吉林省延边朝鲜族自治州高一下学期期末数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省延边朝鲜族自治州高一下学期期末数学试卷
姓名:________ 班级:________ 成绩:________
一、填空题 (共14题;共14分)
1. (1分)函数的最小正周期为________.
2. (1分) (2018高一下·黑龙江期末) 过点且在坐标轴上的截距相等的直线的一般式方程是________.
3. (1分) (2016高一下·盐城期末) 在△ABC中,设角A,B,C所对的边分别为a,b,c,若 sinA+cosA=2,a=3,C= ,则b=________.
4. (1分) (2017高三上·定西期中) 若 =(2+λ,1), =(3,λ),若<,>为钝角,则实数λ的取值范围是________.
5. (1分) (2016高二上·菏泽期中) 等差数列{an}中,前n项和为Sn , a1<0,S2015<0,S2016>0.则n=________时,Sn取得最小值.
6. (1分) (2016高二上·德州期中) 若l为一条直线,α,β,γ为三个互不重合的平面,给出下面四个命题:①α⊥γ,β⊥γ,则α⊥β;②α⊥γ,β∥γ,则α⊥β;③l∥α,l⊥β,则α⊥β.④若l∥α,则l平行于α内的所有直线.其中正确命题的序号是 ________.(把你认为正确命题的序号都填上)
7. (1分)数列的前项和为,已知数列是首项和公比都是的等比数列,则的通项公式为 ________.
8. (1分) (2018高二下·柳州月考) 已知正三棱锥的体积为,每个顶点都在半径为的球面上,球心在此三棱锥内部,且,点为线段的中点,过点作球的截面,则所得截面圆面积的最小值是________.
9. (1分)与=(1,2)共线的单位向量为________
10. (1分) (2018高二下·鸡西期末) 给出下列四个命题:
①半径为2,圆心角的弧度数为的扇形面积为②若为锐角,,则
③ 是函数为偶函数的一个充分不必要条件④函数的一条对称轴是其中正确的命题是________.
11. (1分) (2015高三上·东莞期末) 已知直线y=kx与圆C:(x﹣4)2+y2=r2相切,圆C以x轴为旋转轴转一周后,得到的几何体的表面积为S=16π,则k的值为________.
12. (1分)(2018·株洲模拟) 数列的首项为1,其余各项为1或2,且在第个1和第个1之间有个2,即数列为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列的前项和为,则 ________.(用数字作答)
13. (1分) (2018高一下·西华期末) 如图,在中,点在边上,点在边上,且
,,与交于点,设,则的值为________.
14. (1分) (2016高二上·会宁期中) 在△ABC中,若BC=5,AC=7,AB=8,则△ABC的最大角与最小角之和是________.
二、解答题 (共6题;共45分)
15. (5分)如图,在直角梯形ABCD中,AB∥CD,且AB=AD=2,CD=4,四边形ADE1F1是正方形,且平面ADE1F1⊥平面ABCD,M是E1C的中点.
(1)证明:BM∥平面ADE1F1;
(2)求三棱锥D﹣BME1的体积.
16. (10分) (2016高三上·贵阳模拟) 在△ABC中,角A,B,C的对边分别为a、b、c,且满足3asinC=4ccosA,
=3.
(1)求△ABC的面积S;
(2)若c=1,求a的值.
17. (10分) (2015高三上·青岛期末) 已知函数(其中ω>0),若f(x)的一条对称轴离最近的对称中心的距离为.
(1)求y=f(x)的单调递增区间;
(2)在△ABC中角A、B、C的对边分别是a,b,c满足(2b﹣a)cosC=c•cosA,则f(B)恰是f(x)的最大值,试判断△ABC的形状.
18. (5分) (2016高一下·宜昌期中) 如图所示,我艇在A处发现一走私船在方位角45°且距离为12海里的B处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的最短时间.
19. (5分) (2016高二上·济南期中) 已知数列{an}是等比数列,首项a1=2,a4=16
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}是等差数列,且b3=a3 , b5=a5 ,求数列{bn}的通项公式及前n项的和.
20. (10分)(2019·金华模拟) 已知抛物线:的焦点是,直线:,
:分别与抛物线相交于点和点,过,的直线与圆:相切.
(1)求直线的方程(含、);
(2)若线段与圆交于点,线段与圆交于点,求的取值范围.
参考答案一、填空题 (共14题;共14分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
二、解答题 (共6题;共45分)
15-1、16-1、
16-2、17-1、
17-2、18-1、19-1、
20-1、
20-2、。