分数乘整数(教案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数乘整数(教案)
1分数乘法
【单元目标】
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2.使学生掌握分数乘分数,应该先约分再乘,这样使计算简单,并掌握怎样先约分。
3.自主探索分数乘小数的计算方法:在观察比较、合作交流中经历知识发生发展的全过程,让学生能正确计算分数乘小数、提高计算能力。
4.使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
5.使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
【重点难点】
1.理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2.分数乘法计算法则的推导。
3.利用运算定律进行一些简便计算。
【教学指导】
1.在已有知识的基础上,帮助学生自主构建新的知识。
本单元的内容与学生所学的内容密切相关。
比如分数乘法对学生来说是新的内容,它的计算方法和整数、小数有很大的不同。
但它的研究与整数乘法和分数的意义和性质密切相关。
分数乘法是从整数乘法的含义引入整数的分数乘法,再引申为分数的分数乘法。
比如分数乘以分数的计算,解决一个数有多少个分数的问题,都与分数乘法的意义密切相关,尤其是对单位“1”的理解。
再比如分数乘法的计算,需要近似分数的知识。
因此,教师应该注意让学生
在已有知识基础上,自主建构新知识。
2.让学生在现实情景中研究计算。
把计算与应用紧密结合,是新课程的要求和本套教材的特点。
教学中教师应结合教材提供的实例,也可以选择学生身边的事例,有条件的地方也可运用多媒体手段,创设现实情景,提出数学问题,理解分数乘法的意义,研究分数乘法计算。
同时注意在练习中安排应用分数乘法的意义及计算解决实际问题或学生身边的问题,体会计算是解决实际问题的需要,同时培养学生应用数学的意识和综合运用知识解决问题的能力。
3.改变学生研究方式,通过动手操作、自主探索和合作交流的方式研究分数乘法。
在教材的讲解中,我们了解到,教材简化了推理和思维过程的描述,没有拿出结论性的内容,主要是为了突出自主探索和合作研究。
根据这一安排意图,注重激发学生的研究热情,为学生提供充分开展教学活动的机会,在观察和操作的基础上进行探索、讨论和交流,理解计算原理,总结计算规律,分析数量关系,寻找解决问题的方法,充分体现学生在研究中的主体地位。
[课时安排]
建议分成7个课时:
第1课时分数乘整数
【教学内容】
分数乘整数(教材第2页例1和第3页例2以及“做一做”、练习一的第1、2、3题)。
【教学目标】
使学生理解分数乘以整数的意义,掌握分数乘以整数的计算方法。
2.通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3.引导学生探求知识的内在联系,激发学生研究兴趣。
通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
【重点难点】
使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
【复入】
1.列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?
8个6是多少?
2.计算:
16+26+36=
310+310+310=
4.揭秘题目:这个题目还能怎么算?今天,我们将研究如何除法。
3.小结:
老师:整数乘法的意义就是求几个相同加数的和的简便运算。
同分母分数的加法计算法则:分子相加的和作为分子,分母不变。
4.揭示课题:310+310+310这题我们还可以怎么计算?今天我们就来研究分
9个11是多少?
数乘法。
【新课讲授】
1.出示例1。
小新、爸爸、妈妈一起吃一个蛋糕,每人吃29个,3人一共吃多少个?
(1)出示课件。
用圆形图片理解题意。
(2)用加法算。
板书:29+29+29=69=23(个)
(3)还可以列式呢?
板书:29×3
这里为什么用乘法?学生讨论交流。
(3个29相加,用乘法算式表示为29×3或3×29。
)
29×3算式的意义是什么?
(表示3个29相加。
)
(4)小结:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
(5)学生尝试计算29×3的结果。
(6)学生汇报交流。
展示学生的做法,让他们分别说一说自己的算法。
(7)对比分析:
老师:这一道题同学们想出了这么多的解法,观察一下他们有什么相同点。
学生发现:分子相乘的积作分子,分母没有变化。
提问:哪种方法更为简便,为什么?
老师强调:能约分的可以先约分再计算,这样比较简便,不易出错。
(8)归纳总结:
分数乘整数是怎样计算的?
(用分数的分子和整数相乘的积作分子,分母不变。
能约分的可以先约分再计算,结果必须是最简分数。
)
(9)教材第2页“做一做”。
一袋面包重
3
kg
10
2.出示例2。
(1)一桶水有12L
怎么列算式?为什么?
生:求3个12L是多少?用乘法计算。
算式是12×3=36(L)。
生:也可以用加法计算。
12+12+12=36(L)。
乘法算式表示的意义是什么呢?
生:12的3倍是多少。
生:3个12相加。
怎么列算式?根据是什么呢?
生:求12L的一半是多少。
12L的
(L)。
1
是多少升。
用乘法计算。
算式是12×12=6
2
求12L的
11
是多少。
列式为12×=3(L)。
44
(4)归纳总结:
一个数乘几分之几的意义是什么呢?
(一个数乘几分之几就是求这个数的几分之几是多少。
)(5)教材第3页“做一做”。
【课堂作业】
1.教材第6页第1题。
2.教材第6页第2题。
求5kg的
1
是多少。
用乘法计算。
2
15
×5=(勺)
22
3.教材第6页第3题。
【课堂小结】
通过这节课的研究,你有什么收获?
通过这堂课的研究,我们知道分数乘整数时,用分数的分子和整数相乘的积作分子,分母不变。
能约分的可以先约分再
计算,结果必须是最简分数;知道了一个数乘几分之几就是求这个数的几分之几是多少。
【课后作业】
完成《创优作业100分》本课时练习。
第1课时分数乘整数
1.分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
2.分数乘整数的计算方法:
用分数的分子和整数相乘的积作分子,分母不变。
能约分的可以先约分再计算,结果必须是最简分数。
3.一个数乘几分之几就是求这个数的几分之几是多少。
1.学生对整数乘法和分数加法已有一定的经验,可以结合起来进行教学。