2019-2020学年上学期高二数学12月月考试题含解析(1122)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛宁县第二中学校2019-2020学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( ) A .(﹣7,﹣4) B .(7,4) C .(﹣1,4) D .(1,4)
2. 若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( ) A .∀x ∈R ,2x 2﹣1<0 B .∀x ∈R ,2x 2﹣1≤0
C .∃x ∈R ,2x 2﹣1≤0
D .∃x ∈R ,2x 2﹣1>0
3. 设f (x )=(e -x -e x )(1
2x +1-1
2
),则不等式f (x )<f (1+x )的解集为( ) A .(0,+∞) B .(-∞,-1
2)
C .(-1
2
,+∞)
D .(-1
2
,0)
4. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )
A .2
B .6
C .4
D .2
5. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4
B .5
C .6
D .9
6. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形
B .等边三角形
C .等腰直角三角形
D .等腰三角形
7. 已知全集U R =,{|239}x
A x =<≤,{|02}
B y y =<≤,则有( )
A .A Ø
B B .A
B B =
C .()R A B ≠∅ð
D .()R A B R =ð
8. 某几何体的三视图如图所示,则它的表面积为( )
A .
B .
C .
D .
9. 已知抛物线C :y x 82
=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6
B .3
C .
3
8 D .
3
4 第Ⅱ卷(非选择题,共100分)
10.已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38
B .20
C .10
D .9
11.已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,
B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )
A .
B .
C .
D .
12.(文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( ) A .向左平移1个单位 B .向右平移1个单位 C .向上平移1个单位 D .向下平移1个单位
二、填空题
13.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:
那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.
14.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则
△F 1MF 2的面积是 .
15.的展开式中的系数为 (用数字作答).
16.过椭圆
+
=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,
若∠F 1PF 2=60°,则椭圆的离心率为 .
17.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________. 18.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .
1111]
三、解答题
19.(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60o
ABC ∠=,侧面PDC
为等边三角形,且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;
(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.
20.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t 0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:
(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率 (Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t 0,试确定t 0的取值范围
21.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数) (Ⅰ)当a=1时,求f (x )的单调区间;
(Ⅱ)若函数f (x )在10,2⎛
⎫ ⎪⎝⎭
上无零点,求a 的最小值;
(Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.
22.已知函数f (x )=lnx ﹣a (1﹣),a ∈R . (Ⅰ)求f (x )的单调区间; (Ⅱ)若f (x )的最小值为0. (i )求实数a 的值;
(ii )已知数列{a n }满足:a 1=1,a n+1=f (a n )+2,记[x]表示不大于x 的最大整数,求证:n >1时[a n ]=2.
23.函数f (x )是R 上的奇函数,且当x >0时,函数的解析式为f (x )=﹣1. (1)用定义证明f (x )在(0,+∞)上是减函数; (2)求函数f (x )的解析式.
24. 定圆22:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E
(Ⅰ)求轨迹E 的方程;
(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.
洛宁县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考
答案)
一、选择题
1. 【答案】A
【解析】解:由已知点A (0,1),B (3,2),得到=(3,1),向量
=(﹣4,﹣
3),
则向量
=
=(﹣7,﹣4);
故答案为:A .
【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.
2. 【答案】C
【解析】解:命题p :∀x ∈R ,2x 2
﹣1>0, 则其否命题为:∃x ∈R ,2x 2
﹣1≤0,
故选C ;
【点评】此题主要考查命题否定的定义,是一道基础题;
3. 【答案】
【解析】选C.f (x )的定义域为x ∈R ,
由f (x )=(e -x -e x )(12x +1-1
2)得
f (-x )=(e x -e -x )(12-x +1-1
2
)
=(e x -e -x )(-12x +1+1
2)
=(e -x -e x )(12x +1-1
2
)=f (x ),
∴f (x )在R 上为偶函数,
∴不等式f (x )<f (1+x )等价于|x |<|1+x |,
即x 2<1+2x +x 2,∴x >-1
2
,
即不等式f (x )<f (1+x )的解集为{x |x >-1
2},故选C.
4. 【答案】B
【解析】解:∵圆C :x 2+y 2﹣4x ﹣2y+1=0,即(x ﹣2)2+(y ﹣1)2
=4,
表示以C (2,1)为圆心、半径等于2的圆.
由题意可得,直线l :x+ay ﹣1=0经过圆C 的圆心(2,1), 故有2+a ﹣1=0,∴a=﹣1,点A (﹣4,﹣1).
∵AC=
=2
,CB=R=2,
∴切线的长|AB|==
=6.
故选:B .
【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.
5. 【答案】B
【解析】解:①x=0时,y=0,1,2,∴x ﹣y=0,﹣1,﹣2; ②x=1时,y=0,1,2,∴x ﹣y=1,0,﹣1; ③x=2时,y=0,1,2,∴x ﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共5个元素. 故选:B .
6. 【答案】D
【解析】解:∵A+B+C=180°,
∴sinB=sin (A+C )=sinAcosC+sinCcosA=2cosCsinA , ∴sinCcosA ﹣sinAcosC=0,即sin (C ﹣A )=0, ∴A=C 即为等腰三角形. 故选:D .
【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.
7. 【答案】A
【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 8. 【答案】 A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为
,
圆锥的表面积S=S
底面+S 侧面=×π×12
+×2×2+×π×
=2+
.
故选A .
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
9. 【答案】A
解析:抛物线C :y x 82
=的焦点为F (0,2),准线为l :y=﹣2,
设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),
∵,∴2m=﹣a ,4=
﹣4,∴m 2=32,由抛物线的定义可得|QF|=
+2=4+2=6.故
选A . 10.【答案】C
【解析】解:根据等差数列的性质可得:a m ﹣1+a m+1=2a m ,
则a m ﹣1+a m+1﹣a m 2
=a m (2﹣a m )=0,
解得:a m =0或a m =2,
若a m 等于0,显然S 2m ﹣1=
=(2m ﹣1)a m =38不成立,故有a m =2, ∴S 2m ﹣1=(2m ﹣1)a m =4m ﹣2=38, 解得m=10.
故选C
11.【答案】D
【解析】解:∵|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a=6,|AF 2|+|BF 2|的最大值为8,
∴|AB|的最小值为4,
当AB ⊥x 轴时,|AB|取得最小值为4,
∴
=4,解得b 2=6,b=
.
故选:D .
【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
12.【答案】C 【解析】
试题分析:()2222log 2log 2log 1log g x x x x ==+=+,故向上平移个单位. 考点:图象平移.
二、填空题
13.【答案】1464
【解析】【知识点】函数模型及其应用
【试题解析】显然,面积大的房间用费用低的涂料,所以房间A 用涂料1,房间B 用涂料3,
房间C用涂料2,即最低的涂料总费用是元。
故答案为:1464
14.【答案】9.
【解析】解:双曲线﹣=1的a=2,b=3,
可得c2=a2+b2=13,
又||MF
|﹣|MF2||=2a=4,|F1F2|=2c=2,∠F1MF2=90°,
1
在△F1AF2中,由勾股定理得:
|F1F2|2=|MF1|2+|MF2|2
=(|MF1|﹣|MF2|)2+2|MF1||MF2|,
即4c2=4a2+2|MF1||MF2|,
可得|MF1||MF2|=2b2=18,
即有△F1MF2的面积S=|MF1||MF2|sin∠F1MF2=×18×1=9.
故答案为:9.
【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.
15.【答案】20
【解析】【知识点】二项式定理与性质
【试题解析】通项公式为:令12-3r=3,r=3.
所以系数为:
故答案为:
16.【答案】.
【解析】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),
∵∠F1PF2=60°,
∴=,
即2ac=b2=(a2﹣c2).
∴e2+2e﹣=0,
∴e=或e=﹣(舍去).
故答案为:.
【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.
17.【答案】
【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,
则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),
由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x0
=1y0=x0-1y0=ax0+ln x0
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0
18.【答案】8cm 【解析】
考点:平面图形的直观图.
三、解答题
19.【答案】
【解析】由底面ABCD 为菱形且60o
ABC ∠=,∴ABC ∆,ADC ∆是等边三角形, 取DC 中点O ,有,OA DC OP DC ⊥⊥,
∴POA ∠为二面角P CD A --的平面角, ∴90o
POA ∠=.
分别以,,OA OC OP 所在直线为,,x y z 轴,建立空间直角坐标系如图,
则(0,1,0),2,0),(0,1,0)A P D B C -. …… 3分
(Ⅰ)由M为PB
中点,
22
M ∴
3
(
2
DM=
(3,0,3),
PA=-0),0,
DC PA DM PA DC
=∴==
∴PA⊥DM……6分
(Ⅱ)由(0,2,0)
DC=,0
PA DC
⋅=,∴PA⊥DC,
∴平面DCM的法向量可取(3,0,
PA=……
(0,1,
PC=,设直线PC与平面DCM所成角为θ
则sin|cos,|||
4
||||6
PC PA
PC PA
PC PA
θ
⋅
=<>===.
即直线PC与平面DCM所成角的正弦值为
4
.……12分
20.【答案】
【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人,
一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,
记一周课外阅读时间在[0,2)的学生为A,B,一周课外阅读时间在[2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,
记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M,
其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,
所以P(M)==,
即恰有1人一周课外阅读时间在[2,4)的概率为.
(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,
由(Ⅰ)知课外阅读时间落在[0,2)的频率为P1=0.02,
课外阅读时间落在[2,4)的频率为P2=0.03,
课外阅读时间落在[4,6)的频率为P3=0.05,
课外阅读时间落在[6,8)的频率为P1=0.2,
因为P1+P2+P3<0.2,且P1+P2+P3+P4>0.2,
故t0∈[6,8),
所以P1+P2+P3+0.1×(t0﹣6)=0.2,
解得t0=7,
所以教育局拟向全市中学生的一周课外阅读时间为7小时.
【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.
21.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛
⎫ ⎪⎝⎭ 上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤
-∞-
⎥-⎝⎦
. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,
1
2
)上无零点,只需要对x ∈(0,1
2
)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;
试题解析:
(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,
由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.
故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,
故要使函数上无零点,
只要对任意的
,f (x )>0恒成立,即对
恒成立.
令,则
,
再令,
则
,故m (x )在
上为减函数,于是
,
从而,l (x )>0,于是l (x )在上为增函数,所以,
故要使
恒成立,只要a ∈[2﹣4ln2,+∞),
综上,若函数f (x )在10,2⎛⎫ ⎪⎝⎭
上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,
当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;
当a ≠2时,f ′(x )=,x ∈(0,e]
当x=
时,f ′(x )=0.
由题意得,f (x )在(0,e]上不单调,故,即
①
此时,当x 变化时,f ′(x ),f (x )的变化情况如下:
又因为,当x →0时,2﹣a >0,f (x )→+∞,
,
所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:
即
令h (a )=,
则h
,令h ′(a )=0,得a=0或a=2,
故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增; 当
时,h ′(a )<0,函数h (a )单调递减.
所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:
.④
综合①④可知,当a 的范围是3,21e ⎛⎤
-∞-
⎥-⎝⎦
时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使f (x i )=g (x 0)成立. 22.【答案】
【解析】解:(Ⅰ)函数f (x )的定义域为(0,+∞),且f ′(x )=﹣=
.
当a ≤0时,f ′(x )>0,所以f (x )在区间(0,+∞)内单调递增; 当a >0时,由f ′(x )>0,解得x >a ;由f ′(x )<0,解得0<x <a . 所以f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ). 综上述:a ≤0时,f (x )的单调递增区间是(0,+∞);
a >0时,f (x )的单调递减区间是(0,a ),单调递增区间是(a ,+∞). (Ⅱ)(ⅰ)由(Ⅰ)知,当a ≤0时,f (x )无最小值,不合题意; 当a >0时,[f (x )]min =f (a )=1﹣a+lna=0,
令g (x )=1﹣x+lnx (x >0),则g ′(x )=﹣1+=
,
由g ′(x )>0,解得0<x <1;由g ′(x )<0,解得x >1.
所以g (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). 故[g (x )]max =g (1)=0,即当且仅当x=1时,g (x )=0. 因此,a=1.
(ⅱ)因为f (x )=lnx ﹣1+,所以a n+1=f (a n )+2=1+
+lna n .
由a 1=1得a 2=2于是a 3=+ln2.因为<ln2<1,所以2<a 3<.
猜想当n ≥3,n ∈N 时,2<a n <. 下面用数学归纳法进行证明.
①当n=3时,a 3=+ln2,故2<a 3<.成立.
②假设当n=k (k ≥3,k ∈N )时,不等式2<a k <成立.
则当n=k+1时,a k+1=1+
+lna k ,
由(Ⅰ)知函数h (x )=f (x )+2=1++lnx 在区间(2,)单调递增,
所以h (2)<h (a k )<h (),又因为h (2)=1++ln2>2,
h ()=1++ln <1++1<.
故2<a k+1<成立,即当n=k+1时,不等式成立.
根据①②可知,当n ≥3,n ∈N 时,不等式2<a n <成立. 综上可得,n >1时[a n ]=2.
【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,
考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.
23.【答案】
【解析】(1)证明:设x 2>x 1>0,∵f (x 1)﹣f (x 2)=(
﹣1)﹣(
﹣1)
=,
由题设可得x 2﹣x 1>0,且x 2•x 1>0,∴f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,+∞)上是减函数.
(2)当x <0时,﹣x >0,f (﹣x )=
﹣1=﹣f (x ),∴f (x )=+1.
又f (0)=0,故函数f (x )的解析式为f (x )=.
24.【答案】
【解析】(Ⅰ)
(3,0)F 在圆22:(16M x y +=内,∴圆N 内切于圆.M
NM NF +∴轨迹E 的方程为
4(11OA OC =2(14)(14k k ++≤当且仅当18
2,5
>∴∆。