沈阳中考数学试题及答案解析
2020年辽宁省沈阳市中考数学试题(解析版)
2020年辽宁省沈阳市中考数学试卷一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)下列有理数中,比0小的数是()A.﹣2B.1C.2D.32.(2分)2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105 3.(2分)如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.(2分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a3 5.(2分)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°6.(2分)不等式2x≤6的解集是()A.x≤3B.x≥3C.x<3D.x>37.(2分)下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯8.(2分)一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.(2分)一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.(2分)如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.πC.D.二、填空题(每小题3分,共18分)11.(3分)因式分解:2x2+x=.12.(3分)二元一次方程组的解是.13.(3分)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).14.(3分)如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB 于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.(3分)如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F 分别是BM,CM中点,若EF=6,则AM的长为.16.(3分)如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P 为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:P A=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B (6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE 绕点B逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.2020年辽宁省沈阳市中考数学试卷参考答案与试题解析一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)下列有理数中,比0小的数是()A.﹣2B.1C.2D.3【分析】根据有理数的大小比较的法则分别进行比较即可.【解答】解:由于﹣2<0<1<2<3,故选:A.2.(2分)2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将10900用科学记数法表示为1.09×104.故选:B.3.(2分)如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形.故选:D.4.(2分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a3【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解答】解:A、a2+a3,不是同类项,无法合并,不合题意;B、a2•a3=a5,故此选项错误;C、(2a)3=8a3,正确;D、a3÷a=a2,故此选项错误;故选:C.5.(2分)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°【分析】由三角形内角和定理可求∠ABC的度数,由平行线的性质可求解.【解答】解:∵AC⊥CB,∴∠ACB=90°,∴∠ABC=180°﹣90°﹣∠BAC=90°﹣35°=55°,∵直线AB∥CD,∴∠ABC=∠BCD=55°,故选:B.6.(2分)不等式2x≤6的解集是()A.x≤3B.x≥3C.x<3D.x>3【分析】不等式左右两边同时除以2,不等号方向不变,即可求出不等式的解集.【解答】解:不等式2x≤6,左右两边除以2得:x≤3.故选:A.7.(2分)下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯【分析】根据事件发生的可能性大小判断.【解答】解:A、从一个只有白球的盒子里摸出一个球是白球,是必然事件;B、任意买一张电影票,座位号是3的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件;故选:A.8.(2分)一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.9.(2分)一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】(方法一)根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限;(方法二)描点、连线,画出函数y=kx+b(k≠0)的图象,观察函数图象,即可得出一次函数y=kx+b(k≠0)的图象不经过第四象限.【解答】解:(方法一)将A(﹣3,0),B(0,2)代入y=kx+b,得:,解得:,∴一次函数解析式为y=x+2.∵k=>0,b=2>0,∴一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限.故选:D.(方法二)依照题意,画出函数图象,如图所示.观察函数图象,可知:一次函数y=kx+b(k≠0)的图象不经过第四象限.故选:D.10.(2分)如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.πC.D.【分析】根据矩形的性质和三角函数的定义得到∠BAE=30°,根据弧长公式即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AD=BC=2,∠B=90°,∴AE=AD=2,∵AB=,∴cos∠BAE==,∴∠BAE=30°,∴∠EAD=60°,∴的长==,故选:C.二、填空题(每小题3分,共18分)11.(3分)因式分解:2x2+x=x(2x+1).【分析】原式提取公因式即可.【解答】解:原式=x(2x+1).故答案为:x(2x+1).12.(3分)二元一次方程组的解是.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=3,则方程组的解为.故答案为:.13.(3分)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是乙(填“甲”或“乙”).【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵甲=7=乙,S甲2=2.9,S乙2=1.2,∴S甲2>S乙2,∴乙的成绩比较稳定,故答案为:乙.14.(3分)如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB 于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为6.【分析】利用等腰三角形的性质求出点A的坐标即可解决问题.【解答】解:∵AO=AB,AC⊥OB,∴OC=BC=2,∵AC=3,∴A(2,3),把A(2,3)代入y=,可得k=6,故答案为6.15.(3分)如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F 分别是BM,CM中点,若EF=6,则AM的长为8.【分析】根据三角形中位线定理和平行四边形的性质即可得到结论.【解答】解:∵点E,点F分别是BM,CM中点,∴EF是△BCM的中位线,∵EF=6,∴BC=2EF=12,∵四边形ABCD是平行四边形,∴AD=BC=12,∵AM=2MD,∴AM=8,故答案为:8.16.(3分)如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P 为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为或1.【分析】分两种情况讨论,当∠DPF=90°时,过点O作OH⊥AD于H,由平行线分线段成比例可得OH=AB=3,HD=AD=4,由折叠的性质可得∠APO=∠EPO=45°,可求OH=HP=3,可得PD=1;当∠PFD=90°时,由勾股定理和矩形的性质可得OA =OC=OB=OD=5,通过证明△OFE∽△BAD,可得,可求OF的长,通过证明△PFD∽△BAD,可得,可求PD的长.【解答】解:如图1,当∠DPF=90°时,过点O作OH⊥AD于H,∵四边形ABCD是矩形,∴BO=OD,∠BAD=90°=∠OHD,AD=BC=8,∴OH∥AB,∴,∴OH=AB=3,HD=AD=4,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴∠APO=∠EPO=45°,又∵OH⊥AD,∴∠OPH=∠HOP=45°,∴OH=HP=3,∴PD=HD﹣HP=1;当∠PFD=90°时,∵AB=6,BC=8,∴BD===10,∵四边形ABCD是矩形,∴OA=OC=OB=OD=5,∴∠DAO=∠ODA,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴AO=EO=5,∠PEO=∠DAO=∠ADO,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴,∴,∴OF=3,∴DF=2,∵∠PFD=∠BAD,∠PDF=∠ADB,∴△PFD∽△BAD,∴,∴,∴PD=,综上所述:PD=或1,故答案为或1.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.【分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=2×+9+1+2﹣=+12﹣=12.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).【分析】画树状图展示所有6种等可能的结果,找出抽出的两名学生性别相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果,其中抽出的两名学生性别相同的结果数为3,所以抽出的两名学生性别相同的概率==.19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.【分析】(1)利用线段垂直平分线的性质以及矩形的性质,即可得到判定△AOM≌△CON 的条件;(2)连接CE,设AE=CE=x,则DE=6﹣x,再根据勾股定理进行计算,即可得到AE 的长.【解答】解:(1)∵MN是AC的垂直平分线,∴AO=CO,∠AOM=∠CON=90°,∵四边形ABCD是矩形,∴AB∥CD,∴∠M=∠N,在△AOM和△CON中,,∴△AOM≌△CON(AAS);(2)如图所示,连接CE,∵MN是AC的垂直平分线,∴CE=AE,设AE=CE=x,则DE=6﹣x,∵四边形ABCD是矩形,∴∠CDE=90°,CD=AB=3,∴Rt△CDE中,CD2+DE2=CE2,即32+(6﹣x)2=x2,解得x=,即AE的长为.故答案为:.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=100,n=60;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为108度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.【分析】(1)根据其他垃圾的吨数和所占的百分比可以求得m的值,然后根据条形统计图中的数据,即可得到n的值;(2)根据统计图中的数据,可以得到可回收物的吨数,然后即可将条形统计图补充完整;(3)根据统计图中的数据,可以计算出厨余垃圾所对应的扇形圆心角的度数;(4)根据统计图中的数据,可以计算出该市2000吨垃圾中约有多少吨可回收物.【解答】解:(1)m=8÷8%=100,n%=×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×=108°,故答案为:108;(4)2000×=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?【分析】求的是工效,工作总量是3000m,则是根据工作时间来列等量关系.关键描述语是提前2天完成,等量关系为:原计划时间﹣实际用时=2,根据等量关系列出方程.【解答】解:设原计划每天修建盲道xm,则﹣=2,解得x=300,经检验,x=300是所列方程的解,答:原计划每天修建盲道300米.五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.【分析】(1)如图,连接OD,由切线的性质可得∠ODC=90°,可得∠BDO+∠ADC=90°,由直角三角形的性质和等腰三角形的性质可证∠A=∠ADC,可得DC=AC;(2)由等腰三角形的性质可得∠DCB=∠DBC=∠BDO,由三角形内角和定理可求∠DCB=∠DBC=∠BDO=30°,由直角三角形的性质可求解.【解答】证明:(1)如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,∴∠BDO+∠ADC=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A=∠ADC,∴CD=AC;(2)∵DC=DB,∴∠DCB=∠DBC,∴∠DCB=∠DBC=∠BDO,∵∠DCB+∠DBC+∠BDO+∠ODC=180°,∴∠DCB=∠DBC=∠BDO=30°,∴DC=OD=,故答案为:.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为4,AB的长为2;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为16.【分析】(1)利用两点间距离公式求解即可.(2)求出直线AB的解析式,利用待定系数法即可解决问题.(3)求出PN,PM即可解决问题.(4)如图,当t=时,MN==4,设EM=m,则EN=4﹣m.构建二次函数利用二次函数的性质即可解决问题.【解答】解:(1)∵A(4,4),B(6,0),∴OA==4,AB==2.故答案为4,2.(2)设直线AB的解析式为y=kx+b,将A(4,4),B(6,0)代入得到,,解得,∴直线AB的解析式为y=﹣2x+12,由题意点N的纵坐标为1,令y=1,则1=﹣2x+12,∴x=,∴N(,1).(3)当0<t<4时,令y=t,代入y=﹣2x+12,得到x=,∴N(,t),∵∠AOB=∠AOP=45°,∠OPM=90°,∴OP=PM=t,∴MN=PN﹣PM=﹣t=.故答案为.(4).如图,当t=时,MN==4,设EM=m,则EN=4﹣m.由题意S1•S2=•m×4×(4﹣m)×4=﹣4m2+16m=﹣4(m﹣2)2+16,∵﹣4<0,∴m=2时,S1•S2有最大值,最大值为16.故答案为16.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:P A=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为或.【分析】(1)①证明△PBA≌△DBC(SAS)可得结论.②利用全等三角形的性质解决问题即可.(2)证明△CBD∽△ABP,可得==解决问题.(3)分两种情形,解直角三角形求出CD即可解决问题.【解答】(1)①证明:如图1中,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,∵BP=BD,BA=BC,∴△PBA≌△DBC(SAS),∴P A=DC.②解:如图1中,设BD交PC于点O.∵△PBA≌△DBC,∴∠BP A=∠BDC,∵∠BOP=∠COD,∴∠OBP=∠OCD=60°,即∠DCP=60°.(2)解:结论:CD=P A.理由:如图2中,∵AB=AC,PB=PD,∠BAC=∠BPD=120°,∴BC=BA,BD=BP,∴==,∵∠ABC=∠PBD=30°,∴∠ABP=∠CBD,∴△CBD∽△ABP,∴==,∴CD=P A.(3)过点D作DM⊥PC于M,过点B作BN⊥CP交CP的延长线于N.如图3﹣1中,当△PBA是钝角三角形时,在Rt△ABN中,∵∠N=90°,AB=6,∠BAN=60°,∴AN=AB•cos60°=3,BN=AB•sin60°=3,∵PN===2,∴P A=3﹣2=1,由(2)可知,CD=P A=,∵∠BP A=∠BDC,∴∠DCA=∠PBD=30°,∵DM⊥PC,∴DM=CD=如图3﹣2中,当△ABP是锐角三角形时,同法可得P A=2+3=5,CD=5,DM=CD =,综上所述,满足条件的DM的值为或.故答案为或.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B (6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为等边三角形;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE 绕点B逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为(6,﹣2).【分析】(1)将点B,点C坐标代入解析式,可求b,c的值,即可求抛物线的表达式;(2)①如图2,过点D作DH⊥OB,由旋转的性质可得OD=3,∠COD=30°,由直角三角形的性质可得OH=OH=,DH=OH=,由锐角三角函数可求∠HBD =30°,由对称性可得BN=BM,∠MBH=∠NBH=30°,可证△BMN是等边三角形;②由三角形面积公式可求S2,S1,由等边三角形的面积公式可求MN的长,由对称性可求MR=NR=,由直角三角形的性质可求BR=3,可得OR=3,即可求点M坐标;(3)如图3中,过点F作FH⊥BG交BG的延长线于H.想办法证明△BFK是等边三角形,推出BG⊥x轴即可解决问题.【解答】解:(1)∵抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3),∴,解得:,∴抛物线解析式为:y=x2﹣;(2)①如图2,过点D作DH⊥OB于H,设MN与x轴交于点R,∵点B(6,0)和点C(0,﹣3),∴OC=3,OB=6,∵线段OC绕原点O逆时针旋转30°得到线段OD,∴OD=3,∠COD=30°,∴∠BOD=60°,∵DH⊥OB,∴∠ODH=30°,∴OH=OH=,DH=OH=,∴BH=OB﹣OH=,∵tan∠HBD===,∴∠HBD=30°,∵点M关于x轴的对称点为点N,∴BN=BM,∠MBH=∠NBH=30°,∴∠MBN=60°,∴△BMN是等边三角形,故答案为:等边三角形;②∵△ODB的面积S2=×OB×DH=×6×=,且S1=S2,∴S1=×=3,∵△BMN是等边三角形,∴S1=MN2=3,∴MN=2,∵点M关于x轴的对称点为点N,∴MR=NR=,MN⊥OB,∵∠MBH=30°,∴BR=MR=3,∴OR=3,∵点M在第四象限,∴点M坐标为(3,﹣);(3)如图3中,过点F作FH⊥BG交BG的延长线于H.由题意BE=BF=6,FK∥OB,∴∠ABK=∠FKB=60°,∵BG平分∠FBE,GF平分∠BFK,∴∠FGB=120°,设GH=a,则FG=2a,FH=a,在Rt△BHF中,∵∠FHB=90°,∴BF2=BH2+FH2,∴62=(2+a)2+(a)2,解得a=或﹣2(不符合题意舍弃),∴FG=BG=2,∴∠GBF=∠GFB=30°,∴∠FBK=∠BFK=60°,∴△BFK是等边三角形,此时F与K重合,BG⊥KF,∵KF∥x轴,∴BG⊥x轴,∴G(6,﹣2).。
沈阳中考试卷分析(数学)
沈阳中考数学试卷分析一、试卷的基本结构试卷由八道大题构成。
第一题为选择题,第1题-第8题共8题,每题3分,共24分;第二题为填空题,第9题-第16题共8题,每小题4分,共32分;第三题由第17、18、19题构成,其中第17题为化简求值,8分,18题为概率题,8分,19题为四边形证明题,10分,共26分;第四题由20、21题构成,分别为统计问题和圆的证明,每题10分,共20分;第五题为找规律,用代数式表示题,10分;第六题为一次函数与不等式题,12分;第七题为图形变换问题,12分;第八题为二次函数,14分。
全卷满分150分,考试时间为120分钟。
二、试卷具体分析1、考点分布情况考查内容分值1考查实数和整式运算2考查正投影的概念3考察平面直角坐标系4考查调查方法的特点5正方形性质的考查6考查不等式组的解法7考查圆和圆的位置关系8考查折叠相关性质的应用9数轴的考查10考查一元二次方程11数据中方差的考查12多边形内角和的考查13圆锥的相关计算14增长率的计算3分3分3分3分3分3分3分3分4分4分4分4分4分4分15等腰三角形的判定16反比例函数和一次函数的综合考察17分式求值,注意所选值要使分式有意义18概率19特殊四边形的证明20统计的考查21圆的证明22阅读材料题,考查找规律和用代数式表示的方法23一次函数和不等式的考查24图形变换问题25动点产生的平行四边形4分4分8分8分10分10分10分10分12分12分14分2、难度分析本次数学试题,意在检测学生对基础知识、基本技能、基本方法和数学思想掌握的情况,检测学生灵活运用数学知识的能力和识别数学符号、阅读理解数学语言的能力,检查学生的运算能力、空间想象能力、逻辑思维能力、分析问题解决问题的能力。
在这一思想的指导下,试题的命题特点注重基础,重视对数学思想和方法的考查,重视考查学生的数学基本功和数学素质。
相比去年,较少了最大利润的考查,第24、25题的考查范围没有改变。
2023年辽宁省沈阳市中考数学真题试卷(解析版)
2023年辽宁省沈阳市中考数学真题试卷及答案一、选择题(本大题共10小题,共20)1. 2的相反数是()A. 2B. -2C.D.【答案】B【解析】2的相反数是-2.故选:B.2. 如图是由个相同的小立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.【答案】A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中;解:此几何体的主视图从左往右分列,小正方形的个数分别是,,.故选:A【点拨】本题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图3. 我国自主研发的口径球面射电望远镜()有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据为()A. B. C. D.【答案】D【解析】科学记数法的表示形式为的形式,其中为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数;解:,故选:D【点拨】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值4. 下列计算结果正确的是()A. B. C. D.【答案】D【解析】根据整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算即可求解.解:、,故此选项错误,不符合题意;B.,故此选项错误,不符合题意;C.,故此选项错误,不符合题意;D.,正确,符合题意.故选:.【点拨】本题主要考查整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算,掌握整式的混合运算是解题的关键.5. 不等式的解集在数轴上表示正确的是()A. B.C. D.【答案】C【解析】根据在数轴上表示不等式解集的方法求解即可.解:∵,∴1处是实心原点,且折线向右.故选:C.【点拨】题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6. 某班级准备利用暑假去研学旅行,他们准备定做一批容量一致的双肩包为此,活动负责人征求了班内同学的意向,得到了如下数据:容量人数则双肩包容量的众数是()A. B. C. D.【答案】C【解析】根据众数的定义求解即可.解:出现次,出现次数最多,众数是,故选:C.【点拨】本题考查了众数的定义,众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.7. 下列说法正确的是()A. 将油滴入水中,油会浮在水面上是不可能事件B. 抛出的篮球会下落是随机事件C. 了解一批圆珠笔芯的使用寿命,采用普查的方式D. 若甲、乙两组数据的平均数相同,,,则甲组数据较稳定【答案】D【解析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.解:、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B.抛出的篮球会下落是必然事件,故B不符合题意;C.了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定,故D符合题意;故选:.【点拨】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.8. 已知一次函数的图象如图所示,则,的取值范围是()A. ,B. ,C. ,D. ,【答案】A【解析】根据一次函数图象进行判断.解:一次函数的图象经过第一、三、四象限,,.故选:A.【点拨】本题考查一次函数的图象和性质,熟知一次函数的图象与系数的关系是解题的关键.9. 二次函数图象的顶点所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】根据抛物线,可以写出该抛物线的顶点坐标,从而可以得到顶点在第几象限.解:,顶点坐标为,顶点在第二象限.故选:.【点拨】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.10. 如图,四边形内接于,的半径为,,则的长是()A. B. C. D.【答案】C【解析】根据圆内接四边形的性质得到,由圆周角定理得到,根据弧长的公式即可得到结论.解:四边形内接于,,,,的长.故选:.【点拨】本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题(本大题共6小题,共18分)11. 因式分解:__________.【答案】a(a+1)2【解析】先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a±2ab+b=(a±b):a3+2a2+a,=a(a2+2a+1),=a(a+1)2.【点拨】此题考查提公因式法与公式法的综合运用,掌握运算法则是解题关键12. 当时,代数式的值为______ .【答案】2【解析】先将原式去括号,然后合并同类项可得,再把前两项提取,然后把的值代入可得结果.解:当时,原式,故答案为:.【点拨】此题主要是考查了整式化简求值,能够熟练运用去括号法则,合并同类项法则化简是解题的关键.13. 若点和点都在反比例函数的图象上,则______ .(用“”“”或“”填空)【答案】【解析】把和分别代入反比例函数中计算y的值,即可做出判断.解:∵点和点都在反比例函数的图象上,∴令,则;令,则,,,故答案为:.【点拨】本题考查了反比例函数图像上点的坐标特征,计算y的值是解题的关键.14. 如图,直线,直线分别与,交于点,,小明同学利用尺规按以下步骤作图:(1)点为圆心,以任意长为半径作弧交射线于点,交射线于点;(2)分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;(3)作射线交直线于点;若,则______度.【答案】58【解析】由作图得平分,再根据平行线的性质“两直线平行,内错角相等”易得,即可获得答案.解:由作图得:平分,∴,∵,∴,∴.故答案为:.【点拨】本题主要考查了尺规作图-基本作图以及平行线的性质,由作图得到平分是解题关键.15. 如图,王叔叔想用长为的栅栏,再借助房屋的外墙围成一个矩形羊圈,已知房屋外墙足够长,当矩形的边______ 时,羊圈的面积最大.【答案】15【解析】设为,则,根据矩形的面积公式可得关于x的二次函数关系式,配方后即可解.解:设为,面积为,由题意可得:,当时,取得最大值,即时,羊圈的面积最大,故答案为:.【点拨】本题考查了二次函数的性质在实际生活中的应用.最大面积的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在时取得.16. 如图,在中,,,点在直线上,,过点作直线于点,连接,点是线段的中点,连接,则的长为______ .【答案】或【解析】分两种情况当在延长线上和当在上讨论,画出图形,连接,过点作于,利用勾股定理解题即可解:当在线段上时,连接,过点作于,当在线段上时,,,,,点是线段的中点,,,,,,,,,,当在延长线上时,则,是线段的中点,,,,,,,,,,,,的长为或.故答案为:或.【点拨】本题考查等腰直角三角形的判定和性质,勾股定理,正确作出辅助线是解题的关键.三、解答题(本大题共9小题,共82)17. 计算:.【答案】10【解析】根据零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,进行计算即可.解:.【点拨】本题主要考查了实数混合运算,解题的关键是熟练掌握零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,准确计算.18. 为弘扬中华优秀传统文化,学校举办“经典诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类(分别用,,依次表示这三类比赛内容).现将正面写有,,的三张完全相同的卡片背面朝上洗匀,由选手抽取卡片确定比赛内容选手小明先从三张卡片中随机抽取一张,记下字母后放回洗匀,选手小梅再随机抽取一张,记下字母请用画树状图或列表的方法,求小明和小梅抽到同一类比赛内容的概率.【答案】图见解析,【解析】用树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可;解:用树状图法表示所有等可能出现的结果如下:共有种等可能出现的结果,其中小明和小梅抽到同一类比赛内容的有种,所以小明和小梅抽到同一类比赛内容的概率为.【点拨】本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的关键19. 如图,在中,,是边上的中线,点在的延长线上,连接,过点作交的延长线于点,连接、,求证:四边形是菱形.【答案】证明见解析【解析】先根据等腰三角形的性质,得到垂直平分,进而得到,,,再利用平行线的性质,证明,得到,进而得到,即可证明四边形是菱形.证明:,是边上的中线,垂直平分,,,,,,,在和中,,,,,四边形是菱形.【点拨】本题考查了等腰三角形的性质,垂直平分线的性质,全等三角形的判定和性质,菱形的判定,灵活运用相关知识点解决问题是解题关键.20. “书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查问卷设置了五种选项:“艺术类”,“文学类”,“科普类”,“体育类”,“其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______ 名;(2)请直接补全条形统计图;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是______ 度;(4)据抽样调查结果,请你估计该校名学生中,有多少名学生最喜爱“科普类”图书.【答案】(1)100 (2)见解析(3)36 (4)720名【解析】(1)用B的人数除以对应百分比可得样本容量;(2)用样本容量减去其它四类的人数可得D类的人数,进而补全条形统计图;(3)用360乘A“艺术类”所占百分比可得对应的圆心角度数;(4)用总人数乘样本中C类所占百分比即可;(1)此次被调查的学生人数为:名,故答案为:;(2)类的人数为:名,补全条形统计图如下:;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是:,故答案为:;(4)(名),答:估计该校名学生中,大约有名学生最喜爱“科普类”图书.【点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小21. 甲、乙两人加工同一种零件,每小时甲比乙多加工个这种零件,甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工个这种零件.【解析】设乙每小时加工个这种零件,则甲每小时加工个这种零件,利用“甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等”列分式方程即可求解.解:设乙每小时加工个这种零件,则甲每小时加工个这种零件,根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:乙每小时加工个这种零件.【点拨】本题主要考查了分式方程的应用,解题的关键在于能够根据题意找到等量关系列出方程进行求解.22. 如图,是的直径,点是上的一点(点不与点,重合),连接、,点是上的一点,,交的延长线于点,且.(1)求证:是的切线;(2)若的半径为,,则的长为______ .【答案】(1)证明见解析(2)8【解析】(1)利用圆周角定理,等腰三角形的性质定理,对顶角相等,三角形的内角和定理和圆的切线的判定定理解答即可得出结论;(2)利用直角三角形的边角关系定理得到设, 则, 利用x的代数式表示出线段,再利用勾股定理列出关于x的方程,解方程即可得出结论.(1)证明:是的直径,,,,,,,,,,,即.为的直径,是的切线;(2)解:,,,设,则,,,,,是的直径,,,,解得:不合题意,舍去或..故答案为:.【点拨】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,三角形的内角和定理,圆的切线的判定定理,勾股定理,直角三角形的边角关系定理,熟练掌握圆周角定理是解题的关键.23. 如图,在平面直角坐标系中,一次函数的图象交轴于点,交轴于点直线与轴交于点,与直线交于点点是线段上的一个动点(点不与点重合),过点作轴的垂线交直线于点设点的横坐标为.(1)求的值和直线的函数表达式;(2)以线段,为邻边作▱,直线与轴交于点.①当时,设线段的长度为,求与之间的关系式;②连接,,当面积为时,请直接写出的值.【答案】(1),(2)①;②或【解析】(1)根据直线的解析式求出点C的坐标,用待定系数法求出直线的解析式即可;(2)①用含m的代数式表示出的长,再根据得出结论即可;②根据面积得出l的值,然后根据①的关系式的出m的值.(1)点在直线上,,一次函数的图象过点和点,,解得,直线解析式为;(2)①点在直线上,且的横坐标为,的纵坐标为:,点在直线上,且点的横坐标为,点的纵坐标为:,,点,线段的长度为,,,,即;②的面积为,,即,解得,由①知,,,解得,即的值为或.【点拨】本题考查一次函数的知识,熟练掌握一次函数的图象和性质,待定系数法求解析式是解题的关键.24. 如图,在纸片中,,,,点为边上的一点(点不与点重合),连接,将纸片沿所在直线折叠,点,的对应点分别为、,射线与射线交于点.(1)求证:;(2)如图,当时,的长为______ ;(3)如图,当时,过点作,垂足为点,延长交于点,连接、,求的面积.【答案】(1)证明见解析;(2);(3)【解析】(1)根据平行四边形的性质和平行线的性质,得到,再根据折叠的性质,得到,然后结合邻补角的性质,推出,即可证明;(2)作,交的延长线于,先证明四边形是正方形,再利用特殊角的三角函数值,求出,进而得到,即可求出的长;(3)作,交的延长线于,作于,交的延长线于,作于,解直角三角形,依次求出、、、的值,进而求得的值,根据和,求得、,进而得出的值,解直角三角形,求出的值,进而得出的值,根据,得出,从而设,,进而表示出,最后根据,列出,求出,根据,得出,进而得到,即可求出的面积.(1)证明:四边形是平行四边形,,,由折叠性质可知,,,,,;(2)解:如图,作,交的延长线于,,,,,,,,四边形是矩形,由(1)可知:,矩形是正方形,,,,,,,故答案为:;(3)解:如图,作,交的延长线于,作于,交的延长线于,作于,四边形是平行四边形,,,,,,在中,,,,在中,,由(1)可知:,,,又纸片沿所在直线折叠,点,的对应点分别为,,,,,,,,,,,,,,在中,,,,,,,,,,设,,,,,,,,,,,,,,,,,,.【点拨】本题考查了平行四边形的性质,正方形的判定和性质,等腰三角形的性质,解直角三角形、轴对称的性质等知识,正确作辅助线,熟练解直角三角形是解题关键.25. 如图,在平面直角坐标系中,二次函数的图象经过点,与轴的交点为点和点.(1)求这个二次函数的表达式;(2)点,在轴正半轴上,,点在线段上,以线段,为邻边作矩形,连接,设.连接,当与相似时,求的值;当点与点重合时,将线段绕点按逆时针方向旋转后得到线段,连接,,将绕点按顺时针方向旋转后得到,点,对应点分别为、,连接当的边与线段垂直时,请直接写出点的横坐标.【答案】(1)(2)①或;②或或【解析】(1)利用待定系数法解答即可;(2)①利用已知条件用含a的代数式表示出点E,D,F,G的坐标,进而得到线段的长度,利用分类讨论的思想方法和相似三角形的性质,列出关于a的方程,解方程即可得出结论;②利用已知条件,点的坐标的特征,平行四边形的判定与性质,旋转的性质,全等三角形的判定与性质求得,和的长,利用分类讨论的思想方法分三种情形讨论解答利用旋转的性质,直角三角形的边角关系定理,勾股定理求得相应线段的长度即可得出结论;(1)二次函数的图象经过点,与轴的交点为点,解得:此抛物线的解析式为(2)令,则解得:或,∴.∵,∴四边形为矩形,∴∴∴Ⅰ当时,∴∴∴Ⅱ当时,∴∴∴综上,当与相似时,的值为或;点与点重合,∴∴∴四边形为平行四边形,和中,Ⅰ、当所在直线与垂直时,如图,,,三点在一条直线上,过点作轴于点,则∴此时点的横坐标为Ⅱ当所在直线与垂直时,如图,,,设的延长线交于点,过点作,交的延长线于点,过点作,交的延长线于点,则轴,.,,.,.,,此时点的横坐标为;Ⅲ当所在直线与垂直时,如图,,,,,,三点在一条直线上,则,过点作,交的延长线于点,,此时点的横坐标为.综上,当的边与线段垂直时,点的横坐标为或或.【点拨】本题主要考查了二次函数的图象与性质,抛物线上点的坐标的特征,矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,利用点的坐标表示出相应线段的长度和正确利用分类讨论的思想方法是解题的关键。
2023年辽宁省各市中考数学试题真题汇编——函数(含答案)
函数(真题汇编)2023年辽宁省各市中考数学试题全解析版一.选择题(共8小题);1.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 2.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3.(2023•大连)已知蓄电池两端电压U为定值,电流I与R成反比例函数关系.当I=4A时,R=10Ω,则当I=5A时R的值为( )A.6ΩB.8ΩC.10ΩD.12Ω4.(2023•大连)已知抛物线y=x2﹣2x﹣1,则当0≤x≤3时,函数的最大值为( )A.﹣2B.﹣1C.0D.25.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.6.(2023•营口)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.下列说法:①abc<0;②抛物线的对称轴为直线x=﹣1;③当﹣3<x<0时,ax2+bx+c>0;④当x>1时,y随x的增大而增大;⑤am2+bm≤a﹣b(m为任意实数),其中正确的个数是( )A.1个B.2个C.3个D.4个7.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x 之间函数关系的图象是( )A.B.C.D.8.(2023•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=3cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧以PQ为边作菱形PQMN,点N在射线AB上.设点P的运动时间为x(s),菱形PQMN与△ABC的重叠部分的面积为y(cm2),则能大致反映y与x之间函数关系的图象是( )A.B.C.D.二.填空题(共7小题)9.(2023•锦州)如图,在平面直角坐标系中,△AOC的边OA在y轴上,点C在第一象限内,点B=(.(2023•锦州)如图,在平A4B4B5C4,…都是平行四边形,顶点C4,…都在正比例函数y=x2A4C3,…,连接A1B2,A2B3,.(2023•辽宁)如图,在平面直角坐标系中,点A的坐标为(0,2),将线段AO转120°,得到线段AB,连接OB,点B恰好落在反比例函数y=(x>0)的图象上,则值是 ..(2023•沈阳)若点=的图象上,则y2.(用“<”“>”或“=”填空).(2023•大连)如图,在数轴上,且A在OC上方.连接AB.(2023•辽宁)如图,矩形=(B,D,对角线CA的延长线经过原点三.解答题(共13小题).(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件的销售量y(件)与每件玩具售价.(2023•大连)如图1,在平面直角坐标系为线段OB上一动点(不与点B重合)的重叠面积为S,S关于t的函数图象如图(1)OB的长为 ;△OAB(2)求S关于t的函数解析式,并直接写出自变量21.(2023•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(4,0),与y轴交于点C (0,4),点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.22.(2023•锦州)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和B,交y轴于点C(0,3),顶点为D.(1)求抛物线的表达式;(2)若点E在第一象限内对称轴右侧的抛物线上,四边形ODEB的面积为7,求点E的坐标;(3)在(2)的条件下,若点F是对称轴上一点,点H是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,如果存在,请直接写出点G的坐标;如果不存在,请说明理由.23.(2023•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象交x轴于点A(8,0),交的一个动点(点M不与点C重合),过点M作x轴的垂线交直线CD于点N.设点M的横坐标为m.(1)求a的值和直线AB的函数表达式;(2)以线段MN,MC为邻边作▱MNQC,直线QC与x轴交于点E.①当0≤m<时,设线段EQ的长度为l,求l与m之间的关系式;②连接OQ,AQ,当△AOQ的面积为3时,请直接写出m的值.24.(2023•营口)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,tan∠AOB=,AB=2.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接AC并延长交x轴于点D,且∠ADO=45°,求点C的坐标.25.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.(1)求抛物线的解析式;(2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;(3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.26.(2023•沈阳)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B(,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=OE.以线段OD,OE 为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,FG,将△GFH绕点F按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′的横坐标.27.(2023•大连)如图,在平面直角坐标系中,抛物线C1:y=x2上有两点A、B,其中点A的横坐标为﹣2,点B的横坐标为1,抛物线C2:y=﹣x2+bx+c过点A、B.过A作AC∥x轴交抛物线C1另一点为点C.以AC、AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式;(2)将矩形ACDE向左平移m个单位,向下平移n个单位得到矩形A′C′D′E′,点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式,并直接写出自变量m的取值范围;②直线A′E′交抛物线C1于点P,交抛物线C2于点Q.当点E′为线段PQ的中点时,求m的值;③抛物线C2与边E′D′、A′C′分别相交于点M、N,点M、N在抛物线C2的对称轴同侧,当MN=时,求点C′的坐标.28.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P 的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.函数(真题汇编)2023年辽宁省各市中考数学试题全解析版参考答案与试题解析一.选择题(共8小题)1.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【答案】B【解答】解:由图可知该一次函数图象经过第一、三、四象限,则k>0,b<0.故答案为B.2.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵y=﹣(x+1)2+2,∴顶点坐标为(﹣1,2),∴顶点在第二象限.故选:B.3.(2023•大连)已知蓄电池两端电压U为定值,电流I与R成反比例函数关系.当I=4A时,R=10Ω,则当I=5A时R的值为( )A.6ΩB.8ΩC.10ΩD.12Ω【答案】B【解答】解:设I=,则U=IR=40,∴R===8,故选:B.4.(2023•大连)已知抛物线y=x2﹣2x﹣1,则当0≤x≤3时,函数的最大值为( )A.﹣2B.﹣1C.0D.2【答案】D【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2,∴对称轴为直线x=1,∵a=1>0,∴抛物线的开口向上,∴当0≤x<1时,y随x的增大而减小,∴当x=0时,y=﹣1,当1≤x≤3时,y随x的增大而增大,∴当x=3时,y=9﹣6﹣1=2,∴当0≤x≤3时,函数的最大值为2,故选:D.5.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.【答案】A【解答】解:过点D作DH⊥CB于H,∵DE=DF=5,EF=8,∴EH=FH=EF=4,∴DH==3,当0≤t<4时,如图,重叠部分为△EPQ,此时EQ=t,PQ∥DH,∴△EPQ∽△EDH,∴,即,∴PQ=t,∴S==2,当4≤t<8时,如图,重叠部分为四边形POC′B′,此时BB′=CC′=t,PB∥DE.∴B′F=BC+CF﹣BB′=12﹣t,FC=8﹣t,∵PB∥DE,∴△PBF∽△DCF,∴,又S△DCF=,∴,∵DH⊥BC.∠AB′C′=90°,∴AC′∥DH,∴△C′QF∽△HFD.∴,即,∴,∴S=S△PB′F﹣S△C′QF==,当8≤t≤12时如图,重叠部分为四边形△PFB′,此时BB′=CC′=t,PB′∥DE.∴B′F=BC+CF﹣BB′=12﹣t,∵PB′∥DE.∴△PB′F∽△DCF,∴,即,∴,S=S△PB′F=,综上,∴符合题意的函数图象是选项A.故选:A.6.(2023•营口)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.下列说法:①abc<0;②抛物线的对称轴为直线x=﹣1;③当﹣3<x<0时,ax2+bx+c>0;④当x>1时,y随x的增大而增大;⑤am2+bm≤a﹣b(m为任意实数),其中正确的个数是( )A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向下,∴a<0,∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),∴对称轴为直线x==﹣1,故②正确;∴﹣=﹣1,∴b=2a<0,∵与y轴的交点在正半轴上,∴c>0,∴abc>0,故①错误;由图象可知,当﹣3<x<0时,y>0,∴当﹣3<x<0时,ax2+bx+c>0,故③正确;由图象可知,当x>1时,y随x的增大而减小,故④错误;∵抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,函数有最大值,∴当m为任意实数时,am2+bm+c≤a﹣b+c,∴am2+bm≤a﹣b,故⑤正确;综上所述,结论正确的是②③⑤共3个.故选:C.7.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x 之间函数关系的图象是( )A.B.C.D.【答案】A【解答】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFHG全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,AE=x,∠EAF=60°,∴EF=AE=x,∴S=x2;②图3时,AE+AF=AC,即x+x=6,解得x=4,由图2到图3,此时3<x≤4,如图4,由题意可知△EQB是正三角形,∴EQ=EB=BQ=6﹣x,∴GQ=x﹣(6﹣x)=2x﹣6,∴S=S矩形EFHG﹣S△PQG=x2﹣×(2x﹣6)2=﹣x2+12x﹣18,③图6时,x=6,由图3到图6,此时4<x≤6,如图5,由题意可知△EKB是正三角形,∴EK=EB=BK=6﹣x,FC=AC﹣AF=6﹣x,EF=x,∴S=S梯形EFCK=(6﹣x+6﹣x)×x=﹣x2+3x,综上所述,S与x的函数关系式为S=,因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线,故选:A.8.(2023•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=3cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧以PQ为边作菱形PQMN,点N在射线AB上.设点P的运动时间为x(s),菱形PQMN与△ABC的重叠部分的面积为y(cm2),则能大致反映y与x之间函数关系的图象是( )A.B.C.D.【答案】A【解答】解:作PD⊥AC于点D,作QE⊥AB于点E,由题意得AP=x,AQ=x,∴AD=AP•cos30°=x,∴AD=DQ=AQ,∴PD是线段AQ的垂直平分线,∴∠PQA=∠A=30°,∴∠QPE=60°,PQ=AP=x,∴QE=AQ=x,PQ=PN=MN=QM=x,当点M运动到直线BC上时,此时,△BMN是等边三角形,∴AP=PN=BN=AB=1,x=1;当点Q、N运动到与点C,B重合时,∴AP=PN=AB=,x=;当点P运动到与点B重合时,∴AP=AB=3,x=3;∴当0<x≤1时,y=x•x=x2,≤时,如图,作则BN=FN=FB=3﹣2x,FM=MS=FS=(∴y=x2﹣(3x﹣3)•(3x﹣3)=﹣x+x﹣,当<x<3时,如图,作HI⊥AB于点则BP=PH=HB=3﹣x,HI=(3﹣x),∴y=•(3﹣x)•(3﹣x)=x2﹣x+,综上,y与x之间函数关系的图象分为三段,当0<x≤时,是开口向下的一段抛物线,当<x<3时,是开口向上的一段抛物线,=(【答案】4.【解答】解:过点C作CD⊥y轴于点D,如图:设点C的坐标为(a,b),点A的坐标为(0,c),∴CD=a,OA=c,∵△AOC的面积是6,∴,∴ac=12,∵点C(a,b)在反比例函数(x>0)的图象上,∴k=ab,∵点B为AC的中点,∴点,∵点B在反比例函数(x>0)的图象上,∴,即:4k=a(b+c),∴4k=ab+ac,将ab=k,ac=12代入上式得:k=4.故答案为:4.10.(2023•锦州)如图,在平面直角坐标系中,四边形A1B1B2C1,A2B2B3C2,A3B3B4C3,A4B4B5C4,…都是平行四边形,顶点B1,B2,B3,B4,B5…都在x轴上,顶点C1,C2,C3,C4,…都在正比例函数y=x(x≥0)的图象上,且B2C1=2A2C1,B3C2=2A3C2,B4C3=2A4C3,…,连接A1B2,A2B3,A3B4,A4B5,…,分别交射线OC1于点O1,O2,O3,O4,…,连接O1A2,O2A3,O3A4,…,得到△O1A2B2,△O2A3B3,△O3A4A4,…若B1(2,0),B2(3, .【答案】.【解答】解:∵B2(3,0),A1(3,1)∴O1(3,),A1B2⊥x轴,同理可得:A2B3⊥x轴,A3B4⊥x轴,∴,∴,=,∴=O=,:=(∴=()=()=,故答案为:.=( .【答案】.【解答】解:过点B由旋转的性质得,AO∵点A的坐标为(0,∴,由勾股定理得,的坐标为,恰好落在反比例函数(∴,故答案为:.=的图象上,则则,则,【答案】15.【解答】解:设AB为xm1+ .1+,===,=,1+,1+.1+,=(【答案】6.【解答】解:如图,延长∵矩形ABCD的面积是由几何意义得,=三.解答题(共13小题)16.(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?【答案】见试题解答内容【解答】解:(1)设y与x之间的函数关系式为y=kx+b,∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,∴,解得,即y与x之间的函数关系式为y=﹣2x+320;(2)设利润为w元,由题意可得:w=(x﹣100)(﹣2x+320)=﹣2(x﹣130)2+1800,∴当x=130时,w取得最大值,此时w=1800,答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.17.(2023•营口)某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同,当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销,该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;根据题意得:=,)代入得,解得,∴y=﹣x+140;(2)∵规定销售单价不低于进价,且不高于进价的2倍,∴40≤x≤80,设每月出售这种护眼灯所获的利润为w元,根据题意得,w=(x﹣40)y=(x﹣40)(﹣x+140)=﹣x2+180x﹣5600=﹣(x﹣90)2+2500,∴当护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元.19.(2023•锦州)端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?【答案】(1)y与x的函数关系式为y=﹣40x+680;(2)当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元.【解答】解:(1)设y与x的函数关系式为y=kx+b,把x=10,y=280和x=14,y=120别代入解析式,得,解得,∴y与x的函数关系式为y=﹣40x+680;(2)设这种粽子日销售利润为w元,则w=(x﹣8)(﹣40x+680)=40x2+1000x﹣5440=40(x﹣)2+810,∵﹣40<0,抛物线开口向下, ;【答案】(1)4,;(2)S=.【解答】解:(1)t=0时,P与O重合,此时S=S△ABO=,t=4时,S=0,P与B重合,∴OB=4,B(4,0),,;=OB,即×=,=,∴A(,);当0≤t≤时,设OA交PD于E,如图:∵∠AOB=45°,PD⊥OB,∴△PEO是等腰直角三角形,∴PE=PO=t,∴S△POE=t2,∴S=﹣S△POE=﹣t2;当<t<4时,如图:由A(,),B(4,0)得直线AB解析式为y=﹣x+2,当x=0时,y=2,∴C(0,2),∴OC=2,∵tan∠CBO====,∴DP=PB=(4﹣t)=2﹣t,∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4;综上所述,S=.21.(2023•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(4,0),与y轴交于点C (0,4),点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.【答案】(1)见解答.(2)EH=4,(3)点N的坐标为(4,4)或(﹣,)或(,)或(,).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(4,0)和C(0,4),∴解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点B(4,0)和C(0,4).设直线BC的解析式为v=kx+4,则0=4k+4,解得k=﹣1.直线BC的解析式为y=﹣x+4,设E(x,﹣x2+x+4),且0<x<4,则F(x,﹣x+4),GH﹣EF=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴解析式的对称轴为﹣,∴H(2﹣x,﹣x2+x+4),∴GF﹣EH=x﹣(4﹣x)=2x﹣2,依题意得2(﹣x2+2x+2x﹣2)=11.解得x=5(舍去)或x=3.∴EH=4,(3)令y=0,则﹣x2+x+4=0,解得x=﹣2或x=4.∴A(﹣2,0).同理,直线AC的解析式为y=2x+4,∵四边形OENM是正方形,∴OE=OM,∠EOM=90°,分别过点M、E作y轴的垂线,垂足分别为P、Q,如图,∠OPM=∠EQO=90°,∠OMP=90°﹣∠MOP=∠EOQ.∴△OMP≌ΔEOQ(AAS).∴PM=OQ,PO=EQ.设E(m,﹣m2+m+4),∴PM=OQ=﹣m,PO﹣EQ=﹣m2+m+4.则M(m2﹣m+4,m),∵点M在直线AC上,∴m=2(﹣m﹣4)+4.解得m=4或m=﹣1当m=4时,M(0,4),E(4,0),即点M与点C重合,点E与点B重合时,四边形OENM是正方形,此时N(4,4):当m=﹣1时,M(﹣,﹣1),E(﹣1,),点O向左平移个单位,再向下平移1个单位,得到点M,则点E向左平移个单位,再向下平移1个单位,得到点N,N(﹣1﹣,﹣1),即N(﹣,).当OM沿着点O逆时针旋转90°得到OE,如图:设M(a,b),则点E(b,﹣a),∵点M在y=2x+4,∴b=2a+4,则点M(a,2a+4),此时点E(2a+4,﹣a),点E在y=﹣x2+x+4的图象上,∴,解得a=0或﹣,∴M1(0,4),E1(4,0),M2(﹣,﹣1),E2(﹣1,),当点E为点M绕点O逆时针旋转90°时,点E(﹣b,a),M(a,2a+4),E(﹣2a﹣4,a),点E在y=﹣x2+x+4的图象上,∴﹣(﹣2a﹣4)2﹣2a﹣4+4=a,解得a=,∴M1(,),E1(,),M2(,),E2(,),∴点N的坐标为(,)或(,),综上,点N的坐标为(4,4)或(﹣,)或(,)或(,).22.(2023•锦州)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和B,交y轴于点C(0,3),顶点为D.(1)求抛物线的表达式;(2)若点E在第一象限内对称轴右侧的抛物线上,四边形ODEB的面积为7,求点E的坐标;(3)在(2)的条件下,若点F是对称轴上一点,点H是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,如果存在,请直接写出点G的坐标;如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)E(2,3);(3)存在,G的坐标为(,)或(,).【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(﹣1,0)和点C(0,3),∴,∴,∴抛物线的表达式y=﹣x2+2x+3.(2)设抛物线的对称轴与x轴交于点M,过点E作EN⊥x轴于点N,设E(x,﹣x2+2x+3),∴BN=3﹣x,MN=x﹣1,∴S四边形ODEB=S△ODM+S梯形DMNE+S△ENB=×1×4+(4﹣x2+4x+3)(x﹣1)+(﹣x2+2x+3)(3﹣x)=﹣x2+4x+3,∵四边形ODEB的面积为7,∴﹣x2+4x+3=7,∴x2﹣4x+4=0,∴x1=x2=2,∴E(2,3).(3)存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,满足条件G的坐标为(,)或(,).理由如下:如图,连接CG,DG,∵四边形EFGH是菱形,且∠EFG=60°,∴△EFG是等边三角形,∴△DCE是等边三角形,∴△CEG≌△DEF,∴∠ECG=∠EDF=30°,∴直线CG的表达式为y=﹣x+3,∴,∴G(,);如图,连接CG、DG、CF,∵四边形EFGH是菱形,且∠EFG=60°,∴△EFG是等边三角形,∴△DCE是等边三角形,∴△DGE≌△CFE,∴DG=CF,∴CF=FE,GE=FE,∴DG=GE,∴△CDG≌△CEG,∴∠DCG=∠ECG=30°,∴直线CG的表达式为y=x+3,∴,∴G(,),综上,G(,)或(,).23.(2023•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象交x轴于点A(8,0),交y轴于点B.直线y=x﹣与y轴交于点D,与直线AB交于点C(6,a).点M是线段BC上的一个动点(点M不与点C重合),过点M作x轴的垂线交直线CD于点N.设点M的横坐标为m.(1)求a的值和直线AB的函数表达式;(2)以线段MN,MC为邻边作▱MNQC,直线QC与x轴交于点E.①当0≤m<时,设线段EQ的长度为l,求l与m之间的关系式;②连接OQ,AQ,当△AOQ的面积为3时,请直接写出m的值.【答案】(1)a的值为,直线AB解析式为y=﹣x+6;(2)①l=;②或.【解答】解:(1)∵点C(6,a)在直线y=x﹣上,∴a==,∵一次函数y=kx+b的图象过点A(8,0)和点C(6,),∴,解得,∴直线AB的解析式为y=﹣x+6;(2)①∵M点在直线y=﹣x+6上,且M的横坐标为m,∴M的纵坐标为:﹣m+6,∵N点在直线y=x﹣上,且N点的横坐标为m,∴N点的纵坐标为:m﹣,∴|MN|=﹣m+6﹣m+=﹣,∵点C(6,),线段EQ的长度为l,∴|CQ|=1+,∵|MN|=|CQ|,∴﹣=1+,即l=;②∵△AOQ的面积为3,∴OA•EQ=3,即,解得EQ=,由①知,EQ=6﹣,∴|6﹣|=,解得m=或,即m的值为或.24.(2023•营口)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,tan∠AOB=,AB=2.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接AC并延长交x轴于点D,且∠ADO=45°,求点C 的坐标.【答案】(1)反比例函数的解析式为y=;(2)C(4,2).【解答】解:(1)∵AB⊥y轴于点B,∴∠OBA=90°,在Rt△OBA中,AB=2,tan∠AOB=,∴OB=4,∴A(2,4),∵点A在反比例函数y=(x>0)的图象上,∴k=4×2=8;∴反比例函数的解析式为y=;(2)如图,过A作AF⊥x轴于F,∴∠AFD=90°,∵∠ADO=45°,∴∠FAD=90°﹣∠CDE=45°,∴AF=DF=OB=4,∵OF=AB=2,∴OD=6,∴D(6,0),设直线AC的解析式为y=ax+b,∵点A(2,4),D(6,0)在直线AC上,∴,∴,∴直线AC的解析式为y=﹣x+6①,由(1)知,反比例函数的解析式为y=②,联立①②解得,或,∴C(4,2).25.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.(1)求抛物线的解析式;(2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;(3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.【答案】(1)y=﹣x2+x+4;(2)P(,5);(3)Q(0,+)或(0,﹣).【解答】解:(1)将点B(3,0),点C(0,4)代入y=ax2+x+c,∴,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点B(3,0),点C(0,4),∴OB=3,OC=4,∴tan∠OBC=,∴BE=EF,BF=EF,∴△BEF的周长=3EF,∵△BEF的周长是线段PF长度的2倍,∴3EF=2PF,设直线BC的解析式为y=kx+4,∴3k+4=0,解得k=﹣,∴直线BC的解析式为y=﹣x+4,设P(t,﹣t2+t+4),则F(t,﹣t+4),E(t,0),∴EF=﹣t+4,PF=﹣t2+t+4+t﹣4=﹣t2+4t,∴3(﹣t+4)=2(﹣t2+4t),解得t=3(舍)或t=,∴P(,5);(3)∵y=﹣x2+x+4=﹣(x﹣1)2+,∴P(1,),∵FP⊥x轴,∴F(1,),设Q(0,n),过点M作MN⊥x轴交于点N,∵∠QBM=90°,∴∠QBO+∠MBN=90°,∵∠QBO+∠OQB=90°,∴∠MBN=∠OQB,∵BQ=BM,∴△BQO≌△MBN(AAS),∴QO=BN,MN=OB,∴M(3+n,3),设直线QM的解析式为y=k'x+n,∴k'(3+n)+n=3,解得k'=,∴直线QM的解析式为y=x+n,将点F代入,+n=,解得n=+或n=﹣,∴Q(0,+)或(0,﹣).26.(2023•沈阳)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B(,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=OE.以线段OD,OE 为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,F G,将△GFH绕点F按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′的横坐标.【答案】(1)y=﹣x+2;(2)①或;②当△G′FH′的边与线段DE垂直时,点H ′的横坐标为2+3或2+或.【解答】解:(1)∵二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B (,0),∴,解得:,∴此抛物线的解析式为y=﹣x+2;(2)①令y=0,则﹣x+2=0,解得:x=或x=2,∴C(2,0),∴OC=2.∵OE=a,OG=2OE,OD=OE,∴OG=2a,OD=a.∵四边形ODFE为矩形,∴EF=OD=a,FD=OE=a,∴E(0,a),D(a,0),F(a,a),G(0,2a),∴CD=OC﹣OD=2﹣a.Ⅰ.当△GOD∽△FDC时,∴,∴,∴a=;Ⅱ.当△GOD∽△CDF时,∴,∴,∴a=.综上,当△GOD与△FDC相似时,a的值为或;②∵点D与点C重合,∴OD=OC=2.∴OE=2,OG=2OE=4,EF=OD=2,DF=OE=2,∴EG=OE=2.∴EG=DF=2,∵EG∥DF,∴四边形GEDF为平行四边形,∴FG=DE===4,∴∠GFE=30°,∴∠EGF=60°,∵∠DGH=60°,∴∠EGF=∠DGH,∴∠OGD=∠FGH.在△GOD和△GFH中,,∴△GOD≌△GFH(SAS),∴FH=OD=2,∠GOD=∠GFH=90°.∴GH===2.Ⅰ.当G′F所在直线与DE垂直时,如图,∵∠GFH=90°,GF∥DE,∴∠G′FH′=90°,∴G,F,H′三点在一条直线上,∴GH′=GF+FH′=FG+FH=4+2.过点H′作H′K⊥y轴于点K,则H′K∥FE,∴∠KH′G=∠EFG=30°,∴H′K=H′G•cos30°=×(4+2)=2+3,∴此时点H′的横坐标为2+3;Ⅱ.当G′H′所在直线与DE垂直时,如图,∵GF∥DE,∴G′H′⊥GF,设GF的延长线交G′H′于点M,过点M作MP⊥EF,交EF的延长线于点P,过点H′作H′N⊥MP,交PM的延长线于点N,则H′N∥PF∥x轴,∠PFM=∠EFG=30°.∵G′H′•FM=FH′•FG′,∴4×2=2FM,∴FM=.∴FP=FM•cos30°==,∴PE=PF+EF=2+.∵H′M==,∴H′N=H′M•sin30°=,∴此时点H′的横坐标为PE﹣H′N=2=2+;Ⅲ.当FH′所在直线与DE垂直时,如图,∵∠H′FG′=90°,GF∥DE,∴∠GFH′=90°,∴H,F,H′三点在一条直线上,则∠H′FD=30°,过点H′作H′L⊥DF,交FD的延长线于点L,H′L=H′F•sin30°=2×=,∴此时点H′的横坐标为EF﹣H′L=2=.综上,当△G′FH′的边与线段DE垂直时,点H′的横坐标为2+3或2+或.27.(2023•大连)如图,在平面直角坐标系中,抛物线C1:y=x2上有两点A、B,其中点A的横坐标为﹣2,点B的横坐标为1,抛物线C2:y=﹣x2+bx+c过点A、B.过A作AC∥x轴交抛物线C1另一点为点C.以AC、AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式;(2)将矩形ACDE向左平移m个单位,向下平移n个单位得到矩形A′C′D′E′,点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式,并直接写出自变量m的取值范围;②直线A′E′交抛物线C1于点P,交抛物线C2于点Q.当点E′为线段PQ的中点时,求m 的值;③抛物线C2与边E′D′、A′C′分别相交于点M、N,点M、N在抛物线C2的对称轴同侧,当MN=时,求点C′的坐标.【答案】(1)y=﹣x2﹣2x+4.(2)①n=﹣m2+4m(0<m<4).②.③或.【解答】(1)根据题意,点A的横坐标为﹣2,点B的横坐标为1,代入抛物线C1:y=x2,∴当x=﹣2时,y=(﹣2)2=4,则A(﹣2,4),当x=1时,y=1,则B(1,1),将点A(﹣2,4),B(1,1)代入抛物线C2:y=﹣x2+bx+c,∴,解得,∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C,当y=4时,x=±2,。
2021年辽宁省沈阳市中考数学试卷(含答案解析版)
2021年辽宁省沈阳市中考数学试卷一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔分〕〔2021•沈阳〕以下各数中是有理数的是〔〕A.πB.0 C.D.2.〔分〕〔2021•沈阳〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞的相关文章到达81000篇,将数据81000用科学记数法表示为〔〕A.×104B.×106C.×104D.×1063.〔分〕〔2021•沈阳〕如图是由五个一样的小立方块搭成的几何体,这个几何体的左视图是〔〕A.B.C.D.4.〔分〕〔2021•沈阳〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,那么点A的坐标是〔〕A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕D.〔﹣1,﹣4〕5.〔分〕〔2021•沈阳〕以下运算错误的选项是〔〕A.〔m2〕3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a76.〔分〕〔2021•沈阳〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕A.60°B.100°C.110° D.120°7.〔分〕〔2021•沈阳〕以下事件中,是必然事件的是〔〕A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖一样C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.〔分〕〔2021•沈阳〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.〔分〕〔2021•沈阳〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕A.﹣6 B.﹣C.﹣1 D.610.〔分〕〔2021•沈阳〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.πB.πC.2πD.π二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔分〕〔2021•沈阳〕因式分解:3x3﹣12x=.12.〔分〕〔2021•沈阳〕一组数3,4,7,4,3,4,5,6,5的众数是.13.〔分〕〔2021•沈阳〕化简:﹣=.14.〔分〕〔2021•沈阳〕不等式组的解集是.15.〔分〕〔2021•沈阳〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= m时,矩形土地ABCD的面积最大.16.〔分〕〔2021•沈阳〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.三、解答题题〔17题6分,18-19题各8分,请认真读题〕17.〔分〕〔2021•沈阳〕计算:2tan45°﹣|﹣3|+〔〕﹣2﹣〔4﹣π〕0.18.〔分〕〔2021•沈阳〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是.19.〔分〕〔2021•沈阳〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性一样,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题〔每题8分,请认真读题〕20.〔分〕〔2021•沈阳〕九年三班的小雨同学想理解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进展调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完好的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了名学生,m的值是.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.〔分〕〔2021•沈阳〕某公司今年1月份的消费本钱是400万元,由于改良技术,消费本钱逐月下降,3月份的消费本钱是361万元.假设该公司2、3、4月每个月消费本钱的下降率都一样.〔1〕求每个月消费本钱的下降率;〔2〕请你预测4月份该公司的消费本钱.五、解答题〔此题10〕22.〔分〕〔2021•沈阳〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.六、解答题〔此题10分〕23.〔分〕〔2021•沈阳〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒个单位的速度匀速挪动〔点A挪动到点E时止挪动〕,设挪动时间为t秒〔t>0〕.①矩形ABCD在挪动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在挪动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.七、解答题〔此题12分〕24.〔分〕〔2021•沈阳〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M 在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED 与直线BC交于点F,请直接写出线段CF的长.八、解答题〔此题12分〕25.〔分〕〔2021•沈阳〕如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.2021年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔分〕〔2021•沈阳〕以下各数中是有理数的是〔〕A.πB.0 C.D.【考点】27:实数.【专题】511:实数.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;应选:B.【点评】此题考察了有理数,有限小数或无限循环小数是有理数.2.〔分〕〔2021•沈阳〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞的相关文章到达81000篇,将数据81000用科学记数法表示为〔〕A.×104B.×106C.×104D.×106【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将81000用科学记数法表示为:×104.应选:C.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔分〕〔2021•沈阳〕如图是由五个一样的小立方块搭成的几何体,这个几何体的左视图是〔〕A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形断定那么可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:应选:D.【点评】此题主要考察了几何体的三种视图和学生的空间想象才能,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.〔分〕〔2021•沈阳〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,那么点A的坐标是〔〕A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕D.〔﹣1,﹣4〕【考点】P5:关于x轴、y轴对称的点的坐标.【专题】1 :常规题型.【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,∴点A的坐标是:〔4,1〕.应选:A.【点评】此题主要考察了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.〔分〕〔2021•沈阳〕以下运算错误的选项是〔〕A.〔m2〕3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么化简求出即可.【解答】解:A、〔m2〕3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;应选:D.【点评】此题主要考察了合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么等知识,正确掌握运算法那么是解题关键.6.〔分〕〔2021•沈阳〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕A.60°B.100°C.110° D.120°【考点】IL:余角和补角;JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】根据平行线的性质比拟多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,应选:D.【点评】此题考察平行线的性质、补角和余角等知识,解题的关键是纯熟掌握根本知识,属于中考常考题型.7.〔分〕〔2021•沈阳〕以下事件中,是必然事件的是〔〕A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖一样C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【考点】X1:随机事件.【专题】543:概率及其应用.【分析】必然事件就是一定发生的事件,根据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数〞是随机事件,故此选项错误;B、“13个人中至少有两个人生肖一样〞是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯〞是随机事件,故此选项错误;D、“明天一定会下雨〞是随机事件,故此选项错误;应选:B.【点评】考察了随机事件.解决此题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.〔分〕〔2021•沈阳〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】F7:一次函数图象与系数的关系.【专题】53:函数及其图象.【分析】根据一次函数的图象与系数的关系进展解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.应选:C.【点评】此题考察的是一次函数的图象与系数的关系,即一次函数y=kx+b〔k≠0〕中,当k<0,b>0时图象在一、二、四象限.9.〔分〕〔2021•沈阳〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕A.﹣6 B.﹣C.﹣1 D.6【考点】G6:反比例函数图象上点的坐标特征.【专题】33 :函数思想.【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,∴k=〔﹣3〕×2=﹣6.应选:A.【点评】此题考察了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.10.〔分〕〔2021•沈阳〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.πB.πC.2πD.π【考点】LE:正方形的性质;MN:弧长的计算.【专题】1 :常规题型.【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=〔2〕2,解得:AO=2,∴的长为=π,应选:A.【点评】此题考察了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔分〕〔2021•沈阳〕因式分解:3x3﹣12x=3x〔x+2〕〔x﹣2〕.【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式3x,然后利用平方差公式即可分解.【解答】解:3x3﹣12x=3x〔x2﹣4〕=3x〔x+2〕〔x﹣2〕故答案是:3x〔x+2〕〔x﹣2〕.【点评】此题考察了提公因式法与公式法分解因式,要求灵敏使用各种方法对多项式进展因式分解,一般来说,假如可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.〔分〕〔2021•沈阳〕一组数3,4,7,4,3,4,5,6,5的众数是4.【考点】W5:众数.【专题】1 :常规题型;542:统计的应用.【分析】根据众数的定义求解可得.【解答】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.【点评】此题主要考察众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,假设几个数据频数都是最多且一样,此时众数就是这多个数据.13.〔分〕〔2021•沈阳〕化简:﹣=.【考点】6B:分式的加减法.【专题】11 :计算题;513:分式.【分析】原式通分并利用同分母分式的减法法那么计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考察了分式的加减法,纯熟掌握运算法那么是解此题的关键.14.〔分〕〔2021•沈阳〕不等式组的解集是﹣2≤x<2.【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,那么不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】此题考察理解一元一次不等式组,遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.〔分〕〔2021•沈阳〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= 150m时,矩形土地ABCD的面积最大.【考点】HE:二次函数的应用.【专题】12 :应用题.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答此题.【解答】解:〔1〕设AB=xm,那么BC=〔900﹣3x〕,由题意可得,S=AB×BC=x×〔900﹣3x〕=﹣〔x2﹣300x〕=﹣〔x﹣150〕2+33750∴当x=150时,S获得最大值,此时,S=33750,∴AB=150m,故答案为:150.【点评】此题考察二次函数的应用,解答此题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.16.〔分〕〔2021•沈阳〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【考点】KD:全等三角形的断定与性质;KK:等边三角形的性质;S9:相似三角形的断定与性质.【专题】11 :计算题.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,那么可根据“AAS〞证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,那么CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH 的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+〔AH〕2=AC2=〔〕2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】此题考察了相似三角形的断定与性质:在断定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥根本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考察了全等三角形的断定与性质和等边三角形的性质.三、解答题题〔17题6分,18-19题各8分,请认真读题〕17.〔分〕〔2021•沈阳〕计算:2tan45°﹣|﹣3|+〔〕﹣2﹣〔4﹣π〕0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式=2×1﹣〔3﹣〕+4﹣1=2﹣3++4﹣1=2+.【点评】此题主要考察了实数运算,正确化简各数是解题关键.18.〔分〕〔2021•沈阳〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是4.【考点】L8:菱形的性质;LD:矩形的断定与性质.【专题】556:矩形菱形正方形.【分析】〔1〕欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;〔2〕由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】〔1〕证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;〔2〕由〔1〕知,平行四边形OCED是矩形,那么CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.故答案是:4.【点评】考察了矩形的断定与性质,菱形的性质.此题中,矩形的断定,首先要断定四边形是平行四边形,然后证明有一内角为直角.19.〔分〕〔2021•沈阳〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性一样,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行〞的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点评】此题考察了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.四、解答题〔每题8分,请认真读题〕20.〔分〕〔2021•沈阳〕九年三班的小雨同学想理解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进展调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完好的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了50名学生,m的值是18.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是108度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】54:统计与概率.【分析】〔1〕根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m的值;〔2〕根据〔1〕中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完好;〔3〕根据统计图中的数据可以求得“数学〞所对应的圆心角度数;〔4〕根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【解答】解:〔1〕在这次调查中一共抽取了:10÷20%=50〔名〕学生,m%=9÷50×100%=18%,故答案为:50,18;〔2〕选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15〔名〕,补全的条形统计图如右图所示;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是:360°×=108°,故答案为:108;〔4〕1000×=300〔名〕,答:该校九年级学生中有300名学生对数学感兴趣.【点评】此题考察条形统计图、扇形统计图、用样本估计总体,解答此题的关键是明确题意,利用数形结合的思想解答.21.〔分〕〔2021•沈阳〕某公司今年1月份的消费本钱是400万元,由于改良技术,消费本钱逐月下降,3月份的消费本钱是361万元.假设该公司2、3、4月每个月消费本钱的下降率都一样.〔1〕求每个月消费本钱的下降率;〔2〕请你预测4月份该公司的消费本钱.【考点】AD:一元二次方程的应用.【专题】34 :方程思想;523:一元二次方程及应用.【分析】〔1〕设每个月消费本钱的下降率为x,根据2月份、3月份的消费本钱,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;〔2〕由4月份该公司的消费本钱=3月份该公司的消费本钱×〔1﹣下降率〕,即可得出结论.【解答】解:〔1〕设每个月消费本钱的下降率为x,根据题意得:400〔1﹣x〕2=361,解得:x1=0.05=5%,x2〔不合题意,舍去〕.答:每个月消费本钱的下降率为5%.〔2〕361×〔1﹣5%〕〔万元〕.答:预测4月份该公司的消费本钱为万元.【点评】此题考察了一元二次方程的应用,解题的关键是:〔1〕找准等量关系,正确列出一元二次方程;〔2〕根据数量关系,列式计算.五、解答题〔此题10〕22.〔分〕〔2021•沈阳〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.【考点】KQ:勾股定理;M5:圆周角定理;MC:切线的性质.【专题】55:几何图形.【分析】〔1〕连接OA,利用切线的性质和角之间的关系解答即可;〔2〕根据直角三角形的性质解答即可.【解答】解:〔1〕连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;〔2〕∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=,解得:r=2,∴⊙O的半径为2.【点评】此题考察切线的性质,关键是根据切线的性质进展解答.六、解答题〔此题10分〕23.〔分〕〔2021•沈阳〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒个单位的速度匀速挪动〔点A挪动到点E时止挪动〕,设挪动时间为t秒〔t>0〕.①矩形ABCD在挪动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在挪动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.【考点】FI:一次函数综合题.【专题】153:代数几何综合题;31 :数形结合;32 :分类讨论;533:一次函数及其应用.【分析】〔1〕利用待定系数法求解析式,函数关系式联立方程求交点;〔2〕①分析矩形运动规律,找到点D和点B分别在直线l2上或在直线l1上时的情况,利用AD、AB分别可以看成图象横坐标、纵坐标之差构造方程求点A坐标,进而求出AF间隔;②设点A坐标,表示△PMN即可.【解答】解:〔1〕设直线l1的表达式为y=kx+b∵直线l1过点F〔0,10〕,E〔20,0〕∴解得直线l1的表达式为y=﹣x+10求直线l1与直线l2交点,得x=﹣x+10解得x=8y=×8=6∴点P坐标为〔8,6〕〔2〕①如图,当点D在直线上l2时∵AD=9∴点D与点A的横坐标之差为9∴将直线l1与直线l2交解析式变为x=20﹣2y,x=y∴y﹣〔20﹣2y〕=9解得y=那么点A的坐标为:〔,〕那么AF=∵点A速度为每秒个单位∴t=如图,当点B在l2直线上时∵AB=6∴点A的纵坐标比点B的纵坐标高6个单位∴直线l1的解析式减去直线l2 的解析式得﹣x+10﹣x=6解得x=那么点A坐标为〔,〕那么AF=∵点A速度为每秒个单位∴t=故t值为或②如图,设直线AB交l2 于点H设点A横坐标为a,那么点D横坐标为a+9由①中方法可知:MN=此时点P到MN间隔为:a+9﹣8=a+1∵△PMN的面积等于18∴解得a1=,a2=﹣〔舍去〕∴AF=6﹣那么此时t为当t=时,△PMN的面积等于18【点评】此题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.七、解答题〔此题12分〕24.〔分〕〔2021•沈阳〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M 在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是α或180°﹣α〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED 与直线BC交于点F,请直接写出线段CF的长.【考点】KY:三角形综合题.【专题】152:几何综合题.【分析】〔1〕①根据SAS证明即可;②想方法证明∠ADE+∠ADB=90°即可;〔2〕分两种情形讨论求解即可,①如图2中,当点E在AN的延长线上时,②如图3中,当点E在NA的延长线上时,〔3〕分两种情形求解即可,①如图4中,当BN=BC=时,作AK⊥BC于K.解直角三角形即可.②如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.【解答】〔1〕①证明:如图1中,∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,∵∠ACN=∠BCM∴△BCM≌△ACN.②解:如图1中,∵△BCM≌△ACN,∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.〔2〕解:如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.如图3中,当点E在NA的延长线上时,易证:∠1+∠2=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α.综上所述,∠BDE=α或180°﹣α.故答案为α或180°﹣α.〔3〕解:如图4中,当BN=BC=时,作AK⊥BC于K.∵AD∥BC,∴==,∴AD=,AC=3,易证△ADC是直角三角形,那么四边形ADCK是矩形,△AKN≌△DCF,∴CF=NK=BK﹣BN=﹣=.如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.∵AD∥BC,∴==2,∴AD=6,易证△ACD是直角三角形,由△ACK∽△CDH,可得CH=AK=,由△AKN≌△DHF,可得KN=FH=,∴CF=CH﹣FH=4.综上所述,CF的长为或4.【点评】此题考察三角形综合题、全等三角形的断定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想考虑问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.八、解答题〔此题12分〕25.〔分〕〔2021•沈阳〕如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16 :压轴题;537:函数的综合应用;558:平移、旋转与对称.【分析】〔1〕应用待定系数法;〔2〕把x=t带入函数关系式相减;〔3〕根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.〔4〕根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进展计算.【解答】解:〔1〕∵抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕。
2024年辽宁省沈阳市皇姑区中考数学调研试卷+答案解析
2024年辽宁省沈阳市皇姑区中考数学调研试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若有意义,则a的值可以是( )A. B. 0 C. 2 D. 62.下列水平放置的几何体中,主视图是圆形的是( )A. B.C. D.3.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.下列计算正确的是( )A. B. C. D.5.如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是( )A.B.C.D.6.已知,则的值是( )A. 6B.C.D. 47.在同一平面直角坐标系中,一次函数与的图象如图所示,则下列结论错误的是( )A. 随x的增大而减小B.C. 当时,D. 关于x,y的方程组的解为8.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B.C. D.9.如图,在平面直角坐标系中,点A的坐标为,点C的坐标为,以OA,OC为边作矩形动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,的值为( )A. B. C. 15 D. 3010.如图,中,,将逆时针旋转,得到,DE交AC于当时,点D恰好落在BC上,此时等于( )A.B.C.D.二、填空题:本题共5小题,每小题3分,共15分。
11.因式分解:______.12.方程有两个相等的实数根,则m的值为______.13.如图是平面直角坐标系中的一组直线,按此规律推断,第5条直线与x轴交点的横坐标是______.14.如图,在直线l:上方的双曲线上有一个动点P,过点P作x轴的垂线,交直线l于点Q,连接OP,OQ,则面积的最大值是______.15.如图,将菱形纸片ABCD沿过点C的直线折叠,使点D落在射线CA上的点E处,折痕CP交AD于点若,,则线段CA的长等于______.三、解答题:本题共8小题,共75分。
2024辽宁中考数学样卷23题解析
2024辽宁中考数学样卷23题解析标题:《2024辽宁中考数学样卷23题解析》一、题目描述本题为中考数学样卷,要求考生对以下问题进行深入分析和解析:已知二次函数y=x²+bx+c的图像过点A(1,0)和点B(4,5),求该二次函数的解析式,并判断点P(2,3)是否在该函数图像上。
二、解题思路1. 根据题目所给条件,列出二次函数表达式,通过解方程组求出b、c的值;2. 将点P的坐标代入求出对应的y值,与已知的图像上点P的y 值进行比较;3. 根据题目要求,判断点P是否在图像上;4. 结合图像和解析式,对题目所给问题进行解答。
三、解题过程1. 根据二次函数表达式设为y=x²+bx+c,已知图像过点A(1,0)、B(4,5),可得到如下方程组:① y=x²+bx+c② 0=1²+b+c③ 5=4²+4b+c解得:b=2,c=-3所以,二次函数的解析式为:y=x²+2x-32. 将点P(2,3)代入二次函数表达式中,求得y=7≠3,所以点P 不在图像上。
3. 由于点P不在图像上,无法确定点P是否在函数对称轴上。
根据对称轴公式x=-b/2a=-2/2=1,可知图像对称轴为x=1。
而点P在图像右侧,且与对称轴的距离为2-1=1>0,因此点P不在线段AB上。
综合以上两点,可以确定点P不在该函数图像上。
四、总结与建议本题主要考察二次函数的图像与性质,解题的关键是正确求出二次函数的解析式并注意检验。
同学们在中考数学中需要加强对二次函数知识的理解和掌握,注重相关题目的练习和总结。
对于这道题,同学们需要注意以下几点:1. 在解题过程中,需要认真审题,理解题意,确保解题的正确性;2. 在列出方程组后,需要认真求解,确保得到正确的结果;3. 在判断点P是否在图像上时,需要注意结合图像进行分析,确保判断的准确性。
同时,同学们还需要注意在平时的数学学习中加强对二次函数知识的理解和掌握,注重相关题目的练习和总结。
2021年辽宁省沈阳市中考数学试卷及解析(真题样卷)
2021年辽宁省沈阳市中考数学试卷一。
选择题(每小题3分,共24分,只有一个答案是正确的)1.(3分)(2021•沈阳)比0大的数是()C.﹣0。
5 D.1A.﹣2 B.﹣2.(3分)(2021•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(3分)(2021•沈阳)下列事件为必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.(3分)(2021•沈阳)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°5.(3分)(2021•沈阳)下列计算结果正确的是()A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2 6.(3分)(2021•沈阳)一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3。
5,5 B.4,4 C.4,5 D.4。
5,47.(3分)(2021•沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形C.矩形D.正方形8.(3分)(2021•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.二。
填空题(每小题4分,共32分)9.(4分)(2021•沈阳)分解因式:ma2﹣mb2=.10.(4分)(2021•沈阳)不等式组的解集是.11.(4分)(2021•沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm 为半径作⊙A,当AB=cm时,BC与⊙A相切.12.(4分)(2021•沈阳)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65。
辽宁省沈阳市中考数学试卷及答案
辽宁省沈阳市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。
中考数学试题及参考答案 (2)
沈阳市中等学校招生统一考试数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.-13的相反数是( )A .13B .3C .-3D .-132.如图,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A 的值是( )A .215 B .25 C .212 D .523.沈阳市水质监测部门全年共监测水量达48909.6万吨,水质达标率为100%.用科学记数法表示全年共监测水量约为( )万吨(保留三个有效数字)A .4.89×104B .4.89×105C .4.90×104D .4.90×105 4.下列事件中是必然事件的是( )A .小婷上学一定坐公交车B .买一张电影票,座位号正好是偶数C .小红期末考试数学成绩一定得满分D .将豆油滴入水中,豆油会浮在水面上 5.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点, 若∠FEB =110°,则∠EFD 等于( )A .50°B .60°C .70°D .110° 6.依次连接菱形各边中点所得到的四边形是( ) A .梯形 B .菱形 C .矩形 D .正方形 7.反比例函数y =-4x的图象在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限8.将一张长与宽的比为2∶1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是( )图① 图② 图③ 图④A .B .C .D .第2题图第5题图二、填空题(每小题3分,共24分)9.分解因式:325x x -= .10.已知一组数据1,a ,4,4,9,它的平均数是4,则a 等于 ,这组数据的众数是 .11.如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件,使得△AOB ≌ △DOC ,你补充的条件是 .12.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)13.有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .14.如图,在正方形网格中,以点A 为旋转中心,将△ABC 按逆时针方向旋转90°,画出旋转后的△AB 1C 1.15.将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为 .16.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .第14题图第16题图第11题图第12题图三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:(π-3)0-|5-3|+(-13)-2-5.18.解不等式组⎩⎪⎨⎪⎧2x -5≤3(x -1)x +72>4x,并把它的解集在数轴上表示出来.19.如图,已知在□ABCD 中,E 、F 是对角线BD 上的两点,BE =DF ,点G 、H 分别在BA 和DC 的延长线上,且AG =CH ,连接GE 、EH 、HF 、FG .求证:四边形GEHF 是平行四边形.20.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?第19题图四、(每小题10分,共20分)21.沈阳市城市环境空气质量达到了有记录以来的最好水平,优良天气的天数在全国副省级以上城市排名第9,排名在北京、天津、重庆等城市之前.空气质量分为优良天气、轻度污染、中度污染、重度污染四种类型,有关部门将我市——前三类空气质量的天数制成条形统计图,请根据统计图解答下列问题:——沈阳市优良天气、轻度污染、中度污染天数统计图第21题图①(1)根据图①中的统计图可知,和前一年比,年优良天气的天数增加最多,这一年优良天气的天数比前一年优良天气的天数的增长率约为;(精确到1%)(2)在图②中给出了我市——优良天气天数的扇形统计图中的部分数据,请你补全此统计图,并写出计算过程;(精确到1%)(3)根据这6年沈阳市城市空气质量的变化,谈谈你对我市环保的建议.——沈阳市优良天气天数统计图第21题图②22.如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.(1)求证:DB平分∠ADC;(2)若BE=3,ED=6,求AB的长.第22题图五、(本题12分)23.如图所给的A、B、C三个几何体中,按箭头所示的方向为它们的正面,设A、B、C三个几何体的主视图分别是A1、B1、C1;左视图分别是A2、B2、C2;俯视图分别是A3、B3、C3.(1)请你分别写出A1、A2、A3、B1、B2、B3、C1、C2、C3图形的名称;(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A1、A2、A3的三张卡片放在甲口袋中,画有B1、B2、B3的三张卡片放在乙口袋中,画有C1、C2、C3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片.①通过补全下面的树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率;②小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗?为什么?解:(1)ABC第23题图(2)①树状图:24.已知在矩形ABCD 中,AB =4,BC =252,O 为BC 上一点,BO =72,如图所示,以BC 所在直线为为线段OC 上的一点.(1)若点M 的坐标为(1,0),如图①,以OM 为一边作等腰△OMP ,使点P 在矩形ABCD 的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P 的坐标;(3)若将(1)中的点M 的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P 的坐标)第24题图25.化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:实际售价x(元/千克)…150 160 168 180 …月销售量y(千克)…500 480 464 440 …①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y (千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?第25题图26.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x 轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E 作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.第26题图沈阳市中等学校招生统一考试数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.A2.B3.A4.D5.C6.C7.B8.A二、填空题(每小题3分,共24分)9.x(x+5)(x-5)10.2,411.AO=DO或AB=DC或BO=CO12.(63+1)m13.5014.如图第14题图15.y=2x216.6三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.解:原式=1-3+5+9-5 …………………………………………………4分=7 ……………………………………………………………………6分18.解:解不等式2x -5≤3(x -1)得x ≥-2 ……………………………………2分 解不等式x +72>4x 得x <1 ……………………………………………………………4分∴不等式组的解集为-2≤x <1 ……………………………………………………6分 在数轴上表示为:………………………………………………8分19.证明:∵四边形ABCD 是平行四边形 ∴AB =CD ,AB ∥CD∴∠GBE =∠HDF …………………………………………………………………2分 又∵AG =CH ∴BG =DH 又∵BE =DF∴△GBE ≌△HDF …………………………………………………………………5分 ∴GE =HF ,∠GEB =∠HFD ∴∠GEF =∠HFE ∴GE ∥HF∴四边形GEHF 是平行四边形. ……………………………………………………8分 20.解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, …………………………………………1分根据题意,得10x +1245x =1 …………………………………………………………4分 解这个方程,得x =25 ………………………………………………………………6分 经检验,x =25是所列方程的根 ……………………………………………………7分 当x =25时,45x =20 …………………………………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天. ……………10分 四.(每小题10分,共20分)21.解:(1),45% ……………………………………………………………4分 (2)由图①,得162+204+295+301+317+321=1600 301÷1600≈0.19=19%321÷1600≈0.20=20% …………………7分 ∴19%,20%正确补全统计图. ………………………8分第21题(2)图(3)建议积极向上即可. ………………10分 22.(1)证明:∵ AB =BCAB BC ∴= ………………………………2分∴∠BDC =∠ADB ,∴DB 平分∠ADC ……………………………………………4分 (2)解:由(1)可知AB BC =,∴∠BAC =∠ADB ∵∠ABE =∠ABD∴△ABE ∽△DBA ……………………………………………………………………6分 ∴AB BE =BD AB ∵BE =3,ED =6∴BD =9 ……………………………………………………………………………8分 ∴AB 2=BE ·BD =3×9=27∴AB =33 …………………………………………………………………………10分 五、(本题12分)23.解:(1)由已知可得A 1、A 2是矩形,A 3是圆;B 1、B 2、B 3都是矩形;C 1是三角形,C 2、C 3是矩形. ………………………………………………………3分 (2)①补全树状图如下:……………………………………………………………………………………………7分 由树状图可知,共有27种等可能结果,其中三张卡片上的图形名称都相同的结果有12种,∴三张卡片上的图形名称都相同的概率是1227=49 …………9分②游戏对双方不公平.由①可知,三张卡片中只有两张卡片上的图形 名称相同的概率是1227=49,即P (小刚获胜)=49三张卡片上的图形名称完全不同的概率是327=19,即P (小亮获胜)=19∵49>19 ∴这个游戏对双方不公平. ……………………………………………12分 六、(本题12分)24.解:(1)符合条件的等腰△OMP 只有1个.点P 的坐标为(12,4) ……2分(2)符合条件的等腰△OMP 有4个. …………………………………………3分 如图①,在△OP 1M 中,OP 1=OM =4,在Rt △OBP 1中,BO =72, BP 1=OP 21-OB 2=42-(72)2=152 ∴P 1(-72,152) ……………………………………………………………………5分 在Rt △OMP 2中,OP 2=OM =4,∴P 2(0,4)在△OMP 3中,MP 3=OP 3,∴点P 3在OM 的垂直平分线上,∵OM =4,∴P 3(2,4)在Rt △OMP 4中,OM =MP 4=4,∴P 4(4,4) …………………………………9分(3)若M (5,0),则符合条件的等腰三角形有7个. …………………………12分 点P 的位置如图②所示七、(本题12分) 25.解:(1)依题意,每千克原料的进货价为160×75%=120(元) ……………2分 设化工商店调整价格后的标价为x 元,则 0.8x -120=0.8x ×20% 解得 x =187.5187.5×0.8=150(元) ………………………………………………………………4分 ∴调整价格后的标价是187.5元,打折后的实际售价是150元 .…………………5分(2)①描点画图,观察图象,可知这些点的发展趋势近似是一条直线,所以猜想y 与x 之间存在着一次函数关系.………………………………………………………………………………………7分 ②根据①中的猜想,设y 与x 之间的函数表达式为y =kx +b ,将点(150,500)和(160,480)代入表达式,得⎩⎪⎨⎪⎧ 500=150k +b 480=160k +b 解得⎩⎪⎨⎪⎧k =-2b =800 ∴y 与x 的函数表达式为y =-2x +800 ……………………………………………9分将点(168,464)和(180,440)代入y =-2x +800均成立,即这些点都符合y =-2x +800的发展趋势.∴①中猜想y 与x 之间存在着一次函数关系是正确的. …………………………10分 ③设化工商店这个月销售这种原料的利润为w 元,当y =450时,x =175∴w =(175-120)×450=24750(元)答:化工商店这个月销售这种原料的利润为24750元. …………………………12分八、(本题14分)26.解:(1)解方程x 2-10x +16=0得x 1=2,x 2=8 ………………………………1分 ∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC∴点B 的坐标为(2,0),点C 的坐标为(0,8)又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2∴由抛物线的对称性可得点A 的坐标为(-6,0) …………………………………4分(2)∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上∴c =8,将A (-6,0)、B (2,0)代入表达式,得⎩⎪⎨⎪⎧ 0=36a -6b +80=4a +2b +8 解得⎩⎨⎧ a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83,则BE =8-m , ∵OA =6,OC =8,∴AC =10∵EF ∥AC ∴△BEF ∽△BAC∴EF AC =BE AB 即EF 10=8-m 8∴EF =40-5m 4过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45∴FG EF =45 ∴FG =45·40-5m 4=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m ) =12(8-m )(8-8+m )=12(8-m )m =-12m 2+4m ……………………………10分 自变量m 的取值范围是0<m <8 …………………………………………………11分(4)存在.理由:∵S =-12m 2+4m =-12(m -4)2+8 且-12<0, ∴当m =4时,S 有最大值,S 最大值=8 ……………………………………………12分 ∵m =4,∴点E 的坐标为(-2,0)∴△BCE为等腰三角形.…………………………………………………………14分第26题图(批卷教师用图)(以上答案仅供参考,如有其它做法,可参照给分)。
2020年辽宁省沈阳市中考数学试题及参考答案(word解析版)
2020年辽宁省沈阳市中考数学试题及参考答案与解析(试题满分120分,考试时间120分钟)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.32.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×1053.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a35.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°6.不等式2x≤6的解集是()A.x≤3 B.x≥3 C.x<3 D.x>37.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.π C.D.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.12.二元一次方程组的解是.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.16.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B 逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.参考答案与解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.3【知识考点】有理数大小比较.【思路分析】根据有理数的大小比较的法则分别进行比较即可.【解题过程】解:由于﹣2<0<1<2<3,故选:A.【总结归纳】此题考查了有理数的大小比较,掌握正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.2.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将10900用科学记数法表示为1.09×104.故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解题过程】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形.故选:D.【总结归纳】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a3【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解题过程】解:A、a2+a3,不是同类项,无法合并,不合题意;B、a2•a3=a5,故此选项错误;C、(2a)3=8a3,正确;D、a3÷a=a2,故此选项错误;故选:C.【总结归纳】此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握相关运算法则是解题关键.5.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°【知识考点】垂线;平行线的性质.【思路分析】由三角形内角和定理可求∠ABC的度数,由平行线的性质可求解.【解题过程】解:∵AC⊥CB,∴∠ACB=90°,∴∠ABC=180°﹣90°﹣∠BAC=90°﹣35°=55°,∵直线AB∥CD,∴∠ABC=∠BCD=55°,故选:B.【总结归纳】本题考查了平行线的性质,垂线的性质,三角形内角和定理,掌握平行线的性质是本题的关键.6.不等式2x≤6的解集是()A.x≤3 B.x≥3 C.x<3 D.x>3【知识考点】解一元一次不等式.【思路分析】不等式左右两边同时除以2,不等号方向不变,即可求出不等式的解集.【解题过程】解:不等式2x≤6,左右两边除以2得:x≤3.故选:A.【总结归纳】此题考查了一元一次不等式的解法,熟练运用不等式的性质是解不等式的关键.7.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯【知识考点】随机事件.【思路分析】根据事件发生的可能性大小判断.【解题过程】解:A、从一个只有白球的盒子里摸出一个球是白球,是必然事件;B、任意买一张电影票,座位号是3的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件;故选:A.【总结归纳】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【知识考点】根的判别式.【思路分析】根据根的判别式即可求出答案.【解题过程】解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.【总结归纳】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式,本题属于基础题型.9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【知识考点】函数的图象;一次函数图象与系数的关系;待定系数法求一次函数解析式.【思路分析】(方法一)根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限;(方法二)描点、连线,画出函数y=kx+b(k≠0)的图象,观察函数图象,即可得出一次函数y=kx+b(k≠0)的图象不经过第四象限.【解题过程】解:(方法一)将A(﹣3,0),B(0,2)代入y=kx+b,得:,解得:,∴一次函数解析式为y=x+2.∵k=>0,b=2>0,∴一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限.故选:D.(方法二)依照题意,画出函数图象,如图所示.观察函数图象,可知:一次函数y=kx+b(k≠0)的图象不经过第四象限.故选:D.【总结归纳】本题考查了待定系数法求一次函数解析式、一次函数图象与系数的关系以及函数图象,解题的关键是:(方法一)根据点的坐标,利用待定系数法求出一次函数解析式;(方法二)画出函数图象,利用数型结合解决问题.10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.π C.D.【知识考点】矩形的性质;弧长的计算.【思路分析】根据矩形的性质和三角函数的定义得到∠BAE=30°,根据弧长公式即可得到结论.【解题过程】解:∵四边形ABCD是矩形,∴AD=BC=2,∠B=90°,∴AE=AD=2,∵AB=,∴cos∠BAE==,∴∠BAE=30°,∴∠EAD=60°,∴的长==,故选:C.【总结归纳】本题考查了弧长的计算,矩形的性质,熟练掌握弧长公式是解题的关键.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.【知识考点】因式分解﹣提公因式法.【思路分析】原式提取公因式即可.【解题过程】解:原式=x(2x+1).故答案为:x(2x+1).【总结归纳】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.二元一次方程组的解是.【知识考点】解二元一次方程组.【思路分析】方程组利用加减消元法求出解即可.【解题过程】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=3,则方程组的解为.故答案为:.【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).甲【知识考点】方差.【思路分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解题过程】解:∵甲=7=乙,S甲2=2.9,S乙2=1.2,∴S甲2>S乙2,∴乙的成绩比较稳定,故答案为:乙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A 在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.【知识考点】反比例函数图象上点的坐标特征;等腰三角形的性质;勾股定理.【思路分析】利用等腰三角形的性质求出点A的坐标即可解决问题.【解题过程】解:∵AO=AB,AC⊥OB,∴OC=BC=2,∵AC=3,∴A(2,3),把A(2,3)代入y=,可得k=6,故答案为6.【总结归纳】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.【知识考点】三角形中位线定理;平行四边形的性质.【思路分析】根据三角形中位线定理和平行四边形的性质即可得到结论.【解题过程】解:∵点E,点F分别是BM,CM中点,∴EF是△BCM的中位线,∵EF=6,∴BC=2EF=12,∵四边形ABCD是平行四边形,∴AD=BC=12,∵AM=2MD,∴AM=8,故答案为:8.【总结归纳】本题考查了平行四边形的性质,三角形中位线定理,熟练掌握平行四边形的性质是解题的关键.16.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.【知识考点】勾股定理;矩形的性质;翻折变换(折叠问题).【思路分析】分两种情况讨论,当∠DPF=90°时,过点O作OH⊥AD于H,由平行线分线段成比例可得OH=AB=3,HD=AD=4,由折叠的性质可得∠APO=∠EPO=45°,可求OH=HP=3,可得PD=1;当∠PFD=90°时,由勾股定理和矩形的性质可得OA=OC=OB=OD=5,通过证明△OFE∽△BAD,可得,可求OF的长,通过证明△PFD∽△BAD,可得,可求PD的长.【解题过程】解:如图1,当∠DPF=90°时,过点O作OH⊥AD于H,∵四边形ABCD是矩形,∴BO=OD,∠BAD=90°=∠OHD,AD=BC=8,∴OH∥AB,∴,∴OH=AB=3,HD=AD=4,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴∠APO=∠EPO=45°,又∵OH⊥AD,∴∠OPH=∠HOP=45°,∴OH=HP=3,∴PD=HD﹣HP=1;当∠PFD=90°时,∵AB=6,BC=8,∴BD===10,∵四边形ABCD是矩形,∴OA=OC=OB=OD=5,∴∠DAO=∠ODA,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴AO=EO=5,∠PEO=∠DAO=∠ADO,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴,∴,∴OF=3,∴DF=2,∵∠PFD=∠BAD,∠PDF=∠ADB,∴△PFD∽△BAD,∴,∴,∴PD=,综上所述:PD=或1,故答案为或1.【总结归纳】本题考查了翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解题过程】解:原式=2×+9+1+2﹣=+12﹣=12.【总结归纳】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).【知识考点】列表法与树状图法.【思路分析】画树状图展示所有6种等可能的结果,找出抽出的两名学生性别相同的结果数,然后根据概率公式求解.【解题过程】解:画树状图为:共有6种等可能的结果,其中抽出的两名学生性别相同的结果数为3,所以抽出的两名学生性别相同的概率==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.【知识考点】全等三角形的判定;线段垂直平分线的性质;矩形的性质.【思路分析】(1)利用线段垂直平分线的性质以及矩形的性质,即可得到判定△AOM≌△CON 的条件;(2)连接CE,设AE=CE=x,则DE=6﹣x,再根据勾股定理进行计算,即可得到AE的长.【解题过程】解:(1)∵MN是AC的垂直平分线,∴AO=CO,∠AOM=∠CON=90°,∵四边形ABCD是矩形,∴AB∥CD,∴∠M=∠N,在△AOM和△CON中,,∴△AOM≌△CON(AAS);(2)如图所示,连接CE,∵MN是AC的垂直平分线,∴CE=AE,设AE=CE=x,则DE=6﹣x,∵四边形ABCD是矩形,∴∠CDE=90°,CD=AB=3,∴Rt△CDE中,CD2+DE2=CE2,即32+(6﹣x)2=x2,解得x=,即AE的长为.故答案为:.【总结归纳】本题主要考查了矩形的性质以及全等三角形的判定,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据其他垃圾的吨数和所占的百分比可以求得m的值,然后根据条形统计图中的数据,即可得到n的值;(2)根据统计图中的数据,可以得到可回收物的吨数,然后即可将条形统计图补充完整;(3)根据统计图中的数据,可以计算出厨余垃圾所对应的扇形圆心角的度数;(4)根据统计图中的数据,可以计算出该市2000吨垃圾中约有多少吨可回收物.【解题过程】解:(1)m=8÷8%=100,n%=×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×=108°,故答案为:108;(4)2000×=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?【知识考点】分式方程的应用.【思路分析】求的是工效,工作总量是3000m,则是根据工作时间来列等量关系.关键描述语是提前2天完成,等量关系为:原计划时间﹣实际用时=2,根据等量关系列出方程.【解题过程】解:设原计划每天修建盲道xm,则﹣=2,解得x=300,经检验,x=300是所列方程的解,答:原计划每天修建盲道300米.【总结归纳】本题主要考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.【知识考点】切线的判定与性质.【思路分析】(1)如图,连接OD,由切线的性质可得∠ODC=90°,可得∠BDO+∠ADC=90°,由直角三角形的性质和等腰三角形的性质可证∠A=∠ADC,可得DC=AC;(2)由等腰三角形的性质可得∠DCB=∠DBC=∠BDO,由三角形内角和定理可求∠DCB=∠DBC=∠BDO=30°,由直角三角形的性质可求解.【解题过程】证明:(1)如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,∴∠BDO+∠ADC=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A=∠ADC,∴CD=AC;(2)∵DC=DB,∴∠DCB=∠DBC,∴∠DCB=∠DBC=∠BDO,∵∠DCB+∠DBC+∠BDO+∠ODC=180°,∴∠DCB=∠DBC=∠BDO=30°,∴DC=OD=,故答案为:.【总结归纳】本题考查了切线的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.【知识考点】三角形综合题.【思路分析】(1)利用两点间距离公式求解即可.(2)求出直线AB的解析式,利用待定系数法即可解决问题.(3)求出PN,PM即可解决问题.(4)如图,当t=时,MN==4,设EM=m,则EN=4﹣m.构建二次函数利用二次函数的性质即可解决问题.【解题过程】解:(1)∵A(4,4),B(6,0),∴OA==4,AB==2.故答案为4,2.(2)设直线AB的解析式为y=kx+b,将A(4,4),B(6,0)代入得到,,解得,∴直线AB的解析式为y=﹣2x+12,由题意点N的纵坐标为1,令y=1,则1=﹣2x+12,∴x=,∴N(,1).(3)当0<t<4时,令y=t,代入y=﹣2x+12,得到x=,∴N(,t),∵∠AOB=∠AOP=45°,∠OPM=90°,∴OP=PM=t,∴MN=PN﹣PM=﹣t=.故答案为.(4).如图,当t=时,MN==4,设EM=m,则EN=4﹣m.由题意S1•S2=•m×4×(4﹣m)×4=﹣4m2+16m=﹣4(m﹣2)2+16,∵﹣4<0,∴m=2时,S1•S2有最大值,最大值为16.故答案为16.【总结归纳】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是学会利用参数解决问题,学会构建二次函数解决最值问题,属于中考压轴题.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.【知识考点】几何变换综合题.【思路分析】(1)①证明△PBA≌△DBC(SAS)可得结论.②利用全等三角形的性质解决问题即可.(2)证明△CBD∽△ABP,可得==解决问题.(3)分两种情形,解直角三角形求出AD即可解决问题.【解题过程】(1)①证明:如图①中,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,∵BP=BD,BA=BC,∴△PBA≌△DBC(SAS),∴PA=DC.②解:如图①中,设BD交PC于点O.∵△PBA≌△DBC,∴∠BPA=∠BDC,∵∠BOP=∠COD,∴∠OBP=∠OCD=60°,即∠DCP=60°.(2)解:结论:CD=PA.理由:如图②中,∵AB=AC,PB=PD,∠BAC=∠BPD=120°,∴BC=BA,BD=BP,∴==,∵∠ABC=∠PBD=30°,∴∠ABP=∠CBD,∴△CBD∽△ABP,∴==,∴CD=PA.(3)过点D作DM⊥PC于M,过点B作BN⊥CP交CP的延长线于N.如图3﹣1中,当△PBA是钝角三角形时,在Rt△ABN中,∵∠N=90°,AB=6,∠BAN=60°,∴AN=AB•cos60°=3,BN=AB•sin60°=3,∵PN===2,∴PA=3﹣2=1,由(2)可知,CD=PA=,∵∠BAP=∠BDC,∴∠DCA=∠PBD=30°,∵DM⊥PC,∴DM=CD=如图3﹣2中,当△ABN是锐角三角形时,同法可得PA=2+3=5,CD=5,DM=CD=,综上所述,满足条件的DM的值为或.故答案为或.【总结归纳】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题注意一题多解.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B 逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.【知识考点】二次函数综合题.【思路分析】(1)将点B,点C坐标代入解析式,可求b,c的值,即可求抛物线的表达式;(2)①如图2,过点D作DH⊥OB,由旋转的性质可得OD=3,∠COD=30°,由直角三角形的性质可得OH=OH=,DH=OH=,由锐角三角函数可求∠HBD=30°,由对称性可得BN=BM,∠MBH=∠NBH=30°,可证△BMN是等边三角形;②由三角形面积公式可求S2,S1,由等边三角形的面积公式可求MN的长,由对称性可求MR=NR=,由直角三角形的性质可求BR=3,可得OR=3,即可求点M坐标;(3)如图3中,过点F作FH⊥BG交BG的延长线于H.想办法证明△BFK是等边三角形,推出BG⊥x轴即可解决问题.【解题过程】解:(1)∵抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3),∴,解得:,∴抛物线解析式为:y=x2﹣;(2)①如图2,过点D作DH⊥OB于H,设MN与x轴交于点R,。
沈阳2022中考数学试题及答案
沈阳2022中考数学试题及答案一、选择题1. 设函数 $f(x) = 2x^2 - 3x + 5$,则当 $x = 2$ 时,$f(x)$ 的值为:A. 7B. 9C. 11D. 132. 若两个有理数的和为12,差为4,则这两个有理数分别是:A. 6和18B. 8和4C. 10和2D. 4和83. 曲线 $y = ax^2 + bx + c$ (a ≠ 0)的图像经过点(1, 2)和(2, 3),则$a + b + c$ 的值为:A. -2B. -1C. 0D. 14. 在四边形ABCD中,$\angle DAB = 110^\circ$,$\angle ABC = 45^\circ$,则$\angle ACD$ 的度数为:A. 15B. 25C. 35D. 455. 某城市年降水量由 2010 年的 1000 毫米增加到 2020 年的 1500 毫米,年均增长速度为:A. 5%B. 10%C. 12.5%D. 15%二、填空题1. 一辆火车经过一段 500 米长的隧道时,司机看到进隧道前的标志为“500” ⑦,看到出隧道的标志为“400” ⑤,则这辆火车的长度是______ 米。
2. 若 $\frac{2x + 3}{x - 1} = \frac{x + 5}{3}$,则 $x$ 的值为 ______。
3. 已知对数 $\log_a 4 = 2$,则 $\log_a 8 =$ ______。
4. 化简 $\frac{8x^3 y^2}{12x^2 y}$,结果为 ______。
5. 解方程 $3x^2 - 7x - 20 = 0$,得到的两个不同根分别为 ______。
三、解答题1. 完整地列出平面直角坐标系中横坐标大于等于3的点。
解答:横坐标大于等于3的点对应的坐标为$(3, y)$,其中$y$可以取任意实数。
因此,满足条件的点有无穷多个,可以表示为集合$\{(3, y) | y\in (-\infty, +\infty)\}$。
2020年辽宁省沈阳中考数学试卷附答案解析版
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前2020年辽宁省沈阳市初中学业水平考试数 学(试题满分120分,考试时间120分钟)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是( ) A .2−B .1C .2D .32.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10 900米,刷新我国潜水器最大下潜深度记录.将数据10 900用科学记数法表示为( )A .31.0910⨯B .41.0910⨯C .310.910⨯D .50.10910⨯3.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是( )AB C D4.下列运算正确的是( )A .235a a a += B .236a a a ⋅=C .()3328a a =D .33a a a ÷=5.如图,直线AB CD ∥,且AB CD ⊥于点C ,若35BAC ∠=︒,则BCD ∠的度数为( )A .65︒B .55︒C .45︒D .35︒ 6.不等式26x ≤的解集是( )A .3x ≤B .3x ≥C .3x <D .3x > 7.下列事件中,是必然事件的是( )A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面向上D .汽车走过一个红绿灯路口时,前方正好是绿灯 8.一元二次方程2210x x −+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定 9.一次函数()0y kx b k =+≠的图象经过点()3,0A −,点()0,2B ,那么该图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,在矩形ABCD 中,AB 2BC =,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则DE 的长为( )A .43πB .πC .23π D .3π 二、填空题(每小题3分,共18分)11.因式分解:22x x +=________12.二元一次方程组521x y x y +=⎧⎨−=⎩的解是________.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为2=2.9S 甲,2=1.2S 乙,则两人成绩比较稳定的是________(填“甲”或“乙”).14.如图,在平面直角坐标系中,O 是坐标原点,在OAB △中,AO AB =,AC OB⊥于点C ,点A 在反比例函数()0ky k x=≠的图象上,若4OB=,3AC =,则k 的值为________.-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效---------------- 毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第3页(共6页) 数学试卷 第4页(共6页)15.如图,在平行四边形ABCD 中,点M 为边AD 上一点,2AM MD =,点E ,点F 分别是BM ,CM 中点,若6EF =,则AM 的长为________.16.如图,在矩形ABCD 中,6AB =,8BC =,对角线AC ,BD 相交于点O ,点P 为边AD 上一动点,连接OP ,以OP 为折痕,将AOP △折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F .若PDF △为直角三角形,则DP 的长为________.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:2012sin 60(2020)|23−⎛⎫︒+−+−+ ⎪⎝⎭π. 18.沈阳市图书馆推出“阅读沈阳 书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机...抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B 表示;乙班男生用a 表示,两名女生分别用1b ,2b 表示). 19.如图,在矩形ABCD 中,对角线AC 的垂直平分线分别与边AB 和边CD 的延长线交于点M ,N ,与边AD 交于点E ,垂足为点O .(1)求证:AOM CON △≌△; (2)若3AB =,6AD =,请直接..写出AE 的长为________.四、(每小题8分,共16分)20.某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m 吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m =________,n =________;(2)根据以上信息直接..在答题卡....中补全条形统计图; (3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为________度; (4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物. 21.某工程队准备修建一条长3 000 m 的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.如图,在ABC △中,90ACB ∠=︒,点O 为BC 边上一点,以点O 为圆心,OB 长为半径的圆与边AB 相交于点D ,连接DC ,当DC 为O 的切线时.(1)求证:DC AC =;数学试卷 第5页(共6页) 数学试卷 第6页(共6页)(2)若DC DB =,O 的半径为1,请直接..写出DC 的长为________.六、(本题10分)23.如图,在平面直角坐标系中,AOB △的顶点O 是坐标原点,点A 的坐标为()4,4,点B 的坐标为()6,0,动点P 从O 开始以每秒1个单位长度的速度沿y 轴正方向运动,设运动的时间为t 秒()04t <<,过点P 作PN x ∥轴,分别交AO ,AB 于点M ,N .(1)填空:AO 的长为________,AB 的长为________; (2)当1t =时,求点N 的坐标;(3)请直接..写出MN 的长为________(用含t 的代数式表示); (4)点E 是线段MN 上一动点(点E 不与点M ,N 重合),AOE △和ABE △的面积分别表示为1S 和2S ,当43t =时,请直接..写出12S S ⋅(即1S 与2S 的积)的最大值为________.七、(本题12分)24.在ABC △中,AB AC =,BAC α∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC . (1)如图1,当60α=︒时,①求证:PA DC =;②求DCP ∠的度数; (2)如图2,当120α=︒时,请直接..写出PA 和DC 的数量关系. (3)当120α=︒时,若6AB =,BP D 到CP 的距离为________.八、(本题12分)25.如图1,在平面直角坐标系中,O 是坐标原点,抛物线212y x bx c =++经过点()6,0B 和点()0,3C −.(1)求抛物线的表达式;(2)如图2,线段OC 绕原点O 逆时针旋转30︒得到线段OD .过点B 作射线BD ,点M 是射线BD 上一点(不与点B 重合),点M 关于x 轴的对称点为点N ,连接NM ,NB .①直接..写出MBN △的形状为________; ②设MBN △的面积为1S ,ODB △的面积为是2S .当1223S S =时,求点M 的坐标;(3)如图3,在(2)的结论下,过点B 作BE BN ⊥,交NM 的延长线于点E ,线段BE 绕点B 逆时针旋转,旋转角为()0120αα︒︒<<得到线段BF ,过点F 作FK x ∥轴,交射线K ,KBF ∠的角平分线和KBF ∠的角平分线相交于点G,当BG =G 的坐标为________.-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效---------------- 毕业学校_____________ 姓名________________ 考生号________________2020年辽宁省沈阳市初中学业水平考试数学答案解析一、 1.【答案】A【解析】解:由于20123−<<<<,故选:A . 2.【答案】B【解析】解:将10 900用科学记数法表示为41.0910⨯.故选:B . 3.【答案】D【解析】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形.故选:D . 4.【答案】C【解析】解:A .23a a +,不是同类项,无法合并,不合题意;B .235a a a ⋅=,故此选项错误;C .()3328a a =,正确;D .32a a a ÷=,故此选项错误;故选:C . 5.【答案】B【解析】解:AC CB ⊥,90ACB ∴∠=︒,180********ABC BAC ∴∠=︒−︒−∠=︒−︒=︒,直线AB CD ∥,55ABC BCD ∴∠=∠=︒,故选:B .6.【答案】A【解析】解:不等式26x ≤,左右两边除以2得:3x ≤.故选:A . 7.【答案】A【解析】解:A .从一个只有白球的盒子里摸出一个球是白球,是必然事件;B .任意买一张电影票,座位号是3的倍数,是随机事件;C .掷一枚质地均匀的硬币,正面向上,是随机事件;D .汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件;故选:A . 8.【答案】B【解析】解:由题意可知:()2=2411=0∆−−⨯⨯,故选:B . 9.【答案】D【解析】解:(方法一)将()3,0A −,()0,2B 代入y kx b =+,得:302k b b −+=⎧⎨=⎩,解得:232k b ⎧=⎪⎨⎪=⎩,∴一次函数解析式为223y x =+.203k =>,20b =>,∴一次函数223y x =+的图象经过第一、二、三象限,即该图象不经过第四象限.故选:D .(方法二)依照题意,画出函数图象,如图所示.观察函数图象,可知:一次函数()0y kx b k =+≠的图象不经过第四象限.故选:D .10.【答案】C 【解析】解:四边形ABCD 是矩形,2AD BC ∴==,90B ∠=︒,2AE AD ∴==,3AB =,cos AB BAE AE ∴∠==30BAE ∴∠=︒,30EAD ∴∠=︒,DE ∴的长60221803ππ⋅⨯==,故选:C . 二、11.【答案】()21x x +【解析】解:原式()21x x =+.故答案为:()21x x +. 12.【答案】23x y =⎧⎨=⎩【解析】解:521x y x y +=⎧⎨−=⎩……①……②,+①②得:36x =,解得:2x =,把2x =代入①得:3y =,则方程组的解为23x y =⎧⎨=⎩. 13.【答案】乙 【解析】解:7x x ==甲乙,2 2.9S =甲,2 1.2S =乙,22S S ∴甲乙>,∴乙的成绩比较稳定,故答案为:乙.14.【答案】6 【解析】解:AO AB =,AC OB ⊥,2OC BC ∴==,3AC ∴=,(2,3)A ∴,把(2,3)A 代入ky x=,可得6k =,故答案为6.15.【答案】8【解析】解:点E ,点F 分别是BM ,CM 中点,EF ∴是BCM △的中位线,6EF =,212BC EF ∴==,四边形ABCD 是平行四边形,12AD BC ∴==,2AM MD =,8AM ∴=,故答案为:8.16.【答案】52或1 【解析】解:如图1,当90DPF ∠=︒时,过点O 作OH AD ⊥于H ,四边形ABCD 是矩形,BO OD ∴=,90BAD OHD ∠=︒=∠,8AD BC ==,OH AB ∴∥,12OH HD OD AB AD BD ∴===,132OH AB ∴==,142HD AD ==,将AOP △折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F ,45APO EPO ∴∠=∠=︒,又OH AD ⊥,45OPH HOP ∴∠=∠=︒,3OH HP ∴==,1PD HD HP ∴=−=;当90PFD ∠=︒时,6AB =,8BC =,10BD ∴==,四边形ABCD 是矩形,5OA OC OB OD ∴====,DAO ODA ∴∠=∠,将AOP △折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F ,5AO EO ∴==,PEO DAO ADO ∠=∠=∠,又90OFE BAD ∠=∠=︒,OFE BAD ∴△∽△,OF OE AB BD ∴=,5610OF ∴=,3OF ∴=,2DF ∴=,PFD BAD ∠=∠,PDF ADB ∠=∠,PFD BAD ∴△∽△,PD DF BD AD ∴=,2108PD ∴=,52PD ∴=,综上所述:52PD =或1,故答案为52或1. 三、17.【答案】解:原式2912=+++12=12=.【解析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.18.【答案】解:画树状图为:共有6种等可能的结果,其中抽出的两名学生性别相同的结果数为3,所以抽出的两名学生性别相同的概率31==62. 【解析】画树状图展示所有6种等可能的结果,找出抽出的两名学生性别相同的结果数,然后根据概率公式求解.19.【答案】(1)MN 是AC 的垂直平分线,AO CO ∴=,90AOM CON ∠=∠=︒,四边形ABCD 是矩形,AB CD ∴∥,M N ∴∠=∠,在AOM △和CON △中,M NAOM C AO CO ON ∠=∠⎧⎪∠=∠⎨=⎪⎩,()AOM CON AAS ∴△≌△.(2)154【解析】(1)利用线段垂直平分线的性质以及矩形的性质,即可得到判定AOM CON △≌△的条件. (2)如图所示,连接CE ,MN 是AC 的垂直平分线,CE AE ∴=,设AE CE x ==,则6DE x =−,四边形ABCD 是矩形,90CDE ∴∠=︒,3CD AB ==,Rt CDE ∴△中,222CD DE CE +=,即()22236x x +−=,解得154x =,即AE 的长为154.故答案为:154. 四、20.【答案】(1)100 60(2)(3)108 (4)6020001200100⨯=(吨),即该市2 000吨垃圾中约有1 200吨可回收物. 【解析】(1)根据其他垃圾的吨数和所占的百分比可以求得m 的值,然后根据条形统计图中的数据,即可得到n 的值;88%100m =÷=,1003028%100%60%100n −−−=⨯=,故答案为:100,60.(2)根据统计图中的数据,可以得到可回收物的吨数,然后即可将条形统计图补充完整;可回收物有:100302860−−−=(吨),补全完整的条形统计图如下图所示:(3)根据统计图中的数据,可以计算出厨余垃圾所对应的扇形圆心角的度数;扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:30360108100︒⨯=︒,故答案为:108.(4)根据统计图中的数据,可以计算出该市2 000吨垃圾中约有多少吨可回收物. 21.【答案】解:设原计划每天修建盲道 m x ,则300030002(125%)x x−=+,解得300x =,经检验,300x =是所列方程的解,答:原计划每天修建盲道300米.【解析】求的是工效,工作总量是3000m ,则是根据工作时间来列等量关系.关键描述语是提前2天完成,等量关系为:原计划时间−实际用时2=,根据等量关系列出方程. 五、22.【答案】(1)证明:如图,连接OD ,CD 是O 的切线,CD OD ∴⊥,90ODC ∴∠=︒,90BDO ADC ∴∠+∠=︒,90ACB ∠=︒,90A B ∴∠+∠=︒,OB OD ∴=,OBD ODB ∴∠=∠,A ADC ∴∠=∠,CD AC ∴=.(2【解析】(1)如图,连接OD ,由切线的性质可得90ODC ∠=︒,可得90BDO ADC ∠+∠=︒,由直角三角形的性质和等腰三角形的性质可证A ADC ∠=∠,可得CD AC =.(2)由等腰三角形的性质可得DCB DBC BDO ∠=∠=∠,由三角形内角和定理可求30DCB DBC BDO ∠=∠=∠=︒,由直角三角形的性质可求解.DC DB =,DCB DBC ∴∠=∠,DCB DBC BDO ∴∠=∠=∠,180DCB DBC BDO ODC ∠+∠+∠+∠=︒,30DCB DBC BDO ∴∠=∠=∠=︒,DC ∴==六、23.【答案】(1)(2)设直线AB 的解析式为y kx b =+,将()4,4A ,()6,0B 代入得到,4460k b k b +=⎧⎨+=⎩,解得212k b =−⎧⎨=⎩,∴直线AB 的解析式为212y x =−+,由题意点N 的纵坐标为1,令1y =,则1212x =−+,112x ∴=,11,12N ⎛⎫∴ ⎪⎝⎭. (3)123t2−(4)如图,当43t =时,4123342MN −⨯==,设EM m =,则4EN m =−.由题意2212114(4)44164(2)1622S S m m m m m =⋅⨯⨯−⨯=−+−−+⋅=,40−<, 2 m ∴=时,12S S ⋅有最大值,最大值为16.故答案为16.【解析】(1)利用两点间距离公式求解即可.(2)求出直线AB 的解析式,利用待定系数法即可解决问题.()4,4A ,()6,0B ,OA ∴=AB 故答案为(3)求出PN ,PM 即可解决问题.当04t <<时,令y t =,代入212y x =−+,得到122t x −=,12t ,2N t −⎛⎫∴ ⎪⎝⎭,45AOB AOP ∠=∠=︒,90CPM ∠=︒,OP PM t ∴==,12t 123t 22MN PN PM t −−∴=−=−=.故答案为123t2−. (4)如图,当43t =时,4123342MN −⨯==,设EM m =,则4EN m =−.构建二次函数利用二次函数的性质即可解决问题. 七、24.【答案】(1)①证明:如图①中,AB AC =,PB PD =,60BAC BPD ∠=∠=︒,ABC ∴△,PBD △是等边三角形,60ABC PBD ∴∠=∠=︒,PBA DBC ∴∠=∠,BP BD =,BA BC =,()PBA DBC SAS ∴△≌△,PA DC ∴=.②解:如图①中,设BD 交PC 于点O .PBA DBC △≌△,BPA BDC ∴∠=∠,BOP COD ∠=∠,60OBP OCD ∴∠=∠=︒,即60DCP ∠=︒.(2)解:结论:CD =.理由:如图②中,AB AC =,PB PD =,120BAC BPD ∠=∠=︒,BC ∴=,BD =,BC BD BA BP∴==,30ABC PBD ∠=∠=︒,ABP CBD ∴∠=∠,CBD ABP ∴△∽△,CD BC PA AB∴==CD ∴=. (3)过点D 作DM PC ⊥于M ,过点B 作BN CP ⊥交CP 的延长线于N .如图3﹣1中,当PBA △是钝角三角形时,在Rt ABN △中,90N ∠=︒,6AB =,60BAN ∠=︒,cos603AN AB ∴=⋅︒=sin 60BN AB =⋅︒=,2PN PB ==,321PA ∴=−=,由(2)可知,CD BAP BDC ∠=∠,30DCA PBD ∴∠=∠=︒,DM PC ⊥,12DM CD ∴=.如图3﹣2中,当ABN △是锐角三角形时,同法可得235PA ===,CD =12DM CD ==,综上所述,满足条件的DM【解析】(1)①证明()PBA DBC SAS △≌△可得结论.②利用全等三角形的性质解决问题即可.(2)证明CBD ABP △∽△,可得CD BC PA AB=. (3)分两种情形,解直角三角形求出AD 即可解决问题.八、25.【答案】(1)抛物线212y x bx c =++经过点()6,0B 和点()0,3C −,18603b c c ++=⎧∴⎨=−⎩, 解得:523b c ⎧=−⎪⎨⎪=−⎩,∴抛物线解析式为:215322y x x =−−. (2)①如图2,过点D 作DH OB ⊥于H ,设MN 与x 轴交于点R ,点()6,0B 和点()0,3C −,3OC ∴=,6OB =,线段OC 绕原点O 逆时针旋转30︒得到线段OD ,3OD ∴=,30COD ∠=︒,60BOD ∴∠=︒,DH OB ⊥,30ODH ∴∠=︒,1322OH OH ∴==,DH =,92BH OB OH ∴=−=,2tan 92HD HBD HB ∠===,30HBD ∴∠=︒,点M 关于x 轴的对称点为点N ,BN BM ∴=,30MBH NBH ∠=∠=︒,60MBN ∴∠=︒,BMN ∴△是等边三角形,故答案为:等边三角形.②ODB △的面积211622S OB DH =⨯⨯=⨯=,且1223S S =,123S ∴==BMN△是等边三角形,21S ∴=MN ∴=点M 关于x 轴的对称点为点N ,MR NR ∴==,MN OB ⊥,30MBH ∠=︒,3BR ∴==,3OR ∴=,点M 在第四象限,∴点M 坐标为(3,. (3)如图3中,过点F 作FH BG ⊥交BG 的延长线于H .由题意6BE BF ==,FK B ∥,60ABK FKB ∴∠=∠=︒,BG 平分FBE ∠,GF 平分BFK ∠,120FGB ∴∠=︒,设GH a =,则2FG a =,FH =,在Rt BHF △中,90FHB ∠=︒,222BF BH FH ∴=+,2226))a ∴=+,解得a =或−(不符合题意舍弃),FG BG ∴==,30GBF GFB ∴∠=∠=︒,60FBK BFK ∴∠=∠=︒,BFK ∴△是等边三角形,此时F 与K 重合,BG KF ⊥,KF x ∥轴,BG x ∴⊥轴,(6,G ∴−.【解析】(1)将点B ,点C 坐标代入解析式,可求b ,c 的值,即可求抛物线的表达式.(2)①如图2,过点D 作DH OB ⊥,由旋转的性质可得3OD =,30COD ∠=︒,由直角三角形的性质可得1322OH OH ==,DH ==,由锐角三角函数可求30HBD ∠=︒,由对称性可得BN BM =,30MBH NBH ∠=∠=︒,可证BMN △是等边三角形.②由三角形面积公式可求2S ,1S ,由等边三角形的面积公式可求MN 的长,由对称性可求MR NR ==,由直角三角形的性质可求3BR =,可得3OR =,即可求点M 坐标.(3)如图3中,过点F 作FH BG ⊥交BG 的延长线于H .想办法证明BFK △是等边三角形,推出BG x ⊥轴即可解决问题.。
(中考精品卷)辽宁省沈阳市中考数学真题(解析版)
沈阳市2022年初中学业水平考试数学试题试题满分120分,考试时间120分钟.注意事项:1.答题前,考生须用0.5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效; 3.考试结束,将本试题卷和答题卡一并交回;4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明.一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1. 计算()53+-正确的是( )A. 2B. 2-C. 8D. 8-【答案】A【解析】【分析】根据有理数的加法运算即可求解.【详解】解:()53+-2=.故选:A .【点睛】本题考查了有理数的加法,掌握有理数的加法法则是解题的关键. 2. 如图是由4个相同的小立方块搭成的几何体,这个几何体的主视图是( )A. B. C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看易得上面第一层有1个正方形,第二层左边和右边都有一个正方形,如图所示:故选:D .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3. 下列计算结果正确的是( )A ()336a a =B. 632a a a ÷=C. ()248ab ab =D. ()2222a b a ab b +=++ 【答案】D【解析】【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意;故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我.们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.4. 在平面直角坐标系中,点()2,3A 关于y 轴对称的点的坐标是( )A. ()2,3--B. ()2,3-C. ()2,3-D. ()3,2--【答案】B【解析】【分析】根据“关于y 轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数”即可解答.【详解】解:点A (2,3)关于y 轴对称的点的坐标是(-2,3).故选B .【点睛】本题考查了关于坐标轴对称的点的坐标特征,对称点的坐标规律:①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5. 调查某少年足球队全体队员的年龄,得到数据结果如下表: 年龄/岁11 12 13 14 15 人数 3 4 7 2 2 则该足球队队员年龄的众数是( )A. 15岁B. 14岁C. 13岁D. 7人【答案】C【解析】【分析】根据众数的定义即一组数据中出现次数最多的数据,即可得出答案.【详解】解:∵年龄是13岁的人数最多,有7个人, ∴这些队员年龄的众数是13;故选:C .【点睛】本题考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数据.6. 不等式213x +>的解集在数轴上表示正确的是( )A. B. C. D.【答案】B【解析】【分析】先解不等式,将不等式的解集表示在数轴上即可.【详解】解:213x +>移项合并得:22x >,系数化1得:1x >,表示在数轴上为∶故选:B .【点睛】本题考查一元一次不等式的解法,并把解集表示在数轴上,正确解出不等式是解答本题的关键.7. 如图,在Rt ABC 中,30A ∠=︒,点D 、E 分别是直角边AC 、BC 的中点,连接DE ,则CED ∠度数是( )A. 70°B. 60°C. 30°D. 20° 【答案】B【解析】【分析】因为点D 、E 分别是直角边AC 、BC 的中点,所以DE 是Rt ABC 的中位线,三角形的中位线平行于第三边,进而得到B CED ∠=∠,求出B Ð的度数,即为CED ∠的度数.【详解】解:∵点D 、E 分别是直角边AC 、BC 的中点,∴DE 是Rt ABC 的中位线,∴DE AB ∥,∴B CED ∠=∠,∵30A ∠=︒,90C ∠=︒,∴903060B ∠=-=°°°,∴60CED ∠=︒,故选:B .【点睛】本题考查三角形中位线的性质以及三角形内角和,由三角形中位线定义,找到平行线是解答本题的关键.8. 在平面直角坐标系中,一次函数1y x =-+的图象是( )A. B.C. D.【答案】A【解析】【分析】根据一次函数的图象与性质即可得.【详解】解:一次函数1y x =-+的一次项系数为−1<0,常数项为10>,∴函数图象经过一、二、四象限故选:A .【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.9. 下列说法正确的是( )A. 了解一批灯泡的使用寿命,应采用抽样调查的方式B. 如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C. 若甲、乙两组数据的平均数相同,2 2.5S =甲,28.7S =乙,则乙组数据较稳定D. “任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【答案】A【解析】【分析】根据全面调查和抽样调查的意义、概率的意义、方差的意义、事件可能性的大小分别进行判断即可.【详解】解:A .要了解一批灯泡的使用寿命,采用普查的方式不合适,破坏性较强,应采用抽样调查,故此选项正确,符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票不一定一定会中奖,故选项错误,不符合题意;C .若甲、乙两组数据的平均数相同,2 2.5S =甲,28.7S =乙,则2S 甲<2S 乙,则甲组数据较稳定,故选项错误,不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7” 是不可能事件,故选项错误,不符合题意.故选:A .【点睛】此题主要考查了全面调查和抽样调查的意义、概率的意义、方差的意义、事件可能性的大小,关键是熟练掌握各知识点.10. 如图,一条河两岸互相平行,为测得此河的宽度PT (PT 与河岸PQ 垂直),测P 、Q 两点距离为m 米,PQT α∠=,则河宽PT 的长度是( )A. sin m αB. cos m αC. tan m αD. tan m α【答案】C【解析】 【分析】结合图形利用正切函数求解即可.【详解】解:根据题意可得:tan PT PQα=, ∴·tan tan PT PQ m αα==,故选C .【点睛】题目主要考查解直角三角形的实际应用,理解题意,利用正切函数解直角三角形是解题关键.二、填空题(每小题3分,共18分)11. 分解因式:269ay ay a ++=______.【答案】()23a y +【解析】【分析】先提取公因式,然后再利用完全平方公式进行因式分解即可.【详解】解:269ay ay a ++=()269a y y ++ ()23a y =+;故答案为:()23a y +.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键. 12. 二元一次方程组252x y y x +=⎧⎨=⎩的解是______. 【答案】12x y =⎧⎨=⎩##21y x =⎧⎨=⎩【解析】【分析】利用代入消元法进行求解方程组的解即可.【详解】解:252x y y x +=⎧⎨=⎩①② 把②代入①得:55=x ,解得:1x =,把1x =代入②得:2y =;∴原方程组的解为12x y =⎧⎨=⎩; 故答案为12x y =⎧⎨=⎩. 【点睛】本题主要考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是解题的关键.13. 化简:21111x x x-⎛⎫-⋅= ⎪+⎝⎭______. 【答案】1x -##1x -+【解析】【分析】根据分式的混合运算可直接进行求解.【详解】解:原式=()()1111x x x x x x+-⋅=-+;故答案为1x -.【点睛】本题主要考查分式的运算,熟练掌握分式的加减乘除运算是解题的关键. 14. 如图,边长为4的正方形ABCD 内接于O ,则 AB 的长是________(结果保留π)【解析】【分析】连接OA 、OB ,可证∠AOB =90°,根据勾股定理求出AO ,根据弧长公式求出即可.【详解】解:连接OA 、OB .∵正方形ABCD 内接于⊙O ,∴AB =BC =DC =AD =4,AO =BO ,∴ AB BC CD AD ===,∴∠AOB =14×360°=90°, 在Rt △AOB 中,由勾股定理得:AO 2+BO 2=2AO 2=42=16,解得:AO =,∴ AB =,.【点睛】本题考查了弧长公式和正方形的性质,能求出∠AOB 的度数和OA 的长是解此题的关键.15. 如图四边形ABCD 是平行四边形,CD 在x 轴上,点B 在y 轴上,反比例函数()0k y x x=>的图象经过第一象限点A ,且平行四边形ABCD 的面积为6,则k =______.【答案】6【解析】【分析】过点A 作AE ⊥CD 于点E ,然后平行四边形的性质可知△AED ≌△BOC ,进而可得矩形ABOE 的面积与平行四边形ABCD 的面积相等,最后根据反比例函数k 的几何意义可求解.【详解】解:过点A 作AE ⊥CD 于点E ,如图所示:∴90AED BOC ∠=∠=︒,∵四边形ABCD 是平行四边形,∴,//BC AD BC AD =,∴ADE BCO ∠=∠,∴△AED ≌△BOC (AAS ),∵平行四边形ABCD 的面积为6,∴6ABCD ABOE S S == 矩形,∴6k =;故答案为6.【点睛】本题主要考查平行四边形的性质及反比例函数k 的几何意义,熟练掌握平行四边形的性质及反比例函数k 的几何意义是解题的关键.16. 如图,将矩形纸片ABCD 折叠,折痕为MN ,点M ,N 分别在边AD ,BC 上,点C ,D 的对应点分别在E ,F 且点F 在矩形内部,MF 的延长线交BC 与点G ,EF 交边BC 于点H .2EN =,4AB =,当点H 为GN 三等分点时,MD 的长为______.【答案】4或4【解析】【分析】由折叠得,∠DMN =∠GMN ,EF =CD ==4,CN =EN =2,∠EFM =∠D =90°,证明GHE NHE ∆∆ 得NH HE NE GH HF GF==,再分两种情况讨论求解即可. 【详解】解:∵四边形ABCD 是矩形,∴AD //BC ,CD =AB =4,∠D =∠C =90°,∴∠DMN =∠GNM ,由折叠得,∠DMN =∠GMN ,EF =CD ==4,CN =EN =2,∠EFM =∠D =90°,∴∠GMN =∠GNM ,∠GFH =∠NEH ,∴GM =GN ,又∠GHE =∠NHE ,∴GHE NHE ∆∆ , ∴NH HE NE GH HF GF==, ∵点H 是GN 的三等分点,则有两种情况: ①若12NH GH =时,则有:12HE NE HF GF == ∴EH =1428,3333EF FH EF ===,GF =2NE =4,由勾股定理得,NH ===,∴GH =2NH∴GM =GN =GH +NH =∴MD =MF =GM -GF =4-; ②若2NH GH =时,则有:2HE NE HF GF ==∴EH =2814,3333EF FH EF ===,GF =12NE =1,由勾股定理得,103NH ===, ∴GH =12NH =53∴GM =GN =GH +NH =5;∴MD =MF =GM -GF =514-=综上,MD 的值为4-或4.【点睛】本题主要考查了矩形的性质,折叠的性质,等腰三角形的判定与性质以及相似三角形的判定与性质等知识,进行分类讨论是解答本题的关键.三、解答题:17. 213tan 3022-⎛⎫︒+- ⎪⎝⎭. 【答案】6【解析】【分析】根据二次根式的性质,特殊角的三角函数值,负整数指数幂,化简绝对值进行计算即可求解.【详解】解:原式=342-++-42+-6=.【点睛】本题考查了实数的混合运算,掌握二次根式的性质,特殊角的三角函数值,负整数指数幂,化简绝对值是解题的关键.18. 为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是________;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.【答案】(1)14(2)16【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中两张卡片上的数字是2和3的结果有2种,再由概率公式求解即可.【小问1详解】解:随机抽取一张卡片,卡片上的数字是4的概率为14, 故答案为:14; 【小问2详解】解:画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是2和3的结果有2种,∴两张卡片上的数字是2和3的概率为21126. 【点睛】此题考查的是用树状图或列表法求概率.树状图或列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.熟练掌握树状图或列表法是解决这类题的关键.19. 如图,在ABC 中,AD 是ABC 的角平分线,分别以点A ,D 为圆心,大于12AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的______.(2)求证:四边形AEDF 是菱形.【答案】(1)垂直平分线(2)见详解【解析】【分析】(1)根据线段垂直平分线的尺规作图可直接得出答案;(2)由题意易得90,,AOF AOE FAO EAO AF DF ∠=∠=︒∠=∠=,然后可证AOF AOE ≌,则有OF =OE ,进而问题可求证.【小问1详解】解:由题意得:直线MN 是线段AD 的垂直平分线;故答案为:垂直平分线;【小问2详解】证明:∵直线MN 是线段AD 的垂直平分线,∴90,,AOF AOE AO DO AF DF ∠=∠=︒==,∵AD 是ABC 的角平分线,∴FAO EAO ∠=∠,∵AO =AO ,∴AOF AOE ≌(ASA ),∴OF =OE ,∵AO =DO ,∴四边形AEDF 是平行四边形,∵AF DF =,∴四边形AEDF 是菱形.【点睛】本题主要考查线段垂直平分线的尺规作图、全等三角形的性质与判定及菱形的判定,熟练掌握线段垂直平分线的尺规作图、全等三角形的性质与判定及菱形的判定是解题的关键.20. 某校积极落实“双减”政策,将要开设拓展课程,为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A (综合模型)、B (摄影艺术)、C (音乐鉴赏)、D (劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为________名;(2)直接在答题卡中补全条形统计图;(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.【答案】(1)120 (2)见解析(3)72︒(4)320名【解析】【分析】(1)先求出B的人数,再将各项人数相加即可.(2)见解析(3)根据D的百分比乘以圆心角即可.(4)求出C所占的百分比,乘以800.【小问1详解】解:根据扇形统计图中,B是A的3倍⨯=(名)故喜欢B的学生数为31236统计调查的总人数有:12+36+48+24=120(名).【小问2详解】【小问3详解】由条形统计图可知:D 的人数是A 的2倍,故D 占总人数的20%所以D 所占圆心角为20%36072⨯︒=︒答:课程D 所对应的扇形的圆心角的度数为72︒.【小问4详解】若有800名学生,则喜欢C 的学生数有:48800320120⨯=(名) 答:有320名学生最喜欢C 拓展课程.【点睛】本题考查扇形统计图与条形统计图相关内容,注意从图中获取信息,分析图中数据之间数量关系是解题的关键.21. 如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD ,铁丝恰好全部用完.(1)若所围成矩形框架ABCD 的面积为144平方厘米,则AB 的长为多少厘米?(2)矩形框架ABCD 面积最大值为______平方厘米.【答案】(1)AB 的长为8厘米或12厘米.(2)150的【解析】【分析】(1)设AB 的长为x 厘米,则有6032x AD -=厘米,然后根据题意可得方程6031442x x -⋅=,进而求解即可; (2)由(1)可设矩形框架ABCD 的面积为S ,则有()260331015022x S x x -=⋅=--+,然后根据二次函数的性质可进行求解. 【小问1详解】 解:设AB 的长为x 厘米,则有6032x AD -=厘米,由题意得: 6031442x x -⋅=, 整理得:220960x x -+=,解得:128,12x x ==, ∵60302x ->, ∴020x <<,∴128,12x x ==都符合题意,答:AB 的长为8厘米或12厘米.【小问2详解】解:由(1)可设矩形框架ABCD 的面积为S 平方厘米,则有:()22603333010150222x S x x x x -=⋅=-+=--+, ∵302-<,且020x <<, ∴当10x =时,S 有最大值,即为150S =;故答案为:150.【点睛】本题主要考查一元二次方程及二次函数的应用,解题的关键是找准题干中的等量关系.22. 如图,四边形ABCD 内接于圆O ,AD 是圆O 的直径,AD ,BC 的延长线交于点E ,延长CB 交PA 于点P ,90BAP DCE ∠+∠=︒.(1)求证:PA 是圆O 的切线;(2)连接AC ,1sin 3BAC ∠=,2BC =,AD 的长为______. 【答案】(1)证明见解析(2)6【解析】【分析】(1)根据圆内接四边形的性质和90BAP DCE ∠+∠=︒,可得出90PAD ∠=︒,再根据AD 是圆O 的直径,由切线的判定可得证;(2)延长DC 交AB 的延长线于点F ,由AD 是圆O 的直径,可说明ACF 是直角三角形,从而得到1sin 3CF BAC AF ∠==,再证明FCB FAD △∽△,得到CB CF AD AF=,代入数据即可得到答案.【小问1详解】证明:∵四边形ABCD 内接于圆O ,∴BAD DCE ∠=∠,∵90BAP DCE ∠+∠=︒,∴90BAP BAD ∠+∠=︒,∴90PAD ∠=︒,∴PA AD ⊥,∵AD 是圆O 的直径,∴PA 是圆O 的切线.【小问2详解】解:延长DC 交AB 的延长线于点F ,∵AD 是圆O 的直径,∴90ACD ∠=︒,∴18090ACF ACD ∠=︒-∠=︒,∴ACF 是直角三角形,∴sin CF BAC AF∠=, ∵四边形ABCD 内接于圆O ,∴FCB FAD =∠∠,又∵F F ∠=∠,∴FCB FAD △∽△, ∴CB CF AD AF=, ∵1sin 3BAC ∠=,2BC =, ∴213CF AD AF ==, ∴6AD =.故答案:6.【点睛】本题考查了切线的判定,圆内接四边形的性质,圆周角定理推论,相似三角形的判定和性质,三角函数等知识.通过作辅助线构造相似三角形是解题的关键.23. 如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,9B ,与直线OC 交于点()8,3C .(1)求直线AB 的函数表达式;(2)过点C 作CD x ⊥轴于点D ,将ACD △沿射线CB 平移得到的三角形记为A C D '''△,点A ,C ,D 的对应点分别为A ',C ',D ¢,若A C D '''△与BOC 重叠部分为的面积为S,平移的距离CC m'=,当点A'与点B重合时停止运动.①若直线C D''交直线OC于点E,则线段C E'的长为________(用含有m的代数式表示);②当103m<<时,S与m的关系式为________;③当245S=时,m的值为________.【答案】(1)y=﹣34x+9;(2)①910m;②925m215﹣【解析】【分析】(1)将点B(0,9),C(8,3)的坐标代入直线解析式,求解即可;(2)①过点C作CF⊥C′D′,易得△CFC′∽△AOB,可用m表达CF和C′F的长度,进而可表达点C′,D′的坐标,由点C的坐标可得出直线OC的解析式,代入可得点E的坐标;②根据题意可知,当0<m<103时,点D′未到直线OC,利用三角形面积公式可得出本题结果;③分情况讨论,分别求出当0<m<103时,当103<m<5时,当5<m<10时,当10<m<15时,S与m的关系式,分别令S=245,建立方程,求出m即可.【小问1详解】解:将点B(0,9),C(8,3)的坐标代入直线y=kx+b,∴983bk b=⎧⎨+=⎩,解得349kb⎧=-⎪⎨⎪=⎩.∴直线AB的函数表达式为:y=﹣34x+9;【小问2详解】①由(1)知直线AB的函数表达式为:y=﹣34x+9,令y=0,则x=12,∴A (12,0),∴OA =12,OB =9,∴AB =15;如图1,过点C 作CF ⊥C ′D ′于点F ,∴CF ∥OA ,∴∠OAB =∠FCC ′,∵∠C ′FC =∠BOA =90°,∴△CFC ′∽△AOB ,∴OB :OA :AB =C ′F :CF :CC ′=9:12:15, ∵CC ′=m ,∴CF =45m ,C ′F =35m , ∴C ′(8﹣45m ,3+35m ),A ′(12﹣45m ,35m ),D ′(8﹣45m ,35m ), ∵C (8,3), ∴直线OC 的解析式为:y =38x ,∴E (8﹣45m ,3﹣310m ). ∴C ′E =3+35m ﹣(3﹣310m )=910m . 故答案为:910m . ②当点D ′落在直线OC 上时,有35m =38(8﹣45m ), 解得m =103 ,∴当0<m <103时,点D ′未到直线OC , 此时S =12C ′E •CF =12•910m •45m =925m 2; 故答案为:925m 2. ③分情况讨论,当0<m <103时,由②可知,S =925m 2;令S =925m 2=245 ,解得m 103(舍)或m ; 当103≤m <5时,如图2,设线段A ′D ′与直线OC 交于点M ,∴M (85m ,35m ), ∴D ′E =35m ﹣(3﹣310m )=910m ﹣3, D ′M =85m ﹣(8﹣45m )=125m ﹣8; ∴S =925m 2﹣12•(910m ﹣3)•(125m ﹣8) =﹣1825m 2+365m ﹣12, 令﹣1825m 2+365m ﹣12=245; 整理得,3m 2﹣30m +70=0,解得m 或m 5(舍); 当5≤m <10时,如图3,S =S △A ′C ′D ′=12×4×3=6≠245,不符合题意; 当10≤m <15时,如图4,此时A ′B =15﹣m ,∴BN =35(15﹣m ),A ′N =45(15﹣m ), ∴S =12•35(15﹣m )•45(15﹣m )=625(15﹣m )2,令625(15﹣m )2=245,解得m =15+215(舍)或m =15﹣15﹣. 【点睛】本题属于一次函数综合题,涉及待定系数法求函数解析式、三角形的面积、相似三角形的性质与判定、一元二次方程、分类讨论思想等知识,根据△A ′C ′D ′的运动,进行正确的分类讨论是解题关键.24. (1)如图,AOB 和COD △是等腰直角三角形,90AOB COD ∠=∠=︒,点C 在OA 上,点D 在线段BO 延长线上,连接AD ,BC .线段AD 与BC 的数量关系为______;(2)如图2,将图1中的COD △绕点O 顺时针旋转α(090α︒<<︒)第一问的结论是否仍然成立;如果成立,证明你的结论,若不成立,说明理由.(3)如图,若8AB =,点C 是线段AB 外一动点,AC =BC ,①若将CB 绕点C 逆时针旋转90°得到CD ,连接AD ,则AD 的最大值______;②若以BC 为斜边作Rt BCD ,(B 、C 、D 三点按顺时针排列),90CDB ∠=︒,连接AD ,当30CBD DAB ∠=∠=︒时,直接写出AD 的值.【答案】(1)AD =BC ;(2)结论仍成立,理由见详解;(3)①+,②AD =. 【解析】 【分析】(1)由题意易得,,90AO BO OD OC AOD BOC ==∠=∠=︒,然后可证AOD BOC ≌△△,进而问题可求解;(2)由题意易得,AO BO OD OC ==,然后可证AOD BOC ≌△△,进而问题可求证; (3)①根据题意作出图形,然后根据三角不等关系可得AC CD AD +≥,则当A 、C 、D 三点共线时取最大,进而问题可求解;②过点C 作CE ⊥AB 于点E ,连接DE ,过点B 作BF ⊥DE 于点F ,然后可得点C 、D 、B 、E 四点共圆,则有60DEB DCB ∠=∠=︒,设2,BC x BE y ==,则8,,AE y CD x BD =-==,进而根据勾股定理可进行方程求解.【详解】解:(1)AD =BC ,理由如下:∵AOB 和COD △是等腰直角三角形,90AOB COD ∠=∠=︒,∴,,90AO BO OD OC AOD BOC ==∠=∠=︒,∴AOD BOC ≌△△(SAS ),∴AD =BC ,故答案为AD =BC ;(2)结论仍成立,理由如下:∵AOB 和COD △是等腰直角三角形,90AOB COD ∠=∠=︒,∴,AO BO OD OC ==,∴AOC COD BOA AOC ∠+∠=∠+∠,即AOD BOC ∠=∠,∴AOD BOC ≌△△(SAS ),∴AD =BC ;(3)①如图,由题意得:,90BC CD BCD =∠=︒,根据三角不等关系可知:AC CD AD +≥,∴当A 、C 、D 三点共线时取最大,∴90ACB BCD ∠=∠=︒,∵8AB =,AC =∴BC ==,∴AD 的最大值为;②过点C 作CE ⊥AB 于点E ,连接DE ,过点B 作BF ⊥DE 于点F ,如图所示:∴90AEB CDB ∠=∠=︒,∴点C 、D 、B 、E 四点共圆,∵30CBD DAB ∠=∠=︒,∴60BCD ∠=︒,∴60DEB BCD ∠=∠=︒,∴30ADE DEB DAB ∠=∠-∠=︒,9030EBF DEB ∠=︒-∠=︒,∴DAE ADE ∠=∠,∴AE DE =,设2,BC x BE y ==,则8,,AE y CD x BD =-==,∴11,822EF BE y DE AE y ====-,∴382DF DE EF y =-=-,BF y ==, ∴在Rt △AEC 和Rt △BEC 中,由勾股定理得:()2224278x y y -=--,整理得:241637x y =-①;在Rt △BFD 中,由勾股定理得:222338324y y x ⎛⎫-+= ⎪⎝⎭,整理得:22642433y y x -+=②,联立①②得:2121443670y y -+=,解得:1266y y ==+,∴862AE ⎛=--=+ ⎝ 过点E 作EM ⊥AD 于点M ,∴112EM AE ==,12AM AD =,∴AM ==,∴2AD AE == 【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质、四点共圆及含30度直角三角形的性质,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质、四点共圆及含30度直角三角形的性质是解题的关键.25. 如图,平面直角坐标系中,O 是坐标原点,抛物线23y ax bx =+-经过点()6,0B 和点()4,3D -与x 轴另一个交点A .抛物线与y 轴交于点C ,作直线AD .(1)①求抛物线的函数表达式②并直接写出直线AD 的函数表达式.(2)点E 是直线AD 下方抛物线上一点,连接BE 交AD 于点F ,连接BD ,DE ,BDF 的面积记为1S ,DEF 的面积记为2S ,当122S S =时,求点E 的坐标;(3)点G 为抛物线的顶点,将抛物线图象中x 轴下方部分沿x 轴向上翻折,与抛物线剩下部分组成新的曲线为1C ,点C 的对应点C ',点G 的对应点G ',将曲线1C ,沿y 轴向下平移n 个单位长度(06n <<).曲线1C 与直线BC 的公共点中,选两个公共点作点P 和点Q ,若四边形C G QP ''是平行四边形,直接写出P 的坐标.【答案】(1)①2134y x x =--;②112y x =-- (2)(2,-4)或(0,-3)(3)1⎛⎝ 【解析】【分析】(1)①利用待定系数解答,即可求解;②利用待定系数解答,即可求解; (2)过点E 作EG ⊥x 轴交AD 于点G ,过点B 作BH ⊥x 轴交AD 于点H ,设点21,34E m m m ⎛⎫-- ⎪⎝⎭,则点1,12G m m ⎛⎫-- ⎪⎝⎭, 可得211242EG m m =-++,然后根据△EFG ∽△BFH ,即可求解;(3)先求出向上翻折部分的图象解析式为()21244y x =--+,可得向上翻折部分平移后的函数解析式为()21244y x n =--+-,平移后抛物线剩下部分的解析式为()21244y x n =---,分别求出直线BC 和直线C G ''的解析式为,可得BC ∥C ′G ′,再根据平行四边形的性质可得点12,22Q s s ⎛⎫+- ⎪⎝⎭,然后分三种情况讨论:当点P ,Q 均在向上翻折部分平移后的图象上时;当点P 在向上翻折部分平移后的图象上,点Q 在平移后抛物线剩下部分的图象上时;当点P 在平移后抛物线剩下部分的图象上,点Q 在向上翻折部分平移后的图象上时,即可求解.【小问1详解】解:①把点()6,0B 和点()4,3D -代入得:3663016433a b a b +-=⎧⎨+-=-⎩,解得:141a b ⎧=⎪⎨⎪=-⎩, ∴抛物线解析式为2134y x x =--; ②令y =0,则21304x x --=, 解得:122,6x x =-=,∴点A (-2,0),设直线AD 的解析式为()10y kx b k =+≠,∴把点()4,3D -和点A (-2,0)代入得:114320k b k b +=-⎧⎨-+=⎩,解得:1121k b ⎧=-⎪⎨⎪=-⎩, ∴直线AD 的解析式为112y x =--; 【小问2详解】解:如图,过点E 作EG ⊥x 轴交AD 于点G ,过点B 作BH ⊥x 轴交AD 于点H ,当x =6时,16142y =-⨯-=-, ∴点H (6,-4),即BH =4,设点21,34E m m m ⎛⎫-- ⎪⎝⎭,则点1,12G m m ⎛⎫-- ⎪⎝⎭, ∴2211111322442EG m m m m m ⎛⎫⎛⎫=-----=-++ ⎪ ⎪⎝⎭⎝⎭, ∵BDF 的面积记为1S ,DEF 的面积记为2S ,且122S S =,∴BF =2EF ,∵EG ⊥x ,BH ⊥x 轴,∴△EFG ∽△BFH , ∴12EG EF BH BF ==, ∴211214242m m -++=,解得:2m =或0, ∴点E 的坐标为(2,-4)或(0,-3);【小问3详解】 解:()221132444y x x x =--=--, ∴点G 的坐标为(2,-4),当x =0时,y =-3,即点C (0,-3),∴点()()0,3,2,4C G '', ∴向上翻折部分的图象解析式为()21244y x =--+, ∴向上翻折部分平移后的函数解析式为()21244y x n =--+-,平移后抛物线剩下部分的解析式为()21244y x n =---, 设直线BC 的解析式为()2220y k x b k =+≠,把点B (6,0),C (0,-3)代入得:222603k b b +=⎧⎨=-⎩,解得:22123k b ⎧=⎪⎨⎪=-⎩, ∴直线BC 解析式为132y x =-, 同理直线C G ''解析式为132y x =+, 的的∴BC ∥C ′G ′,设点P 的坐标为1,32s s ⎛⎫- ⎪⎝⎭, ∵点()()0,3,2,4C G '',∴点 C ′向右平移2个单位,再向上平移1个单位得到点 G ′,∵四边形C G QP ''是平行四边形, ∴点12,22Q s s ⎛⎫+- ⎪⎝⎭, 当点P ,Q 均在向上翻折部分平移后的图象上时,()()22112434211224242s n s s n s ⎧--+-=-⎪⎪⎨⎪-+-+-=-⎪⎩,解得:06s n =⎧⎨=⎩(不合题意,舍去), 当点P 在向上翻折部分平移后的图象上,点Q 在平移后抛物线剩下部分的图象上时,()()22112434211224242s n s s n s ⎧--+-=-⎪⎪⎨⎪+---=-⎪⎩,解得:10s n ⎧=+⎪⎨=⎪⎩或10s n ⎧=⎪⎨=⎪⎩去),当点P 在平移后抛物线剩下部分的图象上,点Q 在向上翻折部分平移后的图象上时,()()22112434211224242s n s s n s ⎧---=-⎪⎪⎨⎪-+-+-=-⎪⎩,解得:1s n ⎧=⎪⎨=⎪⎩或1s n ⎧=⎪⎨=⎪⎩ (不合题意,舍去),综上所述,点P的坐标为1⎛- ⎝.【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图象和性质,平行四边形的性质,相似三角形的判定和性质,并利用数形结合思想解答是解题的关键。
2020年辽宁省沈阳市中考数学试题及答案解析
2020年辽宁省沈阳市中考数学试题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020年)-2的倒数是( )A .-2B .12-C .12D .22.(2020年)下图是由一个长方体和一个圆锥组成的几何体,它的主视图是( )A .B .C .D .3.(2020年)下列运算正确的是( )A .2323m m m +=B .422m m m ÷=C .236m m m ⋅=D .()325m m =4.(2020年)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.(2020年)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是2 3.6s =甲,2 4.6s =乙,2 6.3s =丙,27.3s =丁,则这4名同学3次数学成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁 6.(2020年)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若120∠=︒,则∠2的度数是( )A .15°B .20°C .25°D .40°7.(2020年)一组数据1,8,8,4,6,4的中位数是( )A .4B .5C .6D .88.(2020年)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000420080x x =- B .3000420080x x += C .4200300080x x =- D .3000420080x x =+ 9.(2020年)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,8AC =,6BD =,点E 是CD 上一点,连接OE ,若OE CE =,则OE 的长是( )A .2B .52C .3D .410.(2020年)如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .二、填空题11.(2020年)截至2020年3月底,我国已建成5G 基站198 000个,将数据198 000用科学记数法表示为_________.12.(2020年)若一次函数22y x =+的图象经过点(3,)m ,则m =_________.13.(2020年)若关于x 的一元二次方程220x x k +-=无实数根,则k 的取值范围是___14.(2020年)下图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_________.15.(2020年)如图,在ABC ∆中,M ,N 分别是AB 和AC 的中点,连接MN ,点E 是CN 的中点,连接ME 并延长,交BC 的延长线于点D ,若4BC =,则CD 的长为_____16.(2020年)如图,在Rt ABC ∆中,90ACB ∠=︒,2AC BC =,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若3CE =,则BE 的长为_________.17.(2020年)如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x =(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.18.(2020年)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE DA =,连接EB ,点1F 是CD 的中点,连接1EF ,1BF ,得到1EF B ∆;点2F 是1CF 的中点,连接2EF ,2BF ,得到2EF B ∆;点3F 是2CF 的中点,连接3EF ,3BF ,得到3EF B ∆;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则n EF B ∆的面积为________(用含正整数n 的式子表示)三、解答题19.(2020年)先化简,再求值:211339x x x x x +⎛⎫-÷ ⎪---⎝⎭,其中3x .20.(2020年)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x 小时,将它分为4个等级:A (02x ≤<),B (24x ≤<),C (46x ≤<),D (6x ≥),并根据调查结果绘制了如两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了_________名学生;(2)在扇形统计图中,等级D 所对应的扇形的圆心角为_________°;(3)请补全条形统计图;(4)在等级D 中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.21.(2020年)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22.(2020年)如图,我国某海域有A ,B 两个港口,相距80海里,港口B 在港口A 的东北方向,点C 处有一艘货船,该货船在港口A 的北偏西30°方向,在港口B 的北偏西75°方向,求货船与港口A 之间的距离.(结果保留根号)23.(2020年)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中1015x ≤≤,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y 与x 之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?24.(2020年)如图,在平行四边形ABCD 中,AC 是对角线,90CAB ∠=︒,以点A 为圆心,以AB 的长为半径作A ,交BC 边于点E ,交AC 于点F ,连接DE .(1)求证:DE 与A 相切;(2)若60ABC ∠=︒,4AB =,求阴影部分的面积.25.(2020年)如图,射线AB 和射线CB 相交于点B ,ABC α∠=(0180α︒<<︒),且AB CB =.点D 是射线CB 上的动点(点D 不与点C 和点B 重合).作射线AD ,并在射线AD 上取一点E ,使AEC α∠=,连接CE ,BE .(1)如图①,当点D 在线段CB 上,90α=︒时,请直接写出AEB ∠的度数;(2)如图②,当点D 在线段CB 上,120α=︒时,请写出线段AE ,BE ,CE 之间的数量关系,并说明理由;(3)当120α=︒,1tan 3DAB ∠=时,请直接写出CE BE的值.26.(2020年)如图,抛物线2y ax c =-+(0a ≠)过点(0,0)O 和(6,0)A ,点B 是抛物线的顶点,点D 是x 轴下方抛物线上的一点,连接OB ,OD .(1)求抛物线的解析式;(2)如图①,当30BOD ∠=︒时,求点D 的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x 轴于点C ,交线段OD 于点E ,点F 是线段OB 上的动点(点F 不与点O 和点B 重合,连接EF ,将BEF ∆沿EF 折叠,点B 的对应点为点B ,EFB '∆与OBE ∆的重叠部分为EFG ∆,在坐标平面内是否存在一点H ,使以点E ,F ,G ,H 为顶点的四边形是矩形?若存在,请直接写出点H 的坐标,若不存在,请说明理由.辽宁省沈阳市 2020年中考数学试题解析1.B【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.C【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看下边是一个矩形,矩形的上边是一个三角形,故选:C.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.B【分析】运用合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方等运算法则运算即可.【详解】解:A .m 2与2m 不是同类项,不能合并,所以A 错误;B .m 4÷m 2=m 4﹣2=m 2,所以B 正确;C .m 2•m 3=m 2+3=m 5,所以C 错误;D .(m 2)3=m 6,所以D 错误;故选:B .【点睛】本题主要考查了合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方等运算,熟练掌握运算法则是解答此题的关键.4.D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,是中心对称图形,故此选项不符合题意;C 、是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、既是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.A【分析】根据方差的意义即方差越小成绩越稳定即可求解.【详解】解:∵2 3.6s =甲,2 4.6s =乙,2 6.3s =丙,27.3s =丁,且平均数相等,∴2s甲<2s乙<2s丙<2s丁∴这4名同学3次数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.C【分析】利用平行线的性质求得∠3的度数,即可求得∠2的度数.【详解】∵AD∥BC,∴∠3=∠1=20︒,∵△DEF是等腰直角三角形,∴∠EDF=45︒,∴∠2=45︒-∠3=25︒,故选:C.【点睛】本题考查了平行线的性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.7.B【分析】先将数据重新按大小顺序排列,再根据中位数的概念求解可得.【详解】解:一组数据1,4,4,6,8,8的中位数是465 2+=,故选:B.【点睛】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.D【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x=+,故选:D.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.B【分析】根据菱形的对角线互相垂直平分求出OB,OC,AC⊥BD,再利用勾股定理列式求出BC,然后根据等腰三角形的性质结合直角三角形两个锐角互余的关系求解即可.【详解】∵菱形ABCD的对角线AC、BD相交于点O,∴OA=OC=12AC=4,OB=OD=12BD=3,AC⊥BD,由勾股定理得,5=,∵OE=CE,∴∠EOC=∠ECO,∵∠EOC+∠EOD =∠ECO+∠EDO=90︒,∴∠EOD =∠EDO ,∴OE=ED ,∴OE=ED=CE ,∴OE=12CD=52. 故选:B .【点睛】本题考查了菱形的性质,等腰三角形的判定和性质,直角三角形两个锐角互余,勾股定理,熟记性质与定理是解题的关键.10.A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,AC BC ==,∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===,∴2CE x =,∴四边形CEPF 的面积为212222y x x x x ⎛⎫==-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())4sin 454CE PE x x ==-︒=-,∴四边形CEPF 的面积为)22144822x x x y ⎤-=-+⎢⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键. 11.51.9810⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】198000=1.98×105,故答案为:1.98×105.此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.12.8【分析】将点(3,)m 代入一次函数的解析式中即可求出m 的值.【详解】解:由题意知,将点(3,)m 代入一次函数22y x =+的解析式中,即:232=⨯+m ,解得:8m =.故答案为:8.【点睛】本题考查了一次函数的图像和性质,点在图像上,则将点的坐标代入解析式中即可. 13.1k <-【分析】方程无实数根,则0<,建立关于k 的不等式,即可求出k 的取值范围. 【详解】∵1a =,2b =,c k =-,由题意知,()224241440b ac k k =-=-⨯⨯-=+<,解得:1k <-,故答案为:1k <-.【点睛】本题考查了一元二次方程20ax bx c ++=(0a ≠,a b c ,,为常数)的根的判别式24b ac =-.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根. 14.59【分析】先设阴影部分的面积是5x ,得出整个图形的面积是9x ,再根据几何概率的求法即可得出答案.解:设阴影部分的面积是5x,则整个图形的面积是9x,则这个点取在阴影部分的概率是55 99xx.故答案为:59.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.15.2【分析】依据三角形中位线定理,即可得到MN=12BC=2,MN//BC,依据△MNE≌△DCE(AAS),即可得到CD=MN=2.【详解】解:∵M,N分别是AB和AC的中点,∴MN是△ABC的中位线,∴MN=12BC=2,MN∥BC,∴∠NME=∠D,∠MNE=∠DCE,∵点E是CN的中点,∴NE=CE,∴△MNE≌△DCE(AAS),∴CD=MN=2.故答案为:2.【点睛】本题主要考查了三角形中位线定理以及全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.16.5【分析】由题意可得:直线MN 是AB 的垂直平分线,从而有EA =EB ,然后设BE =AE =x ,则可用含x 的代数式表示出BC ,于是在Rt △BCE 中根据勾股定理可得关于x 的方程,解方程即可求出结果.【详解】解:由题意可得:直线MN 是AB 的垂直平分线,∴EA =EB ,设BE =AE =x ,则AC =x +3,∵AC =2BC , ∴()132BC x =+, 在Rt △BCE 中,由勾股定理,得222BC CE BE +=, 即()2221334x x ++=,解得:125,3x x ==-(舍去), ∴BE =5.故答案为:5.【点睛】本题考查了线段垂直平分线的尺规作图和性质、勾股定理和一元二次方程的解法等知识,属于常考题型,熟练掌握上述知识、灵活应用方程思想是解题关键.17.3【分析】作AE ⊥BC 于E ,连接OA ,根据等腰三角形的性质得出OC=12CE ,根据相似三角形的性质求得S △CEA =1,进而根据题意求得S △AOE =32,根据反比例函数系数k 的几何意义即可求得k 的值. 【详解】解:作AE ⊥BC 于E ,连接OA ,∵AB=AC ,∴CE=BE ,∵OC=15OB , ∴OC=12CE , ∵AE ∥OD ,∴△COD ∽△CEA , ∴2CEA COD 4S CE SOC ⎛⎫== ⎪⎝⎭, ∵1BCD S =,OC=15OB , ∴COD 1144BCD S S ==, ∴CEA 1414S =⨯=, ∵OC=12CE , ∴AOC 1122CEA S S ==, ∴AOE 13122S =+=, ∵AOE 12S k =(0k >), ∴3k =,故答案为:3.【点睛】本题考查了反比例函数系数k 的几何意义,三角形的面积,等腰三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.18.212n n + 【分析】先计算出1EF B ∆、2EF B ∆、3EF B ∆的面积,然后再根据其面积的表达式找出其一般规律进而求解.【详解】解:∵AE DA =,∴ABE ∆面积是矩形ABCD 面积的一半,∴梯形BCDE 的面积为2+1=3,∵点1F 是CD 的中点,∴11=DF CF ∴1111111=22242矩形∆=⋅=⋅=BF C ABCD S BC CF BC CD S , 1111112=12222矩形∆=⋅=⨯⋅=DF E ABCD S DE DF AD DC S , ∴111133122梯形∆∆∆=--=--=EF B DF E BF C ABCD S S S S , ∵点2F 是1CF 的中点,由中线平分所在三角形的面积可知, ∴211124∆∆==BF C BF C S S , 且2132DF DF =, ∴213322∆∆==DF E DF E S S ∴2223153244梯形∆∆∆=--=--=EF B DF E BF C ABCD S S S S , 同理可以计算出:321128∆∆==BF C BF C S S , 且3174DF DF =, ∴317744∆∆==DF E DF E S S , ∴3337193488梯形∆∆∆=--=--=EF B DF E BF C ABCD S S S S , 故1EF B ∆、2EF B ∆、3EF B ∆的面积分别为:359,,248, 观察规律,其分母分别为2,4,8,符合2n ,分子规律为2+1n ,∴n EF B ∆的面积为212n n +. 故答案为:212n n +. 【点睛】本题考查了三角形的中线的性质,三角形面积公式,矩形的性质等,本题的关键是能求出前面三个三角形的面积表达式,进而找出规律求解.19.3x +,【分析】首先根据分式的加减法法则将括号里面的分式进行计算,然后将除法转化成乘法进行约分化简,最后将x 的值代入化简后的式子进行计算.【详解】211339x x x x x +⎛⎫-÷ ⎪---⎝⎭ 113(3)(3)x x x x x ++=÷-+- 1(3)(3)31x x x x x ++-=⋅-+ 3x =+,当3x 时,原式33=+=【点睛】本题主要考查了分式的化简求值以及二次根式的加减运算,熟知分式混合运算的法则是解答此题的关键.20.(1)50;(2)108;(3)见解析;(4)16 【分析】(1)用条形统计图中等级B 的人数除以扇形统计图中等级B 所占百分比即得本次调查的人数;(2)用扇形统计图中等级D 的人数除以总人数再乘以360°即可求出等级D 所对应的扇形的圆心角;(3)用总人数减去其它三个等级的人数即得等级C 的人数,进而可补全条形统计图;(4)先画出树状图求出所有等可能的结果数,再找出恰好选中甲和乙的结果数,然后根据概率公式求解即可.【详解】解:(1)本次调查的学生人数=13÷26%=50名;故答案为:50;(2)在扇形统计图中,等级D 所对应的扇形的圆心角=1536010850⨯︒=︒.故答案为:108;(3)C等级人数为:504131518---=名,补图如下:(4)画树状图得:由图可知:总共有12种结果,且每种结果出现的可能性相同,其中恰好选中甲和乙的结果有2种,所以P(恰好选中甲和乙)21 126 ==.【点睛】本题是统计与概率综合题,主要考查了条形统计图和扇形统计图的相关知识以及求两次事件的概率,属于常考题型,熟练掌握统计与概率的基本知识是解题的关键.21.(1)每本甲种词典的价格为70元,每本乙种词典的价格为50元;(2)学校最多可购买甲种词典5本【分析】(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,根据“购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设学校购买甲种词典m本,则购买乙种词典(30-m)本,根据总价=单价×数量结合总费用不超过1600元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设每本甲种词典的价格为x 元,每本乙种词典的价格为y 元,根据题意,得 217023290x y x y +=⎧⎨+=⎩解得7050x y =⎧⎨=⎩答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.(2)设学校计划购买甲种词典m 本,则购买乙种词典(30)m -本,根据题意,得 7050(30)1600m m +-≤解得5m ≤答:学校最多可购买甲种词典5本.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.22.货船与港口A 之间的距离是【分析】过点A 作AD BC ⊥于D ,先求出60ABC ∠=︒,在Rt ABD ∆中,30DAB ∠=︒,由三角函数定义求出AD ,求出45DAC CAB DAB ∠=∠-∠=︒,则ADC ∆是等腰直角三角形,得出AC =【详解】解:过点A 作AD BC ⊥于点D根据题意,得180754560ABC ∠=︒-︒-︒=︒∵AD BC ⊥∴90ADB ∠=︒∴180180906030DAB ADB ABC ∠=︒-∠-∠=︒-︒-︒=︒在Rt ABD ∆中∵80AB =,60ABD ∠=︒∴sin 80sin60AD AB ABD =⋅∠=⋅︒=∵304575CAB ∠=+=︒︒︒∴753045DAC CAB DAB ∠=∠-∠=︒-︒=︒在Rt ACD ∆中∵AD =45DAC ∠=︒∴cos AD AC DAC===∠答:货船与港口A 之间的距离是【点睛】本题考查了解直角三角形的应用-方向角问题、等腰直角三角形的判定与性质等知识;通过作辅助线构造直角三角形是解题的关键.23.(1)5150y x =-+(10≤x ≤15,且x 为整数);(2)当每瓶洗手液的售价定为15元时,超市销售该品牌洗于液每天销售利润最大,最大利润是375元【分析】(1)利用待定系数法求解可得;(2)根据“毛利润=每瓶毛利润×销售量”列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得.【详解】解:(1)设y 与x 之间的函数关系式为y kx b =+(0k ≠),根据题意,得:12901480k b k b +=⎧⎨+=⎩, 解得5150k b =-⎧⎨=⎩, ∴y 与x 之间的函数关系式为5150y x =-+(10≤x ≤15,且x 为整数);(2)根据题意,得:(10)(5150)w x x =--+,252001500x x =-+-,25(20)500x =--+,∵50a =-<,∴抛物线开口向下,w 有最大值,∴当20x <时,w 随x 的增大而增大,∵1015x ≤≤,且x 为整数,∴当15x =时,w 有最大值,即25(1520)500375w =-⨯-+=,答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗于液每天销售利润最大,最大利润是375元.【点睛】本题主要了考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据总利润的相等关系列出函数解析式、利用二次函数的性质求最值问题.24.(1)见解析;(2)43π 【分析】(1)证明:连接AE ,根据平行四边形的性质得到AD=BC ,AD ∥BC ,求得∠DAE=∠AEB ,根据全等三角形的性质得到∠DEA=∠CAB ,得到DE ⊥AE ,于是得到结论;(2)根据已知条件得到△ABE 是等边三角形,求得AE=BE ,∠EAB=60°,得到∠CAE=∠ACB ,得到CE=BE ,根据三角形和扇形的面积公式即可得到结论.【详解】(1)证明:连接AE∵四边形ABCD 是平行四边形∴AD BC =,//AD BC∴DAE AEB ∠=∠∵AE AB =∴AEB ABC ∠=∠∴DAE ABC ∠=∠∴AED BAC ∆∆≌∴DEA CAB ∠=∠∵90CAB ∠=︒∴90DEA ∠=︒∴DE AE ⊥∵AE 是A 的半径∴DE 与A 相切(2)解:∵60ABC ∠=︒,AB AE =∴ABE ∆是等边三角形∴AE BE =,60EAB ∠=︒∵90CAB ∠=︒∴90906030CAE EAB ∠=︒-∠=︒-︒=︒90906030ACB B ∠=︒-∠=︒-︒=︒∴CAE ACB ∠=∠∴AE CE =∴CE BE = ∴12ACE ABE ABC S S S ∆∆∆== ∵在Rt ABC ∆中,90CAB ∠=︒,60ABC ∠=︒,4AB =∴tan 4tan60AC AB ABC =⋅∠=⨯︒=∴11422ABC S AB AC ∆=⋅=⨯⨯∴1122ACE ABC S S ∆∆==⨯ ∵30CAE ∠=︒,4AE =22 3030443603603AEF AE S πππ⨯⨯===扇形∴43A A F CE E S S S π∆-==阴影扇形 【点睛】本题考查了切线的判定和性质,平行四边形的性质,全等三角形的判定和性质,等边三角形的判定和性质,扇形的面积的计算,熟练掌握切线的判定定理是解题的关键.25.(1)45AEB ∠=︒;(2)AE CE =+,理由见解析;(3【分析】(1)根据等腰直角三角形的性质求解得∠ACB=45︒,证明A 、B 、E 、C 四点共圆,利用圆周角定理即可求解;(2)在AD 上截取AF CE =,连接BF ,过点B 作BH EF ⊥于点H ,利用“SAS ”证得△ABF ≅△CBE ,求得30BFE BEF ∠=∠=︒,根据三角函数的定义即可求解;(3)分D 在线段CB 上和D 在CB 延长线上两种情况讨论,利用(2)的方法及结论即可求解.【详解】(1)连接AC ,如图:∵∠ABC=90︒,AB=CB,∴∠ACB=∠CAB=45︒,∵∠AEC=90︒,又∠ABC=90︒,∴A 、B 、E 、C 四点共圆,根据圆周角定理:∠AEB=∠ACB=45︒;(2)AE CE =+,理由如下:在AD 上截取AF CE =,连接BF ,过点B 作BH EF ⊥于点H .∵ABC AEC ∠=∠,∴A 、B 、E 、C 四点共圆,根据圆周角定理:A C ∠=∠,在△ABF 和△CBE 中,AF CE A C BA BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABF CBE ∆∆≌,∴ABF CBE ∠=∠,BF BE =,∴ABF FBD CBE FBD ∠+∠=∠+∠,∴FBE ABC ∠=∠,∵120ABC ∠=︒,∴120FBE ∠=︒,∵BF BE =, ∴()()111801*********BFE BEF FBE ∠=∠=-=︒-︒=︒∠︒, ∵BH EF ⊥于点H ,∴90BHE ∠=︒,∴在Rt BHE ∆中,cos cos30FH EH BE BEH BE ︒==⋅∠=⋅=,∴FE FH EH BE BE =+==, ∵AE AF FE =+,AF CE =,∴AE CE =;(3)当D 在线段CB 上时,如图:∵1tan 3BH DAB AH ∠==, ∴设BH=a ,则AH=3a ,由(2)得:30BFE BEF ∠=∠=︒,∴BF=BE=2a ,,∴a ,∴(32a CE BE a -==;当D 在CB 延长线上时,在AD 上截取AF CE =,连接BF ,过点B 作BH EF ⊥于点H .如图:同理:设BH=a ,则AH=3a ,同理得:30BFE BEF ∠=∠=︒,∴BF=BE=2a ,,∴a ,∴(3322a CE BE a ++==; 综上,CE BE【点睛】本题考查了圆周角定理,全等三角形的判定和性质,含30度角的直角三角形的性质,解直角三角形的应用,作出辅助线构建全等三角形是解题的关键.26.(1)2y x =-;(2)5,3D ⎛- ⎝⎭;(3)存在,(32或(52,)或(72,) 【分析】(1)把点O(0,0)和A(6,0)分别代入解析式即可求解;(2)分别求得点B 、C 、E 的坐标,用待定系数法求得直线OD 的解析式,解方程组即可求得点D 的坐标;(3)分三种情况讨论,利用解直角三角形求解即可.【详解】(1)把点00O (,)和(60)A ,分别代入2y ax c =-+中,得:0360c a c =⎧⎪⎨-=⎪⎩,解得0a c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2y x =-; (2)如图,设抛物线的对称轴与x 轴相交于点C ,与OD 相交于点E ,∵223)33y x x =-=--∴顶点(3B -,,对称轴与x 轴的交点C(3,0),∴OC=3,CB=∵在Rt OCB ∆中,tan BC COB OC ∠=== ∴60COB ∠=︒,∵30BOD ∠=︒,∴603030COD COB BOD ∠=∠-∠=︒-︒=︒,∴在Rt OCE ∆中,tan 3tan 3033CE OC COE =⋅∠=︒=⨯= ∴点E 的坐标为(3,,设直线OD 的解析式是y kx =(0k ≠),把点E (3,代入,得:3k =解得k =,∴直线OD 的解析式是3y x =-,∴2x x =-, 解得10x =(舍去),25x =,∴当5x =时,3y =-,∴点D 的坐标为(5,); (3)存在,理由如下:由(2)得:∠COE=∠EOB=30︒, ①当∠EFG=90︒时,如图:点B '、G 与点O 重合,此时四边形EFGH 为矩形,过H 作HP ⊥OC 于P ,∵∠COE=∠EOB=30︒,∴∴∠HOP=90︒-∠COE-∠EOB=30︒,∴HP=12OH=2,32,点H 的坐标为(32,2); ②当∠EGF=90︒时,此时四边形EGFH 为矩形,如图:∵∠CEO=90︒-∠COE=60︒,∠OEG=90︒-∠EOB=60︒,∠BEG=180︒-∠CEO-∠OEG=60︒,根据折叠的性质:∠D 'EF=∠BEF=1BEG 2∠=30︒,在Rt △EGF 中,∠EGF=90︒,∠GEF=30︒,∴GF=GE tan 30⋅︒=1,∴EH=GF=1,过H 作HQ ⊥BC 于Q ,∴∠HEQ=90︒-∠BEG =30︒,∴HQ=12EH=12,点H 的坐标为(123+,-,即(72,); ③当点G 在OD 上,且∠EGF=90︒时,此时四边形EGFH 为矩形,如图:∵∠BOE=30︒,∴∠OFG=90︒-∠EOB=60︒,根据折叠的性质:∠kg 'E=∠BFE=1BFG 2∠=()1180OFG 2∠︒- =60︒, ∴FG 是线段OE 的垂直平分线,∴OG=GE=12EH=GF=OG tan 30⋅︒=1, 过H 作HK ⊥BC 于K ,∴∠HEK=180︒-∠OEC-∠OEH=30︒,∴HK=12EH=12,点H 的坐标为(132-,,即(52,);综上,符合条件的点H 的坐标为(32,2)或(52,)或(72,) . 【点睛】本题是二次函数与几何的综合题考查了待定系数法求函数解析式,解直角三角形,含30度角的直角三角形的性质,翻折变换,矩形的性质等知识,解题的关键是注意数形结合思想和分类讨论的思想解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年沈阳市中等学校招生统一考试数学试卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .525.310⨯亩B .62.5310⨯亩C .425310⨯亩D .72.5310⨯亩2)3.下列各点中,在反比例函数2y x=-图象上的是() A .(21),B .233⎛⎫⎪⎝⎭,C .(21)--,D .(12)-,4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取 值范围是( ) A .0x > B .0x <C .2x >D .2x <6.若等腰三角形中有一个角等于50o,则这个等腰三角形的顶角的度数为( ) A .50oB .80oC .65o 或50oD .50o 或80o7.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--, 8.如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE , 交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )正面第2题图A .B .C .D .第5题图xADCEFB第8题图A .1对B .2对C .3对D .4对二、填空题(每小题3分,共24分)9.已知A ∠与B ∠互余,若70A ∠=o,则B ∠的度数为 . 10.分解因式:328m m -= .11.已知ABC △中,60A ∠=o,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 .12.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补 充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13.不等式26x x -<-的解集为 .14.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.15.观察下列图形的构成规律,根据此规律,第8第15题图16.在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.计算:101(1)52-⎛⎫π-+-+- ⎪⎝⎭18.解分式方程:1233xx x=+--.19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.第1个 ……第2个 第3个 第4个ADC BO 第12题图 B C DA 第14题图20.如图所示,在66⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形. (1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.四、(每小题10分,共20分)21.如图所示,AB 是O e 的一条弦,OD AB ⊥,垂足为C ,交O e 于点D ,点E 在O e 上.(1)若52AOD ∠=o,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.图① 第20题图 图② 图③ EB CA O 第21题图 小刚 小明A 1B 1C 1A B C 第22题图23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 六、(本题12分)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升?(3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)第23题图一班竞赛成绩统计图 二班竞赛成绩统计图25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180o,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.八、(本题14分) 26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60o 后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.2008年沈阳市中等学校招生统一考试C E ND A BM图① C A EM B D N图② 第25题图第26题图数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.A 3.D 4.C 5.C 6.D 7.A8.C二、填空题(每小题3分,共24分) 9.20o10.2(2)(2)m m m +-11.120o12.90BAD ∠=o(或AD AB ⊥,AC BD =等)13.4x >14.1215.65 16.8 三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.解:原式1(2)5=+-+- ···························································· 4分125=-+- ··················································································· 5分6= ······································································································ 6分18.解:12(3)x x =-- ·················································································· 2分126x x =--7x = ··········································································································· 5分 检验:将7x =代入原方程,左边14==右边 ························································ 7分所以7x =是原方程的根 ·················································································· 8分 (将7x =代入最简公分母检验同样给分)19.解:原式2222222xy y x xy y x y =++-+-- ················································ 4分 xy =- ········································································································· 6分 当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭······················································································ 8分 20.解:(1)答案不唯一,如分割线为三角形的三条中位线中任意一条所在的直线等.································· 2分拼接的图形不唯一,例如下面给出的三种情况:图① 图② 图③ 图④图①~图④,图⑤~图⑦,图⑧~图⑨,画出其中一组图中的两个图形. ······················ 6分 (2)对应(1)中所给图①~图④的周长分别为4+8,4+4+ 图⑤~图⑦的周长分别为10,8+8+图⑧~图⑨的周长分别为2+4+ ···································· 10分 四、(每小题10分,共20分)21.解:(1)OD AB ⊥Q ,»»AD DB ∴= ··························································· 3分11522622DEB AOD ∴∠=∠=⨯=o o ································································· 5分 (2)OD AB ⊥Q ,AC BC ∴=,AOC △为直角三角形, 3OC =Q ,5OA =,由勾股定理可得4AC == ·············································· 8分 28AB AC ∴== ························································································· 10分 22.解:(1)1()3P =一次出牌小刚出象牌“” ··················································· 4分(2)树状图(树形图):·············································································· 8分图⑤ 图⑥图⑦图⑧ 图⑨A 1B 1C 1 AA 1B 1C 1 BA 1B 1C 1C开始小刚 小明或列表···························································· 8分 由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ········································································ 9分1()3P ∴=一次出牌小刚胜小明. ····································································· 10分 五、(本题12分) 23.解:(1)21······························································································ 2分 (2)一班众数为90,二班中位数为80 ······························································· 6分 (3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ···································································································· 8分 ②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ················································································································· 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ······························································································· 12分 六、(本题12分) 24.解:(1)设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+ ················ 1分 将(0100),,(180),代入上式得,10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩20100y x ∴=-+ ·························································································· 4分 验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ··················································· 5分 y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ··························· 6分 (2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ····························································· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+, ··················································· 11分 解得,69a =(升) ····················································································· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) ················································································· 11分 70.510(16 4.5)69+--=(升) ···································································· 12分 方法三:由(1)得,货车行驶中每小时耗油20升, ············································· 9分设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ····························································································· 11分 ∴在D 处至少加油69升,货车才能到达B 地. ················································· 12分七、(本题12分) 25.证明:(1)①BAC DAE ∠=∠Q BAE CAD ∴∠=∠AB AC =Q ,AD AE = ABE ACD ∴△≌△BE CD ∴= ·································································································· 3分 ②由ABE ACD △≌△得ABE ACD ∠=∠,BE CD =M N Q ,分别是BE CD ,的中点,BM CN ∴= ················································· 4分 又AB AC =Q ABM ACN ∴△≌△AM AN ∴=,即AMN △为等腰三角形 ···························································· 6分 (2)(1)中的两个结论仍然成立. ···································································· 8分 (3)在图②中正确画出线段PD由(1)同理可证ABM ACN △≌△ CAN BAM ∴∠=∠ BAC MAN ∴∠=∠ 又BAC DAE ∠=∠QMAN DAE BAC ∴∠=∠=∠AMN ∴△,ADE △和ABC △都是顶角相等的等腰三角形 ································· 10分 PBD AMN ∴∠=∠,PDB ADE ANM ∠=∠=∠PBD AMN ∴△∽△ ···················································································· 12分 八、(本题14分)26.解:(1)点E 在y 轴上 ·············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =Q,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠=o由题意可知:60AOE ∠=o306090BOE AOB AOE ∴∠=∠+∠=+=o o oQ 点B 在x 轴上,∴点E 在y 轴上. ································································· 3分(2)过点D 作DM x ⊥轴于点M1OD =Q ,30DOM ∠=o∴在Rt DOM △中,12DM =,2OM =Q 点D 在第一象限,∴点D的坐标为122⎛⎫⎪ ⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分 Q 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:28299y x x =--+ ·················································· 9分(3)存在符合条件的点P ,点Q . ································································· 10分。