO,∠AOM=∠CON=90°,∵四边形ABCD是矩形,∴AB∥CD,∴∠M=∠N,在△AOM和△CON中,,∴△AOM≌△CON(AAS);(2)如图所示,连接CE,∵MN是AC的垂直平分线,∴CE=AE,设AE=CE=x,则DE=6﹣x,∵四边形ABCD是矩形,∴∠CDE=90°,CD=AB=3,∴Rt△CDE中,CD2+DE2=CE2,即32+(6﹣x)2=x2,解得x=,即AE的长为.故答案为:.【总结归纳】本题主要考查了矩形的性质以及全等三角形的判定,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据其他垃圾的吨数和所占的百分比可以求得m的值,然后根据条形统计图中的数据,即可得到n的值;(2)根据统计图中的数据,可以得到可回收物的吨数,然后即可将条形统计图补充完整;(3)根据统计图中的数据,可以计算出厨余垃圾所对应的扇形圆心角的度数;(4)根据统计图中的数据,可以计算出该市2000吨垃圾中约有多少吨可回收物.【解题过程】解:(1)m=8÷8%=100,n%=×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×=108°,故答案为:108;(4)2000×=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?【知识考点】分式方程的应用.【思路分析】求的是工效,工作总量是3000m,则是根据工作时间来列等量关系.关键描述语是提前2天完成,等量关系为:原计划时间﹣实际用时=2,根据等量关系列出方程.【解题过程】解:设原计划每天修建盲道xm,则﹣=2,解得x=300,经检验,x=300是所列方程的解,答:原计划每天修建盲道300米.【总结归纳】本题主要考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.【知识考点】切线的判定与性质.【思路分析】(1)如图,连接OD,由切线的性质可得∠ODC=90°,可得∠BDO+∠ADC=90°,由直角三角形的性质和等腰三角形的性质可证∠A=∠ADC,可得DC=AC;(2)由等腰三角形的性质可得∠DCB=∠DBC=∠BDO,由三角形内角和定理可求∠DCB=∠DBC=∠BDO=30°,由直角三角形的性质可求解.【解题过程】证明:(1)如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,∴∠BDO+∠ADC=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A=∠ADC,∴CD=AC;(2)∵DC=DB,∴∠DCB=∠DBC,∴∠DCB=∠DBC=∠BDO,∵∠DCB+∠DBC+∠BDO+∠ODC=180°,∴∠DCB=∠DBC=∠BDO=30°,∴DC=OD=,故答案为:.【总结归纳】本题考查了切线的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.【知识考点】三角形综合题.【思路分析】(1)利用两点间距离公式求解即可.(2)求出直线AB的解析式,利用待定系数法即可解决问题.(3)求出PN,PM即可解决问题.(4)如图,当t=时,MN==4,设EM=m,则EN=4﹣m.构建二次函数利用二次函数的性质即可解决问题.【解题过程】解:(1)∵A(4,4),B(6,0),∴OA==4,AB==2.故答案为4,2.(2)设直线AB的解析式为y=kx+b,将A(4,4),B(6,0)代入得到,,解得,∴直线AB的解析式为y=﹣2x+12,由题意点N的纵坐标为1,令y=1,则1=﹣2x+12,∴x=,∴N(,1).(3)当0<t<4时,令y=t,代入y=﹣2x+12,得到x=,∴N(,t),∵∠AOB=∠AOP=45°,∠OPM=90°,∴OP=PM=t,∴MN=PN﹣PM=﹣t=.故答案为.(4).如图,当t=时,MN==4,设EM=m,则EN=4﹣m.由题意S1•S2=•m×4×(4﹣m)×4=﹣4m2+16m=﹣4(m﹣2)2+16,∵﹣4<0,∴m=2时,S1•S2有最大值,最大值为16.故答案为16.【总结归纳】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是学会利用参数解决问题,学会构建二次函数解决最值问题,属于中考压轴题.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.【知识考点】几何变换综合题.【思路分析】(1)①证明△PBA≌△DBC(SAS)可得结论.②利用全等三角形的性质解决问题即可.(2)证明△CBD∽△ABP,可得==解决问题.(3)分两种情形,解直角三角形求出AD即可解决问题.【解题过程】(1)①证明:如图①中,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,∵BP=BD,BA=BC,∴△PBA≌△DBC(SAS),∴PA=DC.②解:如图①中,设BD交PC于点O.∵△PBA≌△DBC,∴∠BPA=∠BDC,∵∠BOP=∠COD,∴∠OBP=∠OCD=60°,即∠DCP=60°.(2)解:结论:CD=PA.理由:如图②中,∵AB=AC,PB=PD,∠BAC=∠BPD=120°,∴BC=BA,BD=BP,∴==,∵∠ABC=∠PBD=30°,∴∠ABP=∠CBD,∴△CBD∽△ABP,∴==,∴CD=PA.(3)过点D作DM⊥PC于M,过点B作BN⊥CP交CP的延长线于N.如图3﹣1中,当△PBA是钝角三角形时,在Rt△ABN中,∵∠N=90°,AB=6,∠BAN=60°,∴AN=AB•cos60°=3,BN=AB•sin60°=3,∵PN===2,∴PA=3﹣2=1,由(2)可知,CD=PA=,∵∠BAP=∠BDC,∴∠DCA=∠PBD=30°,∵DM⊥PC,∴DM=CD=如图3﹣2中,当△ABN是锐角三角形时,同法可得PA=2+3=5,CD=5,DM=CD=,综上所述,满足条件的DM的值为或.故答案为或.【总结归纳】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题注意一题多解.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B 逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.【知识考点】二次函数综合题.【思路分析】(1)将点B,点C坐标代入解析式,可求b,c的值,即可求抛物线的表达式;(2)①如图2,过点D作DH⊥OB,由旋转的性质可得OD=3,∠COD=30°,由直角三角形的性质可得OH=OH=,DH=OH=,由锐角三角函数可求∠HBD=30°,由对称性可得BN=BM,∠MBH=∠NBH=30°,可证△BMN是等边三角形;②由三角形面积公式可求S2,S1,由等边三角形的面积公式可求MN的长,由对称性可求MR=NR=,由直角三角形的性质可求BR=3,可得OR=3,即可求点M坐标;(3)如图3中,过点F作FH⊥BG交BG的延长线于H.想办法证明△BFK是等边三角形,推出BG⊥x轴即可解决问题.【解题过程】解:(1)∵抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3),∴,解得:,∴抛物线解析式为:y=x2﹣;(2)①如图2,过点D作DH⊥OB于H,设MN与x轴交于点R,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳市2010年中等学校招生统一考试数 学 试 题试题满分150分,考试时间120分钟注意事项:1. 答题前,考生须用0.5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2. 考生须在答题卡上作答,不能在本试题卷上做答,答在本试题卷上无效;3. 考试结束,将本试题卷和答题卡一并交回;4. 本试题卷包括八道大题,25道小题,共6页。
如缺页、印刷不清,考生须声明,否则后果自 负。
一、选择题 (下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1. 左下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是2. 为了响应国家“发展低碳经济、走进低碳生活”的号召,到目前为止沈阳市共有60000户家庭建立了“低碳节能减排家庭档案”,则60000这个数用科学记数法表示为 (A) 60⨯104(B) 6⨯105 (C) 6⨯104 (D) 0.6⨯106 。
3. 下列运算正确的是 (A) x 2+x 3=x 5 (B) x 8÷x 2=x 4 (C) 3x -2x =1 (D) (x 2)3=x 6 。
4. 下列事件为必然事件的是 (A ) 某射击运动员射击一次,命中靶心 (B) 任意买一张电影票,座位号是偶数 (C) 从一个只有红球的袋子里面摸出一个球是红球 (D) 掷一枚质地均匀的硬币落地后正面朝上 。
5. 如图,在方格纸上建立的平面直角坐标系中,将Rt △ABC 绕点C 按顺时针方向旋转90︒,得到Rt △FEC ,则点A 的对应点F 的坐标是(A) (-1,1) (B) (-1,2) (C) (1,2) (D) (2,1)。
6. 反比例函数y = -x15的图像在 (A) 第一、二象限 (B) 第二、三象限 (C) 第一、三象限 (D) 第二、四象限 。
7. 在半径为12的 O 中,60︒圆心角所对的弧长是 (A) 6π (B) 4π (C) 2π (D) π. 。
8. 如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且 ∠ADE =60︒,BD =3,CE =2,则△ABC 的边长为 (A) 9 (B) 12 (C) 15 (D) 18 。
二、填空题 (每小题4分,共32分)9. 一组数据3,4,4,6,这组数据的极差为 。
(A) (B) (C) (D)ABCE10. 计算:8⨯21-(3)0= 。
11. 分解因式:x 2+2xy +y 2= 。
12. 一次函数y = -3x +6中,y 的值随x 值增大而 。
13. 不等式组⎩⎨⎧-≥--≥32)1(24x x x 的解集是 。
14. 如图,在□ ABCD 中,点E 在边BC 上,BE :EC =1:2,连接AE 交BD 于点F ,则△BFE 的面积与△DF A 的面积之比为 。
15. 在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为 。
16. 若等腰梯形ABCD 的上、下底之和为2,并且两条对角线所成的锐角为60︒,则等腰梯形ABCD 的面积为 。
三、 解答题(第17、18小题各8分,第19小题10分,共26分) 17. 先化简,再求值:32-x x +xx-3,其中x = -1。
18. 小吴在放假期间去上海参观世博会,小吴根据游客流量,决定第一天从中国馆 (A)、日本馆 (B)、西班牙馆 (C)中随机选一个馆参观,第二天从 法国馆 (D)、沙特馆 (E)、芬兰馆(F) 中随机选一个馆参观。
请你用列表法或画树形图 (树形图)法,求小吴恰好第一天参观中国馆(A)且第二天参观芬兰馆(F)的概率。
(各国家馆可用对应的字母表示) 19. 如图,菱形ABCD 的对角线AC 与BD 相交于点O ,点E 、F 分别为边 AB 、AD 的中点,连接EF 、OE 、OF 。
求证:四边形AEOF 是菱形。
四、(每小题10分,共20分)20. 2010年4月14日,国内成品油价格迎来今年的首次提价,某市93号汽油的价格由6.25元/升涨到了6.52元/升。
某报纸调查员就“关于汽油涨价对用车会造成的影响”这一问题向BCDE FAA B CDE F OBD E A24%52%10% 4% 汽油涨价对用车会造成影响的扇形统计图250汽油涨价对用车会造成影响的条形统计图人数(1) 结合上述统计图表可得:p = ,m = ; (2) 根据以上信息,请直接在答题卡中补全条形统计图;(3) 2010年4月末,若该市有机动车的私家车车主约200000人,根据上述信息,请你估计一下持有“影响不大,还可以接受”这种态度的车主约有多少人?21. 如图,AB 是 O 的直径,点C 在BA 的延长线上,直线CD 与 O 相切于点D ,弦DF ⊥AB 于点E ,线段CD =10,连接BD ; (1) 求证:∠CDE =2∠B ; (2) 若BD :AB =3:2,求 O 的半径及DF 的长。
五、(本题10分)22. 阅读下列材料,并解决后面的问题: ★ 阅读材料:(1) 等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线。
例如,如图1,把海拔高度是50米、100米、150米的点分别连接起来,就分别形成50米、100米、150米三条等高线。
(2) 利用等高线地形图求坡度的步骤如下:(如图2)步骤一:根据两点A 、B 所在的等高线地形图,分别读出点A 、B 的高度;A 、B 两点的铅直距离=点A 、B 的高度差;步骤二:量出AB 在等高线地形图上的距离为d 个单位,若等高线地形图的比例尺为1:n ,则A 、B 两点的水平距离=dn ; 步骤三:AB 的坡度=水平距離鉛直距離=dnB A 的高度差點,;图1B小明家A小丁家C P 学校 100米200米 300米 400米图2图3★请按照下列求解过程完成填空,并把所得结果直接写在答题卡上。
某中学学生小明和小丁生活在山城,如图3(示意图),小明每天上学从家A 经过B 沿着公路AB 、BP 到学校P ,小丁每天上学从家C 沿着公路CP 到学校P 。
该山城等高线地形图的比例尺为1:50000,在等高线地形图上量得AB =1.8厘米,BP =3.6厘米,CP =4.2厘米。
(1) 分别求出AB 、BP 、CP 的坡度(同一段路中间坡度的微小变化忽略不计); (2) 若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在101到81之 间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在81到61之间时,小明和小丁步行的平均速度均约为1米/秒)解:(1) AB 的水平距离=1.8⨯50000=90000(厘米)=900(米),AB 的坡度=900100200-=91; BP 的水平距离=3.6⨯50000=180000(厘米)=1800(米),BP 的坡度=1800200400-=91; CP 的水平距离=4.2⨯50000=210000(厘米)=2100(米),CP 的坡度=;(2) 因为101<91<81,所以小明在路段AB 、BP 上步行的平均速度均约为1.3米/秒。
因为 ,所以小丁在路段CP 上步行的平均速度约为 ● 米/秒,斜坡AB 的距离=22100900+≈906(米),斜坡BP 的距离=222001800+≈1811(米),斜坡CP 的距离=223002100+≈2121(米),所以小明从家到学校的时间=3.11811906+ =2090(秒)。
小丁从家到学校的时间约为 ❍ 秒。
因此, ⏹ 先到学校。
六、(本题12分)23. 某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部份存入仓库,另一部分运往外地销售。
根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系y =2x +3 (1≤x ≤10且x 为整数)。
该农产品在 收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积的量;(2) 设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p (吨),请求出p (吨)与收获天数x (天)的函数关系式;(3) 在(2)的基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始 的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m (吨)与收获天数x (天)满足函数关系m = -x 2+13.2x -1.6 (1≤x ≤10且x 为整数)。
问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?七、(本题12分)24. 如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,若B 、P 在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接PM 、PN ;(1) 延长MP 交CN 于点E (如图2)。
求证:△BPM ≅△CPE ; 求证:PM = PN ;(2) 若直线a 绕点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变。
此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由; (3) 若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变。
请直接判断四边形MBCN的形状及此时PM =PN 还成立吗?不必说明理由。
aA BCPMNA BCM N aPA BCPNMa图1 图2 图3八、(本题14分)25. 如图1,在平面直角坐标系中,拋物线y =ax 2 c 与x 轴正半轴交于点F (16,0)、与y 轴正半轴交于点E (0,16),边长为16的正方形ABCD 的顶点D 与原点O 重合,顶点A 与点E 重合,顶点C 与点F 重合; (1) 求拋物线的函数表达式;(2) 如图2,若正方形ABCD 在平面内运动,并且边BC 所在的直线始终与x 轴垂直,抛物线始终与边AB 交于点P 且同时与边CD 交于点Q (运动时,点P 不与A 、B 两点重合,点Q 不与C 、D 两点重合)。
设点A 的坐标为(m ,n ) (m >0)。
当PO =PF 时,分别求出点P 和点Q 的坐标;在 的基础上,当正方形ABCD 左右平移时,请直接写出m 的取值范围;● 当n =7时,是否存在m 的值使点P 为AB 边中点。
若存在,请求出m 的值;若不存在,请说明理由。
图1 图2备用图沈阳市2010年中等学校招生统一考试数 学 试 题 答 案一、选择题:(每小题3分,共24分)1. A2. C3. D4. C5. B6. D7. B8. A二、填空题 (每小题4分,共32分)9. 3 10.2-1 11. (x +y )2 12. 减小 13. -1≤x ≤1 14. 1:9 15. (9,81) 16.3或33 三、解答题 (第17、18小题各8分,第19小题10分,共26分) 17. [解] 原式=32-x x -3-x x =3-x x ,当x = -1时,原式=311---=41。